
Efficient Prompting via Dynamic In-Context Learning

Anonymous ACL submission

Abstract

In context learning has become a common prac-001
tice for prompting generalist models. Despite002
being effective, in-context learning can be com-003
putationally inefficient because it makes the004
input prompt much longer, consuming valu-005
able space in the context window and leading006
to larger computational costs. In this paper,007
we propose DYNAICL, a recipe for efficient008
prompting with black-box generalist models009
that dynamically allocates in-context examples010
according to the input complexity and the com-011
putational budget. We train a meta controller012
that predicts the number of in-context exam-013
ples suitable for the generalist model to make a014
good prediction based on the difficulty of a spe-015
cific input. We then dynamically allocate the016
number of demonstrations for an input accord-017
ing to the computation budget. Experimental018
results show that DYNAICL helps achieve a019
better performance-efficiency trade-off in two020
practical settings where we have constraints on021
computational resources or the minimum re-022
quired performance. Specifically, DYNAICL023
saves up to 46% token budget compared to the024
common practice that allocates the same num-025
ber of in-context examples to each input. We026
also find that a meta controller trained on a cer-027
tain backbone model and tasks can successfully028
generalize to unseen models and tasks.029

1 Introduction030

AI is witnessing a major paradigm shift from031

training and deploying multiple specialist mod-032

els for specific tasks to pre-training one generalist033

model (e.g., a large language model (LLM)) and034

prompting for different tasks (Radford et al., 2018,035

2019; Brown et al., 2020; Chowdhery et al., 2022;036

Ouyang et al., 2022; OpenAI, 2023; Zhang et al.,037

2022; Touvron et al., 2023). While prompting is038

an elegant and effective way to utilize generalist039

models, the computational cost remains a major040

bottleneck. We identify two key sources of the041

computational inefficiency of prompting general- 042

ist models: model size and sample size. The for- 043

mer is arguably a prerequisite for generalist mod- 044

els to solve all kinds of tasks via prompting and 045

there already exist a number of model compression 046

techniques (Sanh et al., 2020; Michel et al., 2019; 047

Dettmers et al., 2022; Xu et al., 2020) that aim to 048

reduce the size of generalist models. One obvious 049

limitation of these approaches is that they all re- 050

quire the user to train or deploy their own models, 051

and most of them assume the users have access to 052

the model parameters. 053

In this paper, we instead focus on reducing sam- 054

ple size, a relatively new perspective for improving 055

the efficiency of black-box generalist models of 056

which the parameters are unavailable to users. This 057

particular direction has received relatively limited 058

exploration within the era of specialist models, as 059

the inputs and outputs associated with it are clearly 060

defined and largely devoid of redundancy. This is 061

no longer true in the context of prompting gener- 062

alist models such as LLMs because we have a lot 063

of different ways to prompt a model that results in 064

prompts of different lengths. We identify the main 065

factor influencing the prompt length to be the use 066

of in-context learning and the number of in-context 067

examples (demonstrations) in the prompt. Specifi- 068

cally, in-context learning (Brown et al., 2020) refers 069

to the practice of adding a few exemplar input- 070

output pairs that are related to the input, which 071

helps the generalist model better understand and 072

solve the problem. Although it is still unclear how 073

in-context examples help a generalist model (Min 074

et al., 2022; Yoo et al., 2022; Dai et al., 2022), it is 075

evident that samples of greater complexity necessi- 076

tate a greater number of in-context examples for a 077

generalist model to acquire contextual understand- 078

ing. Conversely, simpler samples may be solvable 079

even without relying on in-context learning. This 080

is confirmed by our preliminary study, which also 081

finds that assigning more in-context examples to 082

1

Controller
LM

This movie is by far the
worst movie of the year.

This movie is more
deeply thought

through than in most
“right thinking” films.

The movie
demonstrates that

the director of such
hollywood

blockbusters as
patriot games can still

turn out a small ,
personal film with an

emotional wallop.

“3”

“6”

💰Budget

LLM

“0”

6 " 1.5

3 " 1.5

Pl
ea

se
 p

re
di

ct
 h

ow
 m

an
y

de
m

on
st

ra
tio

ns
 d

oe
s C

ha
tG

PT
ne

ed
s

to
 s

ol
ve

 th
e

fo
llo

w
in

g
ta

sk
: T

as
k

de
sc

rip
tio

n:
 P

re
di

ct
th

e
se

nt
im

en
t o

f t
he

 m
ov

ie
. I

np
ut

:

Input

+

Prefix Input: This movie is by far the worst
movie of the year. Did this critic like the
movie? OPTIONS: yes,no. Output:

Input: [example1]. Did this critic like the
movie? OPTIONS: yes,no. Output: yes.
…… Input: [example5]. Did this critic like
the movie? OPTIONS: yes,no. Output:
no. Input: This movie is more deeply
thought through than in most “right
thinking” films.. Did this critic like the
movie? OPTIONS: yes,no. Output:

Input: [example1]. Did this critic like the
movie? OPTIONS: yes,no. Output: yes.
…… Input: [example9]. Did this critic like
the movie? OPTIONS: yes,no. Output:
no. Input: The movie demonstrates that
the director of such hollywood
blockbusters as patriot games can still
turn out a small , personal film with an
emotional wallop. Did this critic like the
movie? OPTIONS: yes,no. Output:

“yes”

“yes”

“no”

Output

+

+

Figure 1: Overview of the DYNAICL framework. Given a set of samples and a token/computation budget, a
meta controller first predict a number of in-context examples suitable for each sample. The predictions are then
normalized and adjusted according to the budget. We then append the corresponding number of in-context examples
to the original prompt. The prompts are then fed into a generalist model to generate predictions.

simple samples occasionally confuses the general-083

ist model and turns its prediction from correct to084

erroneous. This suggests that the current practice085

of allocating a fixed number of in-context examples086

for all inputs is sub-optimal.087

To this end, we propose Dynamic In-Context088

Learning (DYNAICL), a dynamic computation089

framework for prompting generalist models. DY-090

NAICL is conceptually similar to previous work091

on input adaptive computation for specialist mod-092

els (Han et al., 2021; Graves, 2017; Teerapit-093

tayanon et al., 2016; Schwartz et al., 2020; Zhou094

et al., 2020; Huang et al., 2023). The main differ-095

ence is that DYNAICL aims to dynamically adjust096

the size of the input while previous work focuses on097

adjusting the complexity of the model. This results098

in a major advantage of DYNAICL: it only operates099

on inputs, thus is disentangled with model architec-100

tures or parameters, and suits an increasingly com-101

mon scenario in the era of generalist models where102

the users do not have access to the model’s param-103

eters. To achieve this, we train a meta controller104

that predicts the number of in-context examples105

suitable for the generalist model to make a good106

performance-efficiency trade-off given a specific107

input. The meta controller can be instantiated with108

a smaller pre-trained model (e.g., FLAN-T5 (Wei109

et al., 2022)) and multi-task fine-tuned with the110

combination of supervised learning with a novel111

data synthesis algorithm and reinforcement learn-112

ing with rewards based on performance-efficiency113

trade-off. Then at test time, we can dynamically114

allocate the number of demonstrations for an input115

according to both the predictions from the meta116

controller and the computation budget. We illus-117

trate the procedure of efficient prompting with DY- 118

NAICL in Figure 1. 119

We test the effectiveness of DYNAICL in the 120

context of prompting LLMs due to its prominence 121

as the predominant use case for generalist models at 122

present. We experiment with ChatGPT as the gen- 123

eralist model and train a meta controller on a sub- 124

set of the FLAN dataset collection (Longpre et al., 125

2023). We evaluate DYNAICL in two practical 126

settings where either the computational resources 127

or the performance is under constraints. We find 128

that compared with the common practice of uni- 129

formly allocating in-context examples, DYNAICL 130

can achieve an averaged absolute performance im- 131

provement of 2.6% within a certain computational 132

budget or reach a certain performance requirement 133

with up to 46% less compute (in terms of total to- 134

ken consumption) across 8 tasks. We also find that 135

a meta controller trained on certain tasks with a 136

certain generalist model (i.e., ChatGPT) can gen- 137

eralize well to unseen tasks (even with different 138

output formats) and other generalist models (e.g., 139

LLAMA (Touvron et al., 2023)). To the best of our 140

knowledge, our work is among the first approaches 141

that can accelerate a black-box generalist model 142

without access to its parameters. 143

2 Methodology 144

2.1 Background: In-Context Learning 145

We first recall some basics of prompting and in- 146

context learning. Prompting refers to the process 147

of providing a prompt, which typically contains 148

a description of the task and the task input, to a 149

generalist model that guides its response genera- 150

tion. Formally, let G be a generalist model and 151

2

P be a prompt. Then, the output O is given by:152

O = G(P). Prompting relies on the generalist153

model’s ability to understand and follow abstract154

instructions, which sometimes leads to unsatisfac-155

tory empirical performance, especially for hard156

tasks that require complex reasoning.157

On the other hand, in-context learning leverages158

the ability of a generalist model to adapt to new159

information provided within the input context. For-160

mally, given N labeled examples {(xi, yi)}Ni=1 and161

a hand-crafted template T , in-context learning first162

verbalizes each input-output pair with a template,163

resulting in demonstrations di = T (xi, yi). Then164

the generalist model takes the concatenation of the165

original prompt and the demonstrations to generate166

the output:167

O = G(P ⊕ d1 ⊕ d2 ⊕ · · · ⊕ dN) (1)168

where ⊕ denotes the concatenation of token se-169

quences.170

2.2 Meta Controller171

Architecture and Input/Output Formats: The172

meta controller C can be modeled by any sequence173

generation model including both encoder-decoder174

models and decoder-only models. We use an175

instruction-tuned model such as FLAN-T5 as the176

backbone for the meta controller to facilitate train-177

ing. As illustrated in Figure 1, it receives a task178

instruction and an input, which is identical to most179

instruction tuning literature (Sanh et al., 2022; Wei180

et al., 2022; Taori et al., 2023). But instead of gen-181

erating the corresponding outputs like instruction-182

tuned models, our meta controller is trained to183

generate the number of in-context examples suit-184

able for the input to achieve the best performance-185

efficiency trade-off, which we denote as k. This186

process can be expressed by k = C(P). The output187

expresses the confidence modeling of the meta con-188

troller for the generalist model to some extent. This189

method pertains to, albeit distinguishes itself from,190

prior existing work on model calibration (Guo et al.,191

2017; Kadavath et al., 2022), which addresses the192

inherent confidence levels of the model itself.193

Training We then present our two-stage training194

framework for the meta controller. In the first stage,195

we train the meta controller to predict the minimum196

number of in-context examples for the generalist197

model to produce a good output. “A good output”198

can have different definitions for different tasks.199

For example, it can be defined as predicting the cor- 200

rect label with a high probability for classification 201

tasks and generating outputs similar to the ground 202

truth for generation tasks. In this paper, we con- 203

sider only classification tasks following (Hao et al., 204

2022; Li et al., 2023). To synthesize training data 205

for supervised training, we propose a simple and 206

intuitive data generation method. Specifically, for 207

a prompt P , we consider the minimum number of 208

in-context examples k∗ for it to be the number that 209

makes the generalist model’s expected accuracy 210

exceed a certain (hand-crafted) threshold t: 211

k∗ = min
k∈N

{
k
∣∣E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))] > t

}
(2) 212

where Dk denotes all subsets of the training 213

data of size k and Acc(G(P, T (x1:k, y1:k)) de- 214

notes the performance (e.g., accuracy) of model 215

G using template P and in-context examples 216

(x1, y1) · · · (xk, yk). 217

We synthesize (P, k∗) pairs on a mixture of 218

instruction-tuning datasets from the FLAN collec- 219

tion and train the meta controller with maximum 220

likelihood estimation. 221

After the first stage, the meta controller can al- 222

ready predict a reasonable number of in-context 223

examples for a prompt. However, we may want it 224

to better satisfy a certain performance-efficiency 225

trade-off in a more fine-grained way. To this end, 226

we propose to fine-tune the meta controller with 227

reinforcement learning using a reward reflecting 228

the performance-efficiency trade-off. In particular, 229

we define the reward R to be a linear interpolation 230

of the expected performance (defined as accuracy 231

in case of classification task), and the efficiency, 232

defined as the number of in-context examples k: 233

R(G, P, k) = E(xi,yi)k∼Dk [Acc(G(P, T (x1:k, y1:k))]+α·k
(3) 234

where α is the weight controlling whether the con- 235

troller should lean towards better performance or 236

efficiency. The meta controller C is then fine-tuned 237

with policy gradient: 238

∇θJ(θ) = EP∼P,k∼C(k|P,θ)[∇θ log C(k|P, θ)(R(G, P, k))]
(4) 239

where P is the set of prompts from a mixture of 240

instruction tuning datasets, and C(k|P, θ) denotes 241

the predicted probability mass of k from the meta 242

controller C for a prompt P . The training frame- 243

work can be easily adapted for generation tasks by 244

changing the accuracy metric to some generation 245

metrics such as BLEU (Papineni et al., 2002) or 246

BERTScore (Zhang et al., 2020), and doing some 247

3

1 2 3 4 5 6 7 8 9 10

#-Shots

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

of
 S

am
pl

es

ChatGPT
LLAMA-65B

Figure 2: Distribution of the number of in-context
examples that suffice for making the correct predic-
tion for samples that cannot be answered correctly
by zero-shot inference with generalist models but
can be solved with in-context learning for up to 10
shots. The generalist model we consider are Chat-
GPT and LLAMA-65B, and the dataset is CSQA.

∆ Accuracy ✗→ ✓ ✓→ ✗

zero-shot → 1-shot

+ 2.5% 3.9% 1.4%

1-shot → 5-shots

+ 1.4% 1.9% 0.5%

5-shots → 64-shots

+ 0.3% 0.7% 0.4%

Figure 3: The impact of adding more in-context
examples. ∆ Accuracy denotes the change of accu-
racy after adding more in-context examples. ✗→ ✓
and ✓→ ✗ denotes the percentage of examples of
which the predictions are changed from incorrect to
correct, and vice versa, after adding more in-context
examples. We use ChatGPT as the generalist model
and TriviaQA as the dataset.

normalization to make it compatible with classifi-248

cation tasks. We leave this for future work.249

2.3 Dynamic In-Context Example Allocation250

After training, the meta controller predicts the num-251

ber of in-context examples for a specific input. This252

is a naive version of DYNAICL. However, in prac-253

tice one may have a different computation budget.254

Therefore it is often desirable to normalize the pre-255

dictions from the meta controller and dynamically256

adjust the actual number of in-context examples257

according to the computation budget. In this work,258

we propose a simple recipe for dynamic in-context259

example allocation. Assuming we have a budget of260

N tokens1 for K samples. The uniform baseline261

is to allocate N/(K · L) in-context examples for262

each sample assuming L is the average length of an263

example. DYNAICL instead allocates E in-context264

examples for an input P following:265

E(P) = [β · (C(P)/C̃) ·N/(K · L)] (5)266

where C(P) is the prediction from the meta con-267

troller, [] denotes the rounding operator, C̃ is the268

averaged prediction for all examples, and β is the269

token saving ratio ranging from 0 to 1.270

3 Experiments271

In this section, we test the empirical effectiveness272

of DYNAICL by experimenting on some NLP tasks273

1We consider the budget in terms of the token count be-
cause this is the typical scenario for using commercial general-
ist models such as ChatGPT. We omit the token consumption
for the original input for simplicity.

with ChatGPT, a popular large language model, as 274

the generalist model. We first describe the experi- 275

mental settings. Then we begin with a preliminary 276

study about the impact of the number of in-context 277

examples to motivate our approach. After that, 278

we evaluate DYNAICL by answering two research 279

questions for two realistic settings: 280

• RQ1: To what extent can DYNAICL im- 281

proves the performance of a generalist model 282

with fixed computational budgets? 283

• RQ2: To what extent can DYNAICL reduce 284

computational cost or token consumption for 285

a generalist model to achieve a fixed target 286

performance? 287

3.1 Experimental Settings 288

Models We consider ChatGPT as the general- 289

ist model for training the meta controller and the 290

main experiments. We use LLAMA-65B as an 291

unseen generalist model for evaluating the gener- 292

alization ability of the meta controller. We use 293

FLAN-T5-large, which has less than 1B parame- 294

ters, to initialize the meta controller. We also test 295

with FLAN-T5-base in the analysis. 296

Tasks We use a subset in the FLAN collection 297

containing 30+ classification tasks to train the meta 298

controller. For evaluation, we test DYNAICL on 299

both seen and unseen tasks, which are explicitly 300

excluded from the training data for the meta con- 301

troller. To be specific, we use SST-2 (Socher et al., 302

4

Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc

zero-shot

ChatGPT 88.5 84.5 84.5 89.5 85.1 61.0 88.4 67.2 81.1

Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.2 86.2
Random 93.0 87.7 86.1 91.0 88.1 65.0 90.4 89.4 86.3
DYNAICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8

Budget: 10-shots on average

Uniform 95.8 90.9 88.5 93.1 90.8 68.3 92.0 93.4 89.1
Random 95.9 90.7 88.4 93.3 90.8 68.2 92.1 92.8 88.9
DYNAICL 96.7 92.5 90.0 94.1 91.9 70.0 93.1 95.8 90.5

Table 1: Main results on seen tasks during meta controller training. The total computation/token budget is the same
inside each group. DYNAICL consistently outperforms all baselines across all tasks and budgets.

2013), AGNews (Zhang et al., 2015), RTE (Dagan303

et al., 2006; Haim et al., 2006; Giampiccolo et al.,304

2007; Bentivogli et al., 2009), CB (De Marneffe305

et al., 2019), ARC-E (Clark et al., 2018), ARC-306

C (Clark et al., 2018), MRPC (Dolan and Brock-307

ett, 2005), and COPA (Roemmele et al., 2011)308

as the seen tasks, and PIQA (Bisk et al., 2020),309

OpenBookQA (Mihaylov et al., 2018), Common-310

senseQA (Talmor et al., 2019), TriviaQA (Joshi311

et al., 2017), Natural Questions (Kwiatkowski et al.,312

2019), and Web Questions (Berant et al., 2013) as313

unseen tasks. It is noteworthy that TriviaQA, Nat-314

ural Questions, and Web Questions are not clas-315

sification tasks but a trained meta controller can316

still be used despite being trained only on classifi-317

cation tasks. This is because its input format (i.e.,318

instruction + input) is agnostic to the type of the319

task.320

Training Details We follow Wei et al. (2022)321

and fine-tune the meta controller for 30k/5k gra-322

dient steps with a batch size of 8,192 tokens us-323

ing the Adafactor Optimizer (Shazeer and Stern,324

2018) with a learning rate of 3e-5/1e-5, for the325

first/second training stage, respectively.326

Baselines We mainly compare DYNAICL with327

the uniform baseline that allocates the same num-328

ber of in-context examples for each sample, and the329

random baseline that randomly samples a number330

of in-context examples from a Gaussian distribu-331

tion. We only compare these two naive baselines332

because there is no prior work in this direction333

and popular methods for efficient NLP can not be334

applied in this setting.335

3.2 Preliminary Study: How Much Do More 336

In-Context Examples Help? 337

We first conduct a preliminary study investigating 338

the role of adding more in-context examples to 339

the prompt for different samples. We first test if 340

most samples for a task require a similar amount 341

of in-context examples for a generalist model to 342

generate a good output. We plot the distribution of 343

the number of in-context examples that suffice for 344

making the correct prediction for samples from the 345

CommonsenseQA dataset that cannot be answered 346

correctly by zero-shot inference with ChatGPT or 347

LLAMA-65B but can be solved with in-context 348

learning for up to 10 shots. As shown in Figure 2, 349

different samples requires a very different amount 350

of in-context examples. Some hard examples re- 351

quire 10 in-context examples for a generalist model 352

to make the correct prediction while most exam- 353

ples require only one in-context example or can 354

be solved with zero-shot inference. This obser- 355

vation confirms the necessity of dynamically al- 356

locating in-context examples according to sample 357

difficulties. Moreover, we can see that ChatGPT 358

and LLAMA-65B share similar trends in the Fig- 359

ure. This suggests that a meta controller trained 360

with one generalist model may be able to general- 361

ize to other generalist models, which is later proved 362

in our analysis. 363

Then we further analyze the effect of scaling 364

more in-context examples. As shown in Figure 3, 365

the effectiveness of adding more in-context exam- 366

ples to the prompt is amortized when there are al- 367

ready a few (e.g., 5) in-context examples. This also 368

supports our motivation that only a few samples 369

5

2 4 6 8 10

Token-Saving Ratio

82

84

86

88

90

Av
g.

 A
cc

ur
ac

y

Uniform
DynaICL

(a) Performance comparison between DYNAICL and the
uniform baseline under different token saving ratios de-
fined as the ratio between actual token usage and the token
usage of using 20 in-context examples per sample. The
accuracy is averaged across all seen test datasets. The
dashed line is the zero-shot performance.

400 800 1200 1600 2000

Baseline # Tokens

400

800

1200

1600

2000

D
yn

aI
C

L

To
ke

ns
 (A

vg
.)

Uniform
DynaICL

(b) Token saving ratio of DYNAICL compared to the uni-
form baseline under performance constraints defined by
the performance of the uniform baseline with different
token budgets. Each point (x,y) in the line indicates that
on average, DYNAICL needs to use y tokens to match the
performance of the uniform baseline with x tokens.

Figure 4: Performance of DYNAICL when either the computation budget or the target performance is fixed.

require many in-context examples and uniformly370

allocating an equal number of in-context examples371

for all samples is a waste of tokens and computa-372

tion. More interestingly, we find that sometimes373

it can be harmful to include more in-context ex-374

amples for a sample that can already be correctly375

solved by the generalist model, which is shown by376

a non-negligible amount of samples’ predictions377

are changed from correct to incorrect after adding378

more in-context examples. This further confirms379

the potential of DYNAICL to achieve better perfor-380

mance while consuming fewer tokens.381

3.3 Main Results382

We first compare the performance of DYNAICL383

with the baselines in Table 1. We can see that DY-384

NAICL leads to an averaged performance improve-385

ment of 2.6% and 1.4% over the uniform baseline386

with budgets of 5 and 10 in-context examples for387

each sample, respectively. This confirms that DY-388

NAICL leads to improved performance with fixed389

budgets. We also plot the trend of averaged per-390

formance on seen tasks with different token-saving391

ratios in Figure 4 (a). We can see that DYNAICL392

leads to consistent improvements across all budgets393

and the improvements are larger when the compu-394

tation/token budget is more limited. We then show395

the extent to which DYNAICL can save tokens396

for achieving a fixed target performance in Fig-397

ure 4 (b). We can see that DYNAICL consistently398

require fewer tokens to match the performance399

achieved by the uniform baseline with certain bud-400

gets. Specifically, DYNAICL only consumes 108 401

tokens on average to match the performance of the 402

common practice with 200 tokens on average. This 403

confirms that DYNAICL can effectively reduce to- 404

ken/computation consumption for achieving a fixed 405

target performance. 406

3.4 Analysis 407

We then conduct an analysis investigating the im- 408

pact of different components in DYNAICL and 409

the generalization ability of DYNAICL on unseen 410

tasks or generalist models when training the meta 411

controller. 412

Ablation Study We first analyze the impact of 413

the two training stages, the size of the meta con- 414

troller, and the number of tasks the meta controller 415

is trained with. The results are shown in Table 2. 416

We find that both training stages contributes to the 417

performance of DYNAICL and the first stage is 418

more important. We think this is because the first 419

training stage provides an important starting point 420

for the second stage using reinforcement learning. 421

We also find that DYNAICL with a smaller meta 422

controller or a meta controller train on fewer tasks 423

also achieves competitive performances. 424

Generalization on Unseen Tasks We then test how 425

well DYNAICL can generalize on unseen tasks. 426

The results are shown in Table 3. We find that 427

DYNAICL consistently leads to performance im- 428

provements across all 6 unseen tasks. Notably, 429

DYNAICL also leads to substantial improvements 430

on Natural Questions and Web Questions, which 431

6

400 800 1200 1600 2000

Baseline # Tokens

400

800

1200

1600

2000

D
yn

aI
C

L

To
ke

ns
 (A

vg
.)

Uniform
DynaICL

(a) Token saving ratio of DYNAICL compared to the uni-
form baseline under different performance constraints on
seen tasks. DYNAICL is trained with ChatGPT but tested
with LLAMA-65B.

1 2 3 4 5 6 7 8 9 10

In-Context Examples

0

5

10

15

20

25

P
er

ce
nt

ag
e

of
 S

am
pl

es

(b) Distribution of samples (on seen tasks) according to
the number of in-context examples allocated for them. The
computational budget is fixed to 5 in-context examples
per sample.

Figure 5: Analysis on the generalization ability of DYNAICL on unseen generalist models and the distribution of
samples according to the number of in-context examples allocated for them.

Models SST-2 AGNews RTE CB ARC-E ARC-C MRPC COPA Avg. Acc

Budget: 5-shots on average

Uniform 93.2 87.9 86.1 91.1 88.3 64.8 90.4 88.0 86.2

DYNAICL 95.3 90.2 88.1 92.9 90.5 68.4 91.8 93.0 88.8
- first stage 93.8 88.4 86.6 91.8 89.1 65.5 90.8 89.6 86.9
- second stage 94.4 89.5 87.5 92.1 89.5 67.1 91.2 91.4 87.8
w/ smaller model 94.8 89.2 87.5 92.3 90.2 67.7 91.3 92.2 88.2
w/ fewer tasks 95.0 89.3 87.3 92.5 90.0 68.0 91.5 92.4 88.3

Table 2: Ablation study results. “- first stage” and “- second stage” denotes the ablated variants where the meta
controller is not trained with the first or second stage training, respectively. “w/ smaller model” and “w/ fewer tasks”
denotes the ablated variants where the meta controller is parameterized with FLAN-T5-Base and the meta controller
is trained with 50% less training tasks.

are generative question answering datasets that are432

very different from text classification tasks during433

training. This confirms that DYNAICL can general-434

ize well on tasks that are not used to train the meta435

controller.436

Generalization on Unseen Generalist Models We437

also test if DYNAICL can generalize to other gener-438

alist models that are not used for training the meta439

controller by applying the meta controller trained440

with ChatGPT with LLAMA-65B as the generalist441

model. Results in Figure 5 (a) show that DYNAICL442

still saves a great number of tokens for achieving443

the same performance with the uniform baseline444

even tested with a different generalist model. This445

confirms that DYNAICL can generalize well on446

generalist models that are not used to train the meta447

controller.448

Distribution of In-context Examples Count We449

then plot the distribution of samples according to450

the number of in-context examples allocated for 451

them to better understand the meta controller. As 452

shown in Figure 5 (b), with a target budget of 5 453

in-context examples, a large portion of samples are 454

allocated with 5 in-context examples in DYNAICL. 455

This indicates that most samples are predicted to 456

need a similar number of in-context examples as 457

the averaged prediction. We also find that more 458

samples are assigned with fewer than 5 in-context 459

examples while a few hard samples are assigned 460

with more in-context examples. We present a qual- 461

itative study of different samples and the corre- 462

sponding number of in-context examples allocated 463

to them in the Appendix. 464

Computation Cost of the Meta Controller Fi- 465

nally, it is noteworthy that the meta controller does 466

add some computational cost and latency overhead 467

to the overall prompting procedure. However, since 468

the meta controller can use a very small backbone 469

7

Models PIQA OBQA CSQA TriviaQA (EM) NaturalQ (EM) WebQS (EM) Avg.

zero-shot

ChatGPT 83.3 60.9 74.5 80.2 27.5 22.9 58.2

Budget: 5-shots on average

Uniform 84.3 61.5 76.6 84.1 37.1 26.3 61.6
DYNAICL 85.4 62.8 77.2 84.4 40.2 28.8 63.1

Budget: 10-shots on average

Uniform 85.9 63.1 77.4 84.3 40.8 29.2 63.4
DYNAICL 86.3 63.7 77.9 84.5 42.4 29.9 64.1

Table 3: Analysis of the generalization ability of DYNAICL on datasets that are unseen when training the meta
controller. Tasks with (EM) suffix denotes the task is generative question answering and we use exact match as the
metric. DYNAICL still consistently outperforms the baseline across all tasks.

such as T5-large or T5-base, its computation cost470

is negligible compared to that of a generalist model.471

To be specific, the computational cost (in terms472

of FLOPs) of a T5-large based meta controller for473

a sample of 50 tokens is less than 0.1% of the474

change of the computation cost when changing the475

input from 200 tokens to 199 tokens, or less than476

0.0005% of the computational cost saved by re-477

ducing one in-context example from the prompt.478

Similarly, since the meta controller only needs to479

predict 1 or 2 tokens, the latency overhead accounts480

for only 0.1% to 0.2% of the latency of calling the481

GPT-3.5-turbo API, and reducing one in-context482

example will lead to a speedup of around 10%.483

In sum, we believe the computational and latency484

overhead from the meta controller is almost negli-485

gible.486

4 Related Works487

Training a generalist model that can solve a wide488

range of tasks without task-specific training has489

been a long-standing goal in the field of artificial in-490

telligence. One pioneering work dates back to Col-491

lobert and Weston (2008) that attempted to solve all492

NLP tasks with a shared architecture using multi-493

task learning. This idea is further improved by494

decaNLP (McCann et al., 2018) that proposes to495

convert all NLP tasks to question answering for-496

mat. T5 (Raffel et al., 2020) then improves this497

paradigm by using text-to-text format for unifying498

all NLP tasks, which is more general and friendly499

to scaling. Finally, GPT-3 (Brown et al., 2020)500

show that by scaling model size, training data, and501

training FLOPs, a large language model can serve502

as a generalist model that solves many tasks by sim-503

ply writing a prompt that describes the task and the 504

input. They also showed that the zero-shot ability 505

of a large language model can be further improved 506

by adding a few input-output demonstrations in 507

the prompt to help the model better understand the 508

task. Since then, a large number of work has been 509

done for improving and understanding prompting 510

and in-context learning with large language mod- 511

els. For instance, Schick and Schütze (2021) show 512

that small encoder models can also be prompted. 513

Min et al. (2022) show that in-context examples 514

mainly help a generalist model learn output label 515

space and distribution of input text. Kadavath et al. 516

(2022) prove that generalist models are well cal- 517

ibrated and can be trained to model their confi- 518

dence level. Hao et al. (2022) and Li et al. (2023) 519

show that in-context learning with many examples 520

improves the overall performance of a generalist 521

model. 522

5 Conclusions 523

This paper introduces DYNAICL, a framework for 524

efficiently prompting generalist models. We pro- 525

pose to train a meta controller that predicts the 526

suitable number of in-context examples for a spe- 527

cific sample with a two-stage training framework. 528

During inference, DYNAICL dynamically allocate 529

different number of in-context examples to sam- 530

ples according to the predicted difficulty and the 531

computational budget. Our experiments show that 532

DYNAICL consistently leads to better performance- 533

efficiency trade-offs across tasks, models, and sce- 534

narios. We also find a meta controller trained on 535

a collection of around ten tasks can successfully 536

generalize to tasks unseen during training. 537

8

6 Limitations538

As for technical limitations, the main limitation of539

this work is that we only test DYNAICL on NLP540

tasks with LLMs as the backbone, while it may541

also be interesting to test on other modalities such542

as vision tasks with multi-modal generalist models.543

This is because the main experiments are conducted544

before multi-modal instruction following models545

such as LLAVA came out. We leave this for fu-546

ture work. Another limitation is that we only train547

the meta controller with text classification datasets.548

We explain how the meta controller can be trained549

on generation tasks at the end of Section 2.2. We550

also experiment with some generative question an-551

swering datasets and show DYNAICL trained only552

on classification tasks can successfully transfer to553

these tasks. Finally, the dynamic in-context exam-554

ple allocation algorithm is quite naive. Potential555

improvements may be made using some more so-556

phisticated planning or optimization algorithms.557

We also leave this for future work.558

As for social impact, this work aims to reduce559

the token/computation consumption of prompting560

generalist models. It probably leads to a positive561

environmental impact and will unlikely lead to any562

negative social impact.563

References564

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo565
Giampiccolo. 2009. The fifth pascal recognizing566
textual entailment challenge. In TAC. Citeseer.567

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy568
Liang. 2013. Semantic parsing on Freebase from569
question-answer pairs. In Proceedings of the 2013570
Conference on Empirical Methods in Natural Lan-571
guage Processing, pages 1533–1544, Seattle, Wash-572
ington, USA. Association for Computational Linguis-573
tics.574

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng575
Gao, and Yejin Choi. 2020. PIQA: reasoning about576
physical commonsense in natural language. In AAAI,577
pages 7432–7439. AAAI Press.578

Tom Brown, Benjamin Mann, Nick Ryder, Melanie579
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind580
Neelakantan, Pranav Shyam, Girish Sastry, Amanda581
Askell, Sandhini Agarwal, Ariel Herbert-Voss,582
Gretchen Krueger, Tom Henighan, Rewon Child,583
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens584
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-585
teusz Litwin, Scott Gray, Benjamin Chess, Jack586
Clark, Christopher Berner, Sam McCandlish, Alec587
Radford, Ilya Sutskever, and Dario Amodei. 2020.588

Language models are few-shot learners. In Ad- 589
vances in Neural Information Processing Systems, 590
volume 33, pages 1877–1901. Curran Associates, 591
Inc. 592

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 593
Maarten Bosma, Gaurav Mishra, Adam Roberts, 594
Paul Barham, Hyung Won Chung, Charles Sutton, 595
Sebastian Gehrmann, et al. 2022. Palm: Scaling 596
language modeling with pathways. arXiv preprint 597
arXiv:2204.02311. 598

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 599
Ashish Sabharwal, Carissa Schoenick, and Oyvind 600
Tafjord. 2018. Think you have solved question an- 601
swering? try arc, the ai2 reasoning challenge. 602

Ronan Collobert and Jason Weston. 2008. A unified 603
architecture for natural language processing: Deep 604
neural networks with multitask learning. In Proceed- 605
ings of the 25th International Conference on Machine 606
Learning, ICML ’08, page 160–167, New York, NY, 607
USA. Association for Computing Machinery. 608

Ido Dagan, Oren Glickman, and Bernardo Magnini. 609
2006. The pascal recognising textual entailment chal- 610
lenge. In Machine Learning Challenges. Evaluat- 611
ing Predictive Uncertainty, Visual Object Classifi- 612
cation, and Recognising Tectual Entailment: First 613
PASCAL Machine Learning Challenges Workshop, 614
MLCW 2005, Southampton, UK, April 11-13, 2005, 615
Revised Selected Papers, pages 177–190. Springer. 616

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, 617
and Furu Wei. 2022. Why can gpt learn in-context? 618
language models secretly perform gradient descent 619
as meta-optimizers. 620

Marie-Catherine De Marneffe, Mandy Simons, and Ju- 621
dith Tonhauser. 2019. The commitmentbank: Inves- 622
tigating projection in naturally occurring discourse. 623
In proceedings of Sinn und Bedeutung, volume 23, 624
pages 107–124. 625

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 626
Zettlemoyer. 2022. GPT3.int8(): 8-bit matrix mul- 627
tiplication for transformers at scale. In Advances in 628
Neural Information Processing Systems. 629

William B. Dolan and Chris Brockett. 2005. Automati- 630
cally constructing a corpus of sentential paraphrases. 631
In Proceedings of the Third International Workshop 632
on Paraphrasing (IWP2005). 633

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 634
William B Dolan. 2007. The third pascal recognizing 635
textual entailment challenge. In Proceedings of the 636
ACL-PASCAL workshop on textual entailment and 637
paraphrasing, pages 1–9. 638

Alex Graves. 2017. Adaptive computation time for 639
recurrent neural networks. 640

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein- 641
berger. 2017. On calibration of modern neural net- 642
works. In ICML, volume 70 of Proceedings of Ma- 643
chine Learning Research, pages 1321–1330. PMLR. 644

9

https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
http://arxiv.org/abs/2212.10559
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://openreview.net/forum?id=dXiGWqBoxaD
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983
http://arxiv.org/abs/1603.08983

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo645
Giampiccolo, Bernardo Magnini, and Idan Szpektor.646
2006. The second pascal recognising textual entail-647
ment challenge. In Proceedings of the Second PAS-648
CAL Challenges Workshop on Recognising Textual649
Entailment, volume 7.650

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui651
Wang, and Yulin Wang. 2021. Dynamic neural net-652
works: A survey.653

Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yux-654
ian Gu, and Furu Wei. 2022. Structured prompting:655
Scaling in-context learning to 1,000 examples.656

Gao Huang, Yulin Wang, Kangchen Lv, Haojun Jiang,657
Wenhui Huang, Pengfei Qi, and Shiji Song. 2023.658
Glance and focus networks for dynamic visual recog-659
nition. IEEE Trans. Pattern Anal. Mach. Intell.,660
45(4):4605–4621.661

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke662
Zettlemoyer. 2017. TriviaQA: A large scale distantly663
supervised challenge dataset for reading comprehen-664
sion. In Proceedings of the 55th Annual Meeting of665
the Association for Computational Linguistics (Vol-666
ume 1: Long Papers), pages 1601–1611, Vancouver,667
Canada. Association for Computational Linguistics.668

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom669
Henighan, Dawn Drain, Ethan Perez, Nicholas670
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli671
Tran-Johnson, Scott Johnston, Sheer El-Showk,672
Andy Jones, Nelson Elhage, Tristan Hume, Anna673
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,674
Deep Ganguli, Danny Hernandez, Josh Jacobson,675
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-676
mal Ndousse, Catherine Olsson, Sam Ringer, Dario677
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,678
Ben Mann, Sam McCandlish, Chris Olah, and Jared679
Kaplan. 2022. Language models (mostly) know what680
they know.681

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-682
field, Michael Collins, Ankur Parikh, Chris Alberti,683
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-684
ton Lee, Kristina Toutanova, Llion Jones, Matthew685
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob686
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-687
ral questions: A benchmark for question answering688
research. Transactions of the Association for Compu-689
tational Linguistics, 7:452–466.690

Mukai Li, Shansan Gong, Jiangtao Feng, Yiheng Xu,691
Jun Zhang, Zhiyong Wu, and Lingpeng Kong. 2023.692
In-context learning with many demonstration exam-693
ples.694

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,695
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,696
Barret Zoph, Jason Wei, and Adam Roberts. 2023.697
The flan collection: Designing data and methods for698
effective instruction tuning.699

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,700
and Richard Socher. 2018. The natural language701
decathlon: Multitask learning as question answering.702

Paul Michel, Omer Levy, and Graham Neubig. 2019. 703
Are sixteen heads really better than one? In Ad- 704
vances in Neural Information Processing Systems, 705
volume 32. Curran Associates, Inc. 706

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish 707
Sabharwal. 2018. Can a suit of armor conduct elec- 708
tricity? a new dataset for open book question an- 709
swering. In Proceedings of the 2018 Conference on 710
Empirical Methods in Natural Language Processing, 711
pages 2381–2391, Brussels, Belgium. Association 712
for Computational Linguistics. 713

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, 714
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle- 715
moyer. 2022. Rethinking the role of demonstrations: 716
What makes in-context learning work? In Proceed- 717
ings of the 2022 Conference on Empirical Methods in 718
Natural Language Processing, pages 11048–11064, 719
Abu Dhabi, United Arab Emirates. Association for 720
Computational Linguistics. 721

OpenAI. 2023. Gpt-4 technical report. 722

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 723
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 724
Sandhini Agarwal, Katarina Slama, Alex Gray, John 725
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 726
Maddie Simens, Amanda Askell, Peter Welinder, 727
Paul Christiano, Jan Leike, and Ryan Lowe. 2022. 728
Training language models to follow instructions with 729
human feedback. In Advances in Neural Information 730
Processing Systems. 731

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 732
Jing Zhu. 2002. Bleu: a method for automatic evalu- 733
ation of machine translation. In Proceedings of the 734
40th Annual Meeting of the Association for Compu- 735
tational Linguistics, pages 311–318, Philadelphia, 736
Pennsylvania, USA. Association for Computational 737
Linguistics. 738

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 739
Sutskever, et al. 2018. Improving language under- 740
standing by generative pre-training. 741

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 742
Dario Amodei, Ilya Sutskever, et al. 2019. Language 743
models are unsupervised multitask learners. OpenAI 744
blog, 1(8):9. 745

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 746
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 747
Wei Li, Peter J Liu, et al. 2020. Exploring the limits 748
of transfer learning with a unified text-to-text trans- 749
former. J. Mach. Learn. Res., 21(140):1–67. 750

Melissa Roemmele, Cosmin Adrian Bejan, and An- 751
drew S Gordon. 2011. Choice of plausible alter- 752
natives: An evaluation of commonsense causal rea- 753
soning. In AAAI spring symposium: logical formal- 754
izations of commonsense reasoning, pages 90–95. 755

Victor Sanh, Lysandre Debut, Julien Chaumond, and 756
Thomas Wolf. 2020. Distilbert, a distilled version of 757
bert: smaller, faster, cheaper and lighter. 758

10

http://arxiv.org/abs/2102.04906
http://arxiv.org/abs/2102.04906
http://arxiv.org/abs/2102.04906
http://arxiv.org/abs/2212.06713
http://arxiv.org/abs/2212.06713
http://arxiv.org/abs/2212.06713
https://doi.org/10.1109/TPAMI.2022.3196959
https://doi.org/10.1109/TPAMI.2022.3196959
https://doi.org/10.1109/TPAMI.2022.3196959
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
http://arxiv.org/abs/2207.05221
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
http://arxiv.org/abs/2302.04931
http://arxiv.org/abs/2302.04931
http://arxiv.org/abs/2302.04931
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/2301.13688
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1806.08730
http://arxiv.org/abs/1806.08730
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
http://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108

Victor Sanh, Albert Webson, Colin Raffel, Stephen759
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine760
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,761
M Saiful Bari, Canwen Xu, Urmish Thakker,762
Shanya Sharma Sharma, Eliza Szczechla, Taewoon763
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti764
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han765
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,766
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-767
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-768
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan769
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,770
Thomas Wolf, and Alexander M Rush. 2022. Multi-771
task prompted training enables zero-shot task gener-772
alization. In International Conference on Learning773
Representations.774

Timo Schick and Hinrich Schütze. 2021. It’s not just775
size that matters: Small language models are also few-776
shot learners. In Proceedings of the 2021 Conference777
of the North American Chapter of the Association778
for Computational Linguistics: Human Language779
Technologies, pages 2339–2352, Online. Association780
for Computational Linguistics.781

Roy Schwartz, Gabriel Stanovsky, Swabha782
Swayamdipta, Jesse Dodge, and Noah A. Smith.783
2020. The right tool for the job: Matching model and784
instance complexities. In Proceedings of the 58th785
Annual Meeting of the Association for Computational786
Linguistics, pages 6640–6651, Online. Association787
for Computational Linguistics.788

Noam Shazeer and Mitchell Stern. 2018. Adafactor:789
Adaptive learning rates with sublinear memory cost.790

Richard Socher, Alex Perelygin, Jean Wu, Jason791
Chuang, Christopher D. Manning, Andrew Ng, and792
Christopher Potts. 2013. Recursive deep models for793
semantic compositionality over a sentiment treebank.794
In Proceedings of the 2013 Conference on Empiri-795
cal Methods in Natural Language Processing, pages796
1631–1642, Seattle, Washington, USA. Association797
for Computational Linguistics.798

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and799
Jonathan Berant. 2019. CommonsenseQA: A ques-800
tion answering challenge targeting commonsense801
knowledge. In Proceedings of the 2019 Conference802
of the North American Chapter of the Association for803
Computational Linguistics: Human Language Tech-804
nologies, Volume 1 (Long and Short Papers), pages805
4149–4158, Minneapolis, Minnesota. Association for806
Computational Linguistics.807

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann808
Dubois, Xuechen Li, Carlos Guestrin, Percy809
Liang, and Tatsunori B. Hashimoto. 2023. Stan-810
ford alpaca: An instruction-following llama811
model. https://github.com/tatsu-lab/812
stanford_alpaca.813

Surat Teerapittayanon, Bradley McDanel, and H. T.814
Kung. 2016. Branchynet: Fast inference via early815
exiting from deep neural networks. In ICPR, pages816
2464–2469. IEEE.817

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 818
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 819
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 820
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 821
Grave, and Guillaume Lample. 2023. Llama: Open 822
and efficient foundation language models. 823

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 824
Adams Wei Yu, Brian Lester, Nan Du, Andrew M. 825
Dai, and Quoc V Le. 2022. Finetuned language mod- 826
els are zero-shot learners. In International Confer- 827
ence on Learning Representations. 828

Canwen Xu, Wangchunshu Zhou, Tao Ge, Furu Wei, 829
and Ming Zhou. 2020. BERT-of-theseus: Com- 830
pressing BERT by progressive module replacing. In 831
Proceedings of the 2020 Conference on Empirical 832
Methods in Natural Language Processing (EMNLP), 833
pages 7859–7869, Online. Association for Computa- 834
tional Linguistics. 835

Kang Min Yoo, Junyeob Kim, Hyuhng Joon Kim, Hyun- 836
soo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee, 837
and Taeuk Kim. 2022. Ground-truth labels matter: A 838
deeper look into input-label demonstrations. In Pro- 839
ceedings of the 2022 Conference on Empirical Meth- 840
ods in Natural Language Processing, pages 2422– 841
2437, Abu Dhabi, United Arab Emirates. Association 842
for Computational Linguistics. 843

Susan Zhang, Stephen Roller, Naman Goyal, Mikel 844
Artetxe, Moya Chen, Shuohui Chen, Christopher De- 845
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022. 846
Opt: Open pre-trained transformer language models. 847
arXiv preprint arXiv:2205.01068. 848

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 849
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu- 850
ating text generation with BERT. In ICLR. OpenRe- 851
view.net. 852

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. 853
Character-level convolutional networks for text clas- 854
sification. In NIPS. 855

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. 856
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses 857
patience: Fast and robust inference with early exit. 858
In NeurIPS. 859

11

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1804.04235
http://arxiv.org/abs/1804.04235
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://doi.org/10.18653/v1/2020.emnlp-main.633
https://aclanthology.org/2022.emnlp-main.155
https://aclanthology.org/2022.emnlp-main.155
https://aclanthology.org/2022.emnlp-main.155

A Case Study860

We present a few examples of how many in-context861

examples DYNAICL allocates to different samples862

in the SST-2 dataset with an average budget of 5863

in-context examples:864

• “it ’s disappointing when filmmakers throw a865

few big-name actors and cameos at a hokey866

script .” : 1867

• “how did it ever get made ?”: 2868

• “not only does the movie fail to make us part869

of its reality , it fails the most basic relevancy870

test as well .” : 2871

• “it would n’t be my preferred way of spending872

100 minutes or $7.00.”: 6873

• “but if it is indeed a duty of art to reflect life874

, than leigh has created a masterful piece of875

artistry right here .”: 7876

877

We find that DYNAICL does tend to assign878

fewer in-context examples to easier samples879

and more in-context examples to harder sam-880

ples.881

12

	Introduction
	Methodology
	Background: In-Context Learning
	Meta Controller
	Dynamic In-Context Example Allocation

	Experiments
	Experimental Settings
	Preliminary Study: How Much Do More In-Context Examples Help?
	Main Results
	Analysis

	Related Works
	Conclusions
	Limitations
	Case Study

