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Abstract
Test time adaptation (TTA) has shown promise
in addressing distribution shifts in different ar-
eas, but remains significantly underexplored in
time-series forecasting (TSF), where temporal de-
pendencies and the evolving nature of the signals
present unique challenges. We present DynaTTA,
a dynamic TTA framework for TSF that estimates
distribution shifts in real time by tracking predic-
tion errors and embedding drift. This estimate
allows us to employ two key mechanisms, a dy-
namic adaptation rate that is adjusted based on the
severity of the shift, and shift-conditioned gating
that controls the influence of the learned adap-
tations as required. These mechanisms enable
meaningful and appropriate adaptations in the
presence of distribution shifts, while retaining
the prior knowledge of the source model. Dy-
naTTA is modular and can be used with any exist-
ing pretrained model for TSF, without requiring
retraining. We also propose TTFBench, a first-of-
its-kind benchmark for evaluating TTA for TSF,
comprising thousands of time-series with varying
types and intensities of shifts. Through extensive
experiments with various backbones and datasets
including TTFBench, we show that DynaTTA
consistently improves performance. The code and
data are available at https://github.com/shivam-
grover/DynaTTA.

1. Introduction
Time-series forecasting (TSF) plays a critical role in a wide
array of real-world applications, such as forecasting weather
(He et al., 2021; Lin et al., 2022), energy consumption (Zhou
et al., 2021; Bu & Cho, 2020; Wang et al., 2022), traffic
(Bai et al., 2020; Cirstea et al., 2022), and financial markets
(Cheng et al., 2022). While deep learning has advanced TSF
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by enabling models to capture long-range dependencies and
complex dynamics, a core challenge persists: real-world
time-series are often non-stationary, with shifting statisti-
cal properties that can degrade model generalization during
inference (Kim et al., 2025). Test-time adaptation (TTA)
has emerged as a promising approach to mitigate the ef-
fects of distribution shifts at inference by allowing models
to update themselves during test-time without retraining
from scratch. While extensively studied in classification
tasks within computer vision (Wang et al., 2020; Chen et al.,
2022) and language (Karmanov et al., 2024; Ma et al., 2023),
TTA for TSF, simply referred to as TSF-TTA, requires fun-
damentally different considerations due to the sequential
and regression-based nature of the task (Kim et al., 2025).
Unlike classification settings, which typically assume each
test sample as independent from others, TSF involves a
continuous stream of data which follows a strong tempo-
ral structure. Furthermore, as new data arrives, the ground
truth values for previous forecasts are gradually revealed,
enabling potential feedback for adaptation. Through the
following, we identify two distinct challenges in the area of
TSF-TTA and subsequently propose two solutions to tackle
them.

Problem 1: Dynamic nature of time-series. Existing meth-
ods for TSF-TTA (Kim et al., 2025; Christou et al., 2024)
exhibit two key limitations: (1) they employ fixed adaptation
rates that do not adjust based on the severity or nature of the
distribution shift, leading to under or over-adaptation, and
(2) while certain works (Kim et al., 2025) employ gating
mechanisms to regulate how much adapted information is
incorporated into predictions, these gates are not explicitly
conditioned on the magnitude or direction of the distribution
shift. As a result, the model cannot adjust its reliance on the
original (pre-trained) model versus the adapted model. For
instance, in scenarios where the distribution shift encoun-
tered at inference time is cyclic in nature, i.e. it temporar-
ily deviates but eventually returns to the source domain, it
would be desirable to reduce the impact of adaptation or
even disable adaptation. Conversely, when facing novel or
distant distributions, it would be more desirable to allow
the adaptation module to take a more involved role. To
address this, we propose Dynamic Test-Time Adaptation
(DynaTTA), a novel TTA approach for TSF that estimates
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Figure 1. Comparison between DynaTTA, which dynamically adjusts adaptation rate (LR) and gating parameters (G) based on estimated
distribution shift, and TAFAS (Kim et al., 2025) with fixed adaptation rate and non-dynamic gating. DynaTTA adapts more accurately
because of its dynamic nature.

Electricity: minimal distribution shift.

ETTh2: repetitive seasonal pattern.

Electricity: minimal distribution shift.

Exchange Rate: small scale.

Figure 2. Train/validation/test splits for standard TSF datasets.
Most datasets exhibit minimal distribution shift across splits, un-
derscoring the need for stronger benchmarks.

the severity of distribution shift at test-time and uses it to
dynamically control when to adapt and how much to rely
on the adapted model. An illustrative example of these lim-
itations and how dynamic adaptation can address them is
shown in Figure 1.

Problem 2: Lack of suitable benchmarks for TSF-TTA.
Standard TSF datasets often contain minimal or repetitive
test-time shifts, limiting the evaluation of adaptation meth-
ods (Figure 2). To address this critical gap, we introduce a
comprehensive benchmarking framework, Test-time adap-
tation Time-series Forecasting Benchmark (TTFBench),
explicitly designed for evaluating TSF-TTA methods under
meaningful, varied, and controlled distribution shifts, built
by injecting controlled perturbations (trends, seasonality,
regime shifts, and localized noise) into existing datasets.
DynaTTA, evaluated extensively on both standard and TTF-
Bench datasets, consistently outperforms existing methods.

Our contributions are summarized as follows: 1⃝ We pro-
pose DynaTTA, a dynamic TTA framework that estimates
distribution shifts by tracking historical MSE and embed-
ding drift, and uses this shift estimate to adjust both the
adaptation rate and adaptation gating, enabling aggressive
updates for significant shifts, conservative updates for minor
shifts, and disabling adaptation when the distribution aligns
with the source. 2⃝ We introduce TTFBench, the first com-
prehensive benchmark suite for TSF-TTA. Our benchmark

addresses the lack of coherent distribution shifts in exist-
ing datasets by injecting diverse perturbations into the test
splits of standard forecasting datasets. 3⃝ Our method con-
sistently outperforms existing TTA methods across diverse
TSF benchmarks (including TTFBench) and architectures,
significantly reducing test-time errors. To contribute to the
area of TSF, we make our solution and benchmark publicly
available at: https://github.com/shivam-grover/DynaTTA

2. DynaTTA
Problem Statement. Given a multivariate time-series
X1:T = [x1,x2, . . . ,xT ] ∈ RC×T with C channels over T
time-steps, and a model fθ trained on Dtrain, the task of TSF
is to predict H future steps using a context window of length
Lin as Ŷt = fθ(X

train
t−Lin:t−1) ∈ RC×H , for t > Lin. At

test time, we encounter a target sequence X ∼ Dtest(t),
where the distribution Dtest(t) may differ from Dtrain, and
may evolve over time, i.e., Dtest(t) ̸= Dtrain and Dtest(t) ̸=
Dtest(t

′) for t ̸= t′. In the TTA setting, we assume access
to neither labels nor training data during inference. The pri-
mary goal is to dynamically update the model parameters θ
at each test step t, using only the test stream {Xs}s<t. Fur-
thermore, the adaptation procedure must be dynamic with
respect to the intensity of distribution shift while assuming
no direct access to the source data.

Estimating Distribution Shifts. We estimate shift using
three metrics: (1) MSE Z-score which tracks recent perfor-
mance degradation by tracking the model’s test-time mean
squared error (MSE) in a rolling buffer. A spike in z-score
signals deviation from the training distribution; (2) Short-
term embedding drift obtained using a real-time adapta-
tion buffer (RTAB) that stores recent input embeddings and
their (partial/full) MSEs; (3) long-term embedding drift ob-
tained using a stable reference distribution buffer (RDB)
that retains the top-K lowest-error embeddings over time
and serves as a proxy for the source distribution, enabling
detection of long-term divergence.

Shift-Conditioned Gating. In TTA, it is not only important
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to decide how to adapt, but also when to adapt and how
much to do so. While adaptation may be beneficial in the
presence of distribution shift, it can be harmful when the
current data remains close to the training distribution. To
manage this trade-off, we introduce a gating mechanism that
controls the strength of adaptation based on the degree of
shift detected in the input stream. We introduce mt ∈ Rd for
time-step t, as the set of shift metrics containing the MSE z-
score, short-term RTAB embedding distance, and long-term
RDB embedding distance, which were measured earlier. We
initialize learnable parameters ϕbase ∈ RC with all elements
set to zero. We then pass mt through a small multilayer
perceptron (MLP) fgate and its output (which represents
the current estimated distribution shift) is used to obtain
ϕdynamic = ϕbase + fgate(mt). We use ϕdynamic to regulate
the contribution of the adaptation module in calibrating
the input as Xcal = X + tanh

(
ϕdynamic

)
◦ (W ∗ X + b)

where W and b are learnable weights and bias for temporal
calibration, ◦ denotes element-wise multiplication, and ∗
represents a variable-wise temporal transformation.

Dynamic Adaptation Rate Adjustment. A fixed adapta-
tion rate across all inputs can lead to two primary issues. If
the adaptation rate is too high, the model would unnecessar-
ily adapt aggressively on inputs that are only mildly shifted.
On the other hand, if the adaptation rate is too low, the model
may fail to adapt quickly enough when faced with abrupt
or significant distribution shifts. Because the intensity of
shift can vary throughout the test stream, the adaptation rate
should also vary accordingly. We first normalize each metric
m

(i)
t using z-score, and then sum them together to obtain

a shift score St. We then compute a multiplier through a
scaled sigmoid as: λt = 1 +

(
αmax

αmin
− 1
)
· 1
1+e−κSt

where
αmax and αmin are the predetermined maximum and mini-
mum adaptation rates permitted, and κ is a scaling parameter
that controls the sensitivity. Then we obtain the target adap-
tation rate as αtarget = αmin · λt, and we update the rate via

αt+1 = αt + η (αtarget − αt) . (1)

where η is the exponential smoothing coefficient.
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Figure 3. Adaptation rate
adjustment with and
without warmup.

Warm-Up and Momentum-
Based Adaptation Rate Ad-
justment. In the early stages
of adaptation when only few
samples have been observed,
our memory buffers provide
insufficient data to compute a
reliable metrics. To avoid un-
reliable early adaptation, we
apply a warm-up factor γt =
min

(
1, nt

αwarm·H

)
where αwarm is a tunable warm-up factor

and H is the prediction length. After that, we update the
target adaptation rate as αtarget = αbase · [1 + γt(λt − 1)] .
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Figure 4. An overview of DynaTTA.

Overall Flow. Figure 4 shows a holistic overview of the
full DynaTTA framework. At each time-step, we update the
three memory buffers (RTAB, RDB, and MSE buffer), and
use these to compute mt which is then used to adjust the
adaptation rate and the gating parameter. Following (Kim
et al., 2025), we keep the backbone frozen at all times, and
perform adaptation using two lightweight adapters: one for
normalization of the input to the frozen model, and the other
for denormalization of its output. Each adapter contains a set
of learnable parameters (W, b). Our adjustable adaptation
rates are used to apply relevant updates to these parameters,
and the gating parameters are used to control their influence
in the overall output.

3. TTFBench
To robustly evaluate TSF-TTA methods, we develop a new
benchmark TTFBench that applies diverse perturbations
into the test split of the standard datasets. TTFBench’s
dataset generation has three key stages: (1) profiling the
original time-series signals where we characterize each
channel by attributes such as flatness, trend, seasonality,
outliers, regime shifts, and drift, (2) sampling shift parame-
ters, based on polynomial trends, sinusoidal seasonalities,
regime changes, and Gaussian noise, based on both global
and local (channel-wise) statistics and profile analysis, and
(3) generating perturbed test splits by dynamically injecting
different perturbations with varying intensities. To preserve
cross-channel correlations, a global signal g(t) is added per
channel, signed according to its average Pearson correlation
with other channels. Finally, we generate a diverse test suite
for each dataset by performing the sampling and synthetic
generation process across N = 1000 perturbation variants.
This sampling strategy ensures a broad coverage of diverse
combinations of shifts and their intensities, while maintain-
ing internal consistency within each variant. Additional
details regarding TTFBench is provided in Appendix A.3.

4. Experiments
Datasets. We evaluate on five standard multivariate TSF
datasets: ETTh1, ETTh2, ETTm1 (Zhou et al., 2021),
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Table 1. Forecasting results on standard time-series forecasting
benchmarks.

Dataset H
iTransformer PatchTST DLinear FreTS MICN

Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours

ETTh1

96 0.444 0.438 0.429 0.436 0.429 0.410 0.451 0.442 0.432 0.441 0.437 0.419 0.455 0.446 0.437
192 0.503 0.492 0.485 0.492 0.481 0.469 0.504 0.493 0.469 0.498 0.491 0.486 0.513 0.501 0.491
336 0.562 0.554 0.550 0.539 0.529 0.516 0.551 0.541 0.540 0.563 0.555 0.549 0.574 0.561 0.552
720 0.786 0.704 0.751 0.713 0.690 0.695 0.700 0.669 0.658 0.715 0.684 0.659 0.735 0.702 0.702

ETTh2

96 0.241 0.239 0.234 0.233 0.232 0.225 0.229 0.227 0.219 0.234 0.232 0.225 0.234 0.231 0.226
192 0.291 0.287 0.269 0.282 0.277 0.269 0.283 0.281 0.275 0.286 0.282 0.275 0.285 0.282 0.276
336 0.334 0.326 0.319 0.329 0.320 0.312 0.324 0.322 0.314 0.326 0.320 0.316 0.331 0.325 0.320
720 0.416 0.392 0.389 0.416 0.395 0.395 0.414 0.392 0.389 0.420 0.395 0.387 0.415 0.397 0.389

ETTm1

96 0.389 0.369 0.360 0.389 0.379 0.369 0.371 0.356 0.352 0.367 0.355 0.349 0.398 0.376 0.370
192 0.448 0.431 0.419 0.440 0.434 0.420 0.443 0.419 0.415 0.429 0.419 0.407 0.448 0.429 0.423
336 0.520 0.497 0.485 0.500 0.487 0.478 0.518 0.481 0.477 0.494 0.478 0.469 0.524 0.493 0.488
720 0.592 0.569 0.557 0.562 0.546 0.541 0.593 0.550 0.541 0.560 0.538 0.529 0.602 0.568 0.559

Weather

96 0.181 0.173 0.162 0.176 0.172 0.163 0.195 0.183 0.179 0.181 0.173 0.167 0.178 0.176 0.168
192 0.227 0.218 0.209 0.221 0.214 0.206 0.240 0.223 0.214 0.225 0.212 0.206 0.224 0.223 0.219
336 0.284 0.265 0.259 0.276 0.268 0.256 0.292 0.277 0.268 0.280 0.267 0.254 0.280 0.274 0.266
720 0.360 0.343 0.334 0.352 0.334 0.325 0.364 0.345 0.339 0.357 0.339 0.328 0.350 0.352 0.345

Exchange

96 0.089 0.084 0.075 0.084 0.083 0.078 0.080 0.081 0.079 0.084 0.081 0.079 0.082 0.080 0.078
192 0.175 0.168 0.163 0.179 0.172 0.167 0.171 0.163 0.158 0.175 0.166 0.162 0.183 0.172 0.168
336 0.330 0.282 0.279 0.352 0.289 0.292 0.321 0.282 0.280 0.326 0.285 0.280 0.343 0.297 0.289
720 0.844 0.775 0.758 0.845 0.845 0.839 0.837 0.712 0.701 0.840 0.775 0.769 1.278 0.950 0.941

Weather (for Biogeochemistry), and Exchange (Lai et al.,
2018). We also evaluate on their perturbed variants gener-
ated via TTFBench, which introduces controlled test-time
distribution shifts. Training data remains unmodified to
ensure fair comparisons.

Pretrained Backbones. We test DynaTTA across five di-
verse forecasting models: (1) PatchTST (Nie et al., 2023),
(2) iTransformer (Liu et al., 2023), (3) DLinear (Zeng
et al., 2023), (4) FreTS (Yi et al., 2023), and (5) MICN
(Wang et al., 2023b). DynaTTA is model-agnostic and com-
patible even with backbones lacking internal embeddings
(e.g., DLinear), where it operates in a reduced mode using
only prediction errors (MSE) for estimating shift intensity.

Baselines. We compare our proposed method, DynaTTA,
against two key baselines for each backbone: the unadapted
pretrained model (Base) and TAFAS (Kim et al., 2025) as
the only other work on TSF-TTA.

5. Results.
Forecasting Results We evaluate DynaTTA with various
backbones on two settings: (1) standard TSF benchmark
datasets, and (2) TTFBench. On standard benchmarks (see
Table 1), DynaTTA consistently outperforms both baselines
across all backbones and datasets, with up to 7.21% gains
over iTransformer, and 6.1% gains over TAFAS. On TTF-
Bench (see Table 4), we observe a notable increase in MSE
for both the baselines and DynaTTA, due to the greater diffi-
culty posed by diverse test samples. Despite this, DynaTTA
maintains a consistent performance improvement over both
baselines across all backbones with up to 8.41% gains over
PatchTST, and 4.39% gains over TAFAS.

Table 2. Ablation results.
Method ETTh1 ETTh2 ETTm1

w/o SCG 0.436 0.245 0.368
w/o DAR 0.433 0.238 0.366
w/o WU 0.513 0.267 0.371

w/o MSE-score 0.441 0.251 0.368
w/o RTAB 0.431 0.236 0.363
w/o RBD 0.447 0.257 0.369

DynaTTA 0.429 0.234 0.360

Ablation Study. We per-
form ablations on: ETTh1,
ETTh2, and ETTm1, for
two prediction horizons:
96 and 720 using iTrans-
former as the backbone.
The results (MSE values)
are shown in Table 2. The

Table 4. Forecasting results on TTFBench.
Dataset H

iTransformer PatchTST DLinear FreTS MICN
Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours Base TAFAS Ours

ETTh1

96 0.4687 0.4673 0.4644 1.249 0.992 0.947 0.486 0.485 0.478 0.463 0.462 0.452 1.182 1.042 1.029
192 0.541 0.539 0.528 1.320 1.020 0.994 0.566 0.567 0.557 0.547 0.549 0.541 1.290 1.250 1.100
336 0.655 0.677 0.645 1.337 1.012 0.1004 0.669 0.654 0.652 0.658 0.683 0.642 1.348 1.346 1.339
720 0.972 1.035 0.989 1.461 1.235 1.105 0.992 1.002 0.989 1.001 1.075 1.034 1.496 1.501 1.494

ETTh2

96 0.272 0.273 0.264 0.366 0.364 0.359 0.253 0.250 0.243 0.258 0.259 0.238 0.413 0.408 0.397
192 0.338 0.340 0.328 0.392 0.387 0.378 0.329 0.325 0.315 0.328 0.33 0.326 0.459 0.462 0.457
336 0.407 0.408 0.397 0.495 0.497 0.485 0.395 0.405 0.398 0.400 0.378 0.356 0.628 0.624 0.619
720 0.577 0.621 0.557 0.515 0.498 0.478 0.565 0.564 0.557 0.534 0.604 0.576 0.722 0.720 0.719

ETTm1

96 0.412 0.410 0.396 0.476 0.467 0.447 0.415 0.420 0.410 0.452 0.448 0.436 0.461 0.451 0.448
192 0.489 0.488 0.476 0.488 0.475 0.469 0.491 0.489 0.489 0.512 0.506 0.497 0.512 0.498 0.501
336 0.599 0.601 0.587 0.598 0.594 0.590 0.589 0.582 0.575 0.561 0.556 0.549 0.597 0.578 0.569
720 0.672 0.656 0.648 0.623 0.612 0.609 0.678 0.672 0.656 0.623 0.609 0.601 0.682 0.612 0.605

Weather

96 0.241 0.233 0.221 0.340 0.333 0.331 0.263 0.252 0.247 0.256 0.254 0.247 0.245 0.242 0.239
192 0.310 0.293 0.278 0.398 0.387 0.376 0.396 0.384 0.382 0.289 0.278 0.273 0.278 0.276 0.270
336 0.399 0.375 0.368 0.460 0.446 0.434 0.387 0.367 0.358 0.366 0.354 0.346 0.310 0.307 0.299
720 0.487 0.475 0.457 0.559 0.543 0.539 0.493 0.483 0.478 0.417 0.409 0.401 0.435 0.437 0.434

Exchange

96 0.095 0.095 0.087 0.239 0.232 0.224 0.149 0.144 0.136 0.126 0.123 0.114 0.216 0.217 0.216
192 0.286 0.281 0.275 0.395 0.389 0.378 0.297 0.289 0.283 0.274 0.270 0.259 0.399 0.401 0.398
336 0.476 0.471 0.454 0.691 0.688 0.688 0.536 0.537 0.529 0.518 0.52 0.515 0.637 0.640 0.631
720 1.266 1.264 1.249 1.408 1.404 1.397 1.338 1.334 1.325 1.246 1.245 1.239 1.418 1.413 1.411

table is split into two parts:
(1) the first three rows evaluate the effect of each adapta-
tion mechanism: (1) shift-conditioned gating (SCG), (2)
dynamic adaptation rate adjustment (DARA), and (3) warm-
up (WU). And the next three rows assess the contribution of
each shift metric: (1) MSE z-score, (2) RTAB embedding
distance, and (3) RDB embedding distance. The last row
simply shows the result of DynaTTA, with all components
enabled. It can be observed that removing each component
of DynaTTA results in a drop in performance of the model.
Based on the results, we can also conclude that warm-up
based adaptation rate adjustment and RDB are the most
important components in DynaTTA.

Table 3. Sensitivity of Dy-
naTTA to random seeds.

Method ETTh1 ETTh2 ETTm1

iTransformer 0.0004 0.0007 0.0003
PatchTST 0.0006 0.0004 0.0001
DLinear 0.0000 0.0001 0.0000
FreTS 0.0002 0.0001 0.0005
MICN 0.0006 0.0005 0.0002

Sensitivity to random
seed. To evaluate the im-
pact of random seeds, we
perform 10 separate trials
with different seed values,
and present the standard
deviations in Table 3. We
observe that DynaTTA has
negligible impact on the sensitivity of backbone to random
seed values.

6. Conclusion
Summary. We propose DynaTTA, a dynamic test-time
adaptation framework for time-series forecasting that ad-
justs both adaptation rate and gating based on estimated
distribution shifts. We also propose TTFBench, a first-of-its-
kind benchmark for evaluating TSF-TTA frameworks under
diverse distribution shifts. Through extensive experiments
on TSF, across five architectures and multiple datasets, we
show that DynaTTA consistently outperformed all baselines
and sees gains up to 8.41%.

Broader Impact. Time-series data is ubiquitous, impacting
our lives daily, in the form of weather patterns, financial
market trends, etc. DynaTTA enables TSF models to gener-
alize to previously unseen distributions, which is a common
challenge in real-world scenarios. Since no retraining is
required for our dynamic adaptation approach, DynaTTA
helps pretrained models stay relevant and up to date, pre-
venting model obsolescence and reducing retraining costs.
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A. Appendix
In this Appendix, we first provide a detailed discussion of the related literature on time-series forecasting (TSF) and test-time
adaptation (TTA) in Section A.1. We then present visualizations and analysis of the dynamic adaptation behavior of our
proposed method, DynaTTA, including adaptation rate schedules and gating mechanisms across multiple datasets. Finally,
we provide a detailed description of the construction methodology for TTFBench in Section A.3.

A.1. Related Work

Time-series forecasting. TSF is a well-researched area that plays an important role in a variety of real-world applications,
such as forecasting weather (He et al., 2021; Lin et al., 2022), energy consumption (Zhou et al., 2021; Bu & Cho, 2020; Wang
et al., 2022), traffic (Bai et al., 2020; Cirstea et al., 2022), and financial markets (Cheng et al., 2022). Traditional approaches,
such as autoregressive models (Box et al., 2015), structural time-series models (Harvey, 1990), exponential smoothing
(Gardner Jr, 1985), etc., focus on parametric approaches that are domain-specific. More recently, deep learning has become a
prominent paradigm in TSF (Li & Law, 2024), overcoming limitations of traditional parametric models by learning temporal
dependencies directly from data. A wide range of architectures have been proposed for TSF, including Transformers (Zhou
et al., 2021; Wu et al., 2021; Li et al., 2019; Liu et al., 2022; Zhang & Yan, 2023), multi-layer perceptrons (MLP) (Yi et al.,
2023; Wang et al., 2023a; Ekambaram et al., 2023), and linear solutions (Zeng et al., 2023), each offering unique trade-offs
in modeling capacity and scalability. Transformer-based architectures, originally introduced for natural language processing
tasks (Vaswani et al., 2017), have gained significant traction in TSF due to their ability to model long-range dependencies
through self-attention mechanisms. However, they struggle with long input sequences, and hence from high computational
cost and inefficiency. Informer (Zhou et al., 2021) introduced a sparse attention mechanism and a self-attention distillation
strategy to improve scalability and efficiency in long-sequence forecasting. Autoformer (Wu et al., 2021) incorporated a
series decomposition block and an autocorrelation mechanism, allowing the model to learn trend and seasonal components
explicitly. FEDformer (Zhou et al., 2022) and Crossformer (Zhang & Yan, 2023) integrated frequency-domain operations
and cross-dimension dependencies to improve prediction accuracy. Despite these advances, many of these models rely
on full-sequence encoding, which may be inefficient or brittle under noisy or multivariate conditions. PatchTST (Nie
et al., 2023) considers TSF as a patch-level sequence modeling task using non-overlapping segments to efficiently capture
long-range dependencies while avoiding the overhead of full-sequence attention. iTransformer (Liu et al., 2023) revisits the
standard Transformer design by inverting the attention dimensions and applying self-attention across time points within
each individual variate rather than across variates at each timestamp. This helps in improving scalability to longer input
sequences without architectural modification. Recently, more works have been considering whether transformer-based
TSF models are effective: (Zeng et al., 2023) DLinear demonstrated that a simple linear model, built on the premise of
decomposing time-series into trend and seasonal components, can outperform or match the performance of more elaborate
Transformer variants on several benchmarks. On the other hand, MLP-based models like (Wang et al., 2023a; Ekambaram
et al., 2023) have re-emerged as strong alternatives, especially when equipped with architectural modifications (such as
channel-mixing) that better capture temporal and multivariate dependencies.

Test-time adaptation. TTA is a learning paradigm designed to improve the performance of machine learning models under
distribution shifts that occur during testing. Unlike domain adaptation, which requires access to target data during training,
or domain generalization, which assumes no knowledge of the target distribution at test time, TTA adapts a model using
only unlabeled test data during inference (Xiao & Snoek, 2024). This setting is practical for deployment scenarios where
retraining is infeasible due to privacy constraints, data availability, or storage limitations. TTA techniques are categorized
based on what component of the system they adapt, as follows: (1) model parameters adaptation, which is performed
using auxiliary self-supervision (Sun et al., 2020; Varsavsky et al., 2020; Gandelsman et al., 2022; Prabhudesai et al., 2023;
Osowiechi et al., 2024; Mirza et al., 2023a; Sain et al., 2022; Hakim et al., 2023; Li et al., 2021; Mirza et al., 2023b; Li et al.,
2023; Bartler et al., 2022), entropy minimization (Wang et al., 2020; Lee et al., 2024; Abid & Zou, 2018; Niu et al., 2022;
Gong et al., 2022), pseudo-labeling (Galstyan & Cohen, 2007; Lee et al., 2013; Wang et al., 2021; Sinha et al., 2023; Tomar
et al., 2023), or feature alignment (Fleuret et al., 2021; Jung et al., 2023; Li et al., 2024; Lin et al., 2023); (2) inference
adaptation (Zhang et al., 2024; Dubey et al., 2021; Ioffe & Szegedy, 2015; Zhou et al., 2023; Wang et al., 2023c) where
model parameters are estimated for each test batch or sample in a single forward pass; (3) normalization adaptation, (Su
et al., 2024; Yang et al., 2022; Li et al., 2016; Nado et al., 2020; Kaku et al., 2020; Schneider et al., 2020) which recalibrates
batch normalization statistics at test time to better match the test data distribution; and (4) sample adaptation (Gao et al.,
2023; Nie et al., 2022; Pandey et al., 2021; Xiao et al., 2023), which transforms target data into the source domain using
generative models such as diffusion or energy-based methods.
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Most TTA research has focused on classification tasks, primarily because methods like entropy minimization, pseudo-
labeling, and feature alignment are naturally well-suited to classification objectives. These techniques rely on prediction
confidence, label distribution assumptions, or feature alignment strategies that are well-defined and easily evaluated in
classification settings, and can be extended to time-series classification methods. For example, building upon the concept of
entropy minimization, (Gong et al., 2025) incorporates uncertainty-aware prototypes and entropy comparison for enhancing
reliability of psuedo-labels for time-series classification. However, these methods are not directly applicable to sequential
data like TSF, due to it’s regression-based nature, temporal dependencies, evolving dynamics, and the absence of discrete
decision boundaries. The need to model temporal dependencies, account for different types and intensities of drift, and
operate without discrete label boundaries, renders many classification-oriented TTA methods impractical in such settings.
One notable early effort to bridge this gap is the recent work TAFAS (Kim et al., 2025) which introduces a model-agnostic
TTA framework specifically for TSF, using partially-observed ground truth and a gated calibration module to maintain
semantic alignment. While promising, such methods remain relatively non-dynamic to the ever-evolving shifts in distribution.
However, TAFAS uses a fixed adaptation rate and a gating mechanism that does not adapt its behavior based on the intensity
of distribution shift, limiting its responsiveness to varying test-time conditions. We build upon the the calibration module
and adaptation cycle of TAFAS and introduce novel mechanisms that dynamically modulate the adaptation rate and gating
in response to changing shift intensities. Finally, unlike the well-established TTA benchmarks for image classification (e.g.,
CIFAR-C (Hendrycks & Dietterich, 2019), ImageNet-C (Hendrycks & Dietterich, 2019), DomainNet (Peng et al., 2019))
and time-series classification (e.g., ADATIME (Ragab et al., 2023)), TSF lacks standardized benchmarks for evaluating TTA
methods, making robust and consistent evaluation an open challenge. To address this, we introduce TTFBench, a benchmark
explicitly designed for evaluating TSF-TTA methods under meaningful, varied, and controlled distribution shifts.

A.2. Dynamic adaptation rate and gating

DynaTTA adjusts the adaptation rate and the overall gating values based on the estimated distribution shifts metrics (mt). In
this section, we go into detail of the methodology pertaining to DynaTTA.

A.2.1. ESTIMATING DISTRIBUTION SHIFTS.

In the absence of access to source data at test time, we estimate the intensity of the distribution shift and the proximity
of incoming test data to the original training distribution by tracking the performance metric, particularly MSE of the
original model’s predictions on the test data. Since the model is originally trained to minimize prediction error on the source
distribution (training data), a low test-time MSE strongly suggests that the input data remains close to what the model
has already learned, requiring little to no adaptation. In contrast, a rising MSE could be a signal that the model’s learned
patterns are no longer sufficient, indicating that the input distribution could be drifting away from the training distribution.
For a given input window Xt−Lin:t−1, its corresponding prediction is Ŷt = fθ(Xt−Lin:t−1) =

[
x̂
(c)
t+l−1

]
c,l

∈ RC×H where

x̂
(c)
t+l−1 is the prediction for channel c at time t+ l − 1 and 0 < l < H . Accordingly, the MSE at time t is computed as:

MSE(H)
t =

1

CH

C∑
c=1

H∑
l=1

(
x̂
(c)
t+l−1 − x

(c)
t+l−1

)2
. (2)

To track this signal over time, we maintain a memory buffer of recent MSE values and compute the z-score of the latest

error zt =
MSE(L)

t −µt

σt+ϵ , where µt and σt are the mean and standard deviation of MSEs in the buffer, and ϵ is a small constant
for numerical stability. A high zt indicates a significant degradation in model performance, which we interpret as a strong
shift away from the source distribution. However, MSE alone captures only output-level deviations and may not fully
reflect deeper changes in the data’s underlying temporal patterns. It also becomes available after a certain delay (when the
full ground truth is revealed). To supplement this, we also analyze embedding drift, i.e., how much the model’s internal
representation of the current input deviates from embeddings associated with previously low-error predictions. To do this,
we maintain two complementary memory buffers: (1) the Real-Time Adaptation Buffer (RTAB) which stores the most recent
embeddings fi alongside their corresponding MSE values Ei, computed using the frozen source model once the ground truth
becomes available. This buffer captures short-term variations and provides a real-time view of the model performance on
the stream of input data; and (2) the Reference Distribution Buffer (RDB) which retains the past embeddings with the lowest
MSEs over time, serving as a more stable and long-term representation of the source distribution. Note that for calculating
the embeddings for both RTAB and RDB, we directly use the original model without any adaptation applied to it.
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At time t, let Bt be the set of RTAB indices containing stored embeddings fi ∈ Rd (where d is the dimensionality of the
embedding space). When ground truth for a past input becomes available, we update the MSE for its corresponding stored
embedding. However, because the full ground truth for future steps is revealed gradually over time, we make use of the
MSE of the partially observed ground truth as an intermediate approximation until the full prediction window is observed.
For embedding fi ∈ Rd with l < H observed future steps, the partial MSE Ei is defined as:

Ei = MSE(l)
t =

1

C · l

C∑
c=1

l∑
j=1

(
x̂
(c)
t+j−1 − x

(c)
t+j−1

)2
. (3)

This partial error is used provisionally to update the buffer. Once the full ground truth at time t becomes available, we
replace its corresponding partial MSE with MSE(H)

t . This allows us to update the RTAB more promptly and maintain a
responsive estimation of distribution shifts. At each step, we update the partial MSE for the most recent embeddings and
calculate a weighted average embedding, where each embedding is assigned a weight inversely proportional to its MSE,
giving more influence to embeddings that result in more accurate predictions. To account for the uncertainty in partial
estimates, we apply discounted weighting for embeddings whose MSEs are still partial. Let αi ∈ (0, 1], be a confidence
factor such that αi =

l
H for partial MSEs, and αi = 1 for full MSEs. We define the weight for each embedding as:

w
(t)
i =

αi · β∑
j∈Bt

αj · β
, (4)

where β = 1
Ei+ϵ . The resulting weighted average embedding at time t is then f̄ (t) =

∑
i∈Bt

w
(t)
i fi. RTAB captures

short-term fluctuations in prediction performance, and is inherently sensitive to recent changes in the data stream. To
also provide a more stable and reliable representation of the source distribution, we introduce a second memory buffer,
the RDB, which is designed to maintain a long-term fixed-size memory of the model’s best-performing samples, which
are most likely to be close to the source distribution. RDB only stores embeddings for which the full ground truth is
available and whose corresponding MSE is among the lowest observed over time. We define a buffer capacity K ∈ N as a
hyperparameter to limit the number of entries in RDB. Let Rt denote the set of indices currently stored in RDB at time t,
with |Rt| ≤ K. At each step, we examine the newly updated full-MSE entries from RTAB. If any new entry (Ei, fi) satisfies
Ei < maxj∈Rt

Ej , it is added to RDB. If the size exceeds K, the entry with the highest Ej is removed. This ensures that
RDB always holds the best-performing K samples (in terms of MSE), regardless of whether they are still present in RTAB,
ensuring a long-term memory of high-confidence examples. At each step, we compute a weighted average embedding using
the same inverse-MSE weighting logic described earlier (without the confidence scaling since there is no partial MSE in
RDB).

We have now obtained three distinct but complementary metrics to quantify different aspects of the distribution shift of the
test data at each time-step: (1) the MSE z-score, (2) the short-term RTAB embedding distance, and (3) the long-term RDB
embedding distance.

In Figure A1, we show several examples of the dynamic adaptation rate. Each row represents a specific dataset and horizon
that the model was adapted on; the left column shows the adaptation with no warmup (W = 0) while the right column
shows the adaptation with W = 1. In Figures A2 and A3, we show how the final gating values for both the input and output
adaptation evolve over time for the ETTh2 and ETTm1 datasets respectively at two different prediction horizons.
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(a) ETTh2 (H = 96, αwarm = 0)
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(b) ETTh2 (H = 96, αwarm = 1)
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(c) ETTh1 (H = 336, αwarm = 0)
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(d) ETTh1 (H = 336, αwarm = 1)
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(e) ETTm1 (H = 96, αwarm = 0)
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(f) ETTm1 (H = 96, αwarm = 1)

Figure A1. Evolution of adaptation rate with (αwarm = 1) and without (αwarm = 0) warmup, where αwarm is the warm-up factor.
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Figure A2. Evolution of the dynamically adjusted gating values per variable for input and output adaptation across ETTh2 datasets.
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Figure A3. Evolution of the dynamically adjusted gating values per variable for input and output adaptation across ETTm1 datasets.
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A.3. TTFBench

To systematically generate diverse distribution shifts, we design a synthetic perturbation framework that carefully modulates
the structure of multivariate time-series data. This procedure accounts for the intrinsic properties of each signal, leveraging
both local channel-specific characteristics and global inter-channel dependencies to produce meaningful distribution shifts. In
this section we provide a step-by-step mathematical description of the three steps in TTFBench generation pipeline, namely
(1) profiling the original time-series signals, (2) sampling shift parameters based on both global and local (channel-wise)
statistics, and (3) generating perturbed test splits.

Let the input multivariate time-series be denoted as {x(c)
t }Tt=1 for channel c ∈ {1, . . . , C} and time index t. The full

sequence is partitioned into training, validation, and test splits, defined by indices Ttrain, Tval, and Ttest respectively, such that
1 < Ttrain < Tval < T .

A.3.1. PROFILING AND SIGNAL CHARACTERIZATION

Each channel c is analyzed individually using its training segment {x(c)
t }Ttrain

t=1 to extract a profile vector p(c) encoding its
structural characteristics. This vector includes the following scalar attributes: flatness, trend, seasonality, spikes, regime
shifts, drift, and a binary indicator of outlier dominance. These properties are carefully computed and are normalized to lie
within [0, 1] for better control, interpretability, and robustness to outliers.

Flatness. To quantify short-term variability, following (Chatfield, 1996), and (Hoaglin & Iglewicz, 1987), we first
compute the standard deviation of first differences σ

(c)
slope = std

(
∆x

(c)
t

)
, where ∆x

(c)
t = x

(c)
t − x

(c)
t−1. Then we

compute the interquartile range (IQR) to standard deviation ratio r
(c)
IQR = IQR(x(c))

std(x(c))+ϵ
. The flatness score is then defined as:

flatness(c) =
[
1− σ

(c)
slope

0.2

]
+

·
[
r
(c)
IQR−10

20

]
+

, where [z]+ = max(0,min(1, z)) ensures the result is clipped to [0, 1].

Trend. Following (Hess et al., 2001), a linear regression line is fit to the series using least-squares: x(c)
t ≈ β̂

(c)
0 + β̂

(c)
1 t, and

the normalized trend strength is defined as:

trend(c) =
|β̂(c)

1 |
std(x(c)) + ϵ

, (5)

which is capped at 1.0.

Seasonality. The presence of a strong periodic structure is identified using the periodogram (Findley et al., 2017). Let P (f)
be the power spectral density of x(c). Define:

peakP = max
f

P (f), medP = medianfP (f), totP =
∑
f

P (f) + ϵ. (6)

Then, the seasonality indicator is defined as:

seasonality(c) =

{
1.0, if peakP > 5 · medP and peakP > 0.1 · totP ,
0.0, otherwise.

(7)

Spikes. Let µ(c) and σ(c) be the mean and standard deviation of the signal. Define the z-score series: z(c)t =

∣∣∣∣x(c)
t −µ(c)

σ(c)+ϵ

∣∣∣∣ .
Following (Yaro et al., 2023), we determines the spike score using the proportion of samples with z

(c)
t > 3 as:

spikes(c) = min

(
1.0, 10 · 1

Ttrain

Ttrain∑
t=1

I[z(c)t > 3]

)
. (8)

Regime Shifts. Using a binary segmentation algorithm (Kovács et al., 2023), we detect breakpoints {tk} in the signal. Let
K be the number of detected breakpoints. Then:

regime(c) = min

(
1.0,

10K

Ttrain

)
,
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where the constant scales the ratio to the unit interval.

Drift. Drift is assessed by STL decomposition (Ouyang et al., 2021) as: x(c)
t = T

(c)
t + S

(c)
t +R

(c)
t , where T (c)

t is the trend
component. Then:

drift(c) = min

(
1.0,

std(T (c))

std(x(c)) + ϵ

)
. (9)

Outlier Dominance. We compute the skewness s(c) and kurtosis k(c) of the signal. If k(c) > 8 or |s(c)| > 2, then the
channel is flagged as outlier-dominated (Kim & White, 2004) as :

outlier dominated(c) = 1.0; else = 0.0. (10)

In Table A1, we show the channel-wise sampled parameter ranges used to generate synthetic perturbations for the ETTh2
dataset. For all channels, we observe moderately varied perturbation parameters, reflecting typical time-series structures
with trends, seasonality, and noise, except for LULL which is a mostly flat channel as seen in Figure A5. We show similar
tables for ETTh1 (Table A2), ETTm1 (Table A3), weather (Table A4), and exchange rate (Table A5). In Figures A5 and A6,
we show the applied perturbations on the ETTh2 and exchange rate datasets respectively. The green and red vertical lines
indicate the train/validation and validation/test boundaries, respectively. As it can be seen, we only apply the perturbations
to the test portion of the dataset. In Fig A5, for ETTh2, we observe that the channel LULL, which is mostly flat in the
original time-series, our framework applies no seasonal/trend based perturbations to it.

Description HUFL HULL MUFL MULL LUFL LULL OT

K Segments (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00)
d Degree (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 1.00) (1.00, 3.00)
coeff Poly Coeff (-0.32, 0.32) (-0.29, 0.29) (-0.22, 0.22) (-0.34, 0.34) (-0.18, 0.18) (0.00, 0.00) (-0.11, 0.11)
M Sinusoids (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (0.00, 0.00) (1.00, 3.00)
R Regime Shifts (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 0.00) (0.00, 4.00)
∆ Regime Range (-1.38, 1.38) (-1.29, 1.29) (-0.81, 0.81) (-1.40, 1.40) (-1.18, 1.18) (0.00, 0.00) (-0.55, 0.55)
σ Noise Std (0.20, 0.59) (0.16, 0.48) (0.12, 0.36) (0.16, 0.49) (0.08, 0.22) (0.50, 0.50) (0.10, 0.31)
γ Std Fraction (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (0.00, 0.00) (1.00, 1.00)
α Scale Factor (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (1.00, 1.00) (0.80, 1.2)
β Shift Offset (-0.11, 0.11) (-0.16, 0.16) (-0.05, 0.05) (-0.13, 0.13) (-0.19, 0.19) (0.00, 0.00) (-0.09, 0.09)

Table A1. Ranges of parameters for ETTh2

Notation Description HUFL HULL MUFL MULL LUFL LULL OT

K Segments (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00)
d Degree (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
coeff Poly Coeff (-0.36, 0.36) (-0.40, 0.40) (-0.36, 0.36) (-0.41, 0.41) (-0.45, 0.45) (-0.28, 0.28) (-0.12, 0.12)
M Sinusoids (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
R Regime Shifts (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00)
∆ Regime Range (-1.96, 1.96) (-1.51, 1.51) (-2.04, 2.04) (-1.77, 1.77) (-3.09, 3.09) (-1.46, 1.46) (-0.51, 0.51)
σ Noise Std (0.19, 0.57) (0.18, 0.53) (0.20, 0.58) (0.18, 0.52) (0.28, 0.84) (0.17, 0.52) (0.10, 0.29)
γ Std Fraction (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00)
α Scale Factor (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20)
β Shift Offset (-0.01, 0.01) (0.07, -0.07) (-0.01, 0.01) (0.05, -0.05) (0.06, -0.06) (0.06, -0.06) (-0.17, 0.17)

Table A2. Ranges of parameters for ETTh1
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Notation Description HUFL HULL MUFL MULL LUFL LULL OT

K Segments (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00)
d Degree (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 1.00) (1.00, 3.00)
coeff Poly Coeff (-0.21, 0.21) (-0.18, 0.18) (-0.13, 0.13) (-0.19, 0.19) (-0.13, 0.13) (0.00, 0.00) (-0.04, 0.04)
M Sinusoids (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (0.00, 0.00) (1.00, 3.00)
R Regime Shifts (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 0.00) (0.00, 4.00)
∆ Regime Range (-0.70, 0.70) (-0.66, 0.66) (-0.54, 0.54) (-0.77, 0.77) (-0.50, 0.50) (0.00, 0.00) (-0.18, 0.18)
σ Noise Std (0.12, 0.37) (0.11, 0.34) (0.08, 0.26) (0.11, 0.34) (0.07, 0.20) (0.50, 0.50) (0.12, 0.38)
γ Std Fraction (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (0.00, 0.00) (1.00, 1.00)
α Scale Factor (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (1.00, 1.00) (0.80, 1.20)
β Shift Offset (-0.11, 0.11) (-0.15, 0.15) (-0.05, 0.05) (-0.13, 0.13) (-0.18, 0.18) (0.00, 0.00) (-0.09, 0.09)

Table A3. Ranges of parameters for ETTm1

Notation Description p (mbar) T (degC) Tpot (K) Tdew (degC) rh (%) VPmax (mbar) Tlog (degC) OT

K Segments (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00)
d Degree (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
coeff Poly Coeff (-0.01, 0.01) (-0.04, 0.04) (-0.04, 0.04) (-0.04, 0.04) (-0.07, 0.07) (-0.04, 0.04) (-0.03, 0.03) (-0.14, 0.14)
M Sinusoids (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
R Regime Shifts (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00)
∆ Regime Range (-0.05, 0.05) (-0.19, 0.19) (-0.20, 0.20) (-0.22, 0.22) (-0.40, 0.40) (-0.25, 0.25) (-0.17, 0.17) (-0.86, 0.86)
σ Noise Std (0.02, 0.07) (0.07, 0.21) (0.07, 0.20) (0.06, 0.17) (0.13, 0.40) (0.11, 0.32) (0.08, 0.23) (0.24, 0.72)
γ Std Fraction (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00)
α Scale Factor (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20)
β Shift Offset (-0.04, 0.04) (-0.08, 0.08) (-0.07, 0.07) (-0.01, 0.01) (0.13, -0.13) (-0.08, 0.08) (-0.08, 0.08) (0.07, -0.07)

Table A4. Ranges of parameters for weather. Only the first 5 and last 2 channels are shown.

Notation Description 0 1 2 3 4 5 6 OT

K Segments (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00) (2.00, 6.00)
d Degree (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
coeff Poly Coeff (-0.04, 0.04) (-0.07, 0.07) (-0.04, 0.04) (-0.04, 0.04) (-0.04, 0.04) (-0.05, 0.05) (-0.03, 0.03) (-0.04, 0.04)
M Sinusoids (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00) (1.00, 3.00)
R Regime Shifts (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00)
∆ Regime Range (-0.16, 0.16) (-0.31, 0.31) (-0.16, 0.16) (-0.13, 0.13) (-0.02, 0.02) (-0.14, 0.14) (-0.14, 0.14) (-0.13, 0.13)
σ Noise Std (0.03, 0.10) (0.06, 0.18) (0.04, 0.11) (0.03, 0.09) (0.02, 0.05) (0.04, 0.11) (0.03, 0.08) (0.04, 0.12)
γ Std Fraction (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (1.00, 1.00)
α Scale Factor (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20) (0.80, 1.20)
β Shift Offset (0.20, -0.20) (-0.12, 0.12) (0.15, -0.15) (0.27, -0.27) (0.13, -0.13) (0.16, -0.16) (0.26, -0.26) (0.22, -0.22)

Table A5. Ranges of parameters for exchange rate.
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A.3.2. SYNTHETIC GENERATION AND PARAMETERIZATION.

To synthesize distribution shifts, we perturb the test split of the data by applying four structural components: (1) a piecewise
polynomial trend, (2) multiple seasonal (sinusoidal) components, (3) discrete regime shifts, and (4) additive Gaussian noise.
These components are combined into a base perturbation signal, and then adjusted using an offset and a scale to control its
amplitude and level shift. We denote the independent perturbation for a given channel c at time-step t ∈ [Ttest, T ], where
Ttest marks the start of the test split, as:

δ
(c)
t = scalec ·

[
δ
(c)
poly(t) + δ

(c)
seasonal(t) + δ

(c)
regime(t) + ϵ

(c)
t

]
+ offsetc, where δ

(c)
poly(t) is a piecewise polynomial function;

δ
(c)
seasonal(t) is a sum of sinusoids with sampled amplitude, frequency, and phase; δ(c)regime(t) consists of step-wise level shifts

inserted at random positions; ϵ(c)t ∼ N (0, σ2
c ) is Gaussian noise scaled to match the residual variability of the original

signal; and scalec and offsetc are the scale and offset parameters for channel c. These are governed by a set of underlying
parameters (including polynomial degree and coefficient scale, number and amplitude of sinusoids, frequency and magnitude
of regime changes, and noise variance) which control the nature and intensity of each component. For each channel c, we
define sampling ranges for these perturbation parameters based on three sources of information: (1) local (channel-specific)
statistics computed from the training portion of the time-series for each channel ({x(c)

t }Ttrain
t=1 where Ttrain marks the end

of the train split). These include: the mean which is used to scale the offset, the standard deviation of first differences
(local variation) which is used to determine the range for polynomial coefficients, the STL residual variance which guides
the standard deviation of injected Gaussian noise, the dominant frequencies and their amplitude ranges which define the
frequency and strength of the injected seasonal sinusoids, and the number of change points and the magnitude of level
changes between them which control the number and size of regime shifts that can be applied; (2) channel-specific profile
vector p(c) which modulate or suppress certain components (channels characterized as flat do not receive any trend or
seasonal components); (3) global statistics aggregated across all channels that are used to parameterize a shared global
signal g(t) which helps preserve global consistency across multivariate channels.

A.3.3. PRESERVING CHANNEL RELATIONSHIPS.
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Figure A4. Our approach preserves cross-channel correlations after
applying perturbations (e.g. Exchange Rate dataset).

To preserve relationships in multivariate time-series
across each channel pair, we incorporate a correlation-
aware adjustment when applying the global compo-
nents by adjusting g(t) per channel based on its av-
erage Pearson correlation with other channels in the
training data. Specifically, each channel receives a
signed version g(c)(t) = sign(ρ̄(c)) · g(t), where ρ̄(c) =

1
C−1

∑
j ̸=c ρ(c, j) denotes the average correlation of

channel c with all others. This ensures that positively
and negatively correlated channels respond appropriately
to the same global trend. The final perturbed signal is then
constructed as: x̃

(c)
t = x

(c)
t + λ

(c)
global · g(c)(t) + λ

(c)
indep ·

δ
(c)
t + ϵ

(c)
t , where λ

(c)
global ∈ [0, 1] and λ

(c)
indep ∈ [0.4, 1.0] control the strength of global and independent perturbations,

respectively. Channels with low absolute correlation, i.e., |ρ̄(c)| ≈ 0, receive suppressed global contributions, preventing
artificial alignment or distortion of weakly related signals. In Figure A4, we show the correlation between each channel-pair
before and after applying perturbations.

A.3.4. BENCHMARK CURATION.

To generate a diverse test suite for a dataset, we repeat the sampling and synthetic generation process across N = 1000
perturbation variants. At each iteration, we first sample a random binary decision on whether to include a shared global
perturbation g(t). If selected, a set of global parameters is drawn from the aggregated channel statistics, and a common
signal is generated. For each channel, we then independently sample individual perturbation parameters, conditioned on
local statistics and structural profile p(c), and use them to generate a unique perturbed signal. These are then combined with
the global signal to produce the final perturbed time-series. This sampling strategy ensures a broad coverage of diverse
combinations of shifts and their intensities, while maintaining internal consistency within each variant. Additional details
regarding TTFBench is provided in Appendix A.3.
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(a) Signals to guide the perturbations.
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(b) Modified vs. original time-series.

Figure A5. Example visualization of synthetic distribution shifts applied on the multivariate ETTh2 time-series dataset.
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(a) Signals to guide the perturbations.
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(b) Modified vs. original time-series.

Figure A6. Example visualization of synthetic distribution shifts applied on the multivariate exchange rate time-series dataset.
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Following the standard evaluation protocol of (Zhou et al., 2021), we create the training, validation, and test sets for each
dataset, chronologically splitting the ETT datasets with a 60:20:20 ratio, and the remaining datasets with a 70:10:20 ratio. For
all datasets, we fix the lookback window of L = 96 and evaluate for 4 different prediction horizons H ∈ {96, 192, 336, 720}
following (Wu et al., 2022). To ensure consistency with prior work, we adopt the experiment setup used in TAFAS (Kim
et al., 2025) for pretraining the 5 backbone models as well as for training and evaluating TAFAS as a baseline for TTA. For
DynaTTA, we set our base learning rate equal to the optimal learning rates for TAFAS. We set the minimum and maximum
possible learning rates during adaptation as 0.0005 and 0.01 respectively. The buffer capacity of RTAB is set as twice the
prediction horizon, i.e., 2H where H ∈ {96, 192, 336, 720}. The buffer capacity of RDB is fixed to 96. All adaptation
procedures are done on top of frozen pretrained models, with no updates made to the backbone parameters. Our code is
implemented with PyTorch, and all of our experiments are conducted on a single NVIDIA Quadro RTX 6000 GPU. We
release our code and benchmark on https://github.com/shivam-grover/DynaTTA.
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