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ABSTRACT

Standard reinforcement learning from human feedback (RLHF) approaches rely-
ing on parametric models like the Bradley-Terry model fall short in capturing the
intransitivity and irrationality in human preferences. Recent advancements sug-
gest that directly working with preference probabilities can yield a more accurate
reflection of human preferences, enabling more flexible and accurate language
model alignment. In this paper, we propose a self-play-based method for lan-
guage model alignment, which treats the problem as a constant-sum two-player
game aimed at identifying the Nash equilibrium policy. Our approach, dubbed
Self-Play Preference Optimization (SPPO), utilizes iterative policy updates to
provably approximate the Nash equilibrium. Additionally, we propose a new
SPPO objective which is both strongly motivated by theory and is simple and
effective in practice. In our experiments, using only 60k prompts (without re-
sponses) from the UltraFeedback dataset and without any prompt augmentation,
by leveraging a pre-trained preference model PairRM with only 0.4B parameters,
SPPO can obtain a model from fine-tuning Mistral-7B-Instruct-v0.2 that achieves
the state-of-the-art length-controlled win-rate of 28.53% against GPT-4-Turbo on
AlpacaEval 2.0. It also outperforms the (iterative) DPO and IPO on MT-Bench,
Arena-Hard, and the Open LLM Leaderboard. Starting from a stronger base
model Llama-3-8B-Instruct, we are able to achieve a length-controlled win rate
of 38.77%. Notably, the strong performance of SPPO is achieved without addi-
tional external supervision (e.g., responses, preferences, etc.) from GPT-4 or other
stronger language models.

1 INTRODUCTION

Large Language Models (LLMs) (e.g., Ouyang et al., 2022; OpenAI et al., 2023), have shown re-
markable capabilities in producing human-like text, fielding questions, and coding. Despite their
advancements, these models encounter challenges in tasks requiring high levels of reliability, safety,
and ethical alignment. To address these challenges, Reinforcement Learning from Human Feedback
(RLHF), also known as Preference-based Reinforcement Learning (PbRL), presents a promising so-
lution. This framework for policy optimization, highlighted in works by Christiano et al. (2017) and
recently in Ouyang et al. (2022), has led to significant empirical success in fine-tuning instruction-
following LLMs, making them more aligned with human preferences and thus more helpful.
Most existing approaches to RLHF rely on either explicit or implicit reward models. Taking In-
structGPT (Ouyang et al., 2022) as an example, a reference policy πref is first established, typically
from supervised pre-training or instruction-based (supervised) fine-tuning. An explicit reward func-
tion is obtained by training a reward model based on human preference feedback data, employing
the Bradley-Terry (BT) model (Bradley & Terry, 1952). Subsequently, reinforcement learning al-
gorithms such as Proximal Policy Optimization (Schulman et al., 2017, PPO) are used to fine-tune
the reference LLM πref by maximizing the expected reward function. The reward model provides
a “reward score” r(y;x) for the given response y and prompt x, approximately reflecting how hu-
mans value these responses. More recently, methods like Direct Preference Optimization (Rafailov
et al., 2024b, DPO) have been introduced. These methods forgo the training of a separate reward
model but still fundamentally adhere to the reward maximization objective and are determined by
parametric models such as the BT model.
These models presuppose a monotonous and transitive relationship among preferences for different
choices. However, empirical evidence suggests otherwise. For instance, Tversky (1969) observed
human decisions can be influenced by different factors and exhibit inconsistency. Such observations
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indicate that human preferences do not always adhere to a single, value-based hierarchy and can even
appear irrational, such as exhibiting loops in preference relations. For LLMs, another motivating
evidence is that Munos et al. (2023) has empirically shown that directly predicting the pairwise
preference can achieve higher accuracy than predicting the preference via a BT-based reward model.
To address the inconsistency in human preference, researchers have proposed to work directly with
the preference probability and design algorithms that can more flexibly represent human preferences
(Lou et al., 2022; Wu et al., 2023) in the ranking or bandit setting. Recently, an emerging line of
work (Wang et al., 2024; Munos et al., 2023; Swamy et al., 2024) also proposed to study RLHF for
LLMs under such general preference P(y ≻ y′|x), where y and y′ are two different responses and
x is prompt. The goal is to identify the Nash equilibrium or von Neumann winner of the two-player
constant-sum game

(π∗, π∗) = argmax
π

min
π′

Ex∼X

[
Ey∼π(·|x),y′∼π′(·|x)

[
P(y ≻ y′|x)

]]
,

where each player is an LLM that outputs responses and aims to maximize its probability of being
preferred over its opponent.
Independent from our work, Swamy et al. (2024) proposed Self-play Preference Optimization
(SPO)1 for the same (unregularized) two-player constant-sum game. They provide a general re-
duction of preference optimization to no-regret online learning for the multi-step Markov Decision
Process. When constrained to the bandit setting for LLMs, their proposed algorithmic framework
reduces to the famous Hedge algorithm (Freund & Schapire, 1997), which admits the exponential
update rule as described in (3.1). To approximately solve the exponential update, Swamy et al.
(2024) then proposed to employ typical policy optimization algorithms such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017) or Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to
maximize the win rate against the reference policy and evaluated the performance of their self-play
algorithms in robotic and game tasks. However, it typically requires more effort to apply PPO or
SAC to large-scale fine-tuning of LLM and make them work stably. Therefore, it remains unclear
how their self-play framework can be applied to large-scale language model alignment efficiently.
In this paper, motivated by these developments mentioned above, we propose a new self-play algo-
rithm that (1) enjoys provable guarantees to solve the two-player constant-sum game; and (2) can
scale up to large-scale efficient fine-tuning of large language models. In detail, we formulate the
RLHF problem as a constant-sum two-player game. Our objective is to identify the Nash equilib-
rium policy, which consistently provides preferred responses over any other policy on average. To
identify the Nash equilibrium policy approximately, we adopt the classic online adaptive algorithm
with multiplicative weights (Freund & Schapire, 1999) as a high-level framework that solves the
two-player game. Further, each step of the high-level framework can be approximated by a self-play
mechanism, where in each iteration the policy is playing against itself in the previous iteration by
fine-tuning it on synthetic data that are generated by the policy and annotated by the preference
model.
Our contributions are highlighted as follows:

• Starting from the exponential weight update algorithm which provably converges to the Nash equi-
librium of the two-player constant-sum game, we propose the Self-Play Preference Optimization
(SPPO) algorithm for large language model alignment. The algorithm converges to an approxi-
mate Nash equilibrium provably and admits a simple form of loss function for easy optimization.

• Unlike the symmetric pairwise loss such as DPO and Identity Preference Optimization (IPO) (Azar
et al., 2023), we propose a new optimization objective that does not rely on pairwise comparisons.
The new loss objective (3.4), initially driven by game-theoretical concepts, turns out strongly
motivated by the policy gradient theory and implicitly encourages the LLM to learn a token-level
optimal value function.

• Empirically, SPPO significantly enhances the well-aligned Mistral-7B-Instruct-v0.2 and Llama-
3-8B-Instruct model, achieving an increase of over 11% on the length-controlled win rate against
GPT-4-Turbo on the AlpacaEval 2.0 (Dubois et al., 2024a) test set. Additionally, SPPO exhibits
strong generalist abilities across different tasks, including MT-Bench, the Open LLM Leader-
board, and the more recent, more challenging benchmark, Arena-Hard. Unlike iterative DPO/IPO,

1The SPO framework does not pertain to the efficient fine-tuning of LLMs. Our Self-Play Preference
Optimization (SPPO) focuses on LLM alignment and was developed independently. To distinguish it from
the SPO framework, we use the abbreviation SPPO.
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which tends to show performance decay on other benchmarks when optimized towards the PairRM
score, SPPO’s performance gain is consistent. Notably, all the strong performances are achieved
without external supervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger
language models.

Concurrent to our work, several studies, including Direct Nash Optimization (Rosset et al., 2024)
and REBEL (Gao et al., 2024) have also explored using either cross-entropy loss or square loss
minimization to approximate the exponential update. Specifically, they used the same trick proposed
in DPO (Rafailov et al., 2024b) to cancel out the log-partition factor and directly regress on the win-
rate difference. However, it is shown theoretically and empirically by Pal et al. (2024) that the
pairwise loss may only drive the relative likelihood gap to be large, but may not necessarily drive up
the likelihood of the preferred responses. Our method instead has a deeper connection to the policy
gradient theory and can effectively match the likelihood of the response to its win rate. We postpone
the detailed discussion of related works to Appendix A.

2 PRELIMINARIES

We consider the preference learning scenario as follows. Given a text sequence (commonly referred
to as prompt) x = [x1, x2, . . . ], two text sequences y = [y1, y2, . . . ] and y′ are generated as re-
sponses to the prompt x. An autoregressive language model π given the prompt x can generate
responses y following the probability decomposition

π(y|x) =
N∏
i=1

π(yi|x,y<i).

Given the prompt x and two responses y and y′, a preference oracle (either a human annotator or
a language model) will provide preference feedback o(y ≻ y′|x) ∈ {0, 1} indicating whether y is
preferred over y′. We denote P(y ≻ y′|x) = E[o(y ≻ y′|x)] as the probability of y “winning the
duel” over y′. The KL divergence of two probability distributions of density p and q is defined as
KL(p∥q) = Ey∼p(y)

[
log p(y)

q(y)

]
.

2.1 RLHF WITH REWARD MODELS

Christiano et al. (2017) first learn a reward function r(y;x) following the Bradley-Terry
model (Bradley & Terry, 1952). For a prompt-response-response triplet (x,y,y′), the Bradley-
Terry model specifies the probability of y being chosen over y as

P(y ≻ y′|x) = exp(r(y;x))

exp(r(y;x)) + exp(r(y′;x))
= σ

(
r(y;x)− r(y′;x)

)
, (2.1)

where σ(x) = ex/(ex+1) is the logistic function. The reward function associated with the Bradley-
Terry model can be estimated by maximizing the log-likelihood logP(y ≻ y′|x). Suppose the
true reward function r(y;x)) is available, Christiano et al. (2017) proposed to solve the following
optimization problem with policy optimization algorithms in RL such as PPO (Schulman et al.,
2017):

max
θ

Ex∼X ,y∼πθ(·|x)[r(y;x)]− η−1Ex∼X [KL(πθ(·|x)∥πref(·|x))], (2.2)

where X is the prompt distribution.
Rafailov et al. (2024b) identified that the optimization problem above has a closed-form solution
such that for any y,

π∗(y|x) ∝ πref(y|x) exp(ηr(y;x)),

which can be further converted to the DPO loss for any triplet (x,yw,yl) where the winner yw is
chosen over the loser yl:

ℓDPO(x,yw,yl;θ;πref) := − log σ

(
η−1

[
log

(
πθ(yw|x)
πref(yw|x)

)
− log

(
πθ(yl|x)
πref(yl|x)

)])
.
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2.2 RLHF WITH GENERAL PREFERENCE

Following Wang et al. (2024); Munos et al. (2023), we aim to establish RLHF methods without
a reward model, as the human preference can be non-transitive (Tversky, 1969). Under a general
preference oracle P(y ≻ y′|x), we follow Dudı́k et al. (2015) and aim to identify the von Neumann
winner. More specifically, the von Neumann winner π∗ is the (symmetric) Nash equilibrium of the
following two-player constant-sum game:

(π∗, π∗) = argmax
π

min
π′

Ex∼X

[
Ey∼π(·|x),y′∼π′(·|x)

[
P(y ≻ y′|x)

]]
. (2.3)

In addition, we define the winning probability of one response y against a distribution of responses
π as

P(y ≻ π|x) = Ey′∼π(·|x)[P(y ≻ y′|x)],

and the winning probability of one policy π against another policy π′ as

P(π ≻ π′|x) = Ey∼π(·|x)Ey′∼π′(·|x)[P(y ≻ y′|x)].

Furthermore, we define P(π ≻ π′) = Ex∼X [P(π ≻ π′|x)], where x is a prompt drawn from the
prompt distribution X . The two-player constant-sum game (2.3) can be simplified as

(π∗, π∗) = argmax
π

min
π′

P(π ≻ π′).

3 SELF-PLAY PREFERENCE OPTIMIZATION (SPPO)

In this section, we introduce the Self-Play Preference Optimization (SPPO) algorithm, derived from
the following theoretical framework.

3.1 THEORETICAL FRAMEWORK

There are well-known algorithms to approximately solve the Nash equilibrium in a constant-sum
two-player game. In this work, we follow Freund & Schapire (1999) to establish an iterative frame-
work that can asymptotically converge to the optimal policy on average. We start with a theoretical
framework that conceptually solves the two-player game as follows:

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)), for t = 1, 2, . . . . (3.1)

(3.1) is an iterative framework that relies on the multiplicative weight update in each iteration t and
enjoys a clear structure. Initially, we have a base policy π1 usually from some supervised fine-tuned
model. In each iteration, the updated policy πt+1 is obtained from the reference policy πt following
the multiplicative weight update. More specifically, a response y should have a higher probability
weight if it has a higher average advantage over the current policy πt.
Equivalently, (3.1) can be written as

πt+1(y|x) =
πt(y|x) exp

(
ηP(y ≻ πt|x)

)
Zπt

(x)
, (3.2)

where Zπt
(x) =

∑
y πt(y|x) exp

(
ηP(y ≻ πt|x)

)
is the normalizing factor (a.k.a., the partition

function). For any fixed x and y, the ideal update policy πt+1 should satisfy the following equation:

log

(
πt+1(y|x)
πt(y|x)

)
= η · P(y ≻ πt|x)− logZπt(x). (3.3)

Unlike the pair-wise design in DPO or IPO that cancels the log normalizing factor logZπt
(x) by

differentiating (3.3) between y and y′, we choose to approximate (3.3) directly in terms of L2

distance:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ πt|x)− logZπt

(x)
))2

. (3.4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Estimation of the Probability The optimization objective (3.4) can be approximated with finite
samples. We choose to sample K responses y1,y2, . . . ,yK ∼ πt(·|x) for each prompt x, and de-
note the empirical distribution by π̂K

t . The finite-sample optimization problem can be approximated
as

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ π̂K

t |x)− logZπ̂K
t
(x)
))2

. (3.5)

Specifically, P(y ≻ π̂K
t |x) =

∑K
k=1 P(y ≻ yk|x)/K and Zπ̂K

t
(x) = Ey∼πt(·|x)[exp(ηP(y ≻

π̂K
t |x))]. Zπ̂K

t
(x), treated as an expectation, can be further estimated by B new samples with in total

O(KB) queries of the preference oracle P. (3.5) is an efficiently tractable optimization problem.
Informally speaking, when K → ∞, (3.5) will recover (3.4). We have the following guarantee on
the convergence of (3.4):

Theorem 3.1. Assume the optimization problem (3.4) is realizable. Denote πt as the policy ob-
tained via (3.4) and the mixture policy π̄T = 1

T

∑T
t=1 πt. By setting η = Θ(1/

√
T ), we have

that

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= O(1/

√
T ).

Theorem 3.1 characterizes the convergence rate of the average policy across the time horizon T
towards the Nash equilibrium, in terms of the duality gap. The proof is based on Theorem 1 in
Freund & Schapire (1999) with slight modification. For completeness, we include the proof in
Appendix F.
Alternatively, we can avoid estimating logZπ̂K

t
(x) by replacing it with a constant based on the

human preference model. The choice of the constant is discussed in detail in Appendix E. Here, we
replace logZπ̂K

t
(x) with η/22 in (3.5) to obtain a more clear objective:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
− η

(
P(y ≻ π̂K

t |x)−
1

2

))2

. (3.6)

Intuitively, if a tie occurs (i.e., P(y ≻ π̂K
t |x) = 1/2), we prefer the model does not update weight

at y. If y wins over π̂K
t on average (i.e., P(y ≻ π̂K

t |x) > 1/2), then we increase the probability
density at y to employ the advantage of y over π̂K

t . In our experiments, we choose to minimize
the objective (3.6). In Appendix B, we provide a detailed comparison between (3.6) and other loss
functions such as DPO and IPO.

3.2 THE SPPO ALGORITHM

Based on the aformentioned theoretical framework, we propose the Self-Play Preference Optimiza-
tion algorithm in Algorithm 1.
Algorithm 1 Self-Play Preference Optimization (SPPO)

1: input: base policy πθ1 , preference oracle P, learning rate η, number of generated samples K.
2: for t = 1, 2, . . . do
3: Generate synthetic responses by sampling x ∼ X and y1:K ∼ πt(·|x).
4: Annotate the win-rate P(yk ≻ yk′ |x),∀k, k′ ∈ [K].
5: Select responses from y1:K to form dataset Dt = {(xi,yi, P̂ (yi ≻ πt|xi))}i∈[N ].
6: Optimize πθt+1 according to (3.6):

θt+1 ← argmin
θ

E(x,y,P̂ (y≻πt|x))∼Dt

(
log

(
πθ(y|x)
πt(y|x)

)
− η

(
P̂ (y ≻ πt|x)−

1

2

))2

.

(3.7)

7: end for

In each iteration t, Algorithm 1 will first generate K responses y1,y2, . . . ,yK according to πt(·|x)
for each prompt x (Line 3). Then, the preference oracle P will be queried to calculate the win rate

2Assuming the winning probability between any given pair is either 1 or 0 with equal chance, when K →
∞, we can show that indeed Zπ̂K

t
(x) → eη/2. Also see Appendix E for a complete derivation.
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among the K responses (Line 4). At Line 5, certain criteria can be applied to determine which re-
sponse should be kept in the constructed dataset Dt and construct the prompt-response-probability
triplet (x,y, P̂ (y ≻ πt|x)). We will discuss the design choices later in Section 4. One straightfor-
ward design choice is to include all K responses into Dt and each P̂ (yi ≻ πt|x) is estimated by
comparing yi to all K responses. In total, O(K2) queries will be made. Then the algorithm will
optimize (3.6) on the dataset Dt (Line 6).

3.3 CONNECTION TO POLICY GRADIENT

While SPPO is derived from the iterative framework (Freund & Schapire, 1999) for two-player
games, the square loss in the SPPO objective (3.4) provides an alternative interpretation for SPPO
as a semi-online variant of policy gradient method due to its special loss form. The difference from
standard policy gradient is that it collects samples from πθt

at the start of iteration t, rather than
perform on-policy sampling at each gradient step.
Consider a general reward function r(y;x), the RLHF problem (2.2) can be written as:

max
θ

J(θ) := Ex∼X ,y∼πθ(·|x)

[
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

]
. (3.8)

The policy gradient of the objective J(θ) is:

∇J(θ) = Ex∼X ,y∼πθ(·|x)

[(
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

− b(x)

)
∇ log πθ(y|x)

]
(3.9)

=
η

2
Ex∼X ,y∼πθ(·|x)

[
−∇

(
r(y;x)− η−1 log

πθ(y|x)
πref(y|x)

− b(x)

)2]
, (3.10)

where the first line follows the policy gradient theorem (Sutton et al., 1999) and the baseline b(x)
is an arbitrary constant relying only on x used for variance reduction. Comparing the square loss
(3.10) with the SPPO objective (3.4) (rewritten below):

θt+1 = argmin
θ

Ex∼X ,y∼πθt (·|x)

[(
P(y ≻ πθt |x)− η−1 log

(
πθ(y|x)
πθt(y|x)

)
− η−1 logZπθt

(x)

)2]
,

one can see that the win rate P(y ≻ πθt
|x) is exactly the reward SPPO aims to maximize, and

η−1 logZπθt
(x) is in fact the best possible baseline–the (soft) value function. When the value func-

tion is not available in practice, it can be replaced by any constant baseline to reduce the variance of
the policy gradient. We choose 1/2 as a good approximation to η−1 logZπθt

(x) but the constant can
vary depending on the human preference model (see Appendix E). Equation (3.9) is also discussed
in Munos et al. (2023).
Comparing with the general framework proposed by Swamy et al. (2024), SPPO can be seen as a
new, straightforward variant of policy gradient method without the need of extra modifications such
as gradient clipping in PPO, Hessian calculation in TRPO, or maintaining multiple components
(Q-critic, V-critic, actor, etc.) in many policy optimization algorithms.

3.4 TOKEN-LEVEL Q∗ LEARNING

Rafailov et al. (2024a) showed that under the Max-Entropy RL formulation, the token-level log-ratio
log πθ(y|x)

πref(y|x) can be seen as an implicit token-level reward or advantage function (invariant under
reward shaping). Below we show the square loss in SPPO can also lead to the optimal Max-Entropy
policy π∗, with token-level optimal value/advantage function.
We first briefly restate the setting and results in Rafailov et al. (2024b). The token-level MDP defines
the state sh = (x, y1, y2, . . . , yh−1) as the prefix tokens, and the action ah = yh as the next token.
An auto-regressive language model π(y|x) can be viewed as a token-level policy π(ah|sh) and the
transition kernel is known and deterministic because it only concatenates the next token to the prefix
to form a new token sequence sh+1 = (x, y1, y2, . . . , yh).
The Max-Entropy RL setting again considers the reverse-KL regularized reward maximization prob-
lem (2.2):

max
θ

Ex∼X ,y∼πθ(·|x)[r(y;x)]− η−1Ex∼X [KL(πθ(·|x)∥πref(·|x))]

=Ex∼X ,y∼πθ(·|x)[r(y;x) + η−1 log πref(y|x)] + η−1Ex∼X [H(πθ(·|x))].
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We denote the optimal solution for the problem above as π∗. Rafailov et al. (2024a) showed that the
Bradley-Terry preference model (B.2) can be rewritten as:

P(yw ≻ yl|x) = σ

(
η−1

|yw|∑
h=1

log
π∗(awh |swh )
πref(awh |swh )

− η−1

|yl|∑
h=1

log
π∗(alh|slh)
πref(alh|slh)

)
,

where the state and action is defined as in the token-level MDP introduced above, with superscription
(·)w and (·)l denoting if it is for the winner yw or the loser yl. And maximizing the log likelihood
with π∗ replaced by πθ gives the DPO loss.
From now on we assume the horizon is fixed at H for simplicity. The derivation of the Max-Entropy
RL formulation relies on the (soft) optimal value function Q∗ and V ∗ as3:

V ∗(sH+1) = r(sH+1) := r(y;x), (reward at EOS)

Q∗(sh,ah) = η−1 log πref(ah|sh) + V ∗(sh+1),

V ∗(sh) = η−1 log
∑
a

exp
(
ηQ∗(sh,a)

)
, when h ≤ H.

Rafailov et al. (2024a) showed that the optimal policy π∗ satisfies:

η−1 log π∗(ah|sh) = Q∗(sh,ah)− V ∗(sh)

= η−1 log πref(ah|sh) + V ∗(sh+1)− V ∗(sh).

It can be verified that for s1 = (x), we have ηV ∗(s1) = log
∑

y πref(y|x) exp
(
ηr(y;x)

)
. Going

back to the SPPO objective (3.4) at t-th iteration, if we set πref = πt and r(y;x) = P(y ≻ πt|x),
we have V ∗(s1) = η−1 logZπt

(x), and the learning objective at t-th iteration becomes:

πt+1 = argmin
π

Ex∼X ,y∼πt(·|x)

(
log

(
π(y|x)
πt(y|x)

)
−
(
ηP(y ≻ πt|x)− logZπt

(x)
))2

= argmin
π

Es1∼X ,ah∼πt(·|sh)

( H∑
h=1

log
π(ah|sh)
π∗(ah|sh)

)2

. (3.11)

Similar to DPO, SPPO “secretly” encourages the policy πθ to converge to the optimal policy π∗

at token level via the square loss form (3.11). Additionally, one may realize that minimizing the
square-loss form is related to minimizing the KL divergence KL(πθ∥π∗) via policy gradient:

∇θKL(πθ∥π∗) = Es1∼X ,ah∼πθ(·|sh)

[( H∑
h=1

log
πθ(ah|sh)
π∗(ah|sh)

) H∑
h=1

∇θ log πθ(ah|sh)
]

= Es1∼X ,ah∼πθ(·|sh)

[
∇θ

( H∑
h=1

log
πθ(ah|sh)
π∗(ah|sh)

)2]
.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We briefly summarize our experiment setup as below. For a full description of our experiment setup,
see Section C.
Base Model and Datasets: We follow Snorkel’s experimental setup, using Mistral-7B-Instruct-v0.2
and Llama-3-8B-Instruct as our base models and Ultrafeedback for prompts. We split the dataset
into three portions to avoid overfitting and ensure fair comparison with Snorkel.
Preference Model: We use PairRM, a 0.4B pair-wise preference model based on DeBERTA-V3,
trained on high-quality human-preference datasets. PairRM outputs a ”relative reward” between any
given pair.

3Here we restated with the sequence-level reward r(y;x). Rafailov et al. (2024a) started their derivation
from a ground-truth token-level reward r(sh,ah), which is under-specified due to the reward reshaping is-
sue (Ng et al., 1999): reshaping the reward will not affect the Bradley-Terry preference probability so it is
impossible to recover the ground-truth reward from the preference signal (Rafailov et al., 2024a, Section 4.2).
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Table 1: AlpacaEval 2.0 evaluation of various models (detailed in Baselines) in terms of both normal
and length-controlled (LC) win rates in percentage (%). Mistral-7B-SPPO Iter3 model achieves the
highest LC win rate of 28.53% and a normal win rate of 31.02%. SPPO demonstrates steady per-
formance gains across iterations and outperforms other baselines which show a tendency to produce
longer responses. Additionally, re-ranking with the PairRM reward model (best-of-16) at test time
consistently enhances the performance across all models and SPPO (best-of-16) achieves high win
rate without strong external supervision like GPT-4. We additionally include the results obtained
from fine-tuning Llama-3-8B-Instruct, which also show steady performance improvement.

Model AlpacaEval 2.0
LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 17.11 14.72 1676
Mistral-7B-Instruct-v0.2 (best-of-16) 22.45 17.94 1529

Snorkel (Mistral-PairRM-DPO) 26.39 30.22 2736
Snorkel (Mistral-PairRM-DPO best-of-16) 29.97 34.86 2616

Self-Rewarding 70B Iter1 - 9.94 1092
Self-Rewarding 70B Iter2 - 15.38 1552
Self-Rewarding 70B Iter3 - 20.44 2552

Mistral-7B-DPO Iter1 23.81 20.44 1723
Mistral-7B-DPO Iter2 24.23 24.46 2028
Mistral-7B-DPO Iter3 22.30 23.39 2189

Mistral-7B-IPO Iter1 23.78 20.77 1693
Mistral-7B-IPO Iter2 21.08 23.38 2660
Mistral-7B-IPO Iter3 20.06 22.47 2760

Mistral-7B-SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855
Mistral-7B-SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019
Mistral-7B-SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

Mistral-7B-SPPO Iter1 (best-of-16) 28.71(+6.26) 27.77(+9.83) 1901
Mistral-7B-SPPO Iter2 (best-of-16) 31.23(+2.52) 32.12(+4.35) 2035
Mistral-7B-SPPO Iter3 (best-of-16) 32.13(+0.9) 34.94(+2.82) 2174

Llama-3-8B-Instruct 22.92 22.57 1899

Llama-3-8B-SPPO Iter1 31.73(+8.81) 31.74(+9.17) 1962
Llama-3-8B-SPPO Iter2 35.15(+3.42) 35.98(+4.24) 2021
Llama-3-8B-SPPO Iter3 38.77(+3.62) 39.85(+3.87) 2066

Response Generation and Selection: We sample K = 5 responses per prompt with top p = 1.0
and temperature 1.0. We select the responses with the highest and lowest PairRM scores as the
winning and losing responses respectively.
Baselines and Benchmarks: We evaluate Mistral-7B-Instruct-v0.2, Snorkel, iterative DPO and IPO
for Mistral, and Self-rewarding LM. Benchmarks include AlpacaEval 2.0, MT-Bench, Arena-Hard,
and the Open LLM Leaderboard. We also evaluate Llama-3-8B-Instruct on AlpacaEval 2.0.

4.2 EXPERIMENTAL RESULTS

Evaluation using GPT-4 as a judge Human evaluation remains the benchmark for quality and
accuracy (Askell et al., 2021; Ouyang et al., 2022). However, due to its limitations in scalability
and reproducibility, we explore the alternative approach of using the advanced capabilities of GPT-4
(OpenAI et al., 2023) as an automatic evaluation tool. We conduct GPT-4-based automatic eval-
uation on AlpacaEval 2.0 (Li et al., 2023b), MT-Bench (Zheng et al., 2023), and Arena-Hard (Li
et al., 2024) to measure the chatbot capability of our model. The results can be found in Table 1 for
AlpacaEval 2.0, Figure 1 (left) for MT-Bench, and Figure 1 (right) for Arena-Hard. We found that
the performance of SPPO models consistently improves throughout all iterations (iterations).
Table 1 (AlpacaEval 2.0) shows the win rate over the GPT-4-Turbo baseline of different models on
805 prompts. We also include one column indicating the length-controlled win rate, and one col-
umn on the average length of each model, to account for the tendency of the LLM-based judge to
favor longer sequence outputs — an issue colloquially termed the ”reward hacking” phenomenon.
According to the table, Mistral-7B-SPPO Iter3 has the highest win rate, 28.52% for the length-
controlled version, and 31.02% for the overall win rate. The performance gains over previous
iterations are 7.69% (Mistral-7B-Instruct → Iter1), 2.10% (Iter1 → Iter2), and 1.64% (Iter2 →
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Table 2: AlpacaEval 2.0 leaderboard results of both normal and length-controlled (LC) win rates in
percentage (%). Mistral-7B-SPPO can outperform larger models and Mistral-7B-SPPO (best-of-16)
can outperform proprietary models such as GPT-4(6/13). Llama-3-8B-SPPO exhibits even better
performance.

Model AlpacaEval 2.0
LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0
Claude 3 Opus 40.5 29.1
Llama-3-8B-SPPO Iter3 38.8 39.9
GPT-4 0314 35.3 22.1
Llama 3 70B Instruct 34.4 33.2
Mistral-7B-SPPO Iter3 (best-of-16) 32.1 34.9
GPT-4 0613 30.2 15.8
Snorkel (Mistral-PairRM-DPO best-of-16) 30.0 34.9
Mistral Medium 28.6 21.9
Mistral-7B-SPPO Iter3 28.5 31.0
Claude 2 28.2 17.2
Snorkel (Mistral-PairRM-DPO) 26.4 30.2
Gemini Pro 24.4 18.2
Mistral 8×7B v0.1 23.7 18.1
Llama 3 8B Instruct 22.9 22.6

Model MT-Bench
1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 7.78 7.25 7.51
Snorkel (Mistral-PairRM-DPO) 7.83 7.33 7.58

Mistral-7B-DPO Iter1 7.45 6.58 7.02
Mistral-7B-DPO Iter2 7.57 6.56 7.06
Mistral-7B-DPO Iter3 7.49 6.69 7.09

Mistral-7B-SPPO Iter1 7.63 6.79 7.21
Mistral-7B-SPPO Iter2 7.90 7.08 7.49
Mistral-7B-SPPO Iter3 7.84 7.34 7.59

Model Arena-Hard-Auto-v0.1

Mistral-7B-Instruct 12.6

Snorkel (Mistral-PairRM-DPO) 20.7

Mistral-7B-SPPO Iter1 18.7
Mistral-7B-SPPO Iter2 20.4
Mistral-7B-SPPO Iter3 23.3

Figure 1: MT-Bench & Arena-Hard Evaluation. Left: Mistral-7B-SPPO Iter3 outperforms all
baseline models by achieving an average score of 7.59 in MT-Bench. Despite initial drops in per-
formance in the first two iterations, SPPO Iter3 improves upon the base model by the final iteration.
Right: Mistral-7B-SPPO Iter3 outperforms the baseline model Snorkel(Mistral-PairRM-DPO) in
Arena-Hard. The improvement across different iterations is consistent.

Iter3), respectively, indicating steady improvements across iterations, as illustrated in Figure 2. We
also apply SPPO to a stronger baseline model, i.e., Llama-3-8B-Instruct, and the fine-tuned model
Llama-3-8B-SPPO has a higher length-controlled win rate 38.77% and overall win rate 39.85%.
The performance gains are more significant: 8.81% (Llama-3-8B-Instruct→ Iter1), 3.42% (Iter1→
Iter2), and 3.62% (Iter2→ Iter3), summing up to a total gain of 15.85%.
Additionally, the result indicates that SPPO achieves superior performance compared to the iterative
variants of DPO and IPO. The length-controlled win rate for SPPO reaches 28.53%, outperform-
ing the DPO’s best rate of 26.39% (by Snorkel) and IPO’s rate of 25.45%. Notably, while DPO
and IPO training tend to significantly increase the average output length—2736 and 2654, respec-
tively—SPPO shows a more moderate length increase, moving from 1676 in the base model to 2163
at the third iteration. Finally, we present the best-of-16 results for each model, selected using the
PairRM reward model. We find that re-ranking with the preference model at test time can con-
sistently improve the performance of base model (Mistral-7B-Instruct-v0.2), DPO (Snorkel), and
SPPO (Iter3) by 5.34%, 3.57%, and 3.6%, respectively. Notably, this shows that while SPPO sig-
nificantly enhances model alignment using PairRM-0.4B as the sole external supervision, it has not
resulted in over-optimization against the preference model (Gao et al., 2023).
In Table 2, we compare SPPO on the AlpacaEval 2.0 leaderboard with other state-of-the-art AI
chatbots. We found our SPPO model outperforms many competing models trained on proprietary
alignment data (e.g., Claude 2, Gemini Pro, & Llama 3 8B Instruct). When applied to Llama 3 8B
Instruct, our Llama-3-8B-SPPO exhibits an even higher win rate. With test-time reranking, Mistral-
7B-SPPO Iter3 (best-of-16) is even competitive to GPT-4 0613 and Llama 3 70B Instruct.
In Figure 1 (left), we evaluate the performance of SPPO on MT-Bench. We can see that Mistral-7B-
SPPO Iter3 outperforms all baseline models, achieving an average score of 7.59. While we are not
certain why the MT-Bench performance drops at the first two iterations, the performance of SPPO
at the final iteration still improves over the base model.
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Table 3: Open LLM Leaderboard Evaluation. SPPO fine-tuning improves the base model’s per-
formance on different tasks, reaching a state-of-the-art average score of 66.75 for Mistral-7B and
70.29 for Llama-3-8B. For Mistral-7B, subsequent iterations of DPO, IPO, and SPPO see a decline
in performance. It is possible that aligning with human preferences (simulated by the PairRM pref-
erence model in our study) may not always enhance, and can even detract from, overall performance.

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-7B-Instruct-v0.2 63.65 66.85 77.98 41.93 84.89 59.15 65.74

Snorkel 66.04 70.86 77.74 36.77 85.64 60.83 66.31

Mistral-7B-DPO Iter1 63.14 68.39 77.19 40.33 85.25 59.41 65.62
Mistral-7B-DPO Iter2 64.16 67.84 76.09 39.95 85.23 59.03 65.38
Mistral-7B-DPO Iter3 65.19 67.89 77.27 32.30 85.49 59.00 64.52

Mistral-7B-IPO Iter1 64.68 68.60 77.98 43.75 85.08 59.04 66.52
Mistral-7B-IPO Iter2 62.12 66.30 77.51 39.20 83.15 59.70 64.66
Mistral-7B-IPO Iter3 62.97 67.12 77.51 37.45 83.69 59.57 64.72

Mistral-7B-SPPO Iter1 65.02 69.40 77.82 43.82 85.11 58.84 66.67
Mistral-7B-SPPO Iter2 65.53 69.55 77.03 44.35 85.29 58.72 66.75
Mistral-7B-SPPO Iter3 65.36 69.97 76.80 42.68 85.16 58.45 66.40

Llama-3-8B-Instruct 62.29 51.65 76.09 75.89 78.73 65.59 68.37

Llama-3-8B-SPPO Iter1 63.82 54.96 76.40 75.44 79.80 65.65 69.35
Llama-3-8B-SPPO Iter2 64.93 56.48 76.87 75.13 80.39 65.67 69.91
Llama-3-8B-SPPO Iter3 65.19 58.04 77.11 74.91 80.86 65.60 70.29

Arena-Hard (Li et al., 2024) contains 500 challenging user queries and follow the same evaluation
method as AlpacaEval 2.0. In Figure 1 (right), we evaluate the performance of SPPO on Arena-Hard.
We can see that Mistral-7B-SPPO exhibits a steady performance gain across iterations. Mistral-7B-
SPPO Iter 3 outperforms the baseline models, achieving an average score of 23.3.

Open LLM Leaderboard We further evaluate the capabilities of SPPO models using Hugging-
face Open LLM Leaderboard (Beeching et al., 2023a). This leaderboard encompasses 6 differ-
ent datasets, each focusing on a specific capability of LLMs: Arc (Clark et al., 2018), HellaSwag
(Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks et al., 2020), Truth-
fulQA (Lin et al., 2021), and GSM8k (Cobbe et al., 2021). The models are prompted with zero
or few-shot exemplars. The results, presented in Table 3, demonstrate that SPPO can enhance the
performance of the base model on Arc, TruthfulQA, and GSM8k, and achieve the state-of-the-art
performance with an average score of 66.75. However, these improvements do not hold in subse-
quent alignment iterations: DPO, IPO, and SPPO’s performance declines after the first or second
iterations. This limitation may be attributed to the “alignment tax” phenomenon (Askell et al.,
2021), which suggests that aligning with human preferences (simulated by PairRM preference in
our study) might not improve or even hurt the general performance. Improving language model
capabilities through alignment iterations remains a topic for future research, and we posit that in-
corporating high-quality SFT annotations (Chen et al., 2024) could play a significant role in this
endeavor.

5 CONCLUSIONS

This paper introduced Self-Play Preference Optimization (SPPO), an approach to fine-tuning Large
Language Models (LLMs) from Human/AI Feedback. SPPO has demonstrated significant improve-
ments over existing methods such as DPO and IPO across multiple benchmarks, including AlpacaE-
val 2.0, MT-Bench, Arena-Hard, and the Open LLM Leaderboard. By integrating a preference
model and employing a new optimization objective, SPPO can align LLMs more closely with hu-
man preferences.
Limitations Theoretically, approximating the optimal policy update via regression relies on the as-
sumption that the model class is expressive enough and the generated data well cover the input space.
Approximating the log-partition factor with a constant can help reduce variance only when it is close
to the soft value function. The experiments are run on one dataset UltraFeedback and the models are
tested on a few benchmarks due to limited computational resources, but the proposed methods can
be further validated on more models, datasets, and benchmarks to have a holistic evaluation given
more resources.
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Thorsten Joachims, J Andrew Bagnell, Jason D Lee, and Wen Sun. Rebel: Reinforcement learning
via regressing relative rewards. arXiv preprint arXiv:2404.16767, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding sharing, 2021.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with
odds ratio. arXiv preprint arXiv:2403.07691, 2024.

Kaixuan Ji, Jiafan He, and Quanquan Gu. Reinforcement learning from human feedback with active
queries. arXiv preprint arXiv:2402.09401, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023b.

Junlong Li, Shichao Sun, Weizhe Yuan, Run-Ze Fan, Hai Zhao, and Pengfei Liu. Generative judge
for evaluating alignment. arXiv preprint arXiv:2310.05470, 2023a.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. arXiv preprint arXiv:2406.11939, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023b.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Hao Lou, Tao Jin, Yue Wu, Pan Xu, Quanquan Gu, and Farzad Farnoud. Active ranking without
strong stochastic transitivity. Advances in neural information processing systems, 2022.

12

https://github.com/tatsu-lab/alpaca_eval


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
reference-free reward. In Advances in Neural Information Processing Systems (NeurIPS), 2024.
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A RELATED WORK

RLHF with Explicit/Implicit Reward Model Originally, reinforcement learning from human
feedback (RLHF) was proposed by Christiano et al. (2017) as a methodology that first learns a re-
ward model reflecting human preferences and then uses reinforcement learning algorithms to max-
imize the reward. This methodology is applied by Ouyang et al. (2022) to fine-tune instruction-
following large language models and leads to the popular ChatGPT.
The reward model in the works mentioned above assumes a parametric model such as the Bradley-
Terry model (Bradley & Terry, 1952), which assigns a “score” representing how preferred a given
response is. More recently, Rafailov et al. (2024b) proposed to instead directly solve the closed-
form solution of such a score implied by the Bradley-Terry model. The Direct Policy Optimization
(DPO) method is claimed to be more efficient and stable, yet, still implicitly assumes such a reward
model that specifies the “score”. In a similar spirit, Zhao et al. (2023) proposed to calibrate the score
so that the score of the winner in comparison has a margin over the score of the loser, and induces
a different SLic loss. Similarly, Ethayarajh et al. (2024) derived a different loss function (called
KTO) from the Kahneman-Tversky human utility function, which implicitly denotes a score of the
given response. Liu et al. (2023) proposed Rejection Sampling Optimization (RSO) which utilizes
a preference model to generate preference pairs with candidates sampled from the optimal policy;
then preference optimization is applied on the sampled preference pairs. Hong et al. (2024) proposed
Odds Ratio Preference Optimization (ORPO) algorithm that can perform supervised fine-tuning and
preference alignment in one training session without maintaining an intermediate reference policy.
Motivated by the length bias in the preference dataset, Meng et al. (2024) model human preference
based on the average-reward Bradley-Terry model, and propose Simple Preference Optimization
(SimPO) which maximizes the gap between the average log-likelihood of the winner and loser.
As discussed in Section 3.3, SPPO can be seen as a semi-online REINFORCE-style algorithm. The
effectiveness of REINFORCE, rather than PPO with value function and gradient clipping, has been
shown by Ahmadian et al. (2024), where they argue that REINFORCE should suffice for RLHF
tasks. Our work also corroborates this observation.

RLHF with General Preference Model Often, the human preference is not strictly transitive, and
cannot be sufficiently represented by a single numerical score. Azar et al. (2023) proposed a general
preference optimization objective based on the preference probability between a pair of responses
instead of a score of a single response. They further propose a learning objective based on identity
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mapping of the preference probability called IPO (Preference Optimization with Identity mapping),
which aims to maximize the current policy’s expected winning probability over a given reference
policy. Munos et al. (2023) formulated the RLHF problem with general preference as a two-player,
constant-sum game, where each player is one policy that aims to maximize the probability of its
response being preferred against its opponent. They aim to identify the Nash equilibrium policy of
this game and propose a mirror-descent algorithm that guarantees the last-iterate convergence of a
policy with tabular representations4. Wang et al. (2024) proposed to identify the Nash equilibrium
policy for multi-step MDPs when a general preference model is present and shows that the problem
can be reduced to a two-player zero-sum Markov game.

Theory of RLHF There is also a line of research to analyze RLHF and provide its theoretical guar-
antees. Zhu et al. (2023) studied the standard RLHF with separate reward-learning and model-tuning
and proposed a pessimistic reward-learning process that provably learns a linear reward model.
Wang et al. (2024) proposed a framework to reduce any RLHF problem with a reward model to a
reward-based standard RL problem. Additionally, they proposed to identify the Nash equilibrium
policy when a general preference model is present and show that the problem can be reduced to a
two-player zero-sum Markov game. Xiong et al. (2023) studied the reverse-KL regularized con-
textual bandit for RLHF in different settings and proposed efficient algorithms with finite-sample
theoretical guarantees. Ye et al. (2024) studied the theoretical learnability of the KL-regularized
Nash-Learning from Human Feedback (NLHF) by considering both offline and online settings and
proposed provably efficient algorithms. Ji et al. (2024) proposed an active-query-based proximal
policy optimization algorithm with regret bounds and query complexity based on the problem di-
mension and the sub-optimality gap.

Self-Play Fine-Tuning Most works mentioned above (Rafailov et al., 2024b; Zhao et al., 2023;
Azar et al., 2023; Ethayarajh et al., 2024) consider one single optimization procedure starting from
some reference policy. The same procedure may be applied repeatedly for multiple iterations in a
self-play manner. In each iteration, new data are generated by the policy obtained in the last iteration;
these new data are then used for training a new policy that can outperform the old policy.
The self-play fine-tuning can be applied to both scenarios with or without human preference data.
For example, Singh et al. (2023) proposed an Expectation-Maximization (EM) framework where
in each iteration, new data are generated and annotated with a reward score; the new policy is
obtained by fine-tuning the policy on the data with a high reward. Chen et al. (2024) proposed a
self-play framework to fine-tune the model in a supervised way. In each iteration, new preference
pairs are synthesized by labeling the policy-generated responses as losers and the human-generated
responses as winners. Then DPO is applied in each iteration to fine-tune another policy based on
these synthesized preference data. Yuan et al. (2024) proposed Self-Rewarding Language Models,
where the language model itself is used to annotate preference on its own responses. Iterative DPO
is applied to fine-tune language models on these annotated data. These works show iterative fine-
tuning can significantly improve the performance.
Munos et al. (2023) are among the first to introduce self-play algorithms for aligning large language
models with human preferences by computing Nash equilibria of a preference model rather than
optimizing a reward model. Their proposed method, Nash-MD, based on mirror descent, provides a
sequence of policies with the final iteration converging to the regularized Nash equilibrium. How-
ever, Nash-MD requires exact sampling from the mixture distribution that is only feasible in the
bandit setting, while sequential generation necessitates an approximation that may impact theoreti-
cal guarantees.
Swamy et al. (2024) considered a more general multi-step Markov Decision Process (MDP) setting
and proposed Self-play Preference Optimization (SPO), an RLHF framework that can utilize any
no-regret online learning algorithm for preference-based policy optimization. They then instanti-
ated their framework with Soft Policy Iteration as an idealized variant of their algorithm, which
reduces to the exponential weight update rule (3.1) when constrained to the bandit setting. The main
difference is that they focus on the multi-round Markov decision process (MDP) in robotic and game
tasks rather than on fine-tuning large language models and approximating the update using policy
optimization methods such as PPO.
Concurrent to our work, Rosset et al. (2024) proposed the Direct Nash Optimization (DNO) al-
gorithm based on the cross-entropy between the true and predicted win rate gaps, and provided

4Due to the tabular representation, computing the normalizing factor is prohibitive and the algorithm is
approximately executed by sampling one token instead of a full response.
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theoretical guarantees on the error of finite-sample approximation. However, their practical version
still utilizes the iterative-DPO framework as in Xu et al. (2023) with the DPO loss instead of their
derived DNO loss. Notably, in their experiments, they added the GPT-4 generated responses as their
“gold sample” into their fine-tuning data, and used GPT-4 as a judge to assign a numerical score to
each response for preference pair construction. In sharp contrast, our work does not require the use
of any strong external supervision besides a small-sized reward model. Another concurrent work
(Gao et al., 2024) proposed REBEL, an iterative fine-tuning framework via regressing the relative
reward. When applied to the preference setting, it results in a similar algorithm to our algorithm
SPPO, except that SPPO approximates the log-partition factor logZπt(x) with a constant η/2 while
REBEL regresses on the win rate difference (so that logZπt(x) is canceled). Additionally, Ca-
landriello et al. (2024) pointed out that optimizing the IPO loss (Azar et al., 2023) iteratively with
self-play generated data is equivalent to finding the Nash equilibrium of the two-player game, and
they proposed the IPO-MD algorithm based on this observation, which generates data with a mixture
policy similar to the Nash-MD algorithm.

B COMPARISON WITH DPO, IPO, AND KTO

In practice, we utilize mini-batches of more than 2 responses to estimate the win rate of a given
response, while the DPO and IPO loss focus on a single pair of responses. When only a pair of
responses yw and yl is available, we have the pair-wise symmetric loss based on the preference
triplet (x,yw,yl) defined as:

ℓSPPO(x,yw,yl;θ;πref) :=

(
log

(
πθ(yw|x)
πref(yw|x)

)
− η
(
P(yw ≻ yl|x)−

1

2

))2

+

(
log

(
πθ(yl|x)
πref(yl|x)

)
− η
(
P(yw ≺ yl|x)−

1

2

))2

, (B.1)

where P(yw ≻ yl|x) can be either a soft probability within [0, 1] or a hard label 1 indicating
yw ≻ yl.
We now compare the SPPO loss to other baselines assuming a hard label yw ≻ yl is given. For the
ease of comparison, let (β = η−1):

a = β log

(
πθ(yw|x)
πref(yw|x)

)
, b = β log

(
πθ(yl|x)
πref(yl|x)

)
, c = βKL(πθ∥πref),

then we have

ℓDPO(yw,yl,x) = − log σ(a− b), (B.2)

ℓIPO(yw,yl,x) = [(a− b)− 1]2, (B.3)
ℓKTO(yw,yl,x) = σ(−a+ c) + σ(b− c) (simplified), (B.4)

where σ(x) = ex/(ex + 1) and the SPPO loss can be written as

ℓSPPO(yw,yl,x) = (a− 1/2)2 + (b+ 1/2)2.

It can be seen that SPPO not only pushes the gap between a and b to be 1, but also attempts to push
value of a to be close to 1/2 and the value of b to be close to−1/2 such that πθ(yw|x) > πref(yw|x)
and πθ(yl|x) < πref(yl|x). We believe this is particularly important: when there are plenty of
preference pairs, DPO and IPO can ensure the policy will converge to the target policy, but when the
preference pairs are scarce (e.g., one pair for each prompt), there is no guarantee that the estimated
reward of the winner a will increase and the estimated reward of the loser b will decrease. Instead,
only the reward gap between the winner and the loser (i.e., a− b) will increase. This phenomenon is
observed by Pal et al. (2024) that DPO only drives the loser’s likelihood to be small, but the winner’s
likelihood barely changes. We believe that fitting β log

(
πt+1(y|x)
πt(y|x)

)
directly to P(y ≻ πt|x)− 1/2

is more effective than IPO which attempts to fit β log
(

πt+1(yw|x)
πt(yw|x)

)
−β log

(
πt+1(yl|x)
πt(yl|x)

)
to P(yw ≻

πt|x) − P(yl ≻ πt|x). In addition, SPPO shares a similar spirit as KTO. The KTO loss pushes a
to be large by minimizing σ(−a+ c) and pushes b to be small by minimizing σ(b− c). In contrast,
SPPO pushes a to be as large as 1/2 and b to be as small as −1/2.
On the other hand, we would like to comment that although DPO and KTO can be extended to their
iterative variants, they are not by nature iterative algorithms and do not have provable guarantees
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that they can reach the Nash equilibrium. In contrast, SPPO and IPO are by design capable to solve
the Nash equilibrium iteratively. SPPO is superior to IPO because its design explicitly alleviates the
data sparsity issue, as discussed above and detailed in Pal et al. (2024).

C FULL EXPERIMENT SETUP

Base Model and Datasets We follow the experimental setup of Snorkel5, a model that utilizes
iterative DPO to achieve state-of-the-art performance on AlpacaEval benchmarks. Specifically, we
use Mistral-7B-Instruct-v0.2 as our base model6. Mistral-7B-Instruct-v0.2 is an instruction fine-
tuned version of Mistral-7B-v0.2 model (Jiang et al., 2023a). We also adopt Ultrafeedback (Cui
et al., 2023) as our source of prompts which includes around 60k prompts from diverse resources.
During generation, we follow the standard chat template of Mistral-7B. To avoid overfitting during
the fine-tuning, we split the dataset into three portions and used only one portion per iteration.
These settings were also adopted by training the model Snorkel-Mistral-PairRM-DPO7 (Snorkel).
We follow the splitting in Snorkel for a fair comparison. Additionally, we use Llama-3-8B-Instruct8
as a stronger base model along with the same preference dataset and data splitting.

Preference Model We employ PairRM (Jiang et al., 2023b), an efficient pair-wise preference
model of size 0.4B. PairRM is based on DeBERTA-V3 (He et al., 2021) and trained on high-quality
human-preference datasets. Results on benchmarks like Auto-J Pairwise dataset (Li et al., 2023a)
show that it outperforms most of the language-model-based reward models and performs compa-
rably with larger reward models like UltraRM-13B (Cui et al., 2023). We refer the readers to the
homepage on Huggingface9 for detailed benchmark results. We therefore keep PairRM as our rank-
ing model following Snorkel for a balance between accuracy and efficiency.
Specifically, PairRM will output a “relative reward” s(y,y′;x) that reflects the strength difference
between y and y′, i.e.,

P(y ≻ y′|x) = exp(s(y,y′;x))

1 + exp(s(y,y′;x))
.

Unlike the Bradley-Terry-based reward model, PairRM only assigns the relative reward which is not
guaranteed to be transitive (i.e., s(y1,y2;x) + s(y2,y3;x) ̸= s(y1,y3;x)). So it indeed models
the general preference.

Response Generation and Selection During the generation phase in each iteration, we use top
p = 1.0 and temperature 1.0 to sample from the current policy. We sample with different random
seeds to get K = 5 different responses for each prompt. Previous works utilizing Iterative DPO
choose 2 responses to form a pair for each prompt. For a fair comparison, we do not include all
K = 5 responses in the preference data but choose two responses among them. Following Snorkel,
we choose the winner yw and loser yl to be the response with the highest and lowest PairRM score,
which is defined for each response yi as:

sPairRM(yi;x) :=
1

K

K∑
k=1

s(yi,yk;x).

Probability Estimation We then estimate the win rate over the distribution by the average win
rate over all the sampled responses as explained in (3.5):

P̂ (yi ≻ πt|x) =
1

K

K∑
k=1

P(yi ≻ yk|x),∀i ∈ [K].

Hyperparameter Tuning The experiments are conducted on 8 × Nvidia A100 GPUs. For SPPO,
we trained three iterations in total. In each iteration, we selected the model trained on the first
epoch of the 20k prompts from UltraFeedback to proceed to the next iteration. For both Mistral-7B-
Instruct-v0.2 and Llama-3-8B-Instruct, the global training batch size is set to 64, and η is set to 1e3.

5https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
8https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
9https://huggingface.co/llm-blender/PairRM
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The learning rate schedule is determined by the following hyperparameters: learning rate=5.0e-7,
number of total training epochs=18, warmup ratio=0.1, linear schedule. In practice, early stopping
after the first epoch yields the best test performance. The best hyper-parameters for each model are
selected by the average win rate (judged by PairRM-0.4B) on a hold-out subset of Ultrafeedback as
the metric. For more details on the win-rate comparison using PairRM as a judge, please refer to
Section 4.2 and Figure 3.

Baselines We evaluate the following base models as well as baseline methods for fine-tuning
LLMs:

• Mistral-7B-Instruct-v0.2: Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version of Mistral-
7B-v0.2 model (Jiang et al., 2023a). It is the starting point of our algorithm.

• Snorkel (Mistral-PairRM-DPO): We directly evaluate the uploaded checkpoint on HuggingFace10.
This model is obtained by three iterations of iterative DPO from Mistral-7B-Instruct-v0.2.

• (Iterative) DPO: We also implement the iterative DPO algorithm by ourselves. The experimental
settings and model selection schemes align with those used for SPPO, except for the adoption
of the DPO loss function as defined in (B.2). Hyperparameters are optimized to maximize the
average win-rate assessed by PairRM at each iteration. Note that the practical algorithm in Rosset
et al. (2024) is essentially the same as iterative DPO.

• (Iterative) IPO: We implement the iterative IPO algorithm by ourselves. The experimental setting
and the model selection scheme is the same as iterative DPO, except that the loss function is the
IPO loss (B.3). For fair comparison, hyperparameters for IPO is also selected by evaluation using
the average PairRM win-rate on the hold-out subset of Ultrafeedback.

• Self-rewarding LM: Yuan et al. (2024) proposed to prompt the LLM itself as a preference judge
to construct new preference pairs and iteratively fine-tune the LLM with the DPO algorithm. We
use the AlpacaEval 2.0 win rate reported by Yuan et al. (2024) for comparison. Note that Self-
rewarding LM is a trained from Llama 2 70B.

• Llama-3-8B-Instruct: Llama-3-8B-Instruct is an instruction-tuned model optimized for dialogue
use cases and outperforms many of the available open-source chat models on common industry
benchmarks.

Benchmarks Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a), Arena-
Hard(Li et al., 2024), MT-Bench (Zheng et al., 2024), and Open LLM Leaderboard (Beeching et al.,
2023b) as our evaluation benchmarks.

• AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It employs AlpacaFarm
(Dubois et al., 2024b) as its prompts set composed of general human instructions. The model
responses and the reference response generated by GPT-4-Turbo are fed into a GPT-4-Turbo-
based annotator to be judged. We follow the standard approach and report the win rate over the
reference responses.

• Arena-Hard (Li et al., 2024) is a high-quality benchmark that claims to be harder and has the
highest correlation and separability to Chatbot Arena among popular open-ended LLM bench-
marks including AlpacaEval 2.0. We evaluate our models Mistral-PairRM-SPPO and the baseline
models.

• MT-Bench (Zheng et al., 2024) is a collection of 80 high-quality multi-turn open-ended questions.
The questions cover topics like writing, role-playing, math, coding, etc.. The generated answer is
judged by GPT-4 and given a score directly without pairwise comparison.

• Open LLM Leaderboard (Beeching et al., 2023b) consists of six datasets, each of which fo-
cuses on a facet of language model evaluation. In detail, the evaluation rubric includes math
problem-solving, language understanding, human falsehood mimicking, and reasoning. We fol-
low the standard evaluation process and use in-context learning to prompt the language model and
compute the average score over six datasets to measure the performance.

10https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
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Figure 2: Win Rate against GPT-4-Turbo with (a) and without (b) Length Controlling (LC) on
AlpacaEval 2.0. SPPO demonstrates steady improvements on both LC and raw win rates.

D ADDITIONAL EXPERIMENT RESULTS

D.1 ADDITIONAL TABLES AND PLOTS

In Figure 2, we plot the win rate against GPT-4-Turbo on AlpacaEval 2.0 of different RLHF algo-
rithms. We can see that the performance gains of SPPO over previous iterations are 7.69% (Mistral-
7B-Instruct → Iter1), 2.10% (Iter1 → Iter2), and 1.64% (Iter2 → Iter3), respectively, indicating
steady improvements across iterations.

D.2 EVALUATION USING PAIRRM AS A JUDGE

As SPPO identifies the von Neumann winner (see (2.3)) in a two-player constant-sum game, we
examine the pairwise preferences among SPPO models and other baselines. The pairwise win rates,
measured by PairRM, are depicted in Figure 3. We observe that in all algorithms—namely DPO,
IPO, and SPPO—the newer model iterations surpass the previous ones. For example, SPPO iteration
3 outperforms SPPO iteration 2. Both SPPO and IPO consistently outperform DPO across all itera-
tions. While SPPO is superior to IPO in the first two iterations, IPO exceeds SPPO in performance
during the final iteration. Considering the superior performance of SPPO in standard benchmarks
evaluated by GPT-4 or against ground-truth answers (e.g., AlpacaEval 2.0, MT-Bench, and Open
LLM Leaderboard), along with IPO’s tendency to produce longer sequence outputs (see Avg. Len
in Table 1), we believe this is due to IPO exploiting the length bias in PairRM that favors longer se-
quences. Conversely, SPPO models benefit from a more robust regularization within a multiplicative
weight update framework.

D.3 ABLATION STUDY

Mini-Batch
Size Iteration

AlpacaEval 2.0
Win Rate Avg. Len

(chars)LC. Raw

K = 2
Iter1 23.85 23.53 1948
Iter2 26.91 27.24 1999
Iter3 28.26 28.22 1961

Iter1 24.79 23.51 1855
Iter2 26.89 27.62 2019K = 5
Iter3 28.53 31.02 2163

Iter1 Iter2 Iter3
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Figure 4: AlpacaEval 2.0 evaluation on SPPO of different mini-batch size in terms of both normal
and length-controlled (LC) win rates in percentage (%). K = 2, 5 denote different mini-batch sizes
when estimating the win rate P(y ≻ πt|x).
We study the effect of mini-batch size when estimating the win rate P(y ≻ πt|x). Specifically, for
each prompt, we still generate 5 responses and choose the winner yw and loser yl according to the
PairRM score. When estimating the probability, we varies the batch size to be K = 2, 3, 5. For
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Figure 3: Pairwise win rates among base model (Mistral-7B-Instruct-v0.2), DPO models, IPO mod-
els, and SPPO models using PairRM-0.4B as a judge, which may favor models with longer outputs.
On benchmarks with more powerful judge models (e.g., GPT-4), such as AlpacaEval 2.0 and MT-
Bench, SPPO outperforms other baseline algorithms by a large margin.

K = 2, we estimate P(y ≻ πt|x) with only 2 samples yw and yl:

P̂ (yw ≻ πt|x) =
P(yw ≻ yw|x) + P(yw ≻ yl|x)

2
=

1/2 + P(yw ≻ yl|x)
2

,

and P̂ (yl ≻ πt|x) similarly. K = 5 indicates the original setting we use.
We compare the results on AlpacaEval 2.0, as shown in Figure 4. We find that the performance
of SPPO is robust to the noise in estimating P(y ≻ πt|x). While K = 5 initially outperforms
K = 2 in the first iteration, the difference in their performance diminishes in subsequent iterations.
Additionally, we observe that K = 2 exhibits a reduced tendency to increase output length.
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D.4 TRADE-OFF BETWEEN KL DIVERGENCE AND ALIGNMENT

Figure 5: Win rate on AlpacaEval 2.0 length-controlled win rate against KL divergence to the
Mistral-7B-Instruct-v0.2 base model for various model checkpoints. Each method (DPO, IPO,
SPPO) is plotted across three iterations (left to right, as KL divergence increases).

We estimated the KL divergence on the 1000 prompts from the UltraFeedback test set. The KL
divergence estimate is obtained from the average log-ratio of the responses generated from these
prompts.
As shown in Figure 5, the steady improvement in win rate for SPPO demonstrates its efficiency in
leveraging the KL budget. Notably, SPPO(β=1e-3) achieves a higher alignment metric compared
to iterative DPO by the Snorkel team (the purple point) while maintaining lower KL divergence for
the final iteration. We also find that β=1e-2 gives a better trade-off between KL and win rate, with
significantly smaller KL divergence and a similar final win rate.

E APPROXIMATING THE NORMALIZING FACTOR

As discussed before, we replace the log-partition factor with a constant to avoid either estimating
or predicting the log-partition factor. In hindsight, the approximation of the normalizing factor
serves as a baseline for variance reduction, and does not need to be exact. Here we discuss the
implicit assumptions and how we obtained an approximation based on different assumptions on
human preference behaviour.
We first consider the case where we have K responses and then calculate the limit of Zπ̂K

t
(x) when

K →∞. We have two extreme cases:
1. The most “disordered” case: any preference is a fair coin flip
2. The most “ordered” case: there is a strict ordering among all responses.

The most “disordered” case Specifically, we have K different responses y1,y2, . . . ,yK for the
given prompt x. Since we consider the general preference setting, we assume that the preference
probability between yi and yj (i < j) we observe is a fair coin toss:

P(yi ≻ yj |x) =
{
1, w.p. 1/2,
0, w.p. 1/2.

Note that for simplicity, we assumed that the preference probability follows the Bernoulli distri-
bution, not the preference feedback. The preference feedback is deterministic since the preference
probability is either 0 or 1. Assuming P(yi ≻ yj |x) follows any other 1/2-mean distribution will
yield the same constant.
We define the random variable pi,j := 2P(yi ≻ yj |x) − 1 for convenience. In total, we have
K(K−1)/2 independent Rademacher random variable for all i < j, and then we have pj,i = −pi,j
for all i > j. For i = j, pi,j = 0. We also define Xi =

∑K
j=1 pi,j/K.
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Given the setting and notations above, we have

P(yi ≻ π̂K
t |x) =

K∑
j=1

P(yi ≻ yj |x)/K = 1/2 +Xi.

Further,

Zπ̂K
t
(x) =

K∑
i=1

exp(ηP(yi ≻ π̂K
t |x))/K = eη/2 ·

K∑
i=1

eηXi/K.

For any fixed i, we have the expectation as follows:

E[eηXi ] = E

[
K∏
j=1

eηpi,j/K

]
=

K∏
j=1

E
[
eηpi,j/K

]
=

(
eη/K + e−η/K

2

)K−1

,

where the last equation comes from the definition of pi,j (note that pi,i = 0). The variance is:

Var[eηXi ] = E[e2ηXi ]− E[eηXi ]2 =

(
e2η/K + e−2η/K

2

)K−1

−
(
eη/K + e−η/K

2

)2K−2

.

Additionally, the covariance between eηXi and eηXj (i ̸= j) is:

Cov(eηXi , eηXj ) = E[eηXi+ηXj ]− E[eηXi ]E[eηXj ]

= E

[
exp

(
η

K∑
k=1

pi,k/K + η

K∑
l=1

pj,l/K

)]
− E[eηXi ]E[eηXj ]

=

(
eη/K + e−η/K

2

)2K−4

− E[eηXi ]E[eηXj ]

=

(
eη/K + e−η/K

2

)2K−4

−
(
eη/K + e−η/K

2

)2K−2

,

where the third line holds because pi,i = pj,j = 0, pi,j + pj,i = 0, and the rest terms are i.i.d..
One can check that when K →∞, we have E[eηXi ]→ 1, Var[eηXi ]→ 0, and Cov(eηXi , eηXj )→
0. By Chebyshev’s inequality,

∑K
i=1 e

ηXi/K will converge to 1 in probability. So we have

Zπ̂K
t
(x) = eη/2 ·

K∑
i=1

eηXi/K → eη/2,

and we can approximate logZπ̂K
t
(x) with η/2.

The most “ordered” case We assume there is an ordering σ(·) among the K different responses
y1,y2, . . . ,yK for the given prompt x. The preference probability between yi and yj (i < j) is:

P(yi ≻ yj |x) =
{
1, if σ(i) < σ(j),

0, if σ(i) > σ(j).

Again, the preference feedback is deterministic: as long as yi is ranked higher than yj , yi will
always be preferred over yj . The same responses still tie: P(yi ≻ yi|x) = 1/2.
Without loss of generality, we can assume y1 ≺ y2 ≺ y3 ≺ · · · ≺ yK . Given the setting and
notations above, we have

P(yi ≻ π̂K
t |x) =

K∑
j=1

P(yi ≻ yj |x)/K =
i− 1 + 1/2

K
,

because for yi, there are i− 1 responses that are strictly worse, and yi ties with itself.
For the normalizing factor, we have

logZπ̂K
t
(x) = log

( K∑
i=1

exp(ηP(y ≻ π̂K
t |x))/K

)
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= log

( K∑
i=1

exp

(
η
i− 1/2

K

)
/K

)
→ log

(∫ 1

0

exp(ηx)dx

)
= log

eη − 1

η
.

where the third line (limiting) can be obtained by the squeeze theorem.
For η = 1, log eη−1

η ≈ 0.54η. For large η ≈ 1e3 as we used in the experiments, we have log eη−1
η ≈

η.

Choice of η Depending on how “disordered” the preference is, η can vary between η/2 and η.
As this paper is partially motivated by human intransitive and irrational preference behavior,
we chose to use η/2 to approximate logZπ̂K

t
(x). Fine-tuning the coefficient of this constant as a

hyperparameter is also an option and can help improve performance on given dataset.

F PROOF OF THEOREM 3.1

Proof of Theorem 3.1. Suppose the optimization problem is realizable, we have exactly that

πt+1(y|x) ∝ πt(y|x) exp(ηP(y ≻ πt|x)), for t = 1, 2, . . . . (F.1)

To prove that the exponential weight update can induce the optimal policy, we directly invoke a
restated version of Theorem 1 in Freund & Schapire (1999):
Lemma F.1 (Theorem 1 in Freund & Schapire (1999), restated). For any oracle P and for any
sequence of mixed policies µ1, µ2, . . . , µT , the sequence of policies π1, π2, . . . , πT produced by
(F.1) satisfies:

T∑
t=1

P(πt ≺ µt) ≤ min
π

[
η

1− e−η

T∑
t=1

P(π ≺ µt) +
KL(π∥π0)

1− e−η

]
.

By setting µt = πt, we have that

T

2
≤ min

π

[
ηT

1− e−η
P(π ≺ π̄T ) +

KL(π∥π0)

1− e−η

]
,

where the LHS comes from that P(πt ≺ πt) = 1/2 and the RHS comes from that 1
T

∑T
t=1 P(π ≺

πt) = P(π ≺ π̄t). Now rearranging terms gives

1− e−η

2η
≤ min

π

[
P(π ≺ π̄T ) +

KL(π∥π0)

ηT

]
.

Note that π0 is an autoregressive model that is fully supported on a finite vocabulary
(π0(yk+1|x,y1:k) has non-zero probability for every token). Because its support is a large but finite
set, | log π0(·)| is bounded from above. So we can naively bound the KL-divergence KL(π∥π0) ≤
∥ log π0(·)∥∞, which can be seen as a (large) constant.
By choosing η = ∥ log π0(·)∥∞√

T
, we have

1

2
− ∥ log π0(·)∥∞

4
√
T

+O(T−1) ≤ min
π

[
P(π ≺ π̄T )

]
+

√
∥ log π0(·)∥∞

T
,

where the LHS comes from Taylor’s expansion 1−e−η

2η = 1
2 −

η
4 + O(η2). Notice that 1/2 at the

LHS is already the value of the symmetric two-player constant-sum game. This shows that for
appropriately chosen η and T , the mixture policy π̄T is close to the minimax optimal policy (Nash
equilibrium).
The optimality gap is thus bounded by

max
π

[
P(π ≻ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
= max

π

[
1− P(π ≺ π̄T )

]
−min

π

[
P(π ≺ π̄T )

]
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= 2

(
1

2
−min

π

[
P(π ≺ π̄T )

])
= O

(
1√
T

)
.

G RESPONSE EXAMPLES IN DIFFERENT ITERATIONS

Table 4: Generation example of our fine-tuned model by SPPO at different iterations.

Prompt You will be given a definition of a task first, then some input of the task. You
are given a dialog between 2 or more individuals. The dialog will include
information as to the relationship between 2 of the participants. At the end, you
will be asked to provide an answer as to the relationship of those 2 participants.
In this scenario, ’0’ will represent a spousal relationship, ’1’ will represent
siblings, and ’2’ will represent a child/parent relationship. Speaker 1: I’ll be
right with you. Okay? Thanks, Wendy. Speaker 2: Oh my God! How cute is
the on-call doctor? Speaker 3: Ooh, so cute, that I’m thinking about jamming
this pen in my eye. Speaker 4: Dr. Burke will see you know. Speaker 2: Oh
no-no-no, not Dr. Burke. Dr. Burke is out of town. The-the on-call doctor will
see me now. Speaker 4: Dr. Richard Burke is out of town. Dr. Timothy Burke,
his son, will see you now. Speaker 5: Ready? What is the relationship between
Speaker 5 and Richard Burke? Output:

Mistral-7B The relationship between Speaker 5 and Richard Burke is that of a parent and
child, as Richard Burke is identified as the son of another character in the
dialog.

Iteration 1 The relationship between Speaker 5 and Richard Burke is that of a father and
child. Based on the dialogue, it was revealed that Dr. Timothy Burke is the
on-call doctor and the son of Dr. Richard Burke.

Iteration 2 The relationship between Speaker 5 and Richard Burke is that of a father and
child. The conversation reveals that Dr. Timothy Burke is the on-call doctor
and he is identified as the son of Dr. Richard Burke.

Iteration 3 Speaker 5 is the individual asking about the relationship, so they are not directly
related to Dr. Richard Burke. The information provided in the dialog reveals
that Dr. Timothy Burke is the on-call doctor and the son of Dr. Richard Burke.
Therefore, the answer is: The relationship between Speaker 5 and Dr. Richard
Burke is that of a child (Dr. Timothy Burke) and parent. Speaker 5 is inquiring
about the relationship, but they are not themselves a part of it. The specified
relationship codes (0 for spousal, 1 for sibling, 2 for child/parent) align with
this description: Speaker 5 (0, 1, or 2) and Dr. Richard Burke (2) connect as a
parent-child duo. Output: 2 (child/parent relationship) In this scenario, Speaker
5’s role is to determine the relationship between herself and Dr. Richard Burke,
but since they are not related (she is an outside inquirer), the correct answer
pertains only to the relationship identified within the dialog: Dr. Richard Burke
(father) and Dr. Timothy Burke (son).
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Table 5: Another generation example of our fine-tuned model by SPPO at different iterations.

Prompt Q: Context: Roman Brady is a fictional character from the long running NBC
soap opera, Days of Our Lives. The role was originated in 1981 by Wayne
Northrop who played the role until 1984, was filled by Drake Hogestyn from
1986 – 1991, again by Northrop from 1991 – 1994, and is currently being
portrayed by series veteran Josh Taylor, who stepped into the role in 1997.
Question: who is roman brady on days of our lives? Let’s give stream of
consciousness below

Mistral-7B Roman Brady is a fictional character on the NBC soap opera ”Days of Our
Lives.” He was first portrayed by Wayne Northrop from 1981 to 1984. Later,
Drake Hogestyn took over the role from 1986 to 1991. Northrop returned to
the role from 1991 to 1994. Since 1997, the character is being portrayed by
Josh Taylor. Roman Brady is a significant character in the show’s long-running
storylines.

Iteration 1 Roman Brady is a fictional character on the NBC soap opera ”Days of Our
Lives.” He was first portrayed by Wayne Northrop from 1981 to 1984. Drake
Hogestyn took over the role from 1986 to 1991. Northrop returned to play
Roman again from 1991 to 1994. Since 1997, the character has been portrayed
by Josh Taylor. So, in summary, Roman Brady is a long-standing character
on ”Days of Our Lives” who has been played by three different actors over
the years: Wayne Northrop (1981-1984, 1991-1994), Drake Hogestyn (1986-
1991), and currently by Josh Taylor (1997-present).

Iteration 2 Roman Brady is a fictional character on the NBC soap opera ”Days of Our
Lives.” He was first portrayed by Wayne Northrop from 1981 to 1984. Drake
Hogestyn took over the role from 1986 to 1991. Northrop returned to play
Roman again from 1991 to 1994. Since 1997, the character has been portrayed
by Josh Taylor. Overall, Roman Brady is a long-standing and complex figure
in the show’s history, with multiple actors bringing their unique interpretations
to the role.

Iteration 3 Roman Brady is a fictional character on the NBC soap opera ”Days of Our
Lives.” He was originally played by Wayne Northrop from 1981 to 1984. Drake
Hogestyn took over the role from 1986 to 1991. Northrop returned to portray
Roman once more from 1991 to 1994. Since 1997, the character has been por-
trayed by Josh Taylor.Roman Brady is a complex and prominent figure in the
long-running daytime drama. Initially played by Northrop in the early 1980s,
his tenure included involvement in various storylines, such as romantic rela-
tionships and business dealings. Hogestyn’s portrayal during the late 1980s
and early 1990s introduced new dimensions to the character. Northrop’s sec-
ond stint, from 1991 to 1994, further developed Roman’s narrative. Since 1997,
Josh Taylor has assumed the role, continuing to contribute to the evolving story
of Roman Brady on ”Days of Our Lives.” Throughout these different portray-
als, Roman has remained a central character, known for his intricate relation-
ships, business ventures, and personal struggles.
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