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Abstract

Metal-organic frameworks (MOFs) are versatile materials with tunable crystal
structures, morphologies, and chemistries, offering diverse physical and chemical
properties. Although typically electrically insulating, specific combinations of
organic and inorganic components can impart electrical conductivity to MOFs.
The virtually limitless chemical space of MOFs, however, presents a significant
challenge in identifying optimal candidates for electrochemical applications. Al-
though Density Functional Theory (DFT) can probe their electronic structure, its
high computational cost hinders the discovery of novel electroactive MOFs using
machine learning due to limited data. To tackle these challenges, a semi-empirical
extended tight binding approach (GFN1-xTB) is employed to compute electronic
properties of a dataset of MOFs, and it is shown that GFN1-xTB approximates
MOF band gaps well, as compared to semi-local DFT. This data is used to train an
interpretable ∆-learning model that predicts the difference between low and high
fidelity band gaps, given by xTB and DFT data at the hybrid level, respectively.
This model outperforms direct models trained using only the DFT values. With
limited high-quality DFT band gaps, taking advantage of ∆-learning using low-cost
GFN1-xTB leads to better predictions as opposed to relying on DFT data alone.

1 Introduction

Metal-organic frameworks (MOFs) [1, 2] are formed through coordination bonds between metal
ions and organic ligands. They show promise in a plethora of applications [3] such as gas capture
[4, 5], energy storage [6, 7], catalysis [8, 9] and sensing [10]. They have also been exploited for
applications in electrochemistry [11], such as for batteries [12], super-capacitors [13], and fuel cells
[14, 15]. This versatility of MOFs is due to their highly porous and chemically tunable nature [16].
Further, electronic properties of MOFs can be altered by introducing ions or guest molecules in their
porous framework [17, 18], which has fueled a growing interest in investigating these properties
[19, 20, 21, 22]. More than 100,000 MOFs have been reported in the Cambridge Structural Database
[23, 24] so far, and there exist various publicly available datasets with synthesized and hypothetical
MOFs [25, 26, 27, 28]. However, the search for novel MOFs with specific properties becomes
challenging due to the vastness of its design space.

Computational techniques such as density-functional theory (DFT) [29, 30, 31, 32] are often used to
screen these datasets, although due to the high number of atoms in MOFs, this is computationally
intensive, particularly for DFT at the hybrid level of theory, using which is unfeasible to explore a
substantial portion of the MOF design space. In recent years, artificial intelligence (AI) has been
utilized to accelerate MOF discovery [33, 34, 35, 36, 37, 38, 39, 40, 41]. However, deep machine
learning (ML) architectures [42, 43, 44, 45, 46, 47, 48, 49] are well-suited for large datasets, and the
lack of such datasets with high quality DFT data is a significant bottleneck in advancing this field.
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Figure 1: Schematic of the band gap prediction framework developed in this work.

In this context, semi-empirical methods like the self-consistent charge density functional tight binding
(SCC-DFTB [50, 51]) balance accuracy and computational cost by approximating DFT through
a Taylor expansion of the total energy around a reference electron density, significantly reducing
computational cost by 2-3 orders of magnitude. However, its limited element coverage and low
transferability from pairwise repulsive potentials restricts its applicability in high-throughput studies.
Recently, Grimme et al. developed two extended tight-binding (xTB) methods for calculating
structures, vibrational frequencies, and non-covalent interactions (GFNn, n = 1, 2) [52, 53] of
large molecular systems. These methods include precomputed parameters for each atomic species,
encompassing both global and element-specific parameters for most elements up to atomic number Z
= 86. Thus, the total number of parameters are fixed and no pairwise parameters are required, making
it attractive for large-scale studies. The method has been used to investigate a wide range of properties
in a variety of materials [54, 55, 56, 57, 58, 59]. GFNn-xTB has also shown promise in accurate
geometry optimization [60], and in reliably approximating XRD patterns, textural characteristics, as
well as electronic properties of 2D and 3D MOFs [61, 62].

In this work, GFN1-xTB is employed to compute electronic band gaps for a dataset of 4941 MOFs
from the QMOF dataset [27]. GFN1-xTB band gaps are found to be in agreement with those obtained
using DFT (PBE) for the majority of MOFs. Materials descriptors [63] are used to encode the
MOFs and dimensionality reduction [64] is used to analyze the data structure in its descriptor space.
The analysis reveals that GFN1-xTB predicts band gaps of MOFs with transition metals with low
accuracy. Further, ∆-learning [65] using an XGBoost [66] model is utilized to train the difference
between band gaps computed using GFN1-xTB and DFT (PBE/HSE06). This model outperforms
the XGBoost model trained directly using the DFT data as targets, as well as deep learning models
such as MOFTransformer [44] and Crystal Graph Convolutional Neural Networks (CGCNN) [67]
that are commonly used to predict band gaps in complex systems. This shows that using classical
machine learning models, while exploiting low and high fidelity data, is an effective approach, while
also being computationally less intensive and more interpretable, leading to a better understanding of
structure-property relationships. A schematic of the band gap prediction framework developed in this
work is shown in Figure 1.

2 Computational Methods

GFN1-xTB: The semi-empirical GFN1-xTB [52] approach employs minimal basis sets of atom-
centered orbitals and considers only valence electrons in a linear combination of atomic orbitals
(LCAO), including terms up to the third order in energy. Contrary to previous semi-empirical methods
[51], the repulsive term is not designed to reproduce the original term relative to the DFT contribution,
and to compensate for the approximations of other terms in DFT. This eliminates the need to redefine
the potential for each element pair, avoiding pair-wise parameters. The D3 method [68] is used to
compute the dispersion energy term. Slater-type orbitals are used to describe AOs, approximated
through contractions of standard primitive Gaussian functions. Hydrogen bonding is described by a
second s-function for hydrogen and d-polarization functions for higher row elements are also included.
Using these parameterizations, GFN1-xTB comprises of 16 global and about 1000 element-specific
parameters, making it magnitudes faster than DFT, and a computationally inexpensive way to obtain
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large labeled datasets. Note that GFN2-xTB [53] was tested preliminarily in this study, but was not
pursued further due to convergence failures, consistent with findings in previous works [69, 70, 62].

∆-Learning: This approach [65] is used in ML to evaluate a correction to the true values of a
target, where the correction is calculated with respect to low fidelity approximations of the true target
values. In this work, band gaps computed using GFN1-xTB, Eg,xTB , are used as the low fidelity data,
and DFT band gaps, Eg,DFT , are considered as true target values. An XGBoost model [66] is used to
train ∆ using each MOF, i, in the training set, and ∆i is given by:

∆i = Eg,DFTi
(xi)− Eg,xTBi

(xi). (1)

Here, xi denotes the set of descriptors used to encode the structure. Learning this correction can
be highly valuable in situations where access to high-quality data is limited. In such cases, ∆-
learning from cheaper approximations of the targets can be leveraged to train ML models with higher
accuracy, as was previously shown by Zhang et al. [71]. XGBoost models are employed in this
work due to their strong predictive performance and interpretability. It also enables analysis of
structure-property relationships and provides insights into feature importance, helping to identify the
key factors influencing the model’s predictions. A concatenation of three descriptors is considered:
Stoichiometric-135 (ST-135) [72], Revised Auto-Correlations (RACs) [37, 73] and Atomic Property
Weighted Radial Distribution Functions (APRDFs) [74]. These are commonly used to encode MOFs
and ML models trained using these predict DFT band gaps accurately [39]. ST-135 is composed of
elemental fractions and statistical attributes of elemental properties such as atomic number, radii etc.
RACs are products and differences of heuristic atomic properties on graphs. Metal-centered, linker
and functional-group descriptors are generated, weighted by atomic properties, and averaging over
all atoms for each MOF produces 384 features. APRDFs use the weighted probability distribution of
finding an atom pair in a given spherical volume inside the unit cell to encode a structure. Atomic
properties are also used to weigh the RDFs, leading to a feature length of 648.

3 Results

A subset of 4941 MOFs from the QMOF dataset [27] curated in Ref. [75] was used in this work.
DFT band gaps at two levels of theory were obtained, PBE values from the QMOF dataset, and
high-fidelity HSE06 values from Ref. [75]. To compute band gaps using GFN1-xTB, PBE optimized
structures from the QMOF dataset were used. xTB calculations were performed using DFTB+ [76, 77]
(automated using a custom Python code available publicly at https://github.com/AshnaJose/MOF-xTB,
details in Appendix A.1). These calculations were successful for 4922 MOFs.

Figure 2 (a) shows the parity plot using hex-bins comparing reference PBE band gaps to computed
GFN1-xTB band gaps. The semi-empirical method largely succeeds to capture the electronic behavior
of this dataset, with an MAE of 0.37 eV, along with the added advantage of being computationally
inexpensive compared to DFT. Figure 2 (b) shows the comparison between the reference HSE06
band gaps and computed GFN1-xTB values. GFN1-xTB, in general, underestimates the HSE06 band
gaps, with an MAE of 1.26 eV. However, a clear correlation is observed between the two, resembling
the trend seen between PBE and HSE06 band gaps (MAE = 1.16 eV, see Appendix Figure 3). These
results demonstrate that GFN1-xTB serves as an effective method for approximating electronic band
gaps in MOFs. The error distributions of the GFN1-xTB band gaps relative to PBE and HSE06 are
shown in Appendix Figure 4.

It is interesting to note that in both Figures 2 (a) and (b), a subset of MOFs exhibits high DFT band gap
values while showing comparatively low band gaps when calculated using GFN1-xTB. Dimensionality
reduction using t-SNE [64] was used to visualize the dataset in the ST-135 stoichiometric feature
space. Figure 2 (c) shows that t-SNE separates the dataset into distinct clusters. This clustering is
primarily based on one of the features from ST-135, the range of atomic number in each MOF (see
Appendix Figure 5). This feature, obtained from Matminer [78], is defined as the difference between
the highest and lowest atomic numbers of the elements present in a given structure. It effectively
reflects the highest atomic number element within the material, which is typically the metal in the
case of MOFs. The t-SNE visualization also reveals that the 5% MOFs with the highest ∆HSE-xTB

values (shown as ∆HSE-xTB > 2.6 eV), which are primarily the MOFs incorrectly predicted as highly
conductive are clustered in a small region of this descriptor space. Element specific features from
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Figure 2: (a) Parity plots using hex-bins comparing computed GFN1-xTB band gaps for the 4922-
dataset with reference DFT band gaps at the PBE and (b) HSE06 level. Colors indicate point density;
y = x line is shown for reference. (c) t-SNE of the dataset in the ST-135 feature space. Blue shades
represent GFN1-xTB band gap values for each MOF. MOFs with high band gap error (∆HSE-xTB

above the threshold) are shown in yellow. (d) t-SNE highlighting the clusters that correspond to
MOFs with Cr, Mn, Fe, Co and Ni. (e) Parity plot comparing true HSE06 values of the test set with
XGBoost-predicted band gaps trained on HSE06 data; (f) and with reconstructed band gap values
obtained by training a ∆-learning XGBoost model using the GFN1-xTB and HSE06 band gaps.

ST-135 reveal that these clusters correspond to MOFs that contain the transition metals Cr, Mn, Fe, Co
and Ni (Figure 2 (d)). This implies that GFN1-xTB was unable to correctly approximate the electronic
behavior of MOFs with transition metals. This is likely because of the complex d-electron behavior
of transition metals, which is difficult to capture using semi-empirical methods like GFN1-xTB due
to the simplification of the self-consistency in DFT using parameterization. Furthermore, GFN1-xTB
is inadequate in describing strong correlation effects, which are prominent in materials with transition
metals, and are captured by hybrid functionals and DFT+U .

This data was then used to train ML models (XGBoost, see Appendix A.5 for details on hyper-
parameters) that predict PBE and HSE06 band gaps. ST-135 (computed using matminer [78]),
APRDFs and RACs features (obtained using mofdscribe [63]) were used to encode the structures.
4714 MOFs were featurizable using RACs, thus this set of MOFs is used hereafter. The training,
validation and test sets were constructed in the ratio 8:1:1 using random splits (5-fold cross validation;
same split was used to compare various methods). Two different approaches were used: first, an
XGBoost model was trained using PBE band gap values as the target property (namely, direct model).
The average MAE on the test set using this method was found to be 0.382 eV (obtained after 5-fold
cross validation). Secondly, a ∆-learning model was trained i.e. a model that uses ∆ as the target
quantity, where ∆ is the difference between the band gaps given by xTB and DFT in this work. After
training, it is used to predict the ∆ values for the test set. The PBE band gaps for the test set were
then reconstructed using this correction to the GFN1-xTB band gaps. This process led to an average
MAE of 0.237 eV, i.e. a 38% decrease in comparison with the direct model. Similar models were
trained using HSE06 band gaps as the target property, and the same trend was observed: the average
MAE using the direct model was found to be 0.486 eV, and that with the ∆-learning model was found
to be 0.304 eV, about 37% lower. This significant improvement obtained using ∆-learning shows
how low-fidelity low-cost data can be exploited to train ML models with high accuracy for porous
materials. Our models were also compared to two methods employing deep learning architectures,
MOFTransformer [44] and CGCNN [67], fine-tuned on our custom dataset. The results, presented
in Table 1, show that our descriptor-based XGBoost model performs comparably to these methods,
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Table 1: Comparison of different methods for predicting band gaps using PBE and HSE06 functionals.
Metrics shown are Mean Absolute Error (MAE) in eV and coefficient of determination (R2), evaluated
on the test set and averaged over five different cross-validation runs. The best performer has been
highlighted in bold, ∗ denotes models developed in this work.

Method Eg,PBE Eg,HSE06

MAE (eV) R2 MAE (eV) R2

XGBoost∗ 0.382 0.651 0.486 0.598
xTB-∆XGBoost

∗ 0.237 0.823 0.304 0.829
MOFTransformer [44] 0.406 0.591 0.531 0.501

CGCNN [67] 0.356 0.540 0.458 0.442

while the ∆-learning approach using xTB data outperforms both CGCNN and MOFTransformer,
reinforcing the impact of our contribution.

4 Discussion and Conclusions

We have demonstrated that ∆-learning using low-cost GFN1-xTB band gaps enables accurate
prediction of high-fidelity (HSE06) band gaps for MOFs. GFN1-xTB approximates PBE band gaps
well (MAE = 0.37 eV), and the trend relative to HSE06 is comparable to that of PBE itself. However,
its performance degrades for MOFs with 3d transition metals, due to limitations in treating open-shell
electronic states. By training XGBoost models on the difference between GFN1-xTB and reference
DFT values, ∆-learning outperforms direct models, as well as deep-learning benchmarks. This
approach allows efficient use of large, inexpensive datasets for training predictive models and is
useful in low-data regimes. For MOFs without strongly correlated metals, GFN1-xTB provides
a reliable baseline, enabling scalable screening and potential integration with generative design
workflows.
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A Appendix

A.1 Technical details of GFN1-xTB calculations

DFTB+ was used to compute band gaps using GFN1-xTB method, starting from the optimized
geometries obtained from the QMOF dataset. The structures were used to obtain the inputs of
the DFTB+ code: cif files to extract the atomic positions and lattice parameters. The maximum
angular momentum was set based on the elements in the structure, using MaxAngularMomentum.
The K-point mesh was generated automatically using the automatic_density function from the
pymatgen, where the target density was set to 2000. The calculations were run, and the band gaps
were extracted from the outputs obtained from DFTB+. This set of calculations and analysis was
automated using a custom Python code, available at github.com/AshnaJose/MOF-xTB.

A.2 Reference data

Figure 3 compares the reference band gaps at the HSE06 and PBE levels for the 4941-dataset.
The trend shown here is similar to that between HSE06 and GFN1-xTB band gaps, showing that
GFN1-xTB predicts electronic properties of MOFs reliably. Here, the MAE is 1.16 eV.

Figure 3: Parity plot using hex-bins comparing the reference PBE and HSE06 band gaps for the
4941-dataset. The colors represent the density of points in each bin. y = x line is shown for reference.

A.3 Error estimation for GFN1-xTB computed band gaps

Figure 4: Histograms showing the distribution of ∆PBE−xTB (left) and ∆HSE06−xTB (right).

Figure 4 shows the distribution of the errors between the computed GFN1-xTB band gaps and the
reference DFT band gaps (PBE and HSE06). It can be seen that GFN1-xTB approximates PBE
values well, with an MAE of 0.37 eV. It underestimates HSE06 in general, with an MAE of 1.26 eV.
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A.4 Dimensionality reduction analysis

Figure 5 shows a representation of the 4941-dataset using the dimensionality reduction method,
t-distributed Stochastic Neighbor Embedding (t-SNE), in the ST-135 feature space. The ST-135
feature set separates the dataset into distinct clusters, which are based on the range of atomic number
feature, which broadly indicates the metal center type in each MOF. Thus, this clustering is based on
the local metal-center composition of the MOF.

Figure 5: t-SNE of the 4941-dataset in the ST-135 feature space. The colors represent the value of
the range of atomic number in each structure, which is one of the features of ST-135.

A.5 Feature selection and model training

XGBoost models with 200 estimators were used to train on the training data. The learning rate
was set to 0.1, and the maximum depth of the trees was set as 6. As the dimension of the feature
space is large, feature selection was used to select the important features, using the XGBoost feature
selection function. This selection was performed using the training set. 3 sets of feature selection
were performed, using different target properties, i.e., band gaps obtained using GFN1-xTB, PBE
and HSE06. The top (important) features primarily comprise of features from the RACs descriptor,
along with a few from the ST-135 and the APRDF descriptor sets. This implies that RACs describe
electronic properties, such as band gap in this work, accurately.

To obtain the optimal number of features to be used, different values of the number of top features
were chosen and models were trained based on each. The results are shown in the left panel of Figure
6, for GFN1-xTB, PBE and HSE06 band gap values as the target property. The MAE vs number of
top features curves plateau after approximately 400 features in each case. This was thus chosen as
the optimal number of features for model training.

These features were then used to train XGBoost models using the band gap values as the target
property (direct model). Five fold cross-validation was performed to compute statistics (using seeds
42, 78, 14, 115 and 173). Parity plots comparing the true and predicted values of GFN1-xTB, PBE
and HSE06 band gaps (for seed = 42) are shown in the right panel of Figure 6. The MAE for these
individual models, trained directly on the target property, on the test set are 0.384 eV, 0.388 eV and
0.456 eV for GFN1-xTB, PBE and HSE06 band gaps, respectively.
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Figure 6: Left panel: Plots showing the variation of MAE with the number of features to predict
GFN1-xTB, PBE and HSE06 band gaps as target values. Features are added in their decreasing
order of importance. Right panel: Parity plot comparing the true computed GFN1-xTB, PBE and
HSE06 band gaps for the test set with predicted band gaps using an XGBoost model trained with
the respective band gaps as the targets (direct prediction). The model was trained using the top 400
features. y = x line is shown for reference. All the plots in this figure correspond to one of the five
train-test splits (seed = 42) used in this work.
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A.6 ∆-Learning

Parity plots comparing true PBE values of the test set with predicted band gaps obtained using
the direct and ∆-Learning (using GFN1-xTB band gaps) approaches are shown in Figure 7 for the
train-test split using seed = 42. The MAE on the test for the direct prediction was found to be 0.39
eV, while using the ∆-Learning model reduced the MAE to 0.25 eV.

Figure 7: Parity plots comparing true PBE values of the test set (for seed = 42) with predicted band
gaps obtained by training an XGBoost model using the PBE values (left) and with reconstructed band
gap values obtained by training a ∆-learning XGBoost model using the GFN1-xTB and PBE band
gaps (right).
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