
Landscape of Thoughts: Visualizing the
Reasoning Process of Large Language Models

Zhanke Zhou1 2 ∗ Zhaocheng Zhu3 4 ∗ Xuan Li1 ∗ Mikhail Galkin6

Xiao Feng1 Sanmi Koyejo2 Jian Tang3 5 Bo Han1 †

Abstract

Numerous applications of large language models (LLMs) rely on their ability to
perform step-by-step reasoning. However, the reasoning behavior of LLMs re-
mains poorly understood, posing challenges to research, development, and safety.
To address this gap, we introduce landscape of thoughts (LoT), the first land-
scape visualization tool to inspect the reasoning trajectories with certain reasoning
methods on any multi-choice dataset. We represent the textual states in a tra-
jectory as numerical features that quantify the states’ distances to the answer
choices. These features are then visualized in two-dimensional plots using t-SNE.
Qualitative and quantitative analysis with the landscape of thoughts effectively
distinguishes between strong and weak models, correct and incorrect answers, as
well as different reasoning tasks. It also uncovers undesirable reasoning patterns,
such as low consistency and high uncertainty. The code is publicly available at:
https://github.com/tmlr-group/landscape-of-thoughts.

1 Introduction

Large language models (LLMs) have revolutionized the paradigm of solving problems. Many practical
applications, e.g., LLM as agent [41, 28, 64], critically depend on step-by-step reasoning [58, 27].
Despite progress in advanced models like OpenAI o1 [22] and decoding methods such as test-time
scaling [44], the underlying reasoning behavior of LLMs remains poorly understood, hindering the
development of these models and posing deployment risks [5].

A few pioneer attempts [53, 39, 40, 14] probe LLM reasoning, but their insights often hinge on specific
decoders and tasks. In practice, practitioners debug by manually reading the reasoning trajectories
generated by LLMs, which has two drawbacks: (i) scalability—human inspection does not scale
(e.g., at 30s per trajectory, 100 trajectories require 50min); and (ii) aggregation—deriving reliable,
dataset-level conclusions (e.g., from 10,000 trajectories) is difficult, yielding subjective and even
biased summaries. These costs compound during iterative development, where fast, interpretable
feedback is essential. Consequently, there is a clear need for general, reusable tools to analyze
LLM reasoning in users’ settings. This tool can potentially benefit engineers by speeding iteration,
reasoning researchers by informing decoder improvements, and safety researchers by monitoring
and improving model behavior.

To this end, we introduce the landscape of thoughts (LoT), a visualization of LLM reasoning trajec-
tories that delivers automatic, objective analysis from single examples to full datasets. Analogous
to the t-SNE [52], LoT highlights structure in high-dimensional reasoning space. By pairing quali-
tative landscapes with quantitative metrics (consistency, uncertainty, and perplexity), LoT enables
comparison and reveals insights beyond manual inspection.

∗Equal Contribution, 1TMLR Group, Hong Kong Baptist University, 2Stanford University, 3Mila - Québec
AI Institute, 4Université de Montréal, 5HEC Montréal, 6Intel AI Lab.

†Correspondence to Bo Han (bhanml@comp.hkbu.edu.hk).

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI.

https://github.com/tmlr-group/landscape-of-thoughts

figure 1

Landscape of thoughtsOutput thoughts

Input question

model reasoning

visualize

Predictive model

analyze

• convergence speed on landscape
reflects the reasoning accuracy

• wrong paths quickly converge to
wrong answers, while correct paths
slowly converge to correct answers

• intermediates thoughts have high
uncertainty and low consistency

• better reasoning performance

• without fine-tuning parameters

• monitor reasoning behaviors

Observations

Advantages
apply

predict

predict

1. First, let‘s calculate the …
2. Next, let‘s use the number of …
3. The answer is C.

1. 2% of the non-defective …
2. The number of non-defective …
3. The answer is A.

Question: A class of 35 students
has an average height of 180 cm. …
Calculate the new average height of
the students of the class is (in cm)?

Choices: (A) 204.6, (B) 404.6,
(C) 224.6, (D) 184.0, (E) 256.6.

Figure 1: Landscape of Thoughts (LoT) visualizes LLM reasoning on multi-choice questions. Blue
denotes correct and red denotes incorrect trajectories; darker regions indicate denser thoughts;
marks correct answers and incorrect ones. Sampled thoughts are projected into a 2D feature space,
and per-step density maps reveal reasoning dynamics across models and decoders. A lightweight
predictor estimates landscape correctness to improve accuracy.

Specifically, given any multi-choice reasoning dataset, LoT visualizes the distribution of intermediate
states in any reasoning trajectories of interest w.r.t. the answer choices, which enables users to uncover
reasoning patterns in both success and failure trajectories (Fig. 1). The core idea is to characterize the
states of textual thoughts in a trajectory as numerical features that quantify the states’ distances to
the answer choices. These distances are estimated by the perplexity metric, with the same LLM to
generate thoughts and explain to itself. Then, these state features (i) produce three metric plots and
(ii) are projected into a two-dimensional space with t-SNE to generate the landscape.

We examine LoT with different dimensions of model sizes, decoding methods, and reasoning datasets.
LoT reveals several insightful observations regarding the reasoning behaviors of LLMs. Some notable
observations include: 1) The convergence speed of trajectories towards correct answers reflects the
accuracy, no matter what base model, decoding method, or dataset is used; 2) The convergence speed
of trajectories in success and failure cases is distinct, indicating that we may use the convergence
speed of a reasoning trajectory to predict its accuracy; 3) Low consistency and high uncertainty are
generally observed in the intermediate thoughts, presenting the unstable properties of the reasoning
process. LoT reveals them by bridging localized text understanding with global reasoning dynamics.
To our knowledge, these patterns have not been reported by prior analyses of reasoning, which
primarily rely on manual text inspection or aggregate performance metrics.

Since our tool is built on top of state features, it can be adapted to a machine-learning model
to quantitatively predict certain properties, such as the findings mentioned above. We showcase
this advantage by training a lightweight model to predict the success and failure cases, which is
equivalent to verifiers commonly used in LLM reasoning [11]. Even though this verifier is lightweight
compared to most LLM-based verifiers, it consistently improves the reasoning performance on most
combinations of models, decoding methods, and datasets in our experiments. Hence, users can further
leverage this advantage to predict the properties in their scenarios.

In summary, our main contributions are three-fold:

• We introduce the first tool for automatic and scalable visualization of the LLM reasoning procedure,
applicable to any open-source models and decoding methods on multi-choice datasets (Sec. 2).

• Our tool reveals several observations regarding the reasoning behaviors of different language
models, decoding methods, and reasoning datasets, offering several new insights (Sec. 3).

• Our tool can also be adapted to a model to predict certain properties and guide the reasoning
process, improving LLM reasoning without modifying the model parameters (Sec. E).

2

2 Landscape of Thoughts
2.1 Problem Formulation

Our goal is to visualize the reasoning trajectories of LLMs across a variety of task domains. Specif-
ically, we target datasets consisting of multiple-choice questions, where each datapoint (x, y, C)
comprises a question x, a correct answer y, and a finite set of candidate choices C = {cj}kj=1, all
represented in texts. 3 The visualization tool applies to the following models and methods.

Language models. To explore the landscape of thoughts generated by an LLM pLLM(·), the model
should produce diverse reasoning trajectories for solving a problem. In each trajectory, the reasoning
thoughts are decoded autoregressively as t̂i ∼ pLLM(ti|x, C, t̂1, . . . , t̂i−1): each thought t̂i is condi-
tioned on the question x, the candidate set C, and the sequence of preceding thoughts t̂1, . . . , t̂i−1.
To characterize intermediate states within these trajectories, the LLM must also function as a likeli-
hood estimator, enabling the computation of the probability pLLM(ŷ|x, C, t̂1, . . . , t̂i) of any answer
ŷ. These two requirements are generally satisfied by open-source LLMs, such as Llama [13] and
DeepSeek [32]. However, closed-source LLMs like GPT-4 [1] and Gemini [48] are excluded, as their
likelihood estimation is not publicly supported.

Reasoning methods. While there are many approaches to solving reasoning problems with LLMs [12,
24], this work focuses on chain-of-thought (CoT) [58] and its derivatives [70, 63], owing to their
widespread use and development. These decoding methods generally guide the model in generating a
structured trajectory of intermediate reasoning thoughts before arriving at the final answer. Note that
to visualize a large number of reasoning thoughts effectively, these thoughts should be automatically
parsed into distinct units (e.g., via sentence tokenization), which can be satisfied by most LLMs. 4

2.2 Qualitative Visualization with Landscapes

Given a collection of reasoning trajectories generated by an LLM, our tool seeks to visualize how
different trajectories lead to either correct or incorrect answers within a two-dimensional (2D) space,
as illustrated in Fig. 1. A key challenge lies in the absence of a direct mapping from the textual space
of thoughts to numerical 2D coordinates. To address this gap, we utilize the same LLM to represent
intermediate states as numerical features. These state features are then projected into a 2D space for
visualization. For simplicity, we denote a thought as ti instead of t̂i, which is clear in the following.

Characterizing the states. Here, the intermediate thoughts {ti}ni=1 in a reasoning trajectory naturally
define a sequence of states {si}ni=0, where s0 = [x] and si = [x, t1, t2, . . . , ti]. Here, we propose to
characterize the states as features using the likelihood function of the LLM. Specifically, the k-dim
feature fi for state si indicates the relative distances from the state si to all possible choices {cj}kj=1:
fi ≜ [d(si, c1), d(si, c2), . . . , d(si, ck)]

⊤, where d(si, cj) measures the distance between state si
and choice cj . To reduce the effect of length on choices, we calculate d(si, cj) through the perplex-

ity metric [42, 35]: d(si, cj) ≜ exp
(
− 1

|cj |
∑|cj |

t=1 log pLLM(cj [t]|si, cj [: t])
)
= pLLM(cj |si)−1/|cj |,

where |cj | is the number of tokens in cj , and pLLM(cj |si) is the accumulated probability in an autore-
gressive manner. Assume |cj | = T , we have pLLM(cj |si) = pLLM(cj [1]|si) · pLLM(cj [2]|si, cj [1]) ·
pLLM(cj [3]|si, cj [1], cj [2]) . . . pLLM(cj [T]|si, cj [1], cj [2] . . . cj [T − 1]). The token-level probabilities
are normalized over the entire vocabulary; cj [1] is the first token of cj , and cj [T] is the last token.

We further normalize the vector fi to have a unit ℓ1 normalization. Additionally, to represent
the choices as landmarks in the visualization, it is necessary to encode the choices as feature
vectors. Notably, the perplexity decreases as the model’s prediction confidence increases. To
align with this observation, we define the feature vector f c

j for a choice cj as: f c
j ≜ 1

k [1(j ̸=
1), . . . ,1(j ̸= k)]⊤. For r trajectories, each with n states, we compute the feature vectors for all
r · n states. The indicator function 1(j ̸= 1) will output 1 if j is not 1, and output 0 if and only
if j is 1. Here, the element 0 in c1 indicates this choice has 0 distance to the first anchor, which
is c1 itself. Besides, elements 1 indicate that the distances among anchors are assumed to be the
same. 5 Together with the feature vectors of k choices, we obtain a feature matrix F ∈ Rk×(r·n+k)

3LoT is positioned for multi-choice questions. Appendix A.7 discusses its extension to open-ended tasks.
4We empirically verify the robustness of LoT if this requirement does not hold (please see Appendix F.9).
5LoT can be applied to trajectories with different numbers of states. We assume n states for demonstrations.

3

as: F ≜ [f
(1)
1 , . . . ,f

(1)
n , . . . ,f

(r)
1 , . . . ,f

(r)
n ,f c

1 , . . . ,f
c
k]. Note that a sufficiently large number of

trajectories is necessary to generate a comprehensive visualization of the reasoning landscape.

For computational efficiency, we sample d trajectories per question across all questions, yielding
r = d|questions| total trajectories. We then normalize feature vectors by reordering choices so the
correct answer appears in the first dimension across all questions. In this way, we can visualize the
landscape of multiple questions by putting their trajectories together, which is more efficient than
visualizing by generating enough trajectories for one question.

Visualization. After constructing the feature matrix F , we project the states and choices into
a 2D space. This step can be accomplished using various existing methods of dimensionality
reduction [38, 52, 36]. We employ t-SNE [52] due to its ability to preserve the underlying manifolds
of the original high-dimensional space and its robustness to a wide range of transformations. By
applying t-SNE to the k-dim F , we obtain the 2-dim coordinates F̄ ∈ R2×(rn+k). The two
dimensions are reduced from the original space, which represents all possible answers, and each
state’s coordinates show its distance from different answers. Finally, the coordinates of the states
define a discrete density function in the 2D space, presented by the color depth in landscapes.

2.3 Quantitative Visualization with Metrics

Besides the qualitative visualization, we introduce three quantitative metrics to help understand the
LLMs’ behavior. These metrics are defined based on the intermediate states in Sec. 2.2.

Consistency. To check if the LLM knows the answer early, we compute state si consistency as:
Consistency(si) = 1(argminfi = argminfn).

Uncertainty. We measure LLM confidence at intermediate steps by computing the uncertainty of
state si as the entropy of f i (where

∑
d ∈ f id = 1): Uncertainty(si) = −

∑
d ∈ fid · log d.

Perplexity. We investigate how confidence the LLM is about its thoughts by using perplexity of
thought ti, comparable across lengths: Perplexity(ti) = pLLM(ti|si−1)

−1/|ti|.
Remark 2.1. Note that in previous works, these metrics are mainly used to evaluate the performance
of language modeling on each token. We repurpose them to analyze intermediate thoughts in the
trajectories, which is a new lesson for the community. A detailed introduction to related works is in
Appendix B. Appendix B introduces related works in detail. The following section demonstrates that
the LoT, containing the qualitative landscape and the quantitative metrics, is effective for automatic
and scalable visualization of reasoning trajectories.

3 Results and Observations

We study several LLMs’ behavior across parameter scales (from 1B, 3B to 70B). We run each model
with CoT prompting on 50 randomly selected problems from the mathematical reasoning dataset
AQuA. Their landscapes are shown in Fig. 2, from which we have the following observations. 6

Observation 3.1 (The landscape converges faster as the model size increase). As model parameters
scale from 1B to 70B, the corresponding landscape demonstrates faster convergence to the correct
answers with higher density in the last 20% states, aligning with the increasing accuracy. With more
parameters, larger models can store broader knowledge [3]. This leads to more confident solutions,
demonstrated by more focused answer patterns and lower uncertainty.
Observation 3.2 (Larger models have higher consistency, lower uncertainty, and lower perplexity).
As the model size increases, the consistency increases; at the same time, the uncertainty and perplexity
decrease significantly. This also aligns with the higher accuracy for the large models.

In addition, we apply LoT to up-to-date reasoning models QwQ 32B [49] and observe:
Observation 3.3 (Reasoning models present more-complex reasoning behaviors in landscapes.). As
shown in Fig. 3, the landscapes can capture complex reasoning patterns such as self-evaluation and
self-correction. Specifically, correct trajectories tend to include more instances of self-evaluation
and self-correction compared to incorrect ones. These behaviors often occur early in the reasoning
process, especially when the model is far from the correct one. Compared to non-reasoning models,
correct trajectories here show greater diversity, with green and yellow points more widely scattered.

6Appendix D shows visualizations and observations across different reasoning methods and datasets.

4

(a
)L

la
m

a-
3.

2-
1B

(b
)L

la
m

a-
3.

2-
3B

(c
)L

la
m

a-
3.

1-
8B

(d
)L

la
m

a-
3.

1-
70

B

Figure 2: Comparing LoT of language models on AQuA with CoT. Darker regions indicate higher
state density; marks incorrect answers, correct ones. Trajectories span early (0-20%) to late
(80-100%) states, with correct (blue, bottom) and incorrect (red, top) cases. Metrics per bin (e.g.,
20-40%). Accuracy: (a) 15.8%, (b) 42.0%, (c) 53.2%, (d) 84.4%.

Since probabilities can't exceed 1, the maximum
value of P(A and B) can be the minimum of P(A)
and P(B). The minimum of 0.56 and 0.74 is 0.56.
Wait, maybe. Let me check again.

Wait, this might be a
bit more complicated.
Let's try to think of it
in terms of relative
motion.

Wait, actually when
solving D =
\u221a3*(D - 10v),
let's do it again step
by step.

Let me check that again. Yes: the non-
defective total is 0.9N, and 2% of that is
rejected. Therefore, 0.02*(0.9N) = 72.

But maybe it's a trick question
where the letters have to be
distinct? Wait, the first part
might assume whether letters
can repeat or not,

Wait, first
maybe I
need to find
the total
distance.

…plus 54,400 gives 1,180,800? Wait, let me
check again. 626,400 +554,400….

Wait, but perhaps I
missed something.

Wait, in the previous
step, the time
remaining is (d/v). So
after substitution,…

Wait, let me
redo the
division.

Wait, but maybe I made an arithmetic
mistake somewhere. Let me check the
division again:

Wait but let me think again. Maybe the question is
asking for the number of staplers produced that
day, which is the total N, so yes. The steps seem
correct. Let me check with another approach.

But wait, looking at the
answer options, E is 110.
However, the problem
says \"at least\" so
maybe there's a catch
here?

Let me do the
calculation in decimals
without converting to
fractions. Maybe I
made a mistake there.

Wait, perhaps
subtract
equation 1
multiplied by
some factor.

Let me check the options again. The problem's
options are A)27, B)81, C)90, D)99, E)110. So
according to this, the answer should be E. But the
question might be a trick here?

…perhaps the original price must be a value that
when discounted and subtracted by 20 gives
exactly the value needed. Let me check.

Wait, maybe
I confused
steps here.
Let me re-
express

Wait a second.
But hold on, let
me double-
check because
maybe I'm
oversimplifying.

Wait, but this calculation gives exactly 5(\u221a3
+1), which is option A. But wait, let me check once
more.

Hmm, that discrepancy is
odd. Maybe I made a
mistake in the equation
setup?

Wait, sorry, let me
recast…

…Wait, but maybe
there is another
approach?

Wait, wait. Wait a second,
no, actually, maybe I made a
calculation error here. Let me
double-check because that
result seems a bit low. Let me
recalculate the division:

(N -10 -20e) = (N
-20 -10e)/2 * 2?
Wait, no. Wait,
perhaps better to
substitute.

Wait, but the options
include C as 36. So that
works. Let me confirm
again step by step. Let
me see:

But wait the options are A)4 B)4.5 C)5 D)5.5 E)6.5.
So yes, C is correct. Let me check if there was
any miscalculation. Hmm, yes, all steps check out.

Wait, let me
double-check my
calculation step
again. Maybe my
math was wrong.

That's not among the options
provided. Did I make a
mistake somewhere?

Wait, perhaps my total cost calculation was
wrong. Let me check again.

Figure 3: The LoT of the reasoning model QwQ-32B (using CoT prompting on the AQuA dataset).

4 Conclusion

This paper introduces the landscape of thoughts, a visualization tool for analyzing the reasoning
trajectories produced by large language models with chain-of-thought. Built on top of feature vectors
of intermediate states in trajectories, our tool reveals several insights into LLM reasoning, such as the
relationship between convergence and accuracy, and issues of low consistency and high uncertainty.
Our tool can also be adapted to predict the answer of reasoning trajectories based on the observed
property, which is demonstrated by a lightweight verifier developed based on the feature vectors and
our observations for distinguishing the correctness of trajectories. We foresee that this tool will create
several opportunities to develop, understand, and monitor the LLM reasoning.

5

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. arXiv preprint arXiv:1610.01644, 2016.

[3] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

[4] Ehsan Amid and Manfred K Warmuth. Trimap: Large-scale dimensionality reduction using
triplets. arXiv preprint arXiv:1910.00204, 2019.

[5] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,
Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, et al. Foundational
challenges in assuring alignment and safety of large language models. TMLR, 2024.

[6] Leo Breiman. Random forests. Machine learning, 2001.

[7] T Tony Cai and Rong Ma. Theoretical foundations of t-sne for visualizing high-dimensional
clustered data. Journal of Machine Learning Research, 23(301):1–54, 2022.

[8] Qiguang Chen, Libo Qin, Jiaqi Wang, Jinxuan Zhou, and Wanxiang Che. Unlocking the
capabilities of thought: A reasoning boundary framework to quantify and optimize chain-of-
thought. In NeurIPS, 2024.

[9] Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He.
Dola: Decoding by contrasting layers improves factuality in large language models. In ICLR,
2024.

[10] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does bert
look at? an analysis of bert’s attention. In ACL Workshop BlackboxNLP, 2019.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[12] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

[13] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[14] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. In NeurIPS, 2024.

[15] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 2021.

[16] Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did
aristotle use a laptop? a question answering benchmark with implicit reasoning strategies. TACL,
2021.

[17] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. In arXiv, 2025.

[18] Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reason-
ing with language model is planning with world model. In EMNLP, 2023.

6

[19] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In ICLR, 2021.

[20] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In EMNLP,
2019.

[21] Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan Zhang, Matthew Jagielski, Katherine
Lee, Christopher A Choquette-Choo, and Nicholas Carlini. Preventing verbatim memorization
in language models gives a false sense of privacy. arXiv preprint arXiv:2210.17546, 2022.

[22] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

[23] Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang,
and Mengnan Du. The impact of reasoning step length on large language models. arXiv preprint
arXiv:2401.04925, 2024.

[24] Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. Lambada:
Backward chaining for automated reasoning in natural language. In ACL, 2023.

[25] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In
ICLR, 2023.

[26] Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and Kentaro Inui. Attention is not only a
weight: Analyzing transformers with vector norms. In EMNLP, 2020.

[27] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

[28] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. In NeurIPS, 2020.

[29] Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-
time intervention: Eliciting truthful answers from a language model. In NeurIPS, 2023.

[30] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[31] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale
generation: Learning to solve and explain algebraic word problems. In ACL, 2017.

[32] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[33] Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan
Li, Lei Shu, Yun Zhu, Lei Meng, et al. Improve mathematical reasoning in language models by
automated process supervision. In arXiv, 2024.

[34] Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it
takes two to tango. arXiv preprint arXiv:2209.07686, 2022.

[35] C. Manning. Foundations of statistical natural language processing. The MIT Press, 1999.

[36] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

[37] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

7

[38] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 1901.

[39] Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. In ICLR, 2023.

[40] Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. In NeurIPS, 2023.

[41] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. In NeurIPS, 2023.

[42] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal,
1948.

[43] Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed Chi, Nathanael
Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
In ICML, 2023.

[44] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

[45] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual graph
of general knowledge. In AAAI, 2017.

[46] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A
question answering challenge targeting commonsense knowledge. In NAACL, 2019.

[47] Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu, Yitao Liang, and Muhan
Zhang. Large language models are in-context semantic reasoners rather than symbolic reasoners.
arXiv preprint arXiv:2305.14825, 2023.

[48] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[49] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

[50] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. In ACL,
2019.

[51] Jean-Francois Ton, Muhammad Faaiz Taufiq, and Yang Liu. Understanding chain-of-thought in
llms through information theory. arXiv preprint arXiv:2411.11984, 2024.

[52] Laurens van der Maaten and Geoffrey E. Hinton. Visualizing data using t-sne. JMLR, 2008.

[53] Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan
Sun. Towards understanding chain-of-thought prompting: An empirical study of what matters.
In ACL, 2023.

[54] Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liangming Pan, Wenhu Chen, and
William Yang Wang. Understanding the reasoning ability of language models from the perspec-
tive of reasoning paths aggregation. In ICML, 2024.

[55] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR, 2023.

[56] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Understanding how
dimension reduction tools work: an empirical approach to deciphering t-sne, umap, trimap, and
pacmap for data visualization. Journal of Machine Learning Research, 22(201):1–73, 2021.

8

https://qwenlm.github.io/blog/qwq-32b/

[57] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and
challenging multi-task language understanding benchmark. NeurIPS, 2024.

[58] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

[59] Skyler Wu, Eric Meng Shen, Charumathi Badrinath, Jiaqi Ma, and Himabindu Lakkaraju.
Analyzing chain-of-thought prompting in large language models via gradient-based feature
attributions. arXiv preprint arXiv:2307.13339, 2023.

[60] Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie Fu, Junxian He, and Bryan Hooi. Can
LLMs express their uncertainty? an empirical evaluation of confidence elicitation in LLMs. In
ICLR, 2024.

[61] Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong
Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A
survey of reinforced reasoning with large language models. In arXiv, 2025.

[62] Tianyun Yang, Ziniu Li, Juan Cao, and Chang Xu. Mitigating hallucination in large vision-
language models via modular attribution and intervention. In ICLR, 2025.

[63] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and
Karthik R Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. In NeurIPS, 2023.

[64] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In ICLR, 2023.

[65] Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Huajun
Chen. Knowledge circuits in pretrained transformers. In NeurIPS, 2024.

[66] Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary explanations for effective in-context learning. arXiv preprint arXiv:2211.13892,
2022.

[67] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurIPS, 2022.

[68] Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*:
Llm self-training via process reward guided tree search. In NeurIPS, 2024.

[69] Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu
Zhou, Xinbing Wang, and Luoyi Fu. Enhancing uncertainty-based hallucination detection with
stronger focus. In EMNLP, 2023.

[70] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting
enables complex reasoning in large language models. In ICLR, 2023.

[71] Zhaocheng Zhu, Yuan Xue, Xinyun Chen, Denny Zhou, Jian Tang, Dale Schuurmans, and
Hanjun Dai. Large language models can learn rules. arXiv preprint arXiv:2310.07064, 2023.

9

Appendix

A Further Discussions 11

A.1 Challenges in Analyzing LLM’s Reasoning Automatically 11

A.2 A Comparison Between Landscape Visualization and Textual Analysis 11

A.3 The Intrinsic Relationship Between Visualization and Metrics 12

A.4 Discussion on Results and Observations . 12

A.5 Potential Extension to Pruning Unpromising Trajectories 13

A.6 Potential Extension to Identify Post-hoc Trajectories 13

A.7 Limitations and Future Directions . 14

A.8 A Comparison Between Lightweight Verifier and Reward-guided Algorithms . . . 14

B Related Work 15

C Experiment Settings 16

C.1 Setup . 16

C.2 Datasets . 16

C.3 Decoding Algorithms . 16

D Visulizations 17

D.1 Comparison across Reasoning Tasks . 18

D.2 Comparison across Reasoning Methods . 18

D.3 Supplementary Visualization . 19

E Adapting Visualization to Predictive Models 27

E.1 A Lightweight Verifier . 27

E.2 Experimental Results . 28

F Supplementary Results and Analysis 29

F.1 Statistical Verification of the Observations . 29

F.2 Analysis of Reasoning Trajectory Convergence 29

F.3 Further Investigation on the Consistency Metric 30

F.4 Further Discussion on the StrategyQA . 31

F.5 Comparing the Perplexity among Different Models 31

F.6 Additional Experiments on the Verifier . 32

F.7 Further Experiments on the Scaling Effect . 35

F.8 Landscapes with Different Methods of Dimensionality Reduction 36

F.9 Robustness of Sentence Tokenization . 36

10

A Further Discussions

A.1 Challenges in Analyzing LLM’s Reasoning Automatically

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts
in LLMs remain inadequately understood. Traditional performance metrics, such as accuracy, provide
insufficient insights into model behavior. While human evaluation has been employed to assess
the quality of sequential thoughts (e.g., logical correctness and coherence), such approaches are
resource-intensive and difficult to scale. We identify three challenges in developing automated
analysis systems for LLMs’ reasoning:

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention maps [10,
26], probing [2, 50, 20], and circuits [15, 65], primarily operate at the token-level explanation. While
these approaches offer valuable insights into model inference, they struggle to capture the emergence
of higher-level reasoning patterns from lower-level token interactions. Additionally, the discrete
nature of natural language thoughts poses challenges for traditional statistical analysis tools designed
for continuous spaces. Understanding how thought-level patterns contribute to complex reasoning
capabilities requires new analytical frameworks that can bridge this conceptual gap.

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning
have predominantly focused on correlating test questions with training data [21, 54]. This approach
becomes particularly infeasible given the reality of modern LLMs: many models are closed-source,
while some offer only model weights. Therefore, a desired analysis framework should operate across
varying levels of model accessibility.

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways
to evaluate the quality and reliability of model reasoning. This includes developing techniques to
understand reasoning paths, creating intermediate representations that capture both token-level and
thought-level patterns, and designing metrics that can assess the logical coherence and validity of
reasoning steps.

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria:
it should operate in a post-hoc manner with varying levels of model access, bridge the gap between
token-level and thought-level analysis, and provide meaningful metrics for evaluating reasoning
quality. Given the absence of tools meeting these requirements, we identify the need for a new
analytical framework that can address these challenges while providing useful insights for improving
model reasoning capabilities.

A.2 A Comparison Between Landscape Visualization and Textual Analysis

Notably, for the language model, one could manually examine the responses to individual questions,
as their responses are interpretable by humans. However, this approach has two major limitations:

Limitation 1: Lack of Scalability. Analyzing the individual question is time-consuming and labor-
intensive. In general, text-based analysis requires human evaluators to carefully read long reasoning
chains word by word. For example, if it takes 30 seconds to understand a single problem, review-
ing 100 problems would require around 50 minutes of focused human effort. This burden grows
quickly, especially as researchers often repeat this process many times while developing models and
methods. In practice, researchers need quick, easily interpretable feedback, such as accuracy, when
experimenting with changes to models and methods.

Limitation 2: Lack of Aggregation. It is difficult to aggregate insights across multiple problems
to understand model behavior at the dataset level. Summarizing model behavior across multiple
problems presents another challenge. Suppose one researcher has 100 reasoning chains; it is hard
for him/her to reliably synthesize the model’s overall behavior. Different researchers may arrive at
different, subjective summaries, which hinders consistency and interpretability.

By contrast, our visualization method provides a more objective and automatic way to analyze a
model, making it much easier for researchers to analyze the model’s reasoning behavior. Similar
to the t-SNE [52], the visualization enables a more comprehensive analysis of multiple reasoning
problems instead of only one problem. The visualization uniquely combines human-readable paths
with quantitative, scalable metrics for reasoning process analysis, enabling both model comparisons
and mechanistic insights beyond manual text inspection.

11

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot
capture. This power source bridges the gap between localized text understanding and global reasoning
behavior. Our analysis in Sec. 3 reveals insights that are not revealed by previous text-based analysis.
These insights include structural patterns across many reasoning paths, a strong correlation between
early consistency and accuracy, and model-level differences where larger models explore more
broadly than smaller ones.

A.3 The Intrinsic Relationship Between Visualization and Metrics

In the modeling of this work, we project each thought (state in a trajectory) from text space to
numerical space, with the thought’s feature vector that each dimension indicates the distance to a
particular answer. We compute the feature vectors of all the thoughts from multiple trajectories and
then obtain the feature matrix F . Then, based on this feature matrix, we compute (1) the landscape
visualization through dimension reduction and (2) the metrics of consistency and uncertainty. From
this view, the metrics’ information can actually be seen from the landscape. In this work, we mainly
focus on the landscapes and also use the metrics plots to help analyze.

In addition, landscape visualizations preserve the information of metrics, including the consistency,
uncertainty, convergence, and many other metrics that are not covered in this work. The landscape
provides a “global” view of the overall reasoning trajectories, while each metric provides a “local”
view of a particular aspect. Note that humans naturally prefer visual matters like figures and videos,
e.g., researchers prefer to use t-SNE in understanding the classification models. We recommend using
landscape as a visualization tool to help understand the LLM reasoning, while the metric plots can
further help inspect some particular aspects.

A.4 Discussion on Results and Observations

In the landscape visualizations, red regions map out the reasoning trajectories that end in incorrect
answers, while blue regions map out those that end correctly. The contour lines and the depth of color
together convey the density of reasoning states at each step: darker shades mean more trajectories
passing through that region. As you observe a landscape evolve from its initial scatter of states toward
later clustering, you’re seeing whether and how quickly the model’s reasoning paths lock onto an
answer.

Observation D.3 arises when we compare only the blue (correct) landscapes of different methods
in Fig. 5. Early in the process, all methods scatter widely, exploring many possibilities; over time,
though, some methods’ contours tighten more rapidly than others. Here, the landscape in Fig. 5(a)
converges to its correct region much sooner—and with a denser cluster—than the landscapes in
Fig. 5(b) to 5(c), and this faster, tighter convergence corresponds to its higher accuracy. Namely,
methods with more scattered landscapes (converge more slowly) present lower accuracy than those
that converge faster.

A related pattern appears when we compare models of different sizes in Fig. 2 (Observation 3.1). As
we scale from the 1B model to the 70B model, the last 20% of the reasoning steps show increasingly
dense blue clusters. Larger models, with greater capacity to store and retrieve information, steer their
reasoning more directly and confidently toward the right answer, mirroring their higher accuracy.
This further supports the positive correlation between convergence speed (of correct landscapes) and
reasoning accuracy, which is revealed in Observation D.3.

Observation D.4 emerges from contrasting the red and blue landscapes of the same algorithm in Fig. 5.
Here, failure trajectories (red) often settle into a wrong answer by roughly 20-40% of the reasoning
process, while success trajectories (blue) only coalesce around the correct answer toward the very
end—around 80-100% of the states. This indicates that early reasoning states are exploratory and can
drift toward incorrect conclusions, whereas correct solutions only converge late in the trajectories.
This convergence-speed disparity between red and blue landscapes also holds across multiple datasets
in Fig. 4.

Finally, Fig. 4 shows that each reasoning task leaves a distinct landscape “fingerprint,” supporting
Observation D.1. In AQuA, MMLU, and StrategyQA, the landscapes trace wide, structured sweeps of
reasoning states—clear evidence of step-by-step deduction and exploration of intermediate hypotheses.
By contrast, CommonSenseQA produces a tightly clustered trajectory from the outset, indicating

12

direct retrieval of knowledge rather than an iterative trajectory. This divergence mirrors the tasks
themselves: AQuA, MMLU, and StrategyQA require exploratory traversal through multiple reasoning
steps, resulting in diverse yet organized state distributions, whereas CommonSenseQA depends on
straightforward recall. These task-specific structures demonstrate how our landscape visualizations
can uncover both shared patterns and fundamental differences across reasoning challenges.

In addition, each of these qualitative observations is further supported by statistical analyses in
Appendix F.1, and we provide full visualizations, including annotated state trajectories (Figs. 15 to
18) and additional model comparisons (Figs. 19 to 20).

A.5 Potential Extension to Pruning Unpromising Trajectories

We showcase that our tool can be utilized to identify potentially incorrect reasoning trajectories at
test time. In Section D.2, we build up a lightweight verifier, which is based on the thoughts’ feature
vectors and the consistency metric from the landscape of thoughts. This verifier indeed aims to
predict the correctness of a reasoning trajectory, in order to boost the reasoning accuracy at test time.
It is proven to be beneficial to the voting of multiple reasoning trajectories, as shown in Sec. E.2.

Further, this verifier (together with the visualization tool) can be adopted to prune unpromising
reasoning trajectories in tree-based searching. For instance, in methods like tree-of-thoughts and
MCTS, a model explores multiple reasoning trajectories and usually uses the same model to identify
the promising paths to search for the ultimate solution. Here, by leveraging features from the landscape
of thoughts and the consistency metric, our verifier can identify flawed trajectories early during
reasoning, acting as an efficient pruning mechanism to boost the search efficiency and reasoning
performance.

Therefore, our tool can be integrated into the reasoning methods to monitor particular reasoning
patterns (e.g., the correctness) and help understand as well as boost reasoning. There are multiple
directions that deserve future exploration, including the one to identify and prune the potentially
incorrect reasoning trajectories.

A.6 Potential Extension to Identify Post-hoc Trajectories

In the following, we discuss the feasibility of detecting post-hoc trajectory using our framework,
particularly in defining the post-hoc trajectory. A post-hoc trajectory refers to the trajectory that the
model exhibits high confidence in a single answer in the early states and maintains high consistency
across states in the trajectory. Specifically,

• the “early state” correspond to the “very early tokens of the response”;

• the “high confidence in a single answer” corresponds to the “model has chosen its answer“;

• the “high consistency across states in the trajectory” corresponds to the “trajectory is produced as a
consequence of that decision”.

Namely, the post-hoc trajectory can be potentially identified by inspecting the confidence and
consistency of particular positions of states in our framework. Then, we elaborate on the more
detailed definitions for the three components above.

• For defining the “early states”, it should have an absolute threshold of states index, e.g., early 10
states, or a relative threshold, e.g., early 10% of states. This threshold should be chosen deliberately,
and the states with an index smaller than this threshold are categorized as “early states”.

• Similarly, a clear threshold is necessary for defining the “high confidence” or “high consistency”,
e.g., over 80% confidence and 60% consistency. With the metrics defined in Section 2.3, here, we
should examine (1) the confidence of the early states in the trajectory and (2) the consistency across
all states of the trajectory. Here, only the trajectory that exceeds the confidence threshold as well as
the consistency threshold can be classified as a post-hoc trajectory.

In conclusion, our framework shows promise for identifying post-hoc trajectories. Meanwhile, we
should note that it still needs (1) to choose particular thresholds for the precise definition of post-hoc
trajectory and (2) to collect a set of reliable data to verify the effectiveness in identifying post-hoc
trajectory. These are quite challenging to conduct. Although it goes beyond the scope of work, we

13

believe investigating post-hoc trajectory in reasoning is valuable and merits exploration in future
work.

A.7 Limitations and Future Directions

Scope. While the Landscape of Thoughts offers a practical lens on model reasoning, its current in-
stantiation is limited to multiple-choice settings. Extending LoT to open-ended reasoning—including
mathematical problem solving, code generation, and planning—requires handling less structured
and more entangled reasoning paths. Two complementary threads of future work are: (i) improving
accessibility by producing intuitive visual and textual explanations that help non-experts inspect
and trust model behavior, and (ii) developing automated, scalable detectors of reasoning failures to
improve reliability across applications.

Key challenge: synthesizing options. The central obstacle is the quality of the synthesized answer
options. Human-authored distractors are carefully calibrated to be plausible, exposing distinctions
between (1) correct reasoning and (2) reasonable-but-wrong reasoning (e.g., overlooking information
or making arithmetic slips). In contrast, LLM-generated distractors can be implausible and thus triv-
ially eliminated when juxtaposed with the correct option, yielding visualizations that over-emphasize
the correct trace and limit diagnostic value. Moreover, LLMs may reuse similar reasoning patterns,
producing near-duplicate error modes across incorrect options and reducing the comprehensiveness
of the analysis.

Mitigations. To address these issues, we can elicit higher-quality distractors with state-of-the-art
LLMs (e.g., OpenAI o3, Gemini 2.5 Pro) and tune sampling hyperparameters (temperature, top-p) to
promote diversity and explore alternative solution trajectories.

Binary reformulation. A practical alternative is to recast multiple-choice prompts as binary (yes/no)
queries. For example, the question “What is the capital of France?” can be reformulated as “Is
Paris the capital of France?” with options Yes or No. Under this framing, both options remain prima
facie plausible: the incorrect choice admits coherent yet flawed rationales, and the variety of “No”
trajectories preserves diversity without resorting to obviously implausible distractors.

Beyond multiple choice. Although open-ended tasks are beyond the present scope, LoT is, in
principle, extendable. The key requirement is to construct a candidate set of answers by querying the
model (a non-trivial step that is given for free in multiple-choice tasks). Treat the ground-truth answer
as one option and generate additional plausible alternatives using LLMs; LoT can then analyze the
induced reasoning behaviors in these open-ended scenarios.

Case: code generation. Code generation introduces additional challenges: there is typically no
single ground-truth program, and evaluation proceeds via test suites. Candidate programs are diverse
and do not naturally discretize into options. We propose the following procedure: (i) sample multiple
candidate solutions from the model under evaluation; (ii) score each by the number of tests passed;
(iii) apply a threshold to separate more-correct from less-correct solutions; (iv) embed and cluster
solutions within each partition; and (v) use cluster centroids as anchors for “correct” and “incorrect”
choices. Cluster quality can be assessed with the Silhouette Score and the Davies-Bouldin Index.
These anchors enable a LoT-style visualization over the solution space and provide insight into
reasoning behaviors.

In summary, our visualization framework is adaptable beyond multiple-choice scenarios. To our
knowledge, LoT is the first landscape visualization tool aimed at analyzing LLM reasoning; it is
imperfect and remains open to improvement and extension. We believe it constitutes a small but
meaningful step toward understanding and improving the reasoning processes of LLMs.

A.8 A Comparison Between Lightweight Verifier and Reward-guided Algorithms

It is worth noting that our goal is not to build a sophisticated verifier, but rather to demonstrate how
the feature vectors from the landscape visualization can be effectively used.

In general, reward-guided algorithms are more computationally efficient than the path landscape.
Specifically, for a reasoning path with n thoughts and c answer choices, constructing the landscape
requires n× c forward passes through the reasoning model. In contrast, a reward-guided approach
typically makes a single call to a reward model that evaluates the entire reasoning chain at once.

14

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-
guided algorithms. Notably, for Process-Reward Models (PRMs) [33, 61], collecting high-quality
training data often requires detailed, fine-grained annotations of reasoning steps, which can be costly
and time-consuming. Moreover, training a reward model (often itself an LLM) incurs significant
computational expense. In contrast, our lightweight verifier is much more efficient to train, as it
requires no human annotations and uses easily obtainable data.

B Related Work

Reasoning with large language models. Chain-of-Thought (CoT) prompting [58, 27] has empow-
ered LLMs to tackle multi-step reasoning problems by generating intermediate steps before producing
a final answer. Building upon CoT, numerous methods have been proposed to address various chal-
lenges, including compositional generalization [70, 25], planning [63, 18], and rule learning [71]
within the CoT reasoning. Beyond solving reasoning tasks, CoT has also emerged as a foundational
framework for other techniques, such as fine-tuning LLMs [67], enabling LLM-based agents [64],
and facilitating test-time scaling [44]. Nevertheless, most of these approaches are developed in a
trial-and-error manner, largely due to the absence of proper tools for analyzing the CoT.

Understanding chain-of-thought reasoning. There are a few studies that explore what makes
CoT prompting effective by perturbing its exemplars. To be specific, Madaan and Yazdanbakhsh
[34] found that the text and patterns of exemplars help CoT generate sentences resembling correct
answers. Besides, Wang et al. [53] highlighted the importance of maintaining the correct order
of reasoning steps, while Ye et al. [66] demonstrated that using complementary exemplars can
enhance reasoning performance. Furthermore, CoT can benefit from longer reasoning chains, even
without new information to the prompt [23]. Another line of research investigates CoT’s general
behavior [47, 39, 40, 43]. For example, CoT heavily depends on the semantic structure of the problem
to perform reasoning [47], struggles with planning and unification in deductive reasoning [39],
has difficulty generalizing to longer reasoning paths [40], and can be easily misled by irrelevant
information in the context [43]. However, these observations are derived from specific reasoning
tasks and prompt settings, limiting their applicability to other scenarios. In contrast, we introduce a
general-purpose tool that allows users to analyze reasoning in their contexts.

Tools for analyzing chain-of-thought. To the best of our knowledge, the only existing tool for
analyzing CoT is gradient-based feature attribution [59], which computes a saliency score for each
input token based on the model’s output. However, these token-level saliency scores do not directly
capture the thought-level, multi-step reasoning process of LLMs. Consequently, the main finding
in [59] is that CoT stabilizes saliency scores on semantically relevant tokens compared to direct
prompting. Metrics designed to quantify CoT performance [8, 51] can also be used to analyze the
reasoning behaviors of LLMs. For instance, Ton et al. [51] employs information gain to identify
failure modes in reasoning paths, aligning with Observation D.4 in this paper. However, our 2-D
visualization offers significantly deeper insights than a single information gain metric. Additionally,
the verifier derived from our tool is conceptually related to outcome-supervised reward models [11].

Measuring uncertainty and consistency in LLM reasoning. Several works in this research line
compute metrics (such as confidence and perplexity) by leveraging the features from LLMs to measure
and detect hallucination in reasoning [29, 9, 62]. Specifically, low confidence and high perplexity
often indicate unreliable reasoning, enabling the development of lightweight detectors to guide
reasoning and mitigate hallucinations. However, these metrics have limitations [60, 69]: they can
exhibit over-confidence or low perplexity in incorrect responses, their reliability relies heavily on the
models’ capability, and they cannot provide more comprehensive insights into the multiple reasoning
trajectories. By contrast, our landscape of thoughts offers a holistic approach, integrating several
existing metrics. This framework enables global qualitative analysis, including measures of perplexity,
consistency, and uncertainty. In addition, the landscape of thoughts enables the development of
advanced tools to enhance reasoning by using the features and metrics, as mentioned in Sec. D.2.

15

C Experiment Settings

C.1 Setup

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of LLMs. To
this end, we adopted four open-source models with varying parameter sizes, namely Llama-3.2-1B,
Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. We repeatedly sample 10 times from the
target LLM using the same reasoning strategy as self-consistency [55].

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset
and generate reasoning paths with the setup described above. For simplicity, we compute distances
only between each state and all candidate answers. To visualize multiple problems in a shared space,
we always place the distance to the correct answer as the first element of each feature vector. This
alignment allows joint analysis across problems. We then aggregate feature vectors from all problems
into a feature matrix, which is passed to t-SNE to compute the pairwise distance between any two
states and then outputs the 2D coordinate of each state.

For training the lightweight verifier, we randomly sample 20 questions from the training split of
each dataset to obtain the feature matrix S. We extract these features using three model scales:
Llama-3.2-3B, Llama-3.1-8B, and Llama-3.1-70B. Despite the relatively small training set,
it proves sufficient for our lightweight verifier, which we subsequently evaluate on the data for
visualization in Sec. 3.

C.2 Datasets

AQuA [31]. This dataset develops to challenge language models’ quantitative reasoning capabilities.
The AQuA presents complex algebraic word problems in a multiple-choice format, where only one is
correct. Each problem requires numerical computation, deep linguistic understanding, and logical
inference. It provides a nuanced assessment of a model’s ability to translate textual information into
algebraic reasoning.

MMLU [19]. Spanning 57 distinct academic and professional domains, MMLU provides a rigorous
test of language models’ capabilities across humanities, social sciences, hard sciences, and technical
disciplines.

StrategyQA [16]. This dataset is designed to evaluate implicit reasoning and multi-hop question
answering. The dataset is characterized by yes/no questions that demand implicit reasoning strategies.
Unlike straightforward factual queries, these questions require models to construct elaborate reasoning
paths, showing hidden logical connections.

CommonsenseQA [46]. This dataset assesses commonsense reasoning through multi-choice ques-
tions derived from the ConceptNet knowledge graph [45]. The dataset aims to test a model’s
understanding of commonsense concepts and ability to make logical inferences. However, the ques-
tions often require the model to incorporate external knowledge to select the correct answer from
plausible distractors.

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning
states, resulting in diverse but structured landscapes. CommonsenseQA, conversely, represents a
distinct domain where answers depend on static knowledge rather than emergent reasoning pathways.

C.3 Decoding Algorithms

Chain of Thought (CoT) [58]. CoT elicits the LLM’s reasoning capabilities by incorporating
few-shot examples that demonstrate explicit reasoning steps. It provides the model with exemplar
reasoning traces to guide its problem-solving process.

Zero-shot CoT [27]. The core idea of this prompt strategy lies in adding simple instructions, e.g.,
"Let’s think step by step." to the prompt, enabling models to generate reasoning traces without
assigned task-specific examples.

Least-to-Most (LtM) [70]. LtM is an innovative reasoning approach that systematically breaks down
complex problems into progressively simpler subproblems. This approach mirrors human cognitive

16

(a
)A

Q
uA

(b
)M

M
L

U
(c

)S
tr

at
eg

yQ
A

(d
)C

om
m

on
Se

ns
eQ

A

Figure 4: Comparing the LoT of different datasets (using Llama-3.1-70B with CoT). The accuracy of
reasoning for the four subfigures is: (a) 84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%.

problem-solving strategies, where individuals naturally break down complex tasks into smaller, more
comprehensible parts.

Tree-of-Thought (ToT) [63]. ToT expanded this concept by creating a more sophisticated, multi-
branching reasoning framework. While CoT follows a linear path of reasoning, ToT introduces a
more dynamic exploration, allowing models to generate multiple reasoning paths simultaneously,
evaluate them, and strategically prune less promising trajectories.

Monte Carlo tree search (MCTS) [68]. MCTS is a powerful computational algorithm originally
developed for game-playing strategies, particularly in complex decision-making environments like
chess and Go. The method uses probabilistic sampling and tree exploration to systematically navigate
potential solution spaces, balancing exploring new possibilities with exploiting promising paths. We
adopt the task-agnostic node expansion and evaluation prompt from ReST-MCTS [68] to conduct our
experiment across different tasks.

Reproduction. The source code is provided in the anonymous repository: https://anonymous.
4open.science/r/landscape-of-thoughts-submission-code-3803/.

D Visulizations

In this section, we utilize the landscape of thoughts to analyze the reasoning behavior of LLMs by
comparing the visualizations in two more dimensions: (1) different reasoning tasks in Sec. D.1, and
(2) various reasoning methods in Sec. D.2. Unless stated otherwise, we employ Llama-3.1-70B with
CoT as the default configuration in evaluations. All the visualizations are built upon the model’s
estimation of their own thoughts. 7

17

https://anonymous.4open.science/r/landscape-of-thoughts-submission-code-3803/
https://anonymous.4open.science/r/landscape-of-thoughts-submission-code-3803/

(a
)C

oT
(b

)L
tM

(c
)M

C
T

S
(d

)T
oT

Figure 5: Comparing the LoT of four reasoning methods (using Llama-3.1-70B on the AQuA dataset).
The reasoning accuracy is: (a) 84.4%, (b) 82.2%, (c) 75.8%, and (d) 81.6%, respectively.

D.1 Comparison across Reasoning Tasks

Besides AQuA dataset, we include MMLU, CommonsenseQA, and StrategyQA datasets. We run the
default model with CoT on 50 problems per dataset. These observations are derived from Fig. 4:
Observation D.1 (Similar reasoning tasks exhibit similar landscapes). The landscapes of AQuA,
MMLU, and StrategyQA in Fig. 4 exhibit organized search behavior with higher state diversity,
while CommonSenseQA presents concentrated search regions, reflecting direct retrieval of common-
sense knowledge rather than step-by-step reasoning processes. These distinct landscape patterns
demonstrate the potential to reveal underlying domain relationships across different reasoning tasks.
Observation D.2 (Different reasoning tasks present significantly different patterns in consistency,
uncertainty, and perplexity). The histograms in Fig. 4 show that the perplexity consistently increases
as reasoning progresses across all datasets. Specifically, different datasets, e.g., AQuA and MMLU,
show distinctly higher levels of uncertainty. As for StrategyQA, correct trajectories show increasing
consistency that surpasses incorrect trajectories at around 60% states, while incorrect trajectories
show decreasing consistency. However, when the trajectory is longer than the ground truth trajectory,
the later stages (60-100% of states) exhibit both increasing perplexity and decreasing uncertainty. 8

D.2 Comparison across Reasoning Methods

Setup. We evaluate the default model with four reasoning methods: chain-of-thought (CoT) [58],
least-to-most (LtM) [70], MCTS [68], and tree-of-thought (ToT) [63]. We run these methods on 50
problems from AQuA and observe that:
Observation D.3 (Cross-method comparison: Among correct reasoning trajectories, methods with
faster convergence to correct answers achieve higher accuracy.). From Fig. 5, we observe that the
states scatter dispersedly at early stages and gradually converge to correct (or incorrect) answers
in later stages. Here, converge means the trend of a reasoning trajectory approaching one answer.

7Appendix F.1 validates each qualitative observation from LoT. Full visualizations are in Appendix D.
8We show detailed analysis for trajectories in StrategyQA in Appendix F.4.

18

The answer is B.

Conclusion: The original
price of the item was
approximately $63.32. The
answer is A

Let‘s think step by step to
solve the problem.

3. This leaves 1-1/4 = 3/4 of
the pool to be filled by both
hoses working together in
the following 3 hours.

We can represent the
commission of 15% on
the monthly sale as: 0.15
* total monthly sale.

To find the percentage
increase, we'll use the
formula: ((Increase /
Original) 100).

Let's think step by step
to solve this problem.

Step 3: The total cost can
be expressed as the sum of
costs of brown and white
sharpeners: b X + (18 - b)
(X + 1) = 100.

Next, we divide the total
profit by the profit per
bag: $3,000 / $25 = 120.

Step 8: Solve for x
using the equation
identified in step 7.

Figure 6: Case Study of LoT, with Llama-3.1-8B using CoT on AQuA.

Generally, methods with more scattered landscapes (that converge more slowly) present lower
accuracy than those that converge faster. For example, the blue landscape in Fig. 5(a) converges faster
than the blue landscapes in Fig. 5(c), and the former is with a higher accuracy than the latter.
Observation D.4 (Within-method comparison: For any single method, incorrect trajectories converge
faster to wrong answers than correct trajectories converge to right answers.). As can be seen from
Fig. 4, failure trajectories usually converge to the wrong answers at earlier states of reasoning, e.g.,
20-40% states in Fig. 4(c). By contrast, the states in the success trajectories converge to the correct
answers at later 80-100% states. This implies that early states of the reasoning process can lead to any
potential answers (from a model perspective), while the correct answers are usually determined at the
end of reasoning trajectories. In addition, Fig. 6 showcases the corresponding text of thoughts. 9

Observation D.5 (Compared to failure trajectories, the intermediate states in correct trajectories
have higher consistency w.r.t. the final state). By comparing the consistency plots in Fig. 5, we
found that the model generally has low consistency between the intermediate states and the final state.
Notably, the consistency of wrong trajectories is significantly lower than that of correct trajectories.
This implies that the reasoning process can be quite unstable. Even though decoding methods like
CoT and LtM are designed to solve a problem directly (without exploration), the generated thoughts
by these methods do not consistently guide the reasoning trajectory to the answer.

D.3 Supplementary Visualization

In Fig. 7 to Fig. 10, we visualize the average voting accuracy (%) of different LLMs reasoning
with and without verification on various datasets and methods. In Fig. 11 to Fig. 14, we display the
landscape of different models on various datasets using four methods. We also provide case studies
by visualizing the landscape with corresponding states in Fig 15 to Fig. 18.

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we
conduct experiments on the DeepSeek-R1-Distill models [17] (Llama-70 B and Qwen-1.5 B). As
shown in Fig. 19 and Fig. 20, the landscape of the reasoning model also aligns with the observation
drawn from the general-purpose model, but exhibits more complex reasoning patterns, such as
self-evaluation and back-tracking.

9In Appendix F.2, only a few incorrect trajectories (1.8%) are close to the correct answer in middle thoughts.

19

Figure 7: Average voting accuracy (%) of reasoning with and without verification on AQuA.

Figure 8: Average voting accuracy (%) of reasoning with and without verification on MMLU.

Figure 9: Average voting accuracy (%) of reasoning with and without verification on StrategyQA.

Figure 10: Average voting accuracy (%) of reasoning with and without verification on Common-
SenseQA.

20

(a) Llama-3.2-1B with CoT on AQuA

(b) Llama-3.2-1B with LtM on AQuA

(c) Llama-3.2-1B with ToT on AQuA

(d) Llama-3.2-1B with MCTS on AQuA

Figure 11: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).

21

(a) Llama-3.2-3B with CoT on AQuA

(b) Llama-3.2-3B with LtM on AQuA

(c) Llama-3.2-3B with ToT on AQuA

(d) Llama-3.2-3B with MCTS on AQuA

Figure 12: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).

22

(a) Llama-3.1-8B with CoT on AQuA

(b) Llama-3.1-8B with LtM on AQuA

(c) Llama-3.1-8B with ToT on AQuA

(d) Llama-3.1-8B with MCTS on AQuA

Figure 13: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).

23

(a) Llama-3.1-70B with CoT on AQuA

(b) Llama-3.1-70B with LtM on AQuA

(c) Llama-3.1-70B with ToT on AQuA

(d) Llama-3.1-70B with MCTS on AQuA

Figure 14: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).

24

Step 1: Start by adding
the positive numbers:
adding 45 to -30 results
in 15 since 15 > -15

Conclusion: The original
price of the item was
approximately $63.32.
The answer is A.

To solve the problem, let's
break it down into a series
of calculations according
to the given property.

2. The perimeter of the
other part is 66 cm
(perimeter of 16x and
14y).

Hose A fills the pool in 8
hours, so its rate is 1/8 of
the pool per hour.

Step 4: Substitute the
calculated value for 4/5
of 25 into the expression
for the difference.

3. The minimum total
commission needed to
reach a salary of at least
$1000 is 1000.

Step 4: Calculate the
population 2 years after
the initial population.

5. Now, divide both
sides by 1.2, in order
to solve for C.
Therefore, C = 360 /
1.2 = 300.

Based on our calculation,
the grocer likely sold
approximately 24.4 bags
of flour. The answer is C.

Figure 15: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

Step 2: To find the
time it takes for them
to produce 10 yo-yos,
we need to consider
the least common
multiple (LCM) 9 of
6 and 9 minutes.

Step 8: Since Hose B can
fill 1/8 of the pool per
hour, it can fill the entire
pool in 8 hours. Therefore,
the answer is D.

Let's break down the steps
to calculate the average
speed of the plane around
the square field.

4. Since the profit is
25% of the selling
price, we can calculate
the total selling price
for all the bags sold.

6. Since we found that A =
1/8, we can solve for B by
substituting A into the
equation: 1/8 + B = 3/4.

However, the number
of toys cannot be a
fraction, so we need to
round to the nearest
whole number.

To solve this problem,
let's break down the
solution process into
clear, independent steps.

Step 4: Web those
formula values into
the conditional
probability formula.
P(A/B) = P(A) / P(B)
= 0.2 / 0.8.

7. Converting 30/70 to a
percentage, we get
(30/70) * 100% =
42.86%.

The answer is C.

Figure 16: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.

25

The answer is B.

Conclusion: The original
price of the item was
approximately $63.32. The
answer is A

Let‘s think step by step to
solve the problem.

3. This leaves 1-1/4 = 3/4 of
the pool to be filled by both
hoses working together in
the following 3 hours.

We can represent the
commission of 15% on
the monthly sale as: 0.15
* total monthly sale.

To find the percentage
increase, we'll use the
formula: ((Increase /
Original) 100).

Let's think step by step
to solve this problem.

Step 3: The total cost can
be expressed as the sum of
costs of brown and white
sharpeners: b X + (18 - b)
(X + 1) = 100.

Next, we divide the total
profit by the profit per
bag: $3,000 / $25 = 120.

Step 8: Solve for x
using the equation
identified in step 7.

Figure 17: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Figure 18: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.

26

Wait, that
might be the
correct way to
model it. Let
me denote

Wait, that seems high. Let me check my
calculations again. Maybe I made a mistake
somewhere.

Let me check the options. I don't think I made any
mistakes here because the steps align with the
definition of independent events in probability.

But wait, the initial
number of marbles isn't
given, so the total
number in the bag must
be unknown.

Wait, the question
is asking for the
greatest possible
value for the
probability that
neither happens.

Wait, but that can't be right because the selling
price has to cover the costs. Wait, let me check
my calculations again because I think I might
have made a mistake somewhere.

Wait, that seems
a bit messy.
Maybe there's
another way.

Wait, but let me
double-check my
calculations to make
sure I didn't make a
mistake.

Wait, but let
me double-
check in
case I made
a mistake in
simplifying.

Wait, let me check: 1.2 times what gives 360.
Maybe I can do this step by step. 1.2 is the same
as 6/5, so dividing by 1.2 is the same as multiplying
by 5/6.

Wait, but I should
double-check that. Yes,
tan(60°) is V3, so the
adjacent side (distance
to the base) is h / V3
when the angle is 60°.

But let me make sure I
didn't make a mistake…
Yes, that seems correct.

Wait, but let me check again because sometimes
rounding can cause issues. Let me recalculate
21.90 divided by 0.28 more accurately.

Wait, maybe
another way: …

But just to be absolutely sure, let me check with
another option, say option A is $61.

Wait, but let me check if S=230 would be
sufficient.

But wait, let me double-
check my initial calculation
because 78.20 is an option,
but perhaps I made a mistake
in my first equation setup.

Wait a second,
but initially, after
adding the 20
black marbles, the
number of black
marbles is 20.

Wait, let me check because I think I might have
made a miscalculation. Let me try another way

Wait, perhaps I should
compute the per unit
numbers differently.
Let me recalculate.

But this seems a
bit confusing.
Maybe I made a
mistake in the
algebra.

But wait, maybe I made
an error earlier. Let me
go back and check my
steps again.

But wait, the options are
A)21, B)30, C)31, D)32,
E)None of the above. So,
D is available. Therefore,
the average is 32, which
matches option

But wait, some-
times when I do
these problems, I
might have miss-
ed something. Let
me think again.

But wait, let me check if 234.2857 would satisfy
the condition. Let's plug it back in.

Wait, no, in the
initial example,
it's a different
problem. So I
think my logic
here is correct.

Wait, but let me double-check
that. If the sales-person
makes 40 sales, each at
$250, their commission would
be 40 times $25, which is
$1000 exactly.

Wait, that
seems
similar to
what I had
before.

Hmm, so the additional time required is 5(√ 3 +1)
minutes. Let me check the options given.

Wait, is that right? Let me
double-check. 420 units/
month*12 months=5,040
units. 5,040* $110=554,400.
Yeah, that seems correct

Figure 19: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Wait, no, that might
not be the right
way. Let me
reframe it.

Then, another 20
marbles are pulled out,
and 1 was black. Wait,
let's analyze this
carefully

Wait, that seems quite high. Maybe I made a
mistake. Let me check my calculations again.

But wait, the problem just asks to find the multiple
of X, not provided specifically, that is divisible by
both 9 and 12. Hmm, that seems a bit generic.
Maybe I misread. Let me check again.

Wait, the order might
matter. So it's 5 +
(19? -17). Let me
ensure I'm
calculating correctly.

Wait a minute, that's
interesting because
P(A) is already 0.2,
so in this case,
P(A|B) = P(A). Does
that make sense?

Let me check the setup. After the second pull,
the bag has N + 40 marbles, with 20 black
marbles. The percentage of black marbles is
20/(N + 40) = 5% = 0.05.

Perhaps I made
a mistake in
setting up the
equation. Let's
check.

Wait, but let me
double-check my
calculations to make
sure I didn't make a
mistake.

Wait, in the first case,
the elevator covers 20
steps in 10 minutes, so
speed = 20 / 10 = 2
steps per minute.

But wait, the letters in 'PROBLEC' each have
different frequencies. Let me check that.

Wait, but I should double-
check to make sure I
didn't make any mistakes
in my calculations.
Alternatively, maybe I can
think about it another way.

So, unless I made a
mistake in setting up the
equation, which doesn't
seem so, the answer
should be 4,000, which is
option A.

So, 21.90 / 0.28 = 77.50, but let me check that
again because my initial division seems not to align
with this.

But perhaps I
made a mistake
in my reasoning.
Let me double-
check.

Maybe the problem is designed to have one of the
options, but I must have miscalculated. Let me
check the math once more.

Wait, perhaps I read the problem wrong. Let me
check again.

Wait, I think I need to
reconsider my approach.
Let me try again.

Wait, so
walking more
steps and
stopping takes
longer?

Still not matching the options. The closest option is
226 and 230. Did I make a mistake in calculation?
Let me check.

Wait, maybe I'm
overcomplicating. Let's
think about it
differently.

Wait, that's incorrect.
It should be (5 + 19?
-15 -7)/13 =6, which
simplifies to (19? -
17)/13=6

Wait, perhaps using
the sine of the angles
would be more
straightforward.

Wait, probabilities cannot
be negative. There must
be an error in this
approach. Let me
reconsider.

Wait, let's go
back. The
equation after
removing 0.5P
was …

Wait, unless the 2% is on the defective Staplers?
Let me check the problem again

Wait, but the
problem says that
they reach in 10
minutes. So
perhaps only T1
plus T2 equals 10.

Wait, that can't be
right because
probabilities can't
exceed 1.

Wait, maybe it's
better to
calculate step by
step.

But none of the answer choices are given in this
decimal form. Let me check the answer options
again

Figure 20: Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.

E Adapting Visualization to Predictive Models
One advantage of our method is that it can be adapted to a model to predict any property users
observe. Here, we show how to convert our method to a lightweight verifier for voting trajectories,
following the observations in Sec. 3. Note that this methodology is not limited to verifiers. Users can
use this technique to adapt the visualization tool to monitor the properties in their scenarios.

E.1 A Lightweight Verifier
Observation D.4 and D.5 show that the convergence speed and consistency of intermediate states
can distinguish correct and wrong trajectories. Inspired by these observations, we build a model
g : R(k+1)×n → {0, 1} to predict the correctness of a trajectory based on the state features {fi}ni=1
and consistency metric {Consistency(fi)}ni=1. The insight is that the state features, used to compute
the 2-D visualization, encode rich location information of the states and can be used to estimate the
convergence speed. Due to the small dimensionality of these features, we parameterize f with a
random forest [6] to avoid overfitting. We use this model as a verifier to enhance LLM reasoning [11].
Unlike popular verifiers [30] that involve a moderately sized language model on textual thoughts, our
verifier operates on state features and is quite lightweight. We train a verifier on thoughts sampled
on the training split of each dataset and apply it to vote trajectories at test time. Given q trajectories
sampled by a decoding method, the final prediction is produced by a weighted majority voting:

ŷ =argmax
c∈C

q∑
i=1

1(ŷ(i) = c) · g({fi}ni=1, {Consistency(si)}ni=1). (1)

27

Figure 21: The accuracy of reasoning under different decoding methods and model scales (averaging
across all four datasets). Results for each dataset are in Appendix D.

Figure 22: Demonstration of the
inference-time scaling effect of the
verifier. We show the voting accu-
racy (%) on StrategyQA scales with
the number of trajectories.

(a) Transfer across datasets (b) Transfer across models

Figure 23: Absolute accuracy changes (∆ Acc) with the veri-
fier, compared to performance in Fig. 21 (without the verifier).
The verifier is trained on each column (dataset or model) and
evaluated on all rows (other datasets or models). Positive val-
ues indicate improvement in accuracy with the verifier.

E.2 Experimental Results

We evaluate our numerical verifier against an unweighted voting baseline [55] with various models,
decoding methods, and reasoning datasets. We report the accuracy here instead of commonly seen
pass@k, which will be easily hacked by a simple random guess or a traverse of all candidates to
obtain a high score. Detailed settings of experiments are in Appendix C. We also provide ablation
studies on training the verifier and discuss and compare the variance of the verifier in Appendix F.6,
and experiment on the scaling effect with different features in Appendix F.7.

Effectiveness of the verifier. We first compare our verifier against the unweighted voting baseline,
each applied to 10 trajectories. As shown in Fig. 21, our verifier consistently enhances the reasoning
performance of all models and decoding methods, even though our verifier does not use any pre-
trained language model. Notably, smaller language models (1B and 3B) show significant performance
gains with the verifier’s assistance, achieving substantial improvements over their original capabilities
of reasoning. We also compare the verifiers between reward-guided methods.

Test-time scaling. While the improvement of the verifier seems marginal with 10 trajectories, our
verifier can provide a substantial performance gain with more trajectories. We adjust the number of
trajectories from 1 to 50, and plot the results of the verifier and the unweighted voting baseline in
Fig. 22. Models with our verifier exhibit significantly stronger scaling behaviors, achieving over 65%
accuracy. In contrast, the performance of the baseline saturated around 30% accuracy. These results
suggest that our state features, which are used in both the visualization tool and the verifier, capture
important information about the reasoning behavior of LLMs. Thus, the verifier can boost test-time
scaling, especially in solving complex problems.

Cross-dataset and cross-model transferability. One interesting property of the state features and
metrics is that their shape and range are agnostic to the model and dataset, suggesting that we may
deploy the verifier trained on one dataset or model in another setting. As illustrated in Fig. 23, we
evaluate how the verifier transfers across reasoning datasets (e.g., train on AQuA and test on MMLU)
and model scales (e.g., train on 1B model and test on 70B model). We observe some positive transfers
across datasets and models. For example, a verifier trained on AQuA can improve the performance
of StrategyQA by 4.5%. A verifier trained on the 70B model also improves the performance of the
3B model by 5.5%. However, some cases do not benefit from the transferring verifiers. We leave
improving the transferability of the state features and metrics as future work.

28

Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Observa-
tion D.3

Correct Incorrect

CoT 1.026 0.975
L2M 1.026 0.989
ToT 1.004 0.987

MCTS 1.002 0.985

(b) Verifying Observa-
tion D.4 and 3.1

Speed Accuracy

CoT 0.322 84.4%
L2M 0.224 82.2%
ToT 0.205 81.6%

MCTS 0.198 75.8%

(c) Verifying Observation D.1

AQuA MMLU StrategyQA Common
SenseQA

AQuA 1.0 0.914 0.895 0.859
MMLU 0.914 1.0 0.870 0.843

StrategyQA 0.895 0.870 1.0 0.889
Common
SenseQA 0.859 0.843 0.889 1.0

F Supplementary Results and Analysis

F.1 Statistical Verification of the Observations

In this part, we conduct extra experiments and statistically verify Observations 3.1, D.1, D.3, and D.4,
while the other Observations 3.2, D.2, and D.5 have been quantitatively verified by the metrics in
Sec. 2.3.

To verify Observations D.3, we calculate the convergence coefficient (eβ) by fitting a log-linear
regression model to the sequence of distances di between each state and the final answer as log(di) ≈
α+ βi, where α is the intercept term; β is the slope coefficient that quantifies convergence behavior;
i represents the position index in the reasoning chain. Lower values of eβ indicate faster convergence.
For Observations 3.1 and D.4, we measure the speed of a reasoning path moving from start to end as
speed = ∥s̄n−s̄0∥∑

j=1n∥s̄j−s̄j−1∥ ∈ [0, 1], where s̄i represents the 2D coordinate of the state i. Whereas
Observation D.1, we compute pairwise histogram intersection scores of the density distributions.
Lower scores indicate greater dissimilarity between landscapes.

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while
incorrect paths show more convergence (p-value = 0.008), thus verifying Obs. D.3. As shown in
Tab. 1(b), speed and accuracy correlate strongly (p-value = 9.421e-11), thus verifying Observation D.4.
This is also applicable for verifying Observation 3.1. Tab. 1(c) shows that lower scores indicate
greater dissimilarity between landscapes, which verifies Observation D.1, i.e., AQuA, MMLU, and
StrategyQA are more similar, while CommonSenseQA exhibits distinct patterns.

F.2 Analysis of Reasoning Trajectory Convergence

We aim to investigate Observation D.4 quantitatively to show its consistency with the statistical result.
Specifically, we analyzed all questions from the AQuA dataset using the Llama-3.1-8B-Instruct
model with the CoT method. Among the 500 reasoning trajectories (50 questions, with 10 trajectories
per problem), we observed that cases where a reasoning chain initially approached the correct
answer’s path but later diverged to an incorrect conclusion were quite rare: only 4 questions (8% of
all questions) exhibited this phenomenon, accounting for just 9 reasoning trajectories (1.8% of all
trajectories). This indicates that such failure cases are infrequent within the overall set of generated
reasoning trajectories.

Thoughts that diverge from the correct answer exhibit remarkable proximity at certain states. We
quantify the proximity by measuring the distance between states: a smaller distance indicates that the
state is closer to the correct answer. Notably, in the following example, the chain’s reasoning reached
a minimum distance of just 0.077 from the correct path before drifting to a final distance of 0.182.
This reveals that even incorrect answers may closely track the correct reasoning at key moments.

We provide a concrete example of such a failure in the following reasoning chain for a question below,
where the correct answer is B) 28%.

29

An example of reasoning that is close to the correct answer at intermediate thoughts but
finally converges to the incorrect answer

> Q: The original retail price of an appliance was 60 percent more than its wholesale cost. If
the appliance was actually sold for 20 percent less than the original retail price, then it was
sold for what percent more than its wholesale cost?
> Options: A) 20% B) 28% C) 36% D) 40% E) 42%
The model’s output is:
> 1. "To find the percent more than the wholesale cost for which the appliance was sold, we
need to break down the calculations step by step."
> ...
> 11. "So, (0.28x / x) * 100 = 28%." → The state that is closest to the correct answer, with a
distance of 0.077.
> 12. "Therefore, the appliance was sold for 28% more than its wholesale cost."
> 13. "The answer is C." → Eventually, this state reaches the incorrect answer, with distance
as 0.182

F.3 Further Investigation on the Consistency Metric

In the Tab. 2, we analyze the model responses for drawing Fig. 5 and report (1) the average number of
thoughts, (2) the average number of tokens in a thought, and (3) the average consistency of different
thoughts.

Table 2: The relation of consistency with the number of thoughts and tokens
Model Avg. Thoughts Avg. Tokens Avg. Consistency

Llama-3.2-1B 8.07 346.81 0.51
Llama-3.2-3B 11.73 439.37 0.40
Llama-3.1-8B 21.38 715.56 0.48

Llama-3.1-70B 13.55 442.72 0.51

As can be seen, the 8B/70B models produce more thoughts than the 1B/3B models; meanwhile,
their intermediate states of correct chains in blue are more consistent than those of the 1B/3B model.
The Pearson correlation coefficient between CoT length (thoughts) and consistency is only -0.0185,
indicating a very weak negative correlation that is not approaching either +1 or -1. Hence, higher
consistency doesn’t correlate with shorter chains. Fewer CoT steps do not necessarily indicate
higher consistency.

As we introduced in Sec. 2.3, the consistency metric is used to understand whether the LLM knows the
answer before generating all thoughts. Here, the observation “larger models have higher consistency”
actually indicates that a larger model has a higher probability of knowing its final answer in its middle
steps of reasoning. We believe that this observation is new and insightful to the community.

In addition, we investigate whether the consistency is meaningful for the reasoning outcome or if it
consistently decreases as the thoughts increases. We ask the Llama 3.1 8B Instruct model to generate
some random thoughts, using a temperature of 0.7 to encourage more varied responses. For each
of the 10 questions we select from AQuA, we then randomly combine different numbers of these
thoughts to create 50 chains for each question, with the number of thoughts ranging from 2, 4, 8, 16,
or 32. After generating these chains, we calculate the distance matrix and report the consistency, as
shown in Tab. 3. Notably, as the length of the chain of random thoughts increases, the consistency
consistently decreases, regardless of the correctness, which justifies that consistency will not
increase as n increases.

Besides, we conduct extra experiments on a harder task across model scales and show that larger
models achieve higher consistency than smaller models on both easy and hard tasks. Specifically,
we apply the MMLU-Pro [57] as a harder benchmark. MMLU-Pro is a more challenging version of
MMLU (adopted in this work), extending the MMLU dataset by integrating more reasoning-focused
questions. We sample problems from the MMLU-Pro Math subset and evaluate models of different
scales, following the consistency calculation. The experiment results are shown as follows:

30

Table 3: Consistency Metrics Across Random Thoughts

Consistency The number of random thoughts
2 4 8 16 32

Correct Paths 0.77 0.80 0.80 0.75 0.66
Incorrect Paths 0.90 0.92 0.92 0.79 0.79

Table 4: Accuracy and consistency on MMLU and MMLU-Pro across different models.

Model MMLU
Accuracy

MMLU
Consistency

MMLU-Pro
Accuracy

MMLU-Pro
Consistency

Llama-3.2-1B Instruct 0.20 0.40 0.05 0.17
Llama-3.2-3B Instruct 0.46 0.41 0.30 0.26
Llama-3.1-8B Instruct 0.66 0.41 0.30 0.20

Llama-3.1-70B Instruct 0.86 0.55 0.40 0.52

The above results show that larger models have substantially higher consistency on both the
easy task (MMLU) and the hard task (MMLU-Pro) than smaller models. Here are some detailed
observations: (1) Notably, on the hard task, the 70B model still has a higher consistency than the
1B/3B/8B model on either the hard task or the easy task. (2) Besides, the 70B model achieves a
similar consistency on easy and hard tasks (0.55 and 0.52, respectively). (3) However, the 8B model
drops significantly from easy to hard tasks (from 0.41 to 0.20).

F.4 Further Discussion on the StrategyQA

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer
in Fig. 4(c), is not due to our visualization method but to the unstable reasoning process in the Llama-
3.1-70B using CoT on StrategyQA. This model struggles to reliably represent its self-generated
intermediate thoughts, presenting consistency between intermediate thoughts and final predictions,
thus leading to the abnormal patterns observed.

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable
reasoning, as it fails to maintain coherent reasoning even when approaching the final answer. In
addition, the landscape exhibits the highest perplexity compared to other models, indicating low
confidence in its generated thoughts, which undermines the reliability of the estimated feature matrix
used in our visualization.

Further, we provide landscape visualizations for the same dataset using other models and methods in
Fig. 24 to Fig. 27. These landscapes do not exhibit the same abnormal density patterns, reinforcing that
the issue is specific to Llama-3.1-70B’s reasoning instability rather than a flaw in our visualization.

F.5 Comparing the Perplexity among Different Models

We conduct experiments to calculate the average perplexity of models in our visualization. Consistent
with the prior works, we find that different models present similar perplexity when decoding the
same set of CoTs. Here, we first generate a set of CoTs from the AQuA dataset using Llama-3.1-70B
Instruct. Then, we use models from the same family (i.e., Llama-3.2-1B Instruct, Llama-3.2-3B
Instruct, Llama-3.1-8B Instruct, and Llama-3.1-70B Instruct) to compute the average perplexity on
decoding the same set of CoTs. This control experiment isolates the effect of a model’s inherent
perplexity calculation from the variation of its generated thoughts.

As shown in Tab. 5, while there is a slight variation in perplexity, the values all fall within a comparably
narrow range (from 1.4 to 2.0). This demonstrates that for decoding the same CoTs, different models
in the Llama-3 family produce similar and comparable perplexity scores.

In addition, in Fig. 2, we measure the perplexity of decoding CoTs generated by the models themselves.
In this context, perplexity reflects both a model’s reasoning capabilities and the comprehension of
its generated content. To some extent, the above findings support the validity of the comparison of
perplexity across models in our study.

31

(a) Llama-3.2-1B with CoT on StrategyQA

(b) Llama-3.2-3B with CoT on StrategyQA

(c) Llama-3.1-8B with CoT on StrategyQA

(d) Llama-3.1-70B with CoT on StrategyQA

Figure 24: The landscapes of the model across scales (using CoT on the StrategyQA dataset).

F.6 Additional Experiments on the Verifier

Absolute Performance of the Verifier. In this part, we provide the absolute performance of
the experiment conducted in Fig. 23. Shown as Tab. 6, the results demonstrate that our approach
consistently provides improvements across different domains and models.

Variants of Verifier. In this part, we extend it into a process verifier and validate its effective-
ness through additional experiments. Our lightweight verifier functions as an outcome reward
model (ORM), assessing the correctness of an entire reasoning path. Specifically, the process ver-
ifier predicts the accuracy of each reasoning state using features from the current and all previous
thoughts. State accuracy reflects whether the current state is closer to the correct answer (measured
by perplexity) than other answers. We then aggregate these predictions across the chain to estimate
overall accuracy.

Empirically, we collect the state-wise data by comparing the state features and the correct answers,
and train the process verifier. Note, we do not need to manually annotate the step-wise rewards

32

(a) Llama-3.2-1B with L2M on StrategyQA

(b) Llama-3.2-3B with L2M on StrategyQA

(c) Llama-3.1-8B with L2M on StrategyQA

(d) Llama-3.1-70B with L2M on StrategyQA

Figure 25: The landscapes of the model across scales (using L2M on the StrategyQA dataset).

to train conventional PRMs. Results in Tab. 7 show that this process verifier is comparable to the
outcome verifier.

Comparing the lightweight verifier with existing verifiers. In the following, we compare our
lightweight verifier with the other two types of existing verifiers: the LM-based verifier and the
model-self verifier.

The LM-based verifier leverages another powerful LLM (not the model to do reasoning) to seman-
tically analyze reasoning trajectories, mimicking human expert evaluation to detect errors in the
trajectories. These verifiers rely on extensive, specially curated datasets (e.g., PRM800k [30]) to train
a language model for process verification. Here, collecting high-quality training data often requires
detailed, fine-grained annotations of reasoning steps, which can be costly and time-consuming. More-
over, training this verifier (often itself a large language model) incurs much additional computational
expense. In contrast, our lightweight verifier is much more efficient to train, as it requires no human
annotations and only uses easily obtainable data that is collected from the model to do reasoning.

33

(a) Llama-3.2-1B with MCTS on StrategyQA

(b) Llama-3.2-3B with MCTS on StrategyQA

(c) Llama-3.1-8B with MCTS on StrategyQA

(d) Llama-3.1-70B with MCTS on StrategyQA

Figure 26: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).

As for the model-self verifier [29, 60], it utilizes features derived from the model itself, such as
uncertainty, perplexity, or entropy, eliminating the need for an external model and enhancing efficiency
in search-based methods. While these model-self verifiers are training-free and efficient, they lack
the learnability to be trained and optimized, as the model is not trained on the downstream task, and
thus it can be suboptimal. In contrast, our verifier is specifically trained with the downstream task’s
data collected from the model, ensuring greater reliability compared to model-self verifiers.

Therefore, our landscape-based lightweight verifier offers distinct advantages in terms of efficiency
and reliability over the other two types of verifiers.

Ablation study on verifier. We conduct an extra ablation study on training the verifier with either
consistency or 2D information. We report the accuracy of reasoning under Least-to-Most with
different model scales, averaged across different datasets.

34

(a) Llama-3.2-1B with ToT on StrategyQA

(b) Llama-3.2-3B with ToT on StrategyQA

(c) Llama-3.1-8B with ToT on StrategyQA

(d) Llama-3.1-70B with ToT on StrategyQA

Figure 27: The landscapes of the model across scales (using ToT on the StrategyQA dataset).

As shown in the Tab. 8, the combination of the consistency score and 2D information delivers the
best overall accuracy. This shows that our verifier could utilize the complementary aspects of both
kinds of features to access the reasoning chains and thus boost reasoning accuracy.

F.7 Further Experiments on the Scaling Effect

We present experiments and demonstrate that combining both information sources is the best choice,
with significant gains from more sampled trajectories (i.e., test-time scaling) compared to the verifier
trained with either feature, as can be seen in Tab. 9. Here, we report the accuracy using the Llama-3.2-
3B Instruct model on the StrategyQA dataset as follows. As can be seen, the advantages of using both
information sources increase with more sampled trajectories, especially for more than 20 sampled
trajectories. In contrast, verifiers trained only on consistency or 2D information peak earlier, showing
no notable performance gains beyond 10 sampled trajectories.

35

Table 5: Comparison of the perplexity of CoTs of correct and incorrect reasoning.
Model Avg. Perplexity (Correct CoTs) Avg. Perplexity (Wrong CoTs)

Llama-3.2-1B Instruct 1.68 1.96
Llama-3.2-3B Instruct 1.72 1.69
Llama-3.1-8B Instruct 1.61 1.49

Llama-3.1-70B Instruct 1.56 1.42

Table 6: Absolute accuracy with the verifier, compared to performance in Fig. 21 (without the
verifier).

(a) Across datasets
AQuA MMLU StrategyQA Common

SenseQA

AQuA 63.0 (+0.7) 62.3 (+0.0) 62.3 (+0.0) 64.0 (+1.7)
MMLU 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0)

StrategyQA 41.5 (+4.5) 40.5 (+3.5) 43.0 (+6.0) 37.0 (+0.0)
Common
SenseQA 54.0 (+1.0) 53.0 (+0.0) 53.0 (+0.0) 54.0 (+1.0)

(b) Across models
1B 3B 8B 70B

1B 26.0 (+0.5) 27.5 (+2.0) 27.5 (+2.0) 27.5 (+2.0)
3B 45.5 (+0.0) 48.0 (+2.5) 51.0 (+5.5) 51.0 (+5.5)
8B 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0)

70B 74.0 (+2.0) 73.0 (+1.0) 72.5 (+0.5) 72.5 (+0.5)

F.8 Landscapes with Different Methods of Dimensionality Reduction

t-SNE is widely adopted in non-linear projection for visualisations, which makes the plots more
interpretable. Beyond t-SNE [7], several advanced dimensionality reduction techniques have been
developed to improve visualization quality and efficiency. UMAP [37] outperforms t-SNE by better
balancing local and global structure preservation while offering greater speed and scalability for large
datasets. TriMAP [4] prioritizes both local and global preservation but tends to emphasize global
structure in practice, potentially at the expense of local details. PaCMAP [56] achieves a robust
balance between local and global structure preservation by incorporating neighbors, mid-near points,
and further points, resulting in high-quality visualizations across diverse scenarios.

In addition, our goal is to develop a visualization tool to help users analyze the reasoning behaviors of
LLMs. If necessary, we can change the adopted t-SNE to more advanced methods of dimensionality
reduction. Our tool is designed to be compatible with these methods.

Next, we experiment with different dimensionality reduction methods, including t-SNE, UMAP, and
PacMAP, to visualize the landscape. Across all three visualization techniques, we consistently
observe the same overarching dynamics in the reasoning process. In the early stages (0–40% of
states), the thought states are widely dispersed. As reasoning progresses, states gradually converge
toward the final answer choices. Importantly, a clear distinction emerges between correct and incorrect
reasoning paths, regardless of the selection of different dimensionality reduction methods. Incorrect
paths tend to converge rapidly toward wrong answers early in the process, while correct paths exhibit
a more gradual and deliberate progression, only clustering tightly around the correct answer in the
final stages (80–100% of states).

We provide landscape visualizations in Fig. 28 with different dimensionality reduction methods.
While the specific geometry and density of clusters may vary between t-SNE, UMAP, and PacMAP,
the fundamental narrative is unchanged: the landscape of thoughts consistently reveals that incorrect
reasoning solidifies quickly, whereas correct reasoning is characterized by a slower, more refined
convergence. This consistency across different dimensionality reduction algorithms demonstrates that
our observations are not artifacts of a particular visualization technique, but rather reflect intrinsic
properties of the model’s reasoning process.

F.9 Robustness of Sentence Tokenization

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the
granularity of the sentence tokenization, we conduct a controlled experiment by considering two
imperfect cases in thought split, namely over-split thoughts and under-split thoughts.

Specifically, shown as Fig. 29 (a), compared to the original thoughts split that transform sentences to
thoughts based on the period, over-split thoughts jointly consider the comma, resulting in additional

36

Table 7: Performance comparison of reasoning methods across model scales on the AQuA dataset,
with and without verifiers.

Model Method Without Verifier With Outcome Verifier With Process Verifier

Llama-3.2-1B
CoT 0.26 0.28 0.26
L2M 0.22 0.24 0.29
ToT 0.35 0.38 0.35
MCTS 0.29 0.32 0.31

Llama-3.2-3B
CoT 0.46 0.51 0.46
L2M 0.29 0.31 0.31
ToT 0.33 0.35 0.33
MCTS 0.35 0.36 0.35

Llama-3.1-8B
CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
ToT 0.50 0.53 0.50
MCTS 0.50 0.51 0.50

Llama-3.1-70B
CoT 0.72 0.73 0.73
L2M 0.72 0.72 0.73
ToT 0.74 0.74 0.74
MCTS 0.72 0.73 0.72

Table 8: Ablation study on data employed for training the verifier.
1B 3B 8B 70B

Consistency only 0.21 0.31 0.59 0.71

2D information only 0.20 0.31 0.61 0.71

Consistency + 2D information 0.24 0.31 0.62 0.72

splits. For the under-split, two adjacent thoughts are merged into one thought. We then visualize the
imperfect thought splits using CoT on AQuA following the setting in Fig. 5(a) and Fig. 2(c),

Shown in Fig. 29 (b) and (c), the landscapes are robust to the split thoughts’ information volume,
which are stable and consistent with our observations. Notably, for over-split thoughts, the states
are more visually diverse but eventually converge to the answers. Whereas under-split thoughts, the
states show a more compact pattern and exhibit a clear convergence trend toward the answer.

37

Table 9: Performance of the verifier given different numbers of sampled paths.
Sampled Paths Consistency 2D Information Consistency + 2D Information

1 0.32 0.32 0.32
10 0.32 0.32 0.34
20 0.32 0.30 0.46
30 0.32 0.36 0.56
40 0.32 0.34 0.68
50 0.32 0.30 0.66

(a) tSNE

(b) PaCMAP

(c) UMAP

Figure 28: The landscapes of thought visualization with different dimensionality reduction methods
(Llama-3.1-70B with CoT on AQuA).

Let's break down the problem step by step.

To begin, it is helpful to draw a diagram of the situation.

Original
Thoughts

Let's break down the problem step by step.

To begin, it is helpful to draw a diagram of the situation.

Over-spilt
Thoughts

Let's break down the problem step by step.

To begin, it is helpful to draw a diagram of the situation.

Under-split
Thoughts

(a) Demonstration of Sentence Tokenization (b) Llama-3.1 8B (c) Llama-3.1 70B

Figure 29: Demonstration of sentence tokenization methods for thoughts splitting.

38

	Introduction
	Landscape of Thoughts
	Problem Formulation
	Qualitative Visualization with Landscapes
	Quantitative Visualization with Metrics

	Results and Observations
	Conclusion
	Further Discussions
	Challenges in Analyzing LLM's Reasoning Automatically
	A Comparison Between Landscape Visualization and Textual Analysis
	The Intrinsic Relationship Between Visualization and Metrics
	Discussion on Results and Observations
	Potential Extension to Pruning Unpromising Trajectories
	Potential Extension to Identify Post-hoc Trajectories
	Limitations and Future Directions
	A Comparison Between Lightweight Verifier and Reward-guided Algorithms

	Related Work
	Experiment Settings
	Setup
	Datasets
	Decoding Algorithms

	Visulizations
	Comparison across Reasoning Tasks
	Comparison across Reasoning Methods
	Supplementary Visualization

	Adapting Visualization to Predictive Models
	A Lightweight Verifier
	Experimental Results

	Supplementary Results and Analysis
	Statistical Verification of the Observations
	Analysis of Reasoning Trajectory Convergence
	Further Investigation on the Consistency Metric
	Further Discussion on the StrategyQA
	Comparing the Perplexity among Different Models
	Additional Experiments on the Verifier
	Further Experiments on the Scaling Effect
	Landscapes with Different Methods of Dimensionality Reduction
	Robustness of Sentence Tokenization

