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ABSTRACT

Visual grasp detection is a key problem in robotics where the agent must learn
to model the grasp function, a mapping from an image of a scene onto a set of
feasible grasp poses. In this paper, we recognize that the grasp function is SE(2)-
equivariant and that it can be modeled using an equivariant convolutional neural
network. As a result, we are able to significantly improve the sample efficiency of
grasp learning to the point where we can learn a good approximation of the grasp
function within only 500 grasp experiences. This is fast enough that we can learn
to grasp completely on a physical robot in about an hour.

1 INTRODUCTION

The low sample efficiency of policy learning is a key challenge in robotics. For example, in robotics,
it is typical for an agent to require tens if not hundreds of thousands of interactions with the environ-
ment to learn even relatively simple manipulation policies, making it virtually impossible to learn
directly in the physical world. Researchers typically deal with this problem in one of two ways: 1)
by learning in simulation rather than on the real robot; 2) by learning state representations that sim-
plify the on-line learning problem Laskin et al. (2020b); Watter et al. (2015). Unfortunately, neither
of these solutions is easy: bridging the sim2real domain gap remains a challenge and representation
learning is itself a major research area. Ideally, we would simplify the robotic learning problem in
a more direct way, by incorporating a strong inductive bias into the model that nevertheless gener-
alizes well in its application domain. This paper attempts to accomplish this using geometric deep
learning.

We explore the application of SO(2)-equivariant model architectures to SE(2) visual grasp detec-
tion, a key problem in robotics. In SE(2) visual grasp detection, the robot observes a scene as an
image and must detect good grasp points in SE(2). Our key observation is that the grasp function
we want to learn is SE(2)-equivariant. That is, rotations and translations of the input image should
correspond to the same rotations and translations of the detected grasp poses at the output of the
function. This suggests that we can model the grasp function as an SO(2)-equivariant neural net-
work. Framing grasp learning as a contextual bandit, we introduce an appropriate SO(2)-equivariant
model and demonstrate that it can learn a good grasp function in approximately 500 grasp trials. This
is much faster than most competing grasp learning approaches: Zeng et al. (2018a) takes 2k grasp
trials to learn to grasp simple objects; Pinto & Gupta (2015) takes roughly 50k grasp trials; QT-
Opt is trained using 580k grasp examples (Kalashnikov et al., 2018); GPD is trained using 200k
examples (ten Pas et al., 2017); GraspNet is trained using 7m examples (Mousavian et al., 2019);
and DexNet is trained with 6.7m examples (Mahler et al., 2017). The fact that we can learn a good
grasp function so quickly means that we can learn directly on a real robot in approximately one hour
without any additional pretraining. This kind of sample efficiency could be critical in robotics appli-
cations because it has the potential to enable robotic learning systems to adapt to the idiosyncrasies
of the real world through direct interaction, thereby making them much more reliable.

2 RELATED WORK

Equivariant networks: Equivariant neural networks inject group symmetry into the architecture of
the neural network, allowing it to automatically generalize to the transformation of the input. This
concept is first introduced as G-Convolution (Cohen & Welling, 2016a) and Steerable CNN (Cohen
& Welling, 2016b). The E2CNN framework proposes a generic approach for implementing E(2)
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Steerable CNN (Weiler & Cesa, 2019). The applications of equivariant learning in computer vi-
sion (Walters et al., 2020; Wang et al., 2020b) and reinforcement learning (van der Pol et al., 2020;
Mondal et al., 2020; Wang et al., 2021) demonstrate improvements over traditional approaches. This
paper applies the equivariant learning in robotic grasping to substantially decreases the amount of
sample required for learning a grasping policy.

Sample efficient reinforcement learning: Recent work has shown that using translational data
augmentation (e.g., random crop or random shift) can improve the sample efficiency of conventional
reinforcement learning algorithms (Laskin et al., 2020a; Kostrikov et al., 2020). The combination
of data augmentation and contrastive learning (Oord et al., 2018), as is explored in CURL (Laskin
et al., 2020b), encourages the encoder to learn an invariant encoding thus improving sample effi-
ciency. Zhan et al. (2020) extends the idea of CURL in the context of robotic manipulation. How-
ever, compared with equivariant networks, data augmentation requires the model to learn the invari-
ance/equivariance in addition to learning the task itself, which necessitates additional training time
and greater model capacity.

Grasp learning: Robotic grasping learning often involves massive data collection. One typical way
of supervised grasping learning is to train using a labeled dataset (e.g., 200k data points in ten Pas
et al. (2017); 7m data points in Mousavian et al. (2019); 6.7m data points in Mahler et al. (2017);
1.8k images (with multiple grasps identified in each image) in Zeng et al. (2018b)). An alternative is
to collect real grasp data using robots. Pinto & Gupta (2015) collect 50k data points using a Baxter
robot over 700 hours. Levine et al. (2018) collect 800k grasp attempts using between 6 and 16
robots over 2 months. QT-Opt (Kalashnikov et al., 2018) collect 580k grasp attempts using 7 robots
over 800 hours. James et al. (2019) extend QT-Opt and uses 28k of additional online grasp samples.
Berscheid et al. (2021) collect 27k grasp attempts within 120 hours. Song et al. (2020) collect 8k
grasp demonstrations from human using a low-cost hand-hold gripper. Zeng et al. (2018a) learns a
online pushing-grasping policy using 2.5k steps. Compared with prior works, our method learns a
good grasp policy in just 500 grasp trials, significantly fewer than in prior work.

3 BACKGROUND

3.1 EQUIVARIANT NEURAL NETWORK MODELS

The cyclic group Cn ≤ SO(2): In this paper, we are primarily interested in equivariance with
respect to the group of planar rotations, SO(2). However, in practice, in order to make our models
computationally tractable, we will use the cyclic subgroup Cn of SO(2), Cn = { i×2π

n |0 ≤ i < n}.
Cn is the group of discrete rotations every 2π

n radians.

Representation of a group: Members of the cyclic group g ∈ Cn represent rotations. We are
often interested in applying this rotation to data – this happens via a representation of the group
element. However, the type of representation needed depends upon the type of data to be rotated.
There are two main representations relevant to this paper. The regular representation acts on an
m-vector (x1, x2, . . . , xm) ∈ Rm by permuting its elements: ρreg(g)x = (xm, x1, x2, . . . , xm−1).
The trivial representation acts on a scalar x ∈ R and makes no change at all: ρ0(g)x = x.

Feature maps of equivariant convolutional layers: An equivariant convolutional layer is associ-
ated with a finite group and a group representation and it adds an extra channel to the input and
output feature maps which encodes the elements of that group. So, whereas the feature map used
by a standard convolutional layer is a tensor F ∈ Rm×h×w, an equivariant convolutional layer adds
an extra dimension: F ∈ Rk×m×h×w, where k denotes the dimension of the group representation.
This tensor associates each pixel (x, y) ∈ Rh×w with a matrix F(x, y) ∈ Rk×m.

Action of the group operator on the feature map: Given a feature map F ∈ Rk×m×h×w associ-
ated with group G and representation ρ, a group element g ∈ G acts on F via:

gF(x) = ρ(g)F(ρ1(g)−1x), (1)

where x ∈ R2 denotes pixel position. In the above, ρ1(g)−1x is the coordinates of pixel rotated
by g−1 and F(ρ1(g)−1x) ∈ Rk×m is the matrix associated with pixel ρ1(g)−1x. g operates on
F(ρ1(g)−1x) via the representation ρ associated with the feature map. For example, if ρ = ρ0 (the
trivial representation), then k = 1 and g acts on F by rotating the image but leaving the m-vector
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associated with each pixel unchanged. In contrast, if ρ = ρreg (the regular representation), then
k = |G| (the number of elements in G) and g acts on F by performing a circular shift on the group
dimension of F(ρ1(g)−1x). This last action (by the regular representation) is the one primarily
associated with the equivariant convolutional layers used in this paper.

The equivariant convolutional layer: An equivariant convolutional layer is a function h from
Fin to Fout that is constrained to represent only equivariant functions with respect to a chosen
group G. Each of Fin and Fout is associated with either with the trivial representation or the
regular representation: Fin is associated with ρin ∈ {ρ0, ρreg} and Fout is associated with ρout ∈
{ρ0, ρreg}. Then the equivariant constraint for h is:

h(ρin(g)Fin) = ρout(g)h(Fin) = ρout(g)Fout. (2)

This constraint can be implemented by tying kernel weights in such a way as to satisfy the following
kernel constraint (Cohen et al., 2018):

K(gy) = ρout(g)K(y)ρin(g)−1. (3)

3.2 AUGMENTED STATE REPRESENTATION (ASR)

Figure 1: Illustration of the ASR representa-
tion. Q1 selects the translational component
of an action, Q2 selects the rotational com-
ponent.

We formulate robotic grasping as the problem of
learning a function from an image, s ∈ Rm×h×w,
to a gripper pose a ∈ SE(2) from which an ob-
ject may be grasped. In this case, since the de-
sired gripper pose is considered to be the action,
we must learn a function onto a region of SE(2)
– something that is challenging to do using a sin-
gle neural network. Instead, this paper will lever-
age the Augmented State Representation (ASR), an
approach that models a function onto SE(2) as a
pair of two Q functions, Q1 and Q2 (Wang et al.,
2020a). Let Q : Rm×h×w × SE(2) → R denote
the action-value function over the full action space.
We factor SE(2) = R2 × SO(2) into a translational
component X ⊆ R2 and a rotational component
Θ ⊂ SO(2). The first function is a mapping Q1 : Rm×h×w × X → R which maps from the
image s and the translational component of action X onto value. This function is defined to be:
Q1(s, x) = maxθ∈ΘQ(s, (x, θ)). The second function is a mapping Q2 : Rm×h′×w′ × Θ → R
with h′ ≤ h and w′ ≤ w which maps from an image patch and an orientation onto value. This func-
tion takes as input a cropped version of s centered on a position x, crop(s, x), and an orientation, θ,
and outputs the corresponding Q value: Q2(crop(s, x), θ) = Q(s, (x, θ)). Inference is performed
on the model by evaluating x∗ = arg maxx∈X Q1(s, x) first and then evaluatingQ2(crop(s, x∗), θ).
Since each of these two models, Q1 and Q2, are significantly smaller than Q would be, inference is
much faster. Figure 1 shows an illustration of this process. The top of the figure shows the action of
Q1 while the bottom shows Q2. Notice that the semantics of Q2 imply that the θ depends only on
crop(s, x), a local neighborhood of x, rather than on the entire scene. This assumption is generally
true for grasping because grasp orientation typically depends only on the object geometry nearly the
target grasp point.

4 PROBLEM STATEMENT

In visual grasp detection, we must estimate a grasp function Γ : Rm×h×w → SE(2) that maps from
an image of a scene containing graspable objects, s ∈ Rm×h×w, to a planar gripper pose a ∈ SE(2)
from which an object can be grasped. We make the following assumptions:
Assumption 4.1 (Aligned reference frames). The reference frame in which the gripper pose a is
expressed is aligned with the image plane of s.

Assumption 4.2 (Equivariance of the grasp function). The grasp function Γ is equivariant with
respect to SE(2). That is:

ga = gΓ(s) = Γ(gs), (4)
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where g ∈ SE(2) is a transformation that rotates and translates, gs denotes the image s rotated and
translated by g, and ga denotes the gripper pose a transformed by g.

Assumption 4.1 is needed in order for the grasp function Γ to be equivariant. We need rotations
of the image and rotations of the gripper pose to be aligned such that they rotate about the same
axis. Essentially, this assumption is a constraint on the robot setup. Assumption 4.2 says that Γ
is equivariant with respect to g ∈ SE(2). This is satisfied in most grasping scenarios because the
Newtonian dynamics of the grasp interaction are independent of the reference frame from which the
system is viewed.

5 METHOD

We formulate visual grasp detection as a contextual bandit problem. The agent begins training with
no prior knowledge. On each time step, it perceives the state expressed as an image s ∈ Rm×h×w
and must select an action expressed as a grasp pose a ∈ SE(2) which is executed by the robot.
The agent receives a positive unit reward for each successful grasp and zero reward otherwise. As
the agent gains experience, it updates its Q value function. Our key innovation is to express the Q
function using SE(2)-equivariant neural networks.

5.1 EQUIVARIANT LEARNING

Invariance properties of Q1 and Q2: Since our agent is only rewarded for achieving a successful
grasp, the grasp equivariance assumption (Assumption 4.2) ensures that both the expected reward
function and the optimalQ function are invariant with the group operator g: r(s, a) = r(gs, ga) and
Q∗(s, a) = Q∗(gs, ga). In the context of ASR (the augmented state representation of Section 3.2),
this translates into separate invariance properties for Q∗1 and Q∗2:

Q∗1(gs, gx) = Q∗1(s, x) (5)

and
Q∗2(gθ(crop(s, x)), gθ + θ) = Q∗2(crop(s, x), θ), (6)

where gθ ∈ SO(2) denotes the rotational component of g ∈ SE(2). In the equations above, gs
denotes the rotated and translated image s, gx denotes the rotated and translated vector x ∈ R2, and
gθ(crop(s, x)) denotes the cropped image rotated by gθ.

Finite Approximation of SE(2): In order to implement the invariance constraints of Equa-
tion 5 and 6 using neural networks, we first need to discretize SE(2) into a finite approxima-
tion. We constrain the positional component of the action to be a discrete pair of positive integers
x ∈ {1 . . . h} × {1 . . . w} ⊂ Z2, corresponding to a pixel in s, and constrain the rotational compo-
nent of the action to be a member of a finite cyclic group Cn = { i×2π

n |0 ≤ i < n, i ∈ Z}. This
discretized action space will be written ŜE(2) = Z2 × Cn.

EquivariantQ-Learning: In order to do learning, we need to defineQ∗1 andQ∗2 as neural networks.
We model Q1 as a fully convolutional UNet (Ronneberger et al., 2015) q1 : Rm×h×w → R1×h×w

that takes as input the state image and outputs aQ-map that assigns each pixel in the input aQ value.
We model Q2 as a standard convolutional network q2 : Rm×h′×w′ → Rn that takes the image patch
as input and outputs an n-vector of Q values over Cn. Then the invariant properties of Equation 5
and 6 become equivariant properties:

q1(gs) = gq1(s) (7)

q2(gθcrop(s, x)) = ρreg(gθ)q2(crop(s, x)) (8)

where g ∈ ŜE(2) acts on the output of q1 through rotating the Q-map, and gθ ∈ Cn acts on the
output of q2 by performing a circular shift of the outputQ values via the regular representation ρreg.

This is illustrated in Figure 2. In Figure 2a we are given the depth image s in the upper left corner.
If we rotate this image by g (lower left of Figure 2a) and then evaluate q1, we arrive at q1(gs).
This corresponds to the LHS of Equation 7. However, because q1 is an equivariant function, we
can calculate the same result by first evaluating q1(s) and then applying the rotatation g (RHS of
Equation 7). Figure 2b illustrates the same concept for Equation 8. Here, the network takes the
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image patch crop(s, x) as input. If we rotate the image patch by gθ and then evaluate q2, we obtain
the LHS of Equation 8, q2(gθcrop(s, x)). However, because q2 is equivariant, we can obtain the
same result by evaluating q2(crop(s, x)) and circular shifting the resulting vector to denote the
change in orientation by one group element.

(a) Illustration of Equation 7

(b) Illustration of Equation 8

Figure 2: Equivariance relations
expressed by Equation 7 and Equa-
tion 8.

Equivariant q1: As a fully convolutional network, q1 inher-
its the translational equivariance property of standard convo-
lutional layers. The challenge is to encode rotational equiv-
ariance so as to satisfy Equation 7. We accomplish this us-
ing equivariant convolutional layers that satisfy the equivari-
ance constraint of Equation 2 where we assign Fin = s ∈
R1×m×h×w to encode the input state s andFout ∈ R1×1×h×w

to encode the output Q map. Both feature maps are associated
with the trivial representation ρ0 such that the rotation g oper-
ates on these feature maps by rotating pixels without changing
their values. We use the regular representation ρreg for the
hidden layers of the network to encode more comprehensive
information in the intermediate layers. We empirically achieve
the best performance when defining q1 in the Dihedral group
D4 that encodes 4 rotations every 90 degrees and reflection.

Equivariant q2: Whereas the equivariance constraint in Equa-
tion 7 is over ŜE(2), the constraint in Equation 8 is over Cn
only. We implement Equation 8 using Equation 2 with an in-
put of Fin = crop(s, x) ∈ R1×m×h′×w′

as a trivial repre-
sentation, and an output of Fout ∈ Rn×1×1×1 as a regular
representation. q2 is defined in the group Cn, where the num-
ber of rotations in Cn must match the number of rotations in
the action space. Since the parallel jaw gripper is symmetric
when rotated by π

2 , we introduce additional structure by re-
placing Cn with the quotient group Cn/C2 = { i×2π

n |0 ≤ i <
n/2, i ∈ Z}.

5.2 OTHER OPTIMIZATIONS

While our use of equivariant models to encode the Q function
is responsible for most of our gains in sample efficiency, there
are several additional algorithmic details that have a small pos-
itive impact on performance.

Loss Function: In the standard ASR loss function, both q1 and q2 have a Monte Carlo target, i.e.
the target set equal to the transition reward (Wang et al., 2020a):

L =L1 + L2; (9)

L1 = 1
2 (Q1(I, x)− r)2; L2 = 1

2 (Q2(γ(I, x), θ)− r)2. (10)

However, in order to reduce variance in the binary rewards scenario (r ∈ {0, 1}), we modify L1:

L′1 =
1

2
(Q1(I, x)− (r + (1− r) max

θ∈Θ̄
Q2(γ(I, x), θ)))2, (11)

where Θ̄ = {θ̄ 6= θ|∀θ̄ ∈ Cn/C2}. For a positive sample (r = 1), the target will simply be 1,
as it was in Equation 9. However, for a negative sample (r = 0), we use a TD target calculated
by maximizing over the Q2 action component (but not including the failed θ action component).
In addition to the above, we add an off-policy loss term L̄1 that is evaluated with respect to an
additional k grasp positions X̄ ⊂ X sampled using a Boltzmann distribution from X:

L′′1 =
1

k

∑
xi∈X̄

1

2
(Q1(I, xi)−max

θ∈Θ
Q2(γ(I, xi), θ))

2. (12)

Our combined loss function is therefore L = L′1 + L′′1 + L2.
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(a) Training (b) Validation (c) Training (d) Validation

Figure 3: (a), (b) Baselines that do not use image augmentation. (c) (d) Image augmentation base-
lines. (a) and (c) show learning curves as a running average over the last 150 training grasps. (b) and
(d) show average near-greedy performance of 1000 validation grasps performed every 150 training
steps.

Softmax at the output of q1 and q2: Since the reward function of the contextual bandit is either
zero or one, the optimal Q function at a given state can be viewed as the probability of a success
at that state. We encoded this prior knowledge using a softmax layer at the output of the q1 and q2

networks.

Prioritizing failure experiences in minibatch sampling: In the contextual bandit setting, we want
to avoid the situation where the agent selects the same incorrect action several times in a row. This
can happen because when a grasp fails, the depth image of the scene does not change and therefore
theQmap will not change. One way to address this problem is to ensure that following a failed grasp
experience, that the failed grasp is included in the sampled minibatch on the next SGD step Zeng
et al. (2018a), thereby changing the Q function prior to reevaluating it on the next time step. This
reduces the chance that the same (bad) action will be selected.

Boltzmann exploration: We compared Boltzmann with ε-greedy exploration and found Boltzmann
to be better in our grasp setting. We use a temperature of τtraining during training and a lower temper-
ature of τtest during testing. Using a non-zero temperature at test time helped reduce the chances of
repeat sampling of a bad action.

Data augmentation: Even though we are using equivariant neural networks to encode the Q func-
tion, it can still be helpful to do data augmentation as well. This is because the granularity of the
rotation group encoded in q1 (D4) is smaller than that of the action space (Cn/C2). We address this
problem by augmenting the data with translations and rotations sampled from ŜE(2). For each ex-
perienced transition, we add eight additional images to the replay buffer that have been transformed
in this way.

Selection of the z coordinate: Since our model only infers grasp pose a in SE(2), we are limited
to detecting top down grasps, e.g. grasps where the gripper is pointed directly down at the table.
However, we must still somehow calculate the z coordinate based on action a. Here, we calculate
z by taking the maximum (highest) depth in a small neighborhood of the grasp point a in the depth
image and then offsetting the height of the gripper.

6 EXPERIMENTS

6.1 EXPERIMENTS IN SIMULATION

Simulation environment: The simulation experiments are performed in Pybullet (Coumans & Bai,
2016). The environment includes a Kuka robot arm and a 0.3m × 0.3m tray with inclined walls
(Figure 4a). At the beginning of each episode, the environment is initialized with 15 objects drawn
uniformly at random from a Dataset of 76 mesh models (Figure 4c) and dropped arbitrarily into the
tray. State is a depth image captured from a top-down camera (Figure 4b). On each time step, the
agent perceives state and selects an action to execute which specifies the planar pose to which to
move the gripper. A grasp is considered to have been successful if the robot is able to lift the object
more than 0.1m above the table. The episode continues until all objects have been removed from
the tray or until 30 grasp attempts have been made at which point the episode terminates and the
environment is reinitialized.
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(a) Simulation environment

(b) Observation (c) Object set

Figure 4: The Pybullet simulation
environment.

Model details: The q1 network is defined with respect to the
Dihedral group,D4, that encodes 4 rotations every 90 degrees
as well as reflections. q2 is defined with respect to the group
C16/C2 – eight rotations ranging from 0 to π radians. We use
Boltzmann action sampling with a temperature of τtraining =
0.01 during training and a temperature of τtest = 0.002 during
validation.

Comparison with baselines that do not use image augmen-
tation: First, we compare our method against a set of base-
lines that do not leverage image augmentation: 1) Rot-FCN
(Zeng et al., 2018a): an FCN with single-channel output that
estimates the Q-map for each rotation in the action space by
rotating the input image; 2) FCN (Satish et al., 2019): an
FCN with 8-channel output that associates each grasp rota-
tion to a channel of the output; 3) ASR (Wang et al., 2020a): a
sequential approach that selects the translational component
and rotational component of the action using two networks.
Figure 3a and b show the results. Figure 3a shows the perfor-
mance of the methods during training when the Boltzmann
exploration constant is set to τtraining = 0.01. Figure 3b eval-
uates the methods by temporarily halting training and execut-
ing 1000 validation grasps every 150 time steps of training
using a near-greedy exploration (τtest = 0.002) policy. Notice
that our our method learns faster and converges to a higher
success rate than the other baselines. In fact, the validation
success rate of our method at grasp 150 is as high as that of the best baseline, Rot FCN, at grasp
1500.

Comparison with image augmentation baselines: Here, we compare our method against two
recent baselines that use image augmentation to improve sample efficiency during learning,
RAD (Laskin et al., 2020a) and DrQ (Kostrikov et al., 2020). RAD augments each transition in
the mini-batch during training. In DrQ, the Q-target is calculated by averaging over two augmented
versions of the sampled transition; the loss is also calculated by averaging over two augmentations.
In each of these methods, we augment the data by drawing random transformations from ŜE(2), the
same transformation group we use in our equivariant method. We adjust RAD and DrQ to fit our
application by transforming both state and action (rather than just state alone) during image aug-
mentation. We evaluate RAD with three different model architectures: ASR, Rot FCN and FCN.
We evaluate DrQ only with ASR. Altogether, these baselines are: 1) RAD + ASR; 2) DrQ + ASR;
3) RAD + Rot FCN; 4) RAD + FCN. Figure 3a and b show the results. Our equivariant method
outperforms the baselines convincingly.

Figure 5: Ablation study
of our method. The figure
shows validation results. We
zoomed in the plot after the
750th grasp.

Ablation study: We ablate the following components of our
method as described in Section 5: 1) no equ: uses conventional
FCN instead of the equivariant network; 2) no FCB: no modification
of the loss function, no Softmax at the output, and no prioritizing
failure experiences sampling; 3) egreedy: ε-greedy exploration in-
stead of Boltzmann exploration (linear anneal ε from 0.5 to 0.1 over
500 time steps); 4) no aug buff : no data augmentation in the replay
buffer. 5) equ ASR: combination of the three ablations above, i.e. no
loss function modification, no Softmax at the output, no prioritiz-
ing failure experiences sampling, ε-greedy exploration, and no data
augmentation. Figure 5 shows the results. Notice that the no equ
version dramatically underperforms, demonstrating the importance
of using the equivariant model. Also, notice that equ ASR underper-
forms slightly, demonstrating that the methods of Section 5.2 are
helpful.

6.2 EXPERIMENTS ON A PHYSICAL ROBOT
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(a) (b)
Figure 7: (a) Learning curves from 500-grasp experiment. (b) Learning curves from 1000-grasp
experiment. All curves are averaged over 3 runs.

Figure 6: Robot setup.

Robot environment: Our experimental platform is comprised of a
Universal Robots UR5 manipulator equipped with a Robotiq 2F-85
parallel-jaw gripper, an Occipital Structure Sensor, and the dual-
tray grasping environment shown in Figure 7a.

Training system: Grasp execution during training is automated.
Initially, 15 training objects are randomly placed into one of the two
trays (the object sets used during training are shown in Figure 8a
and b.) Then, the robot grasps each of the objects and transports
it to the other tray. This process repeats with all 15 objects being
transported between one tray and the other until sufficient training
has occurred. To avoid systematic bias in the way objects fall into
a tray, we sample the drop position randomly from a Gaussian dis-
tribution centered in the middle of the receiving tray.

Optimizations for training on a physical robot: We were able
to significantly accelerate real-robot training by processing camera
data and executing SGD steps while the robotic system was in mo-
tion. This was implemented as a producer-consumer process using a mutex. With this improvement,
the robot is constantly in motion during training. As a result, training speed completely determined
by the speed of robot motion. In our setup, this approach enabled us to increase robot training speed
from approximately 230 grasps per hour to roughly 500 grasps per hour.

Table 1: Evaluation for 500-Grasp ex-
periment. Results are an average from
100 grasps performed on the 15 novel
test objects of Figure 8c after training is
complete.

Baseline avg SR std
Random 35.3% 4.11%
Rot FCN 35.0% 3.56%
ASR 42.0% 10.6%
Ours 500 92.0% 3.56%

500-Grasp Experiment: In this experiment, we train
each of three different methods over a period of 500 grasp
trials for the set of 15 objects shown in Figure 8a on the
UR5 system. At the beginning of each grasp run, we de-
posit these same 15 objects into one of the two trays and
run 500 grasp trials during which the learning algorithm
trains, actively selecting each successive grasp according
to its model and its action selection mechanism. At the
end of training, the model is frozen and evaluated for the
15 test objects shown in Figure 8c. As in the simulation
experiments, our q1 network is defined for the group D4

and our q2 network is defined for the group C16/C2. Dur-
ing training, training the Boltzmann temperature is 0.01.
After training, during evaluation, it is 0.002. We compare against two baselines: 1) Rot FCN (Zeng
et al., 2018a) where we have an FCN with a single channel output that estimates the Q map for each
rotation in the action space by rotating the input image; 2) ASR (Wang et al., 2020a) where we use
the two-stage model described in Section 3.2 without the contributions proposed in this paper. Fig-
ure 7a shows the learning curves for the three methods during learning. Each curve is an average of
three runs starting with different random seeds. Table 1 shows the performance of the model frozen
after training averaged over 100 test grasps on the 15 novel test objects shown in Figure 8c. Both
results show that our method significantly outperforms the baselines.
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(a) Training object
set 15

(b) Training object set 40 (c) Test object set,
easy, 15 objects

(d) Test object set,
hard, 15 objects

Figure 8: The train/test object sets. Objects need to be graspable of the gripper at any configuration
(smaller than the gripper open width and has enough height), and need be able been captured by the
depth camera (no transparent nor has thing wall).

Table 2: Evaluation for 1000-Grasp experiment, compared
with 500-Grasp experiment. Results are an average from
100 grasps performed on the novel objects from Figure 8c
and d.

test set easy test set hard
Baseline avg SR std avg SR std
Random 35.3% 4.11% 31.0% 2.16%
Ours 500 92.0% 3.56% 89.3% 0.94%
Ours 1000 93.7% 1.25% 90.0% 4.08%

1000 Grasp Training: In this ex-
periment, we evaluate training our
method on the physical system with a
larger set of objects (40 objects) and
over a longer period of time (1000
grasps). We train using objects sam-
pled from the 40-object set shown in
Figure 8b. During training, after each
100 grasps, 15 new objects are sam-
pled from the training set and used for
the next 100 grasps. (Therefore, we
resample the object set 10 times over the 1000 grasps.) Whereas in the 500-grasp experiment, we
defined q2 over the group C16/C2, we now define q2 over C32/C2, i.e. 16 rotations ranging from 0
to π. We also augment each experience with 16 additional transformed images instead of just 8. We
use the same Boltzmann action sampling parameters as in the 500 grasp experiment. After training
is complete, the learned policy is frozen and evaluated on both held-out “easy” test set of Figure 8c
and the held out “hard” test set of Figure 8d. Figure 7b shows the learning curve from training and
Table 2 shows the results on the novel object test sets. The results indicate that our method learns a
grasp function that generalizes well to novel objects.

7 CONCLUSION AND FUTURE WORK

This paper recognises that the grasp function that is learned in the visual grasp detection problem
is SE(2)-equivariant. We propose using an SO(2)-equivariant model architecture to encode this
structure. The resulting method is much more sample efficient than other grasp learning approaches
and can learn a good grasp function in only 500 grasp samples. A key advantage of this increase
in sample efficiency is that we are able to learn to grasp completely on the physical robotic system
and without any pretraining in simulation. This increase in sample efficiency could be important in
robotics for a couple of reasons. First, it obviates the need for training in simulation (at least for
some problems like grasping), thereby making the sim2real gap less of a concern. Second, it opens
up the possibility for our system to adapt to idiosyncrasies of the robot hardware or the physical
environment that are hard to simulate. One limitation of these results, both in simulation and on the
physical robot, is that despite the fast learning rate, grasp success rates (after training) still seems to
be limited to the low/mid 90% range. This is the same success rate seen in with other grasp detection
methods Mahler et al. (2017); ten Pas et al. (2017); Mousavian et al. (2019), but it is disappointment
here because one might expect faster adaptation to lead ultimately to better grasp performance. This
could simply be an indication of the complexity of the grasp function to be learned or it could be a
result of stochasticity in the simulator and on the real robot. However, further exploration of ways
to get closer to a perfect grasp success rate seems to be an important direction for future work.
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8 REPRODUCIBILITY STATEMENT

Our code is accessible at https://anonymous.4open.science/r/equivariant_
grasp_in_real_time/README.md. We will make our code publicly available in the final
submission.
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Table 3: The baseline variation comparison. The variations in bold font are used in simulation
experiment in section 6.1.

SR at the 450th grasps SR at the 1500th grasps
baseline avg SR std avg SR std
ASR 34 3.9 66.8 3.1
ASR aug buff 34 1.5 73.5 3.2
ASR FCB aug buff 29.6 4.4 43.5 7.8
FCN 15.8 6.1 24.6 5.1
FCN aug buff 9.6 2.3 23.1 8.4
FCN FCB aug buff 14.1 0.8 21.3 7.1
Rot FCN 49.4 7.3 75.1 1.6
Rot FCN aug buff 42.9 3.7 69.1 1.6
Rot FCN FCB aug buff 35.5 7.3 78.1 1.8
DrQ ASR 30.9 4.5 66.9 4.1
DrQ ASR aug buff 33.3 4.6 74.3 2.8
DrQ ASR FCB 24.9 7 47.7 14
DrQ ASR FCB aug buff 25.3 6.3 37.3 11
RAD ASR 24.2 6 60.9 7.3
RAD ASR aug buff 33.4 2.4 64.6 8.3
RAD ASR FCB 29 5.2 39.8 2.8
RAD ASR FCB aug buff 30.5 8 34.9 9.5
RAD FCN 20.5 4.4 34.8 1.4
RAD FCN aug buff 21.4 8.2 37.6 0.5
RAD FCN FCB 21.5 8 32.4 10.5
RAD FCN FCB aug buff 21.5 6 37.4 5.7
RAD Rot FCN 28.2 10.1 70 4.6
RAD Rot FCN aug buff 51.8 12.3 72.8 4.2
RAD Rot FCN FCB 32.8 14.1 59.5 14.9
RAD Rot FCN FCB aug buff 48.5 11.3 68.7 1.7
equ ASR 81.6 1.2 83 0.8
ours 87.1 0.7 90.7 1.1

A BASELINE VARIATIONS COMPARISON

The baseline could have several variations depend on whether applying 1) aug buff data augmen-
tation in the replay buffer; 2) FCB: modification of the loss function, Softmax at the output, and
prioritizing failure experiences sampling. In the simulation experiments (section 6.1), all the base-
line we used are the best variation of that baseline, see table 3. The best variation of a baseline is in
bold font.

B NEURAL NETWORK ARCHITECTURE

The network architectures for q1 and q2 networks are shown in figure 9. The q1 network is a fully
convolutional U net Ronneberger et al. (2015). The q2 network is a fully convolutional network
Long et al. (2014). These networks are implemented by Paszke et al. (2019), and the equivariant
networks are implemented by Weiler & Cesa (2019). Adam optimizer is used for the SGD step
Kingma & Ba (2015).

C PARAMETER CHOICES

The parameters we choose in simulation experiment (section 6.1), physical robot 500-grasp experi-
ment (section 6.2, 500-grasp), and physical robot 1000-grasp experiment (section 6.2, 1000-grasp)
are listed in table 4.
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Figure 9: The neural network architecture of q1 and q2. R means regular representation, T mean
trivial representation, Q means quotient representation. q1 network is in D4 group . q2 network in
500-grasp training is in C16/C2 group, in 1000-grasp training is in C32/C2 group.

Table 4: Parameter choices.
environment parameter value

simulation,
physical robot

500-grasp,
physical robot

1000-grasp

learning rate 1e-4
weight decay 1e-5
augment buffer random SE(2), flip
patch size 32
obs size 1282 pixel
action range 962 pixel
k in L

′′

1 10
τ in L

′′

1 1
SGD step per grasps 1
train SGD step after the 20th grasps

simulation

batch size 8
num rotations 8
onpolicy data aug n 8
sthreshold 0.5cm
workspace size 0.32m

physical robot
500-grasp

batch size 8
num rotations 8
onpolicy data aug n 8
sthreshold 1.5cm
workspace size 0.252m

physical robot
1000-grasp

batch size 16
num rotations 16
onpolicy data aug n 16
sthreshold 1.5cm
workspace size 0.252m
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Table 5: Ablation study
SR at the 450th grasps SR at the 1500th grasps

baseline avg SR std avg SR std
ours 87.1 0.7 90.7 1.1
no aug buff 82.6 1.9 90.5 1.2
equ ASR 81.6 1.2 83.3 0.8
no FCB 79.0 3.7 87.2 0.6
no prioritizing failure 78.5 1.9 89.3 1.4
egreedy 78.0 3.2 90.9 1.4
no L

′

1 77.3 4.0 91.0 1.0
no L

′′

1 75.8 0.3 87.4 0.7
no equivariant network 29.6 4.4 43.5 7.8

D HEURISTIC Z AXIS VALUE FOR GRASPING

Figure 10: The red box is rec,
the two blue boxes are recedge.

The Z axis heuristic value is calculated to maximize the probability
of success grasp of a object, at the same time protect the gripper
from collision. The first goal, maximize the probability of success
grasp is implemented by a

′

z = max(rec) − dgripper. Where rec
is the image crop corresponding to the rectangle that the gripper
pad will sweep when close in the depth image. The dgripper is the
depth of the gripper pad. The second goal, protecting the gripper, is
implemented by a

′′

z = max(recedge) − 1
2dgripper, where recedge is

the edge of rec image. Finally we have az = max(a
′

z, a
′′

z , 0). 0 is
the tray button height.

E ABLATION STUDY

In this experiment, each component of our method is ablated to
shown the necessity of them. Beside ablation runs, we also included the performance of equivariant
ASR Wang et al. (2021) to show our improvement over this method. Table 5 shows the ablation
results. At the end of the training (grasps 1500), our method outperformed the equivariant ASR
by a margin. Moreover, all the ablated methods converges to the similar success rate. At the one
third of the training (grasps 450), our method achieved the success rate of the equivariant ASR at
grasps 1500, leading to ×3 sample efficient. At this training step, L

′′
contributes to the learning

the most, from this we can see the importance of minimizing the gap between the two networks.
The secondary component is L

′
, the correct formulation of the task affects performance when there

is limited training data. The third important factor is Boltzmann exploration, which generates data
close to the target policy.
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