

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING EFFICIENT AND INTERPRETABLE MULTI- AGENT COMMUNICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Effective communication is crucial for multi-agent cooperation in partially observable environments. However, a fundamental trilemma exists among task performance, communication efficiency, and human interpretability. To resolve this, we propose a multi-agent communication framework via **Grounding Language and Contrastive learning (GLC)** to learns efficient and interpretable communication protocols. Specifically, GLC employs an autoencoder to learn discretized and compressed communication symbols, ensuring high communication efficiency. These symbols are then semantically aligned with human concepts using data generated by a Large Language Model (LLM), making them human-interpretable. Furthermore, a contrastive learning objective is introduced to ensure consistency and mutual intelligibility among all agents, thereby securing high task utility. GLC dynamically balances these objectives by the Information Bottleneck principle. Extensive experiments show that GLC outperforms state-of-the-art methods across multiple benchmarks, delivering superior task performance, higher communication efficiency, and enhanced human interpretability.

1 INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success in various complex real-world multi-agent systems (MAS) such as autonomous driving Xu et al. (2024) and traffic signal control Zhang et al. (2024). In MAS under partial observability, communication learning is key to overcoming individual perceptual limitations and achieving coordinated behavior. However, existing MARL approaches often face a fundamental tension between communication efficiency and human interpretability. Methods that prioritize efficiency typically produce opaque protocols that hinder collaboration with humans Lin et al. (2021); Freed et al. (2020), while those favoring interpretability often incur high communication costs that limit their practical applicability Lowe et al. (2019).

This challenge can be understood through the lens of the Information Bottleneck (IB) principle, which formalizes the trade-off between the complexity of a message and its informativeness about a source variable. As shown in Figure 1(a), in multi-agent settings, this translates to a three-way balance among task performance (utility), communication efficiency (complexity), and human interpretability (informativeness) Tucker et al. (2022a). An ideal protocol must compress high-dimensional observations into efficient messages (minimizing complexity) while preserving enough information (maximizing informativeness), both to achieve task goals (maximizing utility) and to remain interpretable by humans or unfamiliar agents.

To address this trilemma, we propose a multi-agent communication framework via **Grounding Language and Contrastive learning (GLC)**. As shown in Figure 1(b), GLC integrates three key components: a discrete autoencoder that minimizes communication complexity through compressed symbolic representations, a communication alignment mechanism that aligns these discrete symbols with human semantic spaces to enhance interpretability, and a contrastive learning objective that ensures consistency and mutual intelligibility among agents. By dynamically balancing these objectives, GLC operationalizes the IB principle for MAS, enabling the emergence of protocols that are simultaneously efficient and interpretable. During execution, agents communicate using compact discrete symbols while maintaining rich semantic meaning derived from both LLM supervision and contrastive alignment. Crucially, GLC decouples training-time alignment from deployment-time communication: while training utilizes LLM-derived anchors and contrastive learning signals,

Figure 1: (a) The fundamental trilemma in multi-agent communication, balancing communication efficiency, task performance, and human interpretability. (b) The GLC framework navigates this trade-off with an autoencoder for compression, LLM-based language grounding for interpretability, and contrastive learning for inter-agent consistency.

inference operates entirely without external supervision. Extensive experiments across diverse environments demonstrate that GLC outperforms baselines in task performance, communication efficiency, and human interpretability. Our main contributions include: (1) an integrated framework that learns communication protocols which are not only practically efficient through discrete symbol compression but also semantically meaningful via language grounding, thereby achieving a favorable balance in the efficiency–utility–interpretability trilemma; (2) a principled training paradigm that unifies contrastive inter-agent alignment with offline LLM-based semantic grounding, ensuring that the emergent language is both human-interpretable and consistently shared across agents, leading to more robust and generalizable collaboration.

2 RELATED WORK

Utility-Optimized Communication. A large body of multi-agent communication work prioritizes maximizing task performance, often at the expense of interpretability and sometimes efficiency. Early methods like CommNet Sukhbaatar et al. (2016) and IC3Net Singh et al. (2019) enabled end-to-end learning of continuous communication vectors that are highly optimized for specific tasks. Subsequent works like TarMAC Das et al. (2019) and MAGIC Niu et al. (2021) introduced attention mechanisms and targeted communication to enhance utility further. While these approaches excel in performance, the learned protocols are typically opaque and require high communication cost, making them unsuitable for human-agent collaboration or bandwidth-constrained environments.

Efficiency-Driven Communication. Another line of research focuses on reducing communication cost, often through discretization Carmeli et al. (2023); Foerster et al. (2016). Methods like aeComm Lin et al. (2021) use autoencoders to compress observations into discrete symbols. VQ-VIB Tucker et al. (2022a) further incorporates IB constraints to learn a constrained vocabulary. These methods achieve high communication efficiency but often result in symbols that are not semantically grounded, limiting their interpretability and generalizability to novel partners.

Interpretability-Oriented Communication A more recent trend seeks to align agent communication with human-understandable concepts. Some approaches Lazaridou et al. (2020); Tucker et al. (2022b); Li et al. (2024) leverage pre-trained language models or human data to ground continuous communication vectors in natural language semantics. While these methods enhance interpretability, they often rely on continuous representations that incur significant communication overhead, or they lack the structured discrete symbols necessary for efficient communication.

Bridging the Trilemma. The aforementioned approaches typically excel in one or two dimensions of the trilemma but struggle to balance all three simultaneously. Our proposed GLC framework is designed to bridge this gap. Unlike prior work, GLC integrates discrete symbol learning for efficiency, language grounding for interpretability, and contrastive learning for utility and consistency within a unified, information-theoretically motivated framework. It moves beyond the traditional discrete-continuous dichotomy by learning discrete symbols that are embedded in a continuous, semantically meaningful space, thereby achieving a more favorable balance across all three objectives.

108 **3 PRELIMINARIES**

110 In this study, we model multi-agent reinforcement learning (MARL) with communication using
 111 a decentralized partially observable Markov decision process (Dec-POMDP) framework Oliehoek
 112 (2012). The model is formally defined by the tuple $\langle N, \mathcal{S}, \mathcal{O}, \mathcal{C}, \mathcal{A}, \mathcal{T}, R, \gamma \rangle$, where N represents
 113 the number of agents; \mathcal{S} is the state space of the environment; $\mathcal{O} = \mathcal{O}^1, \dots, \mathcal{O}^N$ corresponds to
 114 the observation spaces available to each agent; $\mathcal{C} = \mathcal{C}^1, \dots, \mathcal{C}^N$ defines the sets of communication
 115 messages that agents can transmit; $\mathcal{A} = \mathcal{A}^1, \dots, \mathcal{A}^N$ denotes the sets of executable actions for each
 116 agent; $\mathcal{T} : \mathcal{S} \times \mathcal{A}_1 \times \dots \times \mathcal{A}_N \rightarrow \Delta(\mathcal{S})$ defines the transition function; $R : \mathcal{S} \times \mathcal{A}^1 \times \dots \times \mathcal{A}^N \rightarrow \mathbb{R}$
 117 represents the reward function.

118 At each timestep t , agent i receives a local observation o_i^t and a set of communication messages
 119 $c^{t-1} = \{c_1^{t-1}, \dots, c_N^{t-1}\}$ sent by all agents at the previous timestep. Using this information, the
 120 agent chooses an action $a_i^t \in \mathcal{A}_i$ and generates a new message $c_i^t \in \mathcal{C}_i$ to be broadcast to others. The
 121 state transition dynamics are governed by the function $\mathcal{T} : \mathcal{S} \times \mathcal{A}_1 \times \dots \times \mathcal{A}_N \rightarrow \Delta(\mathcal{S})$, which takes
 122 the current s^t and joint action $a^t = \{a_1^t, \dots, a_N^t\}$ as input, and returns a probability distribution over
 123 the next state s^{t+1} . Here, $\Delta(\mathcal{S})$ denotes the set of all probability distributions over the state space \mathcal{S} ,
 124 reflecting the possible stochastic outcomes of the joint action. After the state transition, each agent
 125 i receives an individual reward $r_i^t \in R(s^t, a^t)$ determined by the reward function.

126 In this study, we address a fully cooperative multi-agent scenario in which all agents collaborate
 127 toward a common goal: maximizing the total expected return of all agents. The team's objective is
 128 formally defined as:

$$130 \max_{\pi_i : \mathcal{O} \rightarrow \mathcal{A} \times \mathcal{C}} \left[\sum_{t=1}^T \sum_{i=1}^N \gamma^t r_i^t \mid (s_i^t, a_i^t) \sim \pi_i, o_i^t \sim \mathcal{O} \right], \quad (1)$$

133 where T is the timestep horizon and γ is the discount factor. To optimize this objective, we adopt
 134 policy gradient algorithms, with a particular focus on the asynchronous advantage actor-critic (A3C)
 135 framework Mnih et al. (2016). We further enhance the learning stability and credit assignment using
 136 Generalized Advantage Estimation (GAE) Schulman et al. (2015), which helps in reducing variance
 137 while maintaining tractable bias in advantage estimates.

138 Regarding the language learning objective for the agents, we follow the conceptualization of lan-
 139 guage acquisition introduced in Li et al. (2024). Specifically, a target language $L^* \in \mathcal{L}$ is defined as
 140 the communication language that optimally enhances collective task performance. Here, \mathcal{L} denotes
 141 the space of all possible natural languages. Formally, any language $L \in \mathcal{L}$ can be understood as a
 142 set of communication messages \mathcal{C} , established through a mapping $L : \Omega \rightarrow \mathcal{C}$ that encodes agent
 143 observations into messages. In reinforcement learning terms, this is analogous to the process of gen-
 144 erating natural language descriptions from input observation vectors. To support language learning,
 145 we build a training dataset \mathcal{D} consisting of $|\mathcal{D}|$ (observation, action) pairs. These are extracted from
 146 expert trajectories produced by LLM agents communicating via L^* . The central aim is to enable
 147 trained agents to use L^* effectively for seamless coordination with experts in ad-hoc teamwork set-
 148 tings. A critical requirement is that the acquired language capability exhibits strong generalization,
 149 such as robust performance in previously unseen scenarios not present in \mathcal{D} .

151 **4 METHODOLOGY**

153 This section presents GLC, a MARL framework designed for learning efficient and interpretable
 154 multi-agent communication. As illustrated in Figure 2, the framework integrates four core modules
 155 that work together to address the trilemma involving performance, efficiency, and interpretability:
 156 (1) The MARL agent module, which learns policies and generates efficient communication symbols
 157 via a discrete autoencoder; (2) The LLM agent module, which interacts with the environment in text
 158 space to produce expert trajectories rich in semantics; (3) The MARL-LLM language grounding
 159 module, which aligns the semantics of discrete symbols with natural language descriptions generated
 160 by the LLM; (4) The communication alignment contrastive learning module, which ensures all
 161 agents develop a consistent and mutually understandable communication protocol. These modules
 are jointly optimized through a unified multi-objective loss function. Each module will be elaborated

162 in detail below. The GLC framework is grounded in the IB principle, a detailed derivation of the
 163 connection between GLC objectives and the IB principle is provided in the Appendix A.1 and A.2.
 164

175 Figure 2: The GLC framework integrates four core modules: (1) MARL Agents: encode partial ob-
 176 servations into a discrete symbols via an autoencoder for efficient communication; (2) LLM Agents:
 177 interact in a textual space to generate expert trajectories that provide semantically grounded
 178 messages; (3) MARL-LLM Language Grounding: aligns the discrete symbol embeddings with LLM-
 179 generated message embeddings using a cosine similarity loss; (4) Communication Alignment Con-
 180 trastive Learning: ensures a consistent protocol across all agents by leveraging a contrastive loss.
 181

182 4.1 MARL AGENT

183 At timestep $t - 1$, each MARL agent i receives its observation o_i^{t-1} and generates a discrete com-
 184 munication message c_i^{t-1} . The observation is first processed through an MLP encoder to obtain
 185 a 128-dimensional feature vector $h_i^{t-1} \in \mathbb{R}^{128}$. This feature is then passed through a commu-
 186 nication autoencoder to produce discrete symbols $h_i^{t-1} \rightarrow c_i^{t-1}$. The autoencoder consists of an
 187 encoder and a decoder, both implemented as a 3-layer multilayer perceptron (MLP). The decoder
 188 reconstructs the original feature from the discrete message via mapping $c_i^{t-1} \rightarrow \hat{h}_i^{t-1}$, with quan-
 189 tization applied prior to decoding. To enable gradient backpropagation through the discretization
 190 step, a straight-through estimator is employed Bengio et al. (2013). An auxiliary reconstruction loss
 191 $\mathcal{L}_{\text{recon}} = \|h_i^{t-1} - \hat{h}_i^{t-1}\|_2^2$ is minimized alongside the policy gradient loss $\mathcal{L}_{\text{policy}}$ during training.
 192

193 At the following timestep t , each agent utilizes a shared message encoder to embed the previously
 194 transmitted communication symbols $c^{t-1} = c_1^{t-1}, \dots, c_N^{t-1}$ through linear projection. These mes-
 195 sage embeddings are concatenated and processed by a 3-layer MLP, resulting in a fixed-dimensional
 196 message representation $\varphi(c^{t-1}) \in \mathbb{R}^{128}$. Each agent employs an individual policy head imple-
 197 mented as a gated recurrent unit (GRU) module Chung et al. (2014) with a linear output layer.
 198 The policy network combines the agent's encoded state feature h_i^t with the message representation
 199 $\varphi(c^{t-1})$ via feature concatenation: $\varphi_i^{t-1} = h_i^t \circ \varphi(c^{t-1})$, where \circ denotes concatenation along the
 200 feature dimension. The GRU-based policy subsequently produces both an action probability distri-
 201 bution $a_i^t \sim \pi(\varphi_i^t)$ and corresponding value estimates. These outputs are utilized to compute the
 202 policy loss $\mathcal{L}_{\text{policy}}$, which is optimized concurrently with the reconstruction loss $\mathcal{L}_{\text{recon}}$.
 203

204 4.2 LLM AGENT

205 In our framework, we utilize LLM-based embodied agents to collect samples of the target language
 206 L^* in accordance with the LangGround Li et al. (2024). To support environment interaction, we
 207 introduce a textual interface I , as proposed in Li et al. (2023), that enables two-way conversion be-
 208 between natural language descriptions and structured abstract representations. All n LLM agents op-
 209 erate under generalized task instructions that guide them to collaboratively achieve common goals.
 210 At each timestep t , agent i receives an English description $I(o_i^t)$ of its current observation, which
 211 also includes communicated messages from other agents at the previous timestep $I(C^{t-1})$. Each
 212 agent then generates both a communication message and an action decision, which are encoded into
 213 abstract representations C_i^t and A_i^t for subsequent task execution. We formalize a dual-environment
 214 framework consisting of a textual space and a physical task space, ensuring informational equiva-
 215 lence between LLM and MARL agents despite their representational discrepancies.

216 Notably, the action-selection and communication behaviors of LLM agents arise intrinsically from
 217 their pre-trained capabilities, as we intentionally avoid providing explicit coordination guidance in
 218 the prompts. The resulting LLM-generated expert trajectories constitute a supervised dataset \mathcal{D} ,
 219 which captures mappings from individual agents' (observation, action) pairs to natural language
 220 messages. Throughout MARL training, \mathcal{D} supplies grounded language signals that steer the emerging
 221 communication protocols toward human-interpretable patterns. Further details on LLM agent
 222 setup and trajectory collection are provided in the Appendix A.4.

223

224 4.3 MARL-LLM LANGUAGE GROUNDING

225

226 To align communication between MARL and LLM agents, each MARL agent first maps discrete
 227 communication symbols c_i^t to a continuous vector representation $m_i^t = \phi(c_i^t) \in \mathbb{R}^{256}$ using a 3-layer
 228 MLP. To steer the emerging communication protocols toward human-interpretable patterns, we in-
 229 troduce a supervised language alignment loss during MARL training. At each timestep, contextually
 230 relevant human-language reference messages $C(o_i^t, a_i^t)$ are retrieved from the dataset based on the
 231 agent's current observation and action, providing semantic guidance for communication learning.

232

233 To promote semantic consistency between the emergent communication protocol and natural lan-
 234 guage representations, we design a similarity-driven objective function within a shared embedding
 235 space. For each agent's communication vector $m_i = \phi(c_i^t)$, we compute the cosine similarity be-
 236 tween m_i and the corresponding human-language reference embedding m_r when supervision is
 237 available in dataset \mathcal{D} . m_r represents the message embedding the LLM agent produced at that exact
 238 timestep in the collected trajectory. This results in the following conditional alignment loss:

239

$$\mathcal{L}_{align} = \mathbb{I}_{\mathcal{D}}(o_i^t, a_i^t) \cdot \left[1 - \frac{(m_i^t)^\top m_r}{\|(m_i^t)\| \cdot \|m_r\|} \right], \quad (2)$$

240

241 where the indicator function $\mathbb{I}_{\mathcal{D}}$ enables the loss only for state-action pairs available in the expert
 242 dataset, using $C(o_i^t, a_i^t)$ to supply the target embedding m_r in such supervised instances. This explic-
 243 itly maps both the agent's communication messages and natural language references into a shared
 244 high-dimensional semantic space, where geometric consistency is enforced via cosine similarity.

245

246 4.4 COMMUNICATION ALIGNMENT CONTRASTIVE LEARNING

247

248 Drawing on ideas from Lo et al. (2023), this loss encourages semantic consistency among messages
 249 generated by different agents observing the same environmental state. For a given message $m_i^t =$
 250 $\phi(c_i^t)$, we define its positive set as messages produced by all other agents within a temporal window
 251 w around timestep t in the same trajectory τ :

252

$$H(m_i^t) \equiv \left\{ \phi(c_j^{t'}) \mid j \neq i, t' \in [t-w, t+w] \right\}. \quad (3)$$

253

254 Negatives consist of messages sampled from other trajectories within the same training batch. Let
 255 $Z(m_i^t) \equiv M \setminus m_i^t$ denote the set of all messages in the batch excluding m_i^t , where M comprises all
 256 messages across the batch of trajectories. We optimize the following supervised contrastive loss:

257

$$\mathcal{L}_{contra} = \sum_{m_i^t} \frac{-1}{|H(m_i^t)|} \sum_{m_h \in H(m_i^t)} \log \frac{\exp(m_i^t \cdot m_h / \rho)}{\sum_{m_z \in Z(m_i^t)} \exp(m_i^t \cdot m_z / \rho)}, \quad (4)$$

258

259 where $\rho \in \mathbb{R}^+$ denotes a temperature parameter that scales the similarity distribution, and $|H(m_i^t)|$
 260 indicates the number of elements in the positive set. During training, each agent maintains a re-
 261 play buffer that stores trajectory data gathered across multiple environment instances. This buffer
 262 includes communication messages received during interaction, which are used to compute the con-
 263 trastive alignment loss. Based on hyperparameter tuning over different window sizes, we set the
 264 temporal context window to 5 timesteps for all environments. Following Khosla et al. (2020), all
 265 message embeddings are normalized prior to loss calculation, and a low temperature value ($\rho = 0.1$)
 266 is applied to enhance training stability and empirical performance.

270 4.5 DYNAMIC BALANCING OF OBJECTIVES
271

272 The communication protocol is optimized via a multi-objective learning framework integrating four
273 complementary goals: (1) policy gradients that learn to share strategically relevant information
274 across agents; (2) linguistic alignment with human-like communication examples drawn from \mathcal{D} ; (3)
275 autoencoder-based reconstruction of message semantics; and (4) contrastive learning for communica-
276 tion alignment. These components are combined into a unified optimization objective through the
277 following composite loss:

$$279 \quad \mathcal{L} = \mathcal{L}_{policy} + \lambda_A \mathcal{L}_{align} + \lambda_R \mathcal{L}_{recon} + \lambda_C \mathcal{L}_{contra}. \quad (5)$$

281 The weighting coefficients λ_A , λ_R , and λ_C balance the contributions of the alignment loss, recon-
282 struction loss, and contrastive loss, respectively. Crucially, instead of treating these as static hy-
283 perparameters, we view them as dynamic controls that guide the emergence of the communication
284 protocol. Inspired by the IB principle’s use of annealing Tishby et al. (2000); Tucker et al. (2022a),
285 we employ a scheduling strategy that initially prioritizes learning a shared, meaningful semantics
286 before gradually increasing pressure for efficient compression. This allows the communication pro-
287 tocol to evolve adaptively. The scheduling strategy of coefficients is set as follows,

288 (1) Task-Adaptive Alignment λ_A : The weight λ_A is set task-dependently. A higher value prioritizes
289 human interpretability in complex tasks like USAR, while a lower value in tasks like Predator-Prey
290 allows greater focus on task performance. (2) Annealing for Communication Efficiency λ_R : We
291 apply a linear annealing schedule to λ_R , increasing it from a small value to a higher one. This
292 implements an “explore then compress” strategy: initially allowing rich semantic exploration be-
293 fore gradually increasing pressure for efficient discrete compression. (3) Stabilizing Consensus λ_C :
294 The λ_C is kept at a fixed, moderate value to provide a consistent signal that fosters a shared pro-
295 tocol among agents, ensuring stability during training. In practice, a lightweight scheduler module
296 updates these weights during training. This dynamic balancing enables GLC to adaptively evolve
297 communication protocols optimized for each task’s specific requirements and learning stage, rather
298 than settling for a static compromise.

299 5 EXPERIMENTS
300

301 In this section, we conduct a comprehensive evaluation of GLC in two multi-agent benchmarks,
302 Predator-Prey Singh et al. (2019) and USAR Li et al. (2023), comparing it against state-of-the-art
303 baselines to rigorously answer the following questions:

305 **Q1** (Task performance): How does GLC’s performance compared with baseline methods?

306 **Q2** (Communication Efficiency): How does GLC’s efficiency compared with baseline methods?

308 **Q3** (Interpretability): To what extent are GLC’s communication protocols human-interpretable?

310 **Q4** (Trade-off Adaptation): How dynamically select weightings of objectives in diverse tasks?

311 **Q5** (Generalization): How well does GLC generalize to unseen agent teams?

313 **Q6** (Contribution): What are the contributions of GLC’s components to overall performance?

314 **Q7** (Scalability): What is GLC’s performance trend as the number of agents increases?

315 All experiments were executed on an RTX 4090 GPU with 24GB Memory. MARL baseline meth-
316 ods were implemented using their officially released code. Through extensive empirical tuning, all
317 models were trained under a unified set of hyperparameters. Each training epoch used a batch size of
318 500 with 10 model update iterations. Learning rates were set to 0.001 for Predator-Prey and 0.0001
319 for USAR. The Predator-Prey vision=1 (pp_{v1}) task required 2.5 million timesteps and completed in
320 about 1 hour, while the Predator-Prey vision=0 (pp_{v0}) and USAR tasks needed 10 million timesteps,
321 taking approximately 3 hours. Baseline methods include IC3Net Singh et al. (2019), aeComm Lin
322 et al. (2021), LangGround Li et al. (2024), VQ-VIB Tucker et al. (2022a), and a non-communicating
323 independent agent baseline (noComm). **Full environment details, baseline descriptions, and hy-
324 perparameter settings are available in the Appendix A.3 and A.4.**

324 **Task Performance (Q1).** Our evaluation assesses GLC’s task performance against state-of-the-art
 325 baselines. As shown in Figure 3, GLC demonstrates accelerated convergence and improved sta-
 326 bility relative to other methods. In the moderately complex pp_{v1} setting, GLC quickly reaches
 327 performance levels comparable to leading baselines (IC3Net, aeComm, LangGround), while also
 328 exhibiting smoother learning curves. Its advantage is further emphasized in the more difficult pp_{v0}
 329 environment. As shown in the middle figure, limited visibility increases the demand for coor-
 330 dinated communication. Despite this, GLC achieves notable performance gains earlier in the training
 331 process, highlighting its ability to capture and convey essential semantic information. Most impor-
 332 tantly, in the challenging USAR setting, GLC consistently attains higher performance levels with
 333 significantly reduced training fluctuations. This performance advantage stems from GLC’s ability to
 334 learn semantically grounded and mutually consistent communication, which enables more efficient
 335 and robust coordination among agents compared to baselines.
 336

346 Figure 3: Learning curves of GLC and baselines. The x-axis indicates training timesteps, while the
 347 y-axis measures task performance using episode length, with shorter values denoting better results.
 348 Shaded regions around each curve reflect standard errors derived from three random seeds.
 349

350 **Communication Efficiency (Q2).** To evaluate communication efficiency, we measured the total
 351 communication cost required to complete tasks across three multi-agent collaboration environments.
 352 As summarized in Table 1 (using the pp_{v1} environment as an example), GLC exhibits a clear advan-
 353 tage in communication efficiency. Through discrete symbol compression, GLC reduces the per-step
 354 communication volume by several orders of magnitude compared to continuous vector-based meth-
 355 ods such as LangGround and IC3Net, achieving exceptionally low communication overhead. This
 356 ultra-low bitrate makes GLC particularly suitable for real-world applications with limited band-
 357 width. Although other discrete approaches, including aeComm and VQ-VIB, also achieve low com-
 358 munication usage per step, GLC maintains stronger semantic expressiveness while retaining a high
 359 compression rate, which is essential for communication that is both efficient and interpretable.
 360

361 GLC also significantly reduces the number of steps required to complete tasks, thereby further low-
 362 ering the overall communication cost. For instance, in the pp_{v1} , GLC agents finish tasks in approxi-
 363 mately 4.5 steps on average, while baseline methods require between 5.3 and 7.2 steps. Combined
 364 with its low per-step transmission of only 32 bits, GLC’s total communication cost is substan-
 365 tially lower than all compared methods. In summary, GLC not only achieves high per-message efficiency
 366 through discrete compression but also reduces the need for repeated communication through more
 367 effective collaborative behavior. These characteristics make it particularly suitable for deployment in
 368 bandwidth-constrained scenarios where both interpretability and operational efficiency are critical.
 369 Additional results for the other environments are provided in the Appendix A.3.
 370

371 Table 1: Maximum Theoretical Communication Bits per Agent per Task Completion in pp_{v1} envi-
 372 ronment (Assuming no gating optimization)

Method	Bits/Step	Avg. Steps	Total Bits	Ratio to GLC
GLC	32.0	4.5	144.0	1.0
LangGround	8192.0	5.3	43417.6	301.5
IC3Net	8192.0	5.5	45056.0	312.9
aeComm	24.0	5.4	129.6	0.9
VQ-VIB	58.0	7.2	417.6	2.9
NoComm	0.0	6.6	0.0	0.0

378
 379 **Interpretability (Q3).** We next evaluate the semantic structure of the learned communication space,
 380 with a focus on its human-interpretable properties and similarity to natural language. To evaluate
 381 how effectively GLC aligns agent communication with human language, we conduct a quantitative
 382 assessment of the interpretability of its grounded messages. Using the offline dataset \mathcal{D} as reference,
 383 we compute two metrics: (1) the embedding-space similarity between GLC agent messages and
 384 LLM agent responses in identical pp_{v0} scenarios over 100 evaluation episodes, and (2) the BLEU
 385 score between GLC messages and their closest semantic matches in \mathcal{D} . As presented in Table 2, GLC
 386 slightly surpasses LangGround on both measures. Methods without explicit language alignment
 387 exhibit near-random interpretability results and are therefore omitted from comparison.

388 Table 2: Interpretability Metrics Comparison

	Cos sim		Bleu score	
	GLC	LangGround	GLC	LangGround
pp_{v0}	0.87±0.02	0.82±0.02	0.65±0.04	0.52±0.03
pp_{v1}	0.86±0.03	0.81±0.03	0.54±0.10	0.45±0.12
USAR	0.84±0.07	0.79±0.12	0.51±0.05	0.42±0.04

395 To assess semantic organization, we apply clustering and visualization to message embeddings col-
 396 lected over 100 evaluation episodes in the pp_{v0} environment, following the procedure in Lin et al.
 397 (2021). Using t-SNE Van der Maaten & Hinton (2008) for dimensionality reduction and DBSCAN
 398 Ester et al. (1996) for cluster analysis, we analyze whether the emergent protocol displays mean-
 399 ingful semantic structure. Figure 4 illustrates that the emergent messages form semantic clusters
 400 closely associated with specific environmental states. For instance, the rightmost red cluster cor-
 401 responds to agents located at coordinate (B, 3) without visibility of the prey. Querying the dataset
 402 \mathcal{D} returns minimal-distance matches such as the natural language description “moving right from
 403 (B, 3)”, which accurately captures the agent’s situational context. This close correspondence be-
 404 tween learned communication patterns and human-interpretable semantics confirms the meaningful
 405 organization of the emergent protocol space.

416 Figure 4: Learned communication embedding space. The communication vectors from pp_{v0} envi-
 417 ronment are visualized using t-SNE and clustered with DBSCAN. As examples, we identify two
 418 semantically meaningful clusters, each corresponding to a specific agent observation. To demon-
 419 strate the alignment between the agent communication space and the human language embedding
 420 space, we also present the most similar specific reference message from the dataset \mathcal{D} .

421 **Trade-off Adaptation (Q4).** Our weighting strategy is dynamic in two respects: through task-
 422 specific presetting of λ_A and λ_C and training-adaptive scheduling of λ_R . To validate the efficacy
 423 of the latter adaptive schedule, we contrast it with a baseline that uses the same preset weights but
 424 keeps them frozen during training. Using the pp_{v0} task as an instance, the baseline used a fixed set
 425 of weights ($\lambda_A = 0.5$, $\lambda_R = 0.1$, $\lambda_C = 0.1$) that remained constant throughout the training. These
 426 values were selected based on experimental results in the Appendix A.3. In contrast, the training-
 427 adaptive schedule used the linear annealing schedule for λ_R , starting from $\lambda_R = 0.01$ and annealing
 428 to $\lambda_R = 0.1$, while the other two weights consistent with the task-specific presetting weights.

In the pp_{v0} environment, comparative results presented in Table 3 indicate that GLC with dynamic weighting achieves better task performance than the static baseline, completing episodes more efficiently. More notably, it accomplishes this while significantly reducing overall communication cost, demonstrating an ability to learn a more compressed communication protocol without compromising task success. Although there is a slight decrease in interpretability metrics, the protocol remains substantially more understandable than non-grounded baselines, preserving human-interpretable semantics despite higher compression. These findings provide qualitative evidence that the dynamic annealing strategy successfully guides the system through a “learn then compress” trajectory, effectively balancing utility and complexity.

Table 3: Ablation study on dynamic vs. static weighting in the pp_{v0} environment.

Method	Episode Length ↓	Total Bits ↓	BLEU Score ↑
GLC (Fixed Weights)	9.62 ± 0.03	307.8 ± 0.96	0.65 ± 0.04
GLC (Dynamic Weights)	8.71 ± 0.04	278.7 ± 1.28	0.62 ± 0.05

Our experimental environments, by design, impose distinct pressures on the communication protocol, emphasizing different corners of the efficiency-utility-interpretability trilemma (as shown in Figure 1). The emergent properties of GLC’s protocol naturally adapt to these pressures. In the pp_{v0} environment, where agents are ‘blind’ and rely solely on communication for survival, the pressure is overwhelmingly toward maximizing task utility. The protocol is driven to convey the most critical information for coordinated search and capture under extreme uncertainty. While efficiency is necessary, the primary imperative is to achieve the task goal, leading to a protocol that is highly effective for coordination even if not maximally compressed. Conversely, the pp_{v1} environment provides partial observability, shifting the primary pressure toward optimizing communication efficiency. With local vision reducing the absolute dependency on communication for basic survival, the value of efficient information sharing becomes paramount. Here, GLC learns a protocol that prioritizes minimalistic, bandwidth-efficient symbols to supplement the agents’ own perceptions, achieving the task goal with minimal communicative overhead. Finally, the USAR environment, with its heterogeneous roles and complex action sequences, demands a protocol rich in semantic interpretability. Agents must communicate nuanced intentions, requests, and contextual information (e.g., bomb defusal sequences). Consequently, GLC’s protocol in this setting aligns most closely with human language concepts, sacrificing some raw efficiency for the clarity and unambiguous understanding required for successful collaboration in such an intricate task. This demonstrates that GLC does not seek a single optimal point on the trilemma but rather dynamically adapts its emergent communication protocol to the specific constraints and requirements of the task at hand. Further experimental analysis supporting these findings is provided in the Appendix A.3.

6 CONCLUSIONS

This paper introduced GLC, a novel multi-agent communication framework that effectively bridges the long-standing trade-off among task performance, communication efficiency, and human interpretability. By integrating discrete autoencoder-based compression with LLM-grounded semantic alignment and inter-agent contrastive learning, GLC enables the emergence of protocols that are simultaneously communication-efficient, task-effective, and human-interpretable. Crucially, a dynamic weighting schedule allows the framework to adaptively balance these objectives throughout training, guided by the specific constraints of the task environment. This adaptability ensures the practical applicability of GLC in diverse real-world domains, including robotic swarms where low-bandwidth communication is paramount, and autonomous vehicle fleets where interpretability is crucial for human trust and collaboration.

While GLC represents a significant step forward, several promising directions remain for future work. These include developing dynamic alignment mechanisms that incorporate real-time human feedback, extending the framework to incorporate multimodal signals, and integrating structured semantic constraints or external knowledge graphs to improve the generalization. A deeper theoretical analysis of the generalization property of emergent communication under grounded learning would also be valuable. Addressing these challenges will further enhance the practicality of GLC for real-world human-AI collaboration and advance the broader goal of developing efficient and interpretable multi-agent systems.

486 7 ETHICS STATEMENT
487488 We promise that we have read the ICLR Code of Ethics, and this article has not raised any questions
489 regarding the Code of Ethics.
490491 8 REPRODUCIBILITY STATEMENT
492493 We promise that GLC is reproducible. We provide the code of our framework and baselines in the
494 supplementary file, including the implementations of the MARL and LLM agents, training scripts,
495 and the environments.
496497 REFERENCES
498500 Joshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
501 through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.502 Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
503 Wojciech Zaremba. Openai gym. *arXiv preprint arXiv:1606.01540*, 2016.504 Boaz Carmeli, Ron Meir, and Yonatan Belinkov. Emergent quantized communication. In *AAAI*
505 *Conference on Artificial Intelligence (AAAI)*, 2023.507 Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
508 gated recurrent neural networks on sequence modeling. *arXiv preprint arXiv:1412.3555*, 2014.510 Abhishek Das, Théophile Gervet, and Joshua. Romoff. Tarmac: Targeted multi-agent communica-
511 tion. In *International Conference on Machine Learning (ICML)*, 2019.512 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
513 discovering clusters in large spatial databases with noise. In *ACM Knowledge Discovery and*
514 *Data Mining (KDD)*, 1996.516 Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to
517 communicate with deep multi-agent reinforcement learning. In *Advances in Neural Information*
518 *Processing Systems (NeurIPS)*, 2016.519 Benjamin Freed, Guillaume Sartoretti, Jiaheng Hu, and Howie Choset. Communication learning
520 via backpropagation in discrete channels with unknown noise. In *AAAI Conference on Artificial*
521 *Intelligence (AAAI)*, 2020.523 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
524 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. *Advances in neural*
525 *information processing systems*, 33:18661–18673, 2020.526 Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of lin-
527 guistic communication from referential games with symbolic and pixel input. *arXiv preprint*
528 *arXiv:1804.03984*, 2018.530 Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication meets nat-
531 ural language: Synergies between functional and structural language learning. In *arXiv preprint*
532 *arXiv:2005.07064*, 2020.533 Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
534 Katia Sycara. Theory of mind for multi-agent collaboration via large language models. In *Con-*
535 *ference on Empirical Methods in Natural Language Processing (EMNLP)*, 2023.536 Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee, Ehsan
537 Moradi Pari, Charles Lewis, and Katia Sycara. Language grounded multi-agent reinforcement
538 learning with human-interpretable communication. In *Advances in Neural Information Process-*
539 *ing Systems (NeurIPS)*, 2024.

540 Toru Lin, Jacob Huh, Christopher Stauffer, Ser Nam Lim, and Phillip Isola. Learning to ground
 541 multi-agent communication with autoencoders. In *Advances in Neural Information Processing*
 542 *Systems (NeurIPS)*, 2021.

543

544 Yat Long Lo, Biswa Sengupta, Jakob Foerster, and Michael Noukhovitch. Learning multi-agent
 545 communication with contrastive learning. In *International Conference on Learning Representa-*
 546 *tions (ICLR)*, 2023.

547

548 Ryan Lowe, Abhinav Gupta, Jakob Foerster, Douwe Kiela, and Joelle Pineau. On the interaction
 549 between supervision and self-play in emergent communication. In *International Conference on*
 550 *Learning Representations (ICLR)*, 2019.

551

552 Reuth Mirsky, William Macke, Andy Wang, Harel Yedidsion, and Peter Stone. A penny for your
 553 thoughts: The value of communication in ad hoc teamwork. In *International Joint Conference on*
 554 *Artificial Intelligence (IJCAI)*, 2020.

555

556 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 557 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 558 learning. In *International Conference on Machine Learning (ICML)*, 2016.

559

560 Yaru Niu, Rohan R Paleja, and Matthew C. Gombolay. Multi-agent graph-attention communica-
 561 tion and teaming. In *International Conference on Autonomous Agents and MultiAgent Systems*
 562 (*AAMAS*), 2021.

563

564 Frans A Oliehoek. Decentralized pomdps. *Reinforcement Learning (RLJ)*, 2012.

565

566 John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
 567 dimensional continuous control using generalized advantage estimation. *arXiv preprint*
 568 *arXiv:1506.02438*, 2015.

569

570 Amanpreet Singh, Tushar Jain, and Sainbayar. Sukhbaatar. Learning when to communicate at scale
 571 in multiagent cooperative and competitive tasks. In *International Conference on Learning Repre-*
 572 *sentations (ICLR)*, 2019.

573

574 Sainbayar Sukhbaatar, Arthur Szlam, and Rob. Fergus. Learning multiagent communication with
 575 backpropagation. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2016.

576

577 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv*
 578 *preprint physics/0004057*, 2000.

579

580 Mycal Tucker, Roger Levy, Julie A Shah, and Noga Zaslavsky. Trading off utility, informativeness,
 581 and complexity in emergent communication. In *Advances in Neural Information Processing*
 582 *Systems (NeurIPS)*, 2022a.

583

584 Mycal Tucker, Roger P Levy, Julie Shah, and Noga Zaslavsky. Generalization and translatabil-
 585 ity in emergent communication via informational constraints. In *NeurIPS 2022 Workshop on*
 586 *Information-Theoretic Principles in Cognitive Systems*, 2022b.

587

588 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. *Journal of machine*
 589 *learning research (JMLR)*, 2008.

590

591 Yaqi Xu, Yan Shi, Xiaolu Tong, Shanzhi Chen, and Yuming Ge. A multi-agent reinforcement
 592 learning based control method for connected and autonomous vehicles in a mixed platoon. *IEEE*
 593 *Transactions on Vehicular Technology (Tvt)*, 2024.

594

595 Yutian Zhang, Guohong Zheng, Zhiyuan Liu, Quan Li, and Haipeng Zeng. Marlens: understand-
 596 ing multi-agent reinforcement learning for traffic signal control via visual analytics. *IEEE transac-*
 597 *tions on visualization and computer graphics (TVCG)*, 2024.

594 **A APPENDIX**595 **A.1 INFORMATION-THEORETIC FOUNDATION**

598 The GLC framework is grounded in the IB principle, which formalizes the trade-off between the
 599 compression of input data and the preservation of task-relevant information. We frame the learning
 600 of communication protocols within this principle: each agent must compress its **encoded observation**
 601 H_i into a concise message C_i , while ensuring that the message remains informative about key
 602 variables essential for collaboration. Specifically, the message should be informative about (1) Task
 603 Utility (Y), to enable effective coordination; (2) Human Interpretability (L), by aligning with semantic
 604 concepts from a language space; and (3) Other Agents' Perspectives (C_{-i}), to ensure consistency
 605 and mutual intelligibility.

606 The IB objective of maximizing $I(C_i; Y, L, C_{-i})$ while minimizing $I(C_i; H_i)$ is intractable to op-
 607 timize directly. Instead, GLC operationalizes this principle through a composite loss function that
 608 integrates four complementary objectives, each acting as a surrogate for a component of the IB
 609 trade-off:

$$\underbrace{\mathcal{L}_{\text{policy}}}_{-I(C_i; Y)} + \lambda_A \underbrace{\mathcal{L}_{\text{align}}}_{-I(C_i; L)} + \lambda_C \underbrace{\mathcal{L}_{\text{contra}}}_{-I(C_i; C_{-i})} + \lambda_R \underbrace{\mathcal{L}_{\text{recon}}}_{\approx I(H_i; C_i)} \quad (6)$$

610 Intuitively, the policy loss $\mathcal{L}_{\text{policy}}$ encourages messages to be informative about task success; the
 611 alignment loss $\mathcal{L}_{\text{align}}$ grounds them in human-understandable semantics; the contrastive loss $\mathcal{L}_{\text{contra}}$
 612 fosters consensus among agents; and the reconstruction loss $\mathcal{L}_{\text{recon}}$ regulates the compression process.
 613 The dynamic balancing of coefficients $\lambda_A, \lambda_R, \lambda_C$ allows GLC to adaptively prioritize different
 614 facets of this trade-off during training. A detailed derivation of the connection between the loss
 615 function and the IB principle is provided in Appendix A.2.

616 **A.2 DETAILED INFORMATION-THEORETIC DERIVATION**

617 This section provides a detailed derivation of the connection between the GLC loss function and the
 618 IB principle. The core IB objective for an agent i can be formulated as finding a communication
 619 message C_i that maximizes the following Lagrangian:

$$\mathcal{L}_{\text{IB}} = I(C_i; Y, L, C_{-i}) - \beta I(C_i; H_i) \quad (7)$$

620 where $H_i = f_{\text{enc}}(O_i)$ is the **encoded representation of observation** O_i , $I(\cdot; \cdot)$ denotes mutual infor-
 621 mation, and β is a Lagrange multiplier controlling the trade-off.

622 This objective is intractable for complex environments. We thus decompose it into tractable surro-
 623 gate losses. First, we note that the information preservation term can be lower-bounded by consid-
 624 ering the contributions of each target variable individually:

$$I(C_i; Y, L, C_{-i}) \geq I(C_i; Y) + I(C_i; L) + I(C_i; C_{-i}) \quad (8)$$

625 This simplification allows us to address each information term separately. The GLC loss function
 626 (Equation 6) is designed to maximize these terms:

$$\begin{aligned} -\mathcal{L}_{\text{policy}} &\propto I(C_i; Y) \quad (\text{Task utility}) \\ -\lambda_A \mathcal{L}_{\text{align}} &\propto I(C_i; L) \quad (\text{Human interpretability}) \\ -\lambda_C \mathcal{L}_{\text{contra}} &\propto I(C_i; C_{-i}) \quad (\text{Inter-agent consistency}) \end{aligned}$$

627 Conversely, the compression term $I(C_i; H_i)$ is regulated by the reconstruction loss $\mathcal{L}_{\text{recon}}$.

628 By enforcing the message C_i to be predictive of the **encoded observation** H_i via the autoencoder, we implicitly control the complexity of the
 629 message, ensuring that it does not retain excessive, irrelevant information from H_i . Since H_i is itself a
 630 compressed representation of O_i obtained through the encoder f_{enc} , controlling $I(C_i; H_i)$ effectively
 631 constrains $I(C_i; O_i)$ through the data processing inequality. Thus, the overall GLC objective can be
 632 viewed as a practical and scalable approximation to the idealized IB principle for multi-agent com-
 633 munication, where we directly control the information flow through the pathway $O_i \rightarrow H_i \rightarrow C_i$
 634 rather than the direct pathway $O_i \rightarrow C_i$. This approach maintains the fundamental IB trade-offs
 635 while remaining tractable for complex environments.

648 A.3 ADDITIONAL EXPERIMENTS
649650 A.3.1 BASELINES
651

652 We implemented the MARL baseline methods using their publicly available official code. A short
653 overview of each baseline is provided as follows: aeComm Lin et al. (2021) advances multi-agent
654 discrete communication methods by grounding messages in reconstructed observations, exhibiting
655 better performance than end-to-end and inductive bias methods in decentralized contexts. VQ-VIB
656 Tucker et al. (2022a) is a representative human-interpretable communication paradigm, constructing
657 semantic spaces for discrete tokens that demonstrate effective performance in human-agent collabora-
658 tion scenarios. IC3Net Singh et al. (2019) is a continuous communication method without lan-
659 guage grounding, which employs a gating mechanism to dynamically control inter-agent messaging.
660 LangGround Li et al. (2024) represents the pioneering effort in developing human-interpretable
661 multi-agent communication by aligning continuous vectors with natural language semantics.

662 A.3.2 COMMUNICATION EFFICIENCY (Q2)
663

664 To further validate the communication efficiency of GLC, we conducted a qualitative analysis in
665 both the USAR and pp_{v0} environments. In the complex USAR setting, which involves multi-room
666 navigation and specialized coordination requirements, GLC demonstrated significant advantages
667 in low communication overhead. The discrete communication protocol enabled agents to maintain
668 effective coordination while using minimal communication resources, in stark contrast to continuous
669 vector-based approaches, which incurred substantially higher communication costs.

670 The pp_{v0} presented an even more challenging scenario, where agents operated with zero visual per-
671 ception and relied exclusively on communication for situational awareness. In this setting, GLC’s
672 efficiency advantages became particularly evident. The framework successfully supported complete
673 task coordination through compact discrete symbols, demonstrating that meaningful communica-
674 tion can be achieved without the bandwidth burden associated with continuous vector transmission.
675 Across both environments, GLC maintained a consistent pattern of efficient communication with-
676 out compromising coordination effectiveness. The discrete symbolic approach proved particularly
677 valuable in scenarios requiring frequent information exchange, where the cumulative bandwidth
678 savings became increasingly significant. Furthermore, the semantic grounding of these discrete
679 symbols ensured that communication remained interpretable despite the high compression ratio.
680 GLC demonstrates robust communication efficiency and coordination across diverse environmental
681 constraints. It performs effectively in perception-limited scenarios and complex multi-step tasks,
682 proving its ability to balance communication cost with coordination effectiveness. This makes GLC
683 highly suitable for real-world applications with limited or costly communication resources.

684 Table 4: Maximum Theoretical Communication Bits per Agent per Task Completion in pp_{v0} (No
685 Gating Optimization)

Method	Bits/Step	Avg. Steps	Total Bits	Ratio to GLC
GLC	32.0	8.7	278.4	1.0
LangGround	8192.0	10.8	88473.6	317.8
IC3Net	8192.0	15.0	122880.0	441.4
aeComm	24.0	10.6	254.4	0.9
VQ-VIB	58.0	15.9	922.2	3.3
NoComm	0.0	19.8	0.0	0.0

694 A.3.3 HUMAN INTERPRETABILITY (Q3)
695

696 Topographic similarity quantifies the structural alignment between distances in the observation
697 space, such as physical agent locations, and corresponding distances in the communication space,
698 such as embedded message vectors, as described in Zhang et al. (2024). This metric reflects the
699 compositionality and generalizability of the emergent communication protocol, since semantically
700 related observations should ideally yield similar communication signals. Following the method out-
701 lined in Lazaridou et al. (2018), we compute this measure using 100 evaluation episodes from the
 pp_{v0} environment. Our procedure involves computing cosine similarities among all communication

702
 703 Table 5: Maximum Theoretical Communication Bits per Agent per Task Completion in *USAR* (No
 704 Gating Optimization)

Method	Bits/Step	Avg. Steps	Total Bits	Ratio to GLC
GLC	32.0	14.9	476.8	1.0
LangGround	8192.0	19.1	156467.0	328.2
IC3Net	8192.0	20.4	167116.8	350.5
aeComm	24.0	19.4	465.6	1.0
VQ-VIB	58.0	18.4	1067.2	2.2
NoComm	0.0	38.3	0.0	0.0

713 vector pairs and measuring Euclidean distances among all agent position pairs. The topographic
 714 similarity score is then obtained as the negative Spearman correlation coefficient ρ between these
 715 two sets of distances. As shown in Table 6, our method achieves the highest topographic similarity,
 716 with $\rho = 0.73$, among all baseline approaches, indicating that the resulting communication patterns
 717 exhibit structural properties most akin to those of human language.

719
 720 Table 6: Topographic similarity in pp_{v0}

Methods	Topographic Similarity
GLC	0.73±0.11
LangGround	0.67±0.07
IC3Net	0.54±0.14
aeComm	0.37±0.05

726
 727 A.3.4 TRADE-OFF ADAPTATION (Q4)

728 We present the analysis of weight selection in GLC (no annealing schedule). The selection of the lan-
 729 guage alignment weight λ_A is highly dependent on task complexity, as evidenced by the data in Table
 730 7. In the simpler Predator-Prey environments pp_{v0} and pp_{v1} , a moderate weight of $\lambda_A = 0.5$ yields
 731 the best performance (lowest episode length), indicating that a balanced level of semantic guidance
 732 is sufficient for effective coordination. However, in the more complex USAR environment, which
 733 requires nuanced communication for specialized roles and multi-step sequences, a higher weight of
 734 $\lambda_A = 1.0$ is optimal. This demonstrates that complex collaboration tasks benefit significantly from
 735 stronger pressure to align the emergent communication with human-interpretable concepts.

737
 738 Table 7: Episode length of GLC with different λ_A on several scenarios

Scenarios	$\lambda_A = 0.1$	$\lambda_A = 0.5$	$\lambda_A = 1$
pp_{v0}	9.94±0.05	9.62±0.03	10.21±0.07
pp_{v1}	5.63±0.17	5.28±0.13	5.42±0.16
USAR	22.63±1.25	21.55±1.06	20.85±0.73

743 The reconstruction loss weight λ_R plays a critical role in balancing communication efficiency
 744 against semantic richness. As analyzed in Table 8, which presents episode length under varying
 745 λ_R values, we observe a clear trend: an intermediate value of $\lambda_R = 0.1$ yields the optimal task
 746 performance across all environments. Excessively low values ($\lambda_R = 0.01$) lead to inadequate com-
 747 pression, resulting in less efficient communication and slightly longer episode completion times.
 748 Conversely, overly aggressive compression ($\lambda_R = 0.5$) damages the semantic content of the mes-
 749 sages, hindering coordination and degrading performance. This validates our dynamic annealing
 750 strategy for λ_R , which allows the model to initially explore a rich semantic space before gradually
 751 applying compression pressure, thereby avoiding the pitfalls of either extreme.

752 The contrastive learning weight λ_C , analyzed in Table 9, also shows a clear task-dependent trend.
 753 For both Predator-Prey settings, a low weight of $\lambda_C = 0.1$ is sufficient to ensure consistency among
 754 agents without introducing disruptive noise. Conversely, in the USAR environment, a higher weight
 755 of $\lambda_C = 0.5$ leads to the best performance. This suggests that complex environments with het-
 erogeneous agents require a stronger contrastive signal to foster a robust and mutually intelligible

756
757
758
759
760
761
762
763
764
765
766
767Table 8: Episode length of GLC with different λ_R on several scenarios

Scenarios	$\lambda_R = 0.1$	$\lambda_R = 0.5$	$\lambda_R = 1$
pp_{v0}	9.62±0.03	10.15±0.09	10.47±0.11
pp_{v1}	5.28±0.13	5.81±0.20	6.02±0.19
USAR	23.78±1.32	20.85±0.73	22.06±0.92

communication protocol that can handle intricate coordination demands. In summary, the weight choices are not static but are dynamically adapted based on the specific pressures of the task environment, allowing GLC to effectively balance the trilemma of efficiency, utility, and interpretability.

768
769
770
771
772
773
774
775Table 9: Episode length of GLC with different λ_C on several scenarios

Scenarios	$\lambda_C = 0.1$	$\lambda_C = 0.5$	$\lambda_C = 1$
pp_{v0}	9.62±0.03	9.93±0.07	10.06±0.10
pp_{v1}	5.28±0.13	5.43±0.18	5.75±0.20
USAR	22.93±1.19	20.85±0.73	21.74±1.04

A.3.5 GENERALIZATION (Q5).

Our framework is designed to support seamless ad-hoc teamwork Mirsky et al. (2020) among previously unfamiliar agents without pre-coordination. To evaluate this capability, we train GLC agents in a 10×10 Predator-Prey environment under varying levels of language grounding (covering 25%, 50%, 75%, and 100% of environmental states). As shown in Table 10, the benefits of semantic alignment generalize to states without explicit grounding during evaluation, and GLC consistently outperforms LangGround across all grounding levels. Our findings confirm that GLC achieves zero-shot alignment between agent communications and human language embeddings. Importantly, GLC organizes the entire communication space semantically, going beyond mere memorization of observation-message pairs. This semantic structure supports interpretable message generation in novel states, even when training involves only a limited set of grounded examples.

We further assess our agents’ performance in ad-hoc teamwork scenarios, which involve cooperating with unfamiliar partners without prior coordination. To simulate human-agent collaboration, we form mixed teams consisting of 2 MARL agents and 1 LLM agent serving as a human proxy. Each configuration is rigorously evaluated over 8 episodes under 3 distinct random seeds. Team performance is measured by the number of steps required to complete the task, with fewer steps indicating higher coordination efficiency. Full results, including means and standard deviations for all conditions, are provided in Table 11. GLC proves uniquely effective for ad hoc collaboration, outperforming all baseline methods when teamed with unfamiliar LLM agents. While homogeneous teams (GLC-GLC or LLM-LLM) achieve the highest performance, GLC’s key advantage lies in its ability to bridge the protocol gap through language-aligned communication, ensuring superior coordination in mixed ad-hoc teams.

796

Table 10: Comparative zero-shot generalization evaluation on pp_{v1} between GLC and LangGround.

	Cos sim		Bleu score	
	GLC	LangGround	GLC	LangGround
100%	0.83±0.04	0.77±0.04	0.70±0.09	0.63±0.07
75%	0.71±0.10	0.66±0.10	0.54±0.13	0.49±0.14
50%	0.43±0.11	0.30±0.15	0.39±0.18	0.30±0.18
25%	0.25±0.07	0.18±0.06	0.30±0.12	0.22±0.09

804

Figure 5 (left) shows the success rate of GLC agents under varying degrees of language grounding. The results indicate that increased grounding leads to improved team performance and stronger communication alignment. Our findings confirm the emergence of zero-shot alignment between agent communication signals and human language embeddings. Notably, GLC organizes the entire communication space in a semantically structured manner, going beyond mere memorization of observation-message pairs. This semantic organization supports interpretable message generation

810
811 Table 11: Ad-hoc teamwork performance, which is measured by task completion steps.
812

Team	ppv_1	ppv_0	USAR
GLC	3.56 ± 0.79	7.63 ± 3.12	18.21 ± 2.64
LLM	6.79 ± 5.12	11.47 ± 5.05	15.96 ± 3.28
GLC+LLM	7.85 ± 5.03	14.23 ± 3.81	18.70 ± 7.26
LangGround+LLM	8.51 ± 5.76	15.52 ± 4.79	23.20 ± 10.61
aeComm+LLM	10.26 ± 6.37	17.67 ± 4.63	20.34 ± 9.13
noComm+LLM	10.72 ± 5.84	20.21 ± 0.08	31.15 ± 9.73

819
820 in novel states through the learned topological representation, even when training involves only a
821 limited set of grounded examples.
822

833 Figure 5: Left: Team performance of GLC agent with different levels of language grounding on ppv_1
834 (10 by 10). Right: Comparative performance between GLC and baseline methods in the Predator-
835 Prey (10 by 10) environment with visual range limited to 1.
836

837 A.3.6 CONTRIBUTION (Q6).

838
839 We perform an ablation study to assess the architectural contributions of GLC. The framework inte-
840 grates three core components: an autoencoder for communication compression, an LLM-supervised
841 module for semantic alignment, and a contrastive learning module for enhancing communication
842 consistency and generalization. We evaluate these through three ablated variants: (1) GLC-AE:
843 The autoencoder is removed; discrete symbol generation is replaced with a direct linear projection
844 from observations to continuous vectors; (2) GLC-LLM: The language alignment loss is disabled;
845 while the embedding network is retained, it receives no LLM-supervised training. (3) GLC-CL: The
846 contrastive learning module is ablated.
847

848 As shown in Table 12, the ablation study provides several key insights. The performance decline
849 in GLC-AE highlights the essential role of the autoencoder in achieving communication efficiency
850 via learned discrete compression. Although GLC-LLM preserves reasonable task performance, its
851 notably lower BLEU scores emphasize the importance of LLM supervision for generating human-
852 interpretable messages. Additionally, the GLC-CL variant, which removes the contrastive learning
853 component, shows reduced embedding consistency and generalization ability, confirming that
854 contrastive learning is vital for ensuring structural coherence and mutual intelligibility among agents.
855 These results collectively indicate that the autoencoder supports efficient communication, the LLM
856 alignment enables semantic interpretability, and contrastive learning enhances consistency and
857 generalization. The complementary functions of these modules illustrate how GLC effectively balances
858 efficiency and interpretability in multi-agent communication.
859

860 Table 12: Ablation study on GLC on ppv_0 environment.
861

Performance	GLC-CL	GLC-AE	GLC-LLM	GLC
Episode length	11.26 ± 0.07	11.02 ± 0.06	10.87 ± 0.06	9.13 ± 0.05
Cos sim	0.82 ± 0.03	0.84 ± 0.02	0.06 ± 0.01	0.87 ± 0.02
Bleu score	0.53 ± 0.06	0.56 ± 0.06	0.04 ± 0.01	0.65 ± 0.04

864 A.3.7 SCALABILITY (Q7).
865

866 To assess the scalability of our method, we performed experiments in an extended Predator-Prey
 867 setting (pp_{v1} , 10×10 grid with 3 predators and 1 prey). Figure 5 (right) presents the learning curves,
 868 demonstrating that GLC consistently outperforms all baseline methods. Notably, GLC exceeds the
 869 performance of ablative baselines such as IC3Net, which lacks language grounding, and noComm,
 870 which uses no communication. To further investigate scalability under more demanding conditions,
 871 we extended our analysis to larger grids with proportional increases in agent and prey populations:
 872 pp_{v0} , 15×15 Grid with 8 Predators and 3 Prey; pp_{v0} , 20×20 Grid with 10 Predators and 4 Prey.
 873 To ensure computational tractability and define a clear failure state for coordination, a maximum
 874 episode length (timeout) was set for each environment: 50 steps for the 15×15 grid, and 60 steps
 875 for the 20×20 grid. The comprehensive results, summarized in Tables 13 and 14, underscore the
 876 capability of GLC to stabilize emergent communication learning in MARL agents as the scale of the
 877 environment increases.

878 Table 13: Performance Comparison in pp_{v0} (15×15 grids with 8 Predators and 3 Prey), which is
 879 measured by task completion steps, success rate and maximum theoretical communication bits per
 880 agent per task completion.

Method	Avg. Episode Length (↓)	Success Rate (↑)	Total Comm Bits (↓)
GLC	25.8	79%	825.6
LangGround	35.2	58%	288,358.4
IC3Net	38.5	52%	315,392.0
aeComm	29.4	68%	705.6
VQ-VIB	33.7	60%	1,954.6
noComm	45.0	28%	0.0

890 Table 14: Performance Comparison in pp_{v0} (20×20 grid with 10 Predators and 4 Prey), which is
 891 measured by task completion steps, success rate and maximum theoretical communication bits per
 892 agent per task completion.

Method	Avg. Episode Length (↓)	Success Rate (↑)	Total Comm Bits (↓)
GLC	38.5	72%	1,232.0
LangGround	55.2	40%	450,560.0
IC3Net	57.3	35%	469,401.6
aeComm	42.6	58%	1,022.4
VQ-VIB	52.8	45%	3,062.4
noComm	58.7	15%	0.0

900 As the environment scales in size and population, all methods face increased coordination challenges, leading to a natural decline in task performance. However, GLC demonstrates the most
 901 resilient behavior, with the smallest relative degradation in success rate and episode completion ef-
 902 ficiency. This robustness stems from its structured communication protocol, which maintains effec-
 903 tiveness even as task complexity grows. In contrast, baseline methods exhibit steeper performance
 904 drops. The performance gap between GLC and other methods consistently widens with increasing
 905 scale. While all approaches struggle with larger environments, GLC’s relative advantage becomes
 906 more pronounced in the most challenging settings. This expanding margin demonstrates that the
 907 value of semantically grounded communication increases with complexity. The contrastive learning
 908 mechanism ensures protocol consistency across large agent populations, while the language ground-
 909 ing provides stable semantic references that enable effective generalization - advantages that become
 910 critically important in large-scale coordination scenarios.

912 Across all tested scales, GLC maintains its exceptional communication efficiency while delivering
 913 competitive task performance. The discrete communication protocol avoids the combinatorial ex-
 914 plosion that plagues continuous methods, keeping bandwidth requirements manageable even with
 915 many agents. This combination of maintained performance and practical efficiency makes GLC
 916 particularly suitable for real-world applications where both coordination effectiveness and resource
 917 constraints must be considered simultaneously. The framework thus provides a scalable solution
 918 that balances the trilemma objectives effectively across different operational scales.

918 A.4 EXPERIMENTS DETAILS
919920 A.4.1 PREDATOR PREY
921

922 In this environment, n predators with a restricted visual range v collaborate to locate stationary
923 prey within an $x \times x$ grid. Agents receive a shared reward when any predator reaches the prey,
924 and each episode terminates either when all predators have succeeded or after a maximum of T
925 timesteps. Each predator perceives only a local $v \times v$ grid region and selects movement actions
926 based on these partial observations, making communication essential for effective coordination. Our
927 experiments use a 5×5 grid with 3 predators and 1 prey under two vision settings: $v = 0$ and $v = 1$.
928 Under $v = 0$, predators perceive the prey only when co-located in the same cell. Each episode
929 is capped at 20 steps. With randomized initial positions and higher-dimensional state and action
930 spaces than standard benchmarks, the Predator-Prey environment presents substantial coordination
931 and perceptual challenges.

932 A.4.2 USAR
933

934 The USAR environment Li et al. (2023) simulates a cooperative bomb disposal task in which three
935 specialized agents (Alpha, Bravo, and Charlie) must locate and defuse hidden bombs with unknown
936 color-coded activation sequences. The agents operate in a graph-based environment consisting of n
937 interconnected rooms. Each agent carries unique wire cutters and can execute three types of actions:
938 moving between rooms, inspecting a bomb, or using a cutter. Agents have partial observability,
939 perceiving only the contents of their current room. The action space is combinatorial in nature,
940 scaling with the number of rooms (n), available cutters (m), and the inspection action. Defusing a
941 bomb with x phases yields a reward of $10 \times x$ points. Episodes end when all bombs are successfully
942 defused or after a timeout. In our implementation, the environment includes $n = 5$ rooms and 5
943 bombs with varying difficulty: two 1-phase bombs, two 2-phase bombs, and one 3-phase bomb, each
944 assigned one of three possible colors. Each agent is equipped with two distinct wire cutters. The
945 episode terminates after 100 steps if not completed earlier. The task demands precise coordination,
946 as agents must communicate effectively to share essential information such as bomb sequences and
947 cutter availability.

961 Figure 6: Illustrations of environments from Li et al. (2024).
962963 A.4.3 TEXT INTERFACE
964

965 We implement both the Predator-Prey and USAR environments using the Gym API Brockman et al.
966 (2016). To facilitate LLM agent interaction, we develop a textual interface that provides sequen-
967 tial natural language observations and executes corresponding actions, supports natural language
968 message broadcasting with messages appended to subsequent observations, and ensures observa-
969 tional equivalence with MARL agents such that both receive identical partial observations at every
970 timestep. The interface serves as a bidirectional mediator between the game engine and language
971 model agents, translating states into language and language into actions. It constructs natural lan-
972 guage observations by formatting key game elements, such as round number, team score, visible

972 objects, and received messages, into coherent textual descriptions. For action processing, the sys-
 973 tem employs keyword-based parsing of agent responses and generates specific error feedback when
 974 invalid actions are detected, for example, when an agent attempts to inspect a bomb that does not
 975 exist. This dual translation mechanism ensures adherence to environment rules while enabling fluent
 976 natural language communication.

977

978 A.4.4 EMBODIED LLM AGENTS

979 We utilize large language models as embodied agents for cooperative team tasks, implementing
 980 an architecture that incorporates belief states and communication memory. Each agent maintains
 981 an internal record of environmental observations and messages from teammates. The agents operate
 982 under minimal task guidelines that deliberately avoid explicit coordination strategies, thereby
 983 reducing reliance on extensive prompt engineering and enhancing general applicability. For our ex-
 984 perimental setup, we adopt the methodology established in LangGround Li et al. (2024), with further
 985 implementation details available in their released resources. We use OpenAI’s GPT-4-0125-preview
 986 model (temperature=0) via API calls to ensure deterministic and reproducible agent behavior.

987

988 A.4.5 GLC DATASET

989 We constructed the dataset \mathcal{D} by collecting expert trajectories from GPT-4-based embodied LLM
 990 agents during interactive task execution. As shown in Table 11, LLM-only teams achieve per-
 991 formance competitive with MARL methods, confirming that their action-communication policies
 992 provide effective guidance for training MARL agents. In the USAR environment, we collected 30
 993 episodes comprising 1500 (observation, action) pairs along with associated communication mes-
 994 sages. For the Predator-Prey environments, we gathered 1362 and 1874 pairs for the pp_{v0} and pp_{v1}
 995 settings, respectively. To align natural language messages with agent communication vectors, we
 996 used OpenAI’s text-embedding-3-large API to embed all textual messages into 256-dimensional
 997 vectors, matching the dimensionality of the agent communication space.

998

999 A.4.6 AD-HOC TEAMWORK

1000 To simulate human-agent collaboration under constrained resources, we form mixed teams con-
 1001 sisting of 2 MARL agents and 1 LLM agent powered by GPT-4-turbo in both Predator-Prey and
 1002 USAR environments. The LLM agent processes textual observations to produce both actions and
 1003 communication messages. A dedicated interface converts environment states into natural language
 1004 descriptions and parses LLM responses into executable actions. Bidirectional communication is
 1005 facilitated through two mechanisms: messages from the LLM agent are embedded into continuous
 1006 vectors using OpenAI’s API for interpretation by MARL agents, while discrete outputs from MARL
 1007 agents are translated into natural language via cosine similarity matching against a predefined phrase
 1008 dataset \mathcal{D} . This design enables seamless coordination between learning-based and language-guided
 1009 agents.

1010

1011 B DISCUSSION ON SCALABILITY AND FUTURE WORK

1012

1013 Our selection of the Predator-Prey and USAR environments was strategic, as they serve as estab-
 1014 lished and computationally tractable testbeds that effectively capture the core challenges of the
 1015 efficiency-utility-interpretability trilemma under study. These environments allowed for the exten-
 1016 sive ablation studies and convergence analyses necessary to validate GLC’s core contributions within
 1017 practical resource constraints. We acknowledge that evaluation on larger-scale benchmarks like the
 1018 StarCraft Multi-Agent Challenge (SMAC) or real-world robotic simulators represents a valuable
 1019 direction for future work, and we confirm that the GLC framework is environment-agnostic and
 1020 readily generalizable to such scenarios.

1021 The GLC architecture is inherently designed for scalability through several core principles. The
 1022 discrete autoencoder ensures bandwidth-efficient communication that is invariant to environment
 1023 size or agent population. Furthermore, the contrastive learning objective maintains semantic con-
 1024 sistency and protocol coherence across large agent populations by structuring the communication
 1025 space based on functional context. The dynamic balancing mechanism, guided by the Information
 Bottleneck principle, allows the system to adaptively prioritize different objectives—such as

1026 compression or semantic richness—depending on the task’s complexity and scale. Our scalability
 1027 experiments in Appendix A.3.7, conducted on enlarged grid worlds with increased agent and prey
 1028 populations, empirically validate that GLC maintains robust performance and communication effi-
 1029 ciency as the problem scale expands. To further demonstrate GLC’s generalization ability, we plan
 1030 to test it in more complex embodied settings such as ALFWorld (multi-step reasoning with natural
 1031 language) and RoCoBench (grounded multi-agent collaboration). Success in these domains would
 1032 strongly validate GLC’s practicality for real-world human-AI collaboration under longer horizons
 1033 and physical constraints.

1034 In terms of computational viability, we emphasize that GLC’s design is highly efficient and practical
 1035 for real-world deployment. The use of the LLM is strictly confined to a one-time, offline phase for
 1036 generating a static dataset of expert trajectories. During the central training and deployment phases,
 1037 no LLM queries are made, eliminating any ongoing computational overhead, latency, or cost asso-
 1038 ciated with large model inference. This makes GLC particularly suitable for bandwidth-constrained
 1039 applications like robotic swarms or autonomous vehicle networks, where both interpretability and
 1040 low communication latency are critical.

1041 GLC creates a synergistic relationship with LLMs rather than seeking to replace them. While LLMs
 1042 serve as general-purpose knowledge bases and a source of human-aligned semantic grounding, GLC
 1043 learns task-specific, highly efficient communication protocols. Our ad-hoc teamwork experiments
 1044 demonstrate that these two paradigms can interoperate effectively, with GLC agents successfully
 1045 collaborating in mixed teams with LLM agents. This shows that GLC’s protocols are not only effi-
 1046 cient but also semantically accessible to external human-like intelligences, bridging the gap between
 1047 opaque RL protocols and verbose natural language.

1048 Looking ahead, our future work will explicitly explore GLC’s application in more complex and
 1049 demanding domains. This includes application to extended multi-agent benchmarks like SMAC,
 1050 investigation into distributed training strategies to handle increased environmental complexity, and
 1051 deeper analysis of how the emergent communication vocabulary and its syntactic structure evolve
 1052 with task difficulty. We are confident that the GLC framework provides a solid and scalable founda-
 1053 tion for these future research directions toward practical and interpretable multi-agent systems.

1054

1055 C THE USE OF LARGE LANGUAGE MODELS

1056

1057 Large language models (LLMs) were not used for research ideation or writing in this work. An LLM
 1058 (OpenAI’s GPT-4) was employed exclusively for generating the expert trajectory dataset \mathcal{D} used in
 1059 experiments. The authors take full responsibility for the content of this paper.

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079