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Abstract

Comparing representations of complex stimuli in neural network layers to hu-
man brain representations or behavioral judgments can guide model development.
However, even qualitatively distinct neural network models often predict similar
representational geometries of typical stimulus sets. We propose a Bayesian ex-
perimental design approach to synthesizing stimulus sets for adjudicating among
representational models efficiently. We apply our method to discriminate among
candidate neural network models of behavioral face dissimilarity judgments. Our
results indicate that a neural network trained to invert a 3D-face-model graphics
renderer is more human-aligned than the same architecture trained on identifica-
tion, classification, or autoencoding. Our proposed stimulus synthesis objective is
generally applicable to designing experiments to be analyzed by representational
similarity analysis for model comparison.

Neural network models have become increasingly important in cognitive computational neuroscience
to avoid the ambiguity of verbal hypotheses and quantitatively capture behavior and neural activity.
As our representational models improve, we encounter a new challenge. Models of human perceptual
representation are typically evaluated with respect to natural or naturalistic stimulus sets (e.g.,
photographs or rendered images of 3D objects) chosen by the experimenter. However, there is no
guarantee that the stimulus set we choose will reveal the distinct representational geometries in the
models we wish to compare. Several recent studies find that data sets are explained equally well
by multiple qualitatively distinct models. For example, in a study employing natural images as
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stimuli, multiple neural network architectures showed similar level of correspondence with human
neural representations [1]. The challenge of similar representational geometries predicted by distinct
models is even more pronounced in the subdomain of face representation, where natural face stimuli
span a relatively limited image manifold. Jozwik et al. [2] found that several qualitatively distinct
computational models predicted human behavioral face dissimilarity judgments almost perfectly.
Equivalent accuracy levels of distinct face representation models were also observed when the model
dissimilarities were compared to neural representational dissimilarities measured by fMRI [3] or
ECoG [4]. While the above studies used representational similarity analysis [RSA 5] to compare
human and model representations, the problem of non-discriminable predictions of distinct models
is not unique to RSA. Model discrimination is expected to be even more challenging in encoding
analyses, where the many parameters of the fitted linear mapping render each model more flexible
and reduce model discriminability even in ideal, noiseless conditions [6, 7].

One way forward is to test model-brain alignment with controversial stimuli: stimuli generated to
induce distinct predictions in different models [8–10]. These studies optimized the controversiality of
the stimuli in terms of the image labels or relative sentence probabilities assigned by different models,
reflecting the human behavioral tasks used to adjudicate among the models (see also Maximum
Differentiation Competition, [11, 12]). Here, we put forward a stimulus-synthesis method that
generates stimulus sets for which different models predict distinct representational geometries. Our
proposed method can compare fixed models by their unweighted representational geometries (i.e.,
"fixed RSA", see [13]) or flexible models whose weighting parameters have already been estimated.
We apply the proposed method to discriminate among a set of neural network models of behavioral
judgments of face similarity. The proposed optimization objective for stimulus synthesis is applicable
for designing RSA experiments in general, beyond the domain of faces, and for experiments that
measure either brain activity or behavioral judgments.

1 Methods

1.1 Stimulus optimization objective

In order to generate a stimulus set that supports efficient model discrimination, we take a Bayesian
Optimal Experimental Design (BOED) approach [14, 15]. Unlike typical BOED applications where
the “design” consists of experimental protocol parameters such as stimulus presentation order and
timing, here we optimize the experimental stimulus set itself.2

Differentiable model discrimination objective. To generate a stimulus set that efficiently discrim-
inates between M representational models, we would ideally want each potential data-generating
model to be clearly distinct from all other models. We propose to use each model in turn as the
data-generating model and maximize a global utility U(ξ) that measures the expected advantage of
the data-generating model over the best-performing alternative model:

U(ξ) =
∑
m

p(m) · f
(
ψ(ỹm, ŷm | ξ)︸ ︷︷ ︸

how well model m predicts
data generated by a held-out

instance of itself

− max
m′ ̸=m

ψ(ỹm, ŷm′
| ξ)︸ ︷︷ ︸

how well the best other model
predicts data generated by

model m

)
, (1)

where p(m) is our prior belief in model m to be the best candidate model (a uniform distribution
if we have not collected any data yet), ỹm is the vector of dissimilarities predicted by model m
for stimulus set ξ, ŷm is the corresponding prediction vector made by another instance of model
m with different weight initialization, ψ is a model-performance estimator (see below) and f is
a monotonically increasing function, which we set here to emphasize negative differences (i.e.,
incorrect model recoveries) and de-emphasize positive differences (i.e., correct model recoveries).
Here we used the saturating function f(x) = −e−10x, which led to a high rate of recovery of the
true data-generating model in simulations (where we know the data-generating model) compared to
alternative choices for f(x), including the identity function.

Model performance estimator. The model-performance estimator ψ should be as close as possible
to how the human-model alignment will be evaluated in the analyses of the actual data, but needs

2We think of our controversial stimulus sets as “optimized” rather than “optimal” since we generate them by
means of local optimization, which does not guarantee a globally optimal solution.
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to be differentiable to allow efficient stimulus optimization. In the case of neuroimaging RSA
studies, each model is evaluated by its representational dissimilarity predictions across all stimulus
pairs, yielding a representational dissimilarity matrix (RDM). Such RDMs can also be estimated
from behavioral judgments [16]. To estimate model performance based on RDMs, whitened RDM
correlation measures are appropriate [17]. For estimating model performance based on dissimilarities
between independent stimulus pairs (where each stimulus appears only in one pair), simple correlation
coefficients are usually adequate.

Accounting for multiple neural network layers. In studies that evaluate deep neural networks as
computational models of human representational geometries, multiple layers of each neural network
must be considered as potential representational models. A common approach is to evaluate each
neural network by its most human-aligned layer (e.g., [18, 1, 19]). In principle, we can simply
treat multiple layers as multiple models in the framework proposed above. However, such an
approach might devote a large portion of the design’s power to discriminating among the consecutive
layers of single models (which tend to have related representations). Our main goal, however, is
to adjudicate among entire neural network models. We therefore introduce layers as an unknown
nuisance parameter in the experiment, yielding a slightly more elaborate optimization objective:

U(ξ) =
∑
m

p(m) ·
∑

l∈{1,...,Lm}

p(l | m) ·f
(
max
l′

ψ
(
ỹm,l(ξ), ŷm,l′(ξ)

)
− max

m′ ̸=m
max
l′

ψ
(
ỹm,l(ξ), ŷm′,l′(ξ)

))
,

(2)
where p(l | m) is our prior belief that layer l is the data generating representation given model m,
and ỹm,l(ξt) and ŷm,l(ξt) are the vectors of dissimilarities predicted by this layer, according to two
different instances. We refer the instances marked by hat (ˆ) as “reference” instances and reuse them
in data analysis.

1.2 Optimizing face stimulus sets for discriminating among models of face dissimilarity
judgments

We applied the approach described above to design controversial stimulus sets for a behavioral
experiment that compares neural network models of face dissimilarity judgments.

We trained six neural networks sharing the veteran VGG-16 architecture [20] on different datasets
and objectives (Table 1, Appendix A.1).

architecture training task training dataset

VGG-16

object categorization ImageNet [21] (object photographs)
face identification VGGFace2 [22] (face photographs)
face identification BFM (synthetic faces)
autoencoding (VAE) VGGFace2 (face photographs)
autoencoding (VAE) BFM (synthetic faces)
inverse rendering BFM (synthetic faces)

Table 1: Six candidate neural network models of human face representation.

We used the 3D morphable Basel Face Model (BFM 2019; [23]) as our face stimulus generator.
This generative model parameterizes individual face stimuli using separate latent spaces for shape,
expression, and texture (see Appendix A.2). The latents define 3D face structure and texture
independently from identity-invariant parameters such as pose and illumination. In a previous study,
Daube et al. [24] used a generative face model to synthesize faces that are similar to a reference
individual according to a neural-network-based encoding model (Fig. 5 in [24]). This was done as a
means of testing each candidate representational model. Here, the generative face model constrains
the synthesis of sets of faces designed to best discriminate among alternative representational models.

We considered an experimental paradigm in which in every trial, participants arrange N face pairs
along a dissimilarity axis [2] (Fig. S1). Model performance (i.e., how well model m predicts the
response set y to stimulus set ξ) is quantified by first measuring the correlation between model
dissimilarity predictions and the participant responses within each trial, and then averaging the
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resulting correlation coefficients across T trials:3

ψ(y,m | ξ) = 1

T

∑
t

corr
(
yt, ŷ

m(ξt)
)
, (3)

where yt is the vector of observed dissimilarity judgments in trial t and ym(ξt) is the corresponding
vector of dissimilarities predicted by model m. We used the squared Euclidean distance between
the stimulus representations within each pair as the predicted dissimilarity. corr(·, ·) is a correlation
coefficient. We used Pearson’s linear correlation coefficient for stimulus optimization and Spearman’s
rank correlation coefficient4 for analyzing the human experiment (the former is differentiable, whereas
the latter is invariant to order-preserving transformations). We constructed three multi-trial stimulus
sets of BFM synthetic faces:
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Figure 1: Simulated model recovery accu-
racy for three stimulus sets: (1) randomly
sampled; (2) systematically sampled; and
(3) controversial. One held-out instance per
model was used to simulate observed dis-
similarity vectors, assuming a uniform prior
over the six models and 16 layers. The sim-
ulated dissimilarities were compared to the
dissimilarities of the set of instances used
as references in the stimulus optimization
procedure (see Appendix A.4). To simu-
late measurement noise, Gaussian noise was
added to each representation (x-axis). The
noise was scaled such that SD=1 would cor-
respond to the SD of the representation’s
noiseless dissimilarities in the randomly
sampled stimulus set. The y-axis denotes
the percentage of simulations (n=2000) in
which the data-generating model (regardless
of the data-generating layer) was recovered.

Random stimulus set. As a baseline condition, we
randomly sampled 144 faces from the BFM distribu-
tion (i.e., N (0, I)) and rendered them as a frontal view.
We randomly allocated the faces to pairs and assigned
six face pairs to each of the 12 trials. Here, as well as
in all other conditions, the BFM expression component
was turned off, so variation was limited to the shape
and texture components.

Systematically sampled stimulus set. For this stim-
ulus set, we systematically sampled face pairs with
different BFM distances. This condition aims to in-
duce a large amount of explainable variability in the
across-subject mean pattern of dissimilarity judgments,
as often informally done by experimenters. Follow-
ing random-sampling and pairing, we constrained the
BFM shape and texture latent vectors of each of 144
faces to have an l∞-norm ≤ 2.0 (i.e., reside in a hyper-
cube extending ± 2 SDs from the mean face in each
dimension). We then adjusted the BFM shape and
texture latents such that for each trial, one pair would
have a zero Euclidean distance, one pair would have
a maximal distance and occupy opposite corners of
the hyper-cube, and the remaining four would evenly
sample the range of distances in between (but not nec-
essarily lie on the same line in face space). This was
achieved by iterative constrained optimization, mini-
mizing the squared deviations of the pairs’ distances
from the pre-determined distances.

Controversial stimulus set. Here, we used the same
initialization and l∞-norm constraints but optimized
model discriminability. We maximized Eq. 2 (plugging in Eq. 3) by iteratively adjusting the faces’
latents while monitoring the representation of the resulting 2D face image in each layer of the six
candidate models (evaluating two instances per model). We implemented a differentiable approxima-
tion to the BFM rendering process in PyTorch3D [26] to enable backpropagation of the gradients
from the neural network representations through the 2D image to the BFM latents. This enabled us to
use SGD optimization for stimulus synthesis (see further details in Appendix A.3).

1.3 Human behavioral experiment

We recruited 90 US-based, 18-60 year-old participants (39 female, 32.5±10.4 years mean age) through
the prolific.co platform (Appendix A.5). Our experimental procedures were approved by the
Columbia University Institutional Review Board (protocol number IRB-AAAR9520). Each stimulus
set (random, systematic, and controversial) was tested on an independent set of 30 participants. The

3This is a variation on [2], where the dissimilarities were first concatenated across trials and only then
correlated with the model predictions, yielding a single correlation coefficient.

4Ties were handled by an analytical random-among-equals tie-breaking estimate ([25], Eq. 14).
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participants were presented with two repetitions of T = 12 unique trials in a randomized order.
In each trial, the participants were instructed to arrange six face pairs according to their perceived
dissimilarity along a vertical dissimilarity axis, labeled “identical” and “maximally different” on
opposite ends (Figs. S1 and S2). The arrangement task was implemented on the Meadows web
platform (meadows-research.com). Unlike the design in [2], no visual examples of identical and
maximally different face pairs were provided. Each generated face image appeared only in one pair.

To obtain an unbiased estimate of each model’s best layer performance, we evaluated each subject-
model correlation using the model layer that best predicted the other 29 subjects’ ratings (bottom
panels in Fig. 2). A lower bound on the best possible model performance for each data set was
calculated by predicting each participant’s responses by the average response vector of the other 29
participants [27], calculated after rank-transforming the six ratings within each trial. An upper bound
was calculated in the same fashion while including the predicted participant’s response vector in the
across-subject average.

2 Results

Simulations. We first considered the discriminability of the six models for each of the three stimu-
lus sets in silico (Fig. 1). We simulated model recovery experiments by comparing the dissimilarities
predicted by each model and each layer to the dissimilarities predicted by held-out model instances.
This was done both in a noiseless setting and under Gaussian noise added to the simulated dissimilar-
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Figure 2: Prediction accuracy of human dissimilarity judgments of six VGG-16 neural networks
trained on different tasks and datasets. Each model is evaluated on a randomly sampled stimulus
set (left column), a systematically sampled stimulus set (middle column), and a controversial stimulus
set (right column). Top row: Each panel shows the average Spearman’s ρ between the dissimilarity
vectors of each model layer and human response for one stimulus set. Each colored line indicates
performance of one model, and the shaded areas represent the SE. The grey regions indicate noise
ceiling estimates on the average model-human alignment an ideal model can achieve, given the
between-subject variability in human responses. Bottom row: Cross-validated performance estimates
of each model’s best layer. Each dot represents the rank correlation between one subject and one
model, using the layer that best explained the other subjects’ responses. Significance indicators:
A solid dot connected to a set of open dots indicates that the model aligned with the solid dot has
significantly higher correlation with the human judgments than any of the models aligned with
the open dots (p < .05, paired t-tests on Fisher-transformed correlation coefficients, Holm-Šídák
FWE-corrected for 21 comparisons).
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ities. As expected, the controversial stimulus set enabled more accurate model recovery, especially
under noise. See Figure S3 for an ablation study of the optimization algorithm.

Behavioral results. Both randomly sampled and systematically sampled face pairs failed to success-
fully adjudicate among the six candidate models: no model was significantly more accurate than all
of the others in predicting the human responses. In contrast, when models and humans were evaluated
on the controversial stimulus set, the neural network trained on inverse rendering (i.e., predicting
BFM latents from the input image) was found to be significantly more human-consistent than the five
other models. We replicated this result with a second controversial stimulus set, optimized from a
different random initialization of face latents (Fig. S4). Note that the systematically sampled stimulus
set, which was designed to elicit maximally distinct levels of perceptual dissimilarity, indeed yielded
highly reliable human judgments. Below the resulting high noise ceiling, however, the performance
differences among the alternative models were small and largely insignificant. All models came close
to the noise ceiling, illustrating how apparent good model performance can fail to drive theoretical
progress.

Controversial stimuli provide a “magnifying glass” for model differences [28]. We therefore consider
the prediction accuracy for a controversial stimulus set as a test statistic for model comparison rather
than as an absolute benchmark of the models.

3 Discussion

In this work, we put forward a controversial stimulus synthesis procedure for RSA experiments
and applied it to compare models of face representation. Beyond faces, the proposed optimization
approach can be readily applied to design controversial stimulus sets for differentiable representational
models including neural networks, in vision and in other representation domains.

Limitations and future directions. Using gradient-based stimulus optimization enables efficient
search and convergence in high-dimensional stimulus spaces (here, R398). However, gradient-
based stimulus optimization requires differentiability of the objective, the stimulus renderer, and the
models. Adapting evolutionary algorithm-based stimulus synthesis [29] to directly maximize model
discrimination may allow a complementary approach. See also [30] for random-sampling-based and
[31] for evolutionary-algorithm-based approaches to stimulus selection.

Implications for modeling human face representations. We found that a neural network trained
to invert the graphics rendering process and estimate the BFM latent representations that gave rise to
a face image yielded the most human-aligned representational geometry. This result is consistent
with the finding of Yildirim et al. [32] obtained using macaque intracranial recordings. However, it
should be noted that this network was tested in favorable conditions since it was trained on inverting
the rendering process of the generative model used to parameterize the experimental stimuli. In
future work, we will evaluate the models’ performance using controversial stimuli parameterized by
alternative generators (e.g., generative adversarial networks) to address this limitation.
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A Appendix

A.1 Detailed description of model training

All of our models (Table 1) had the VGG16 architecture [20] as implemented in torchvision and
were trained on 128 × 128 pixel input images. Neural network weights were initialized by randomly
sampling from a zero-mean Gaussian distribution, as described in [33]. No batch normalization was
employed. We used PyTorch Lightning for model training (www.pytorchlightning.ai). All the
models were trained using four GeForce RTX 2080 Ti GPUs. We trained three instances for each
of the six models described below, starting from different random weight initializations. The first
instance was used as a representational model (ŷm in our equations). The second instance was used
to simulate ground-truth responses during stimulus optimization (ỹm), and the third was used to
simulate ground-truth responses in the model recovery experiments. For the sake of brevity, the
validation performance described below is for the first instance. Drop-out was used during training,
but disabled during inference (i.e., when testing the neural networks on held-out data or using them
as representational models).

Each network was trained on one of three data sets: ImageNet [21], VGGFace [22], or synthetic
faces we sampled and rendered from the Basel Face Model. For each data set, the mean and the
standard deviation of the pixel intensity levels were estimated for the three color components of each
image and then averaged across a sample of the data set’s training images. These estimates were
used to shift and scale the color channels of the input image to ensure expected zero mean and unit
standard deviation inputs during training. The same intensity normalization was applied when the
neural networks were used in stimulus optimization and data analysis.

Object recognition (ImageNet). We trained a VGG16 network on a 1000-way object clas-
sification task using the ImageNet data set. The images were preprocessed and augmented
using datamodules.ImagenetDataModule, which is implemented in Lightning Bolts [34]. The
training hyperparameters were as in the pretrained torchvision model reference script (https:
//github.com/pytorch/vision/tree/main/references/classification). We trained the
network using stochastic gradient descent (SGD) with a weight decay of 0.0001, momentum of
0.9, and mini-batches of 1,024 images, minimizing the cross-entropy loss. The learning rate was
initialized to 0.1 and decreased by a factor of 10 every 30 epochs. During both training and validation,
each image was rescaled such that the shorter side was 146 pixels and then resized to 128 × 128
pixels using a random crop during training and a centered crop during validation. During training,
the images were also augmented by random horizontal flip, applied with a probability of 0.2. The
network was trained for 90 epochs and achieved 1.56 validation loss and 62.4% top-1 and 84.3%
top-5 validation accuracy.

Face identification (VGGFace2). We trained a network of the same VGG-16 architecture to
classify 8,631 face identities in the VGGFace2 dataset, minimizing the cross-entropy loss. Images
were cropped using the data set’s predefined bounding boxes and then rescaled and cropped again
(random cropping during training and centered cropping during validation). Additionally, training
images were augmented with greyscale transformation with a probability of 0.2. For each identity,
we held 10% of the images from the training data for validation. We used SGD with a weight decay
of 0.0001, momentum of 0.9, and mini-batches of 1,024 images. The learning rate was initialized to
0.01 and decreased by a factor of 10 every ten epochs. The network was trained for 30 epochs and
achieved 0.310 validation loss and 95.7% top-1 and 98.2% top-5 validation accuracy.
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Face identification (BFM). A third VGG-16 network was trained to identify 8,631 synthetic face
identities (matching the number of identities in the VGGFace2 natural face photo data set). Here the
synthetic face images were generated with the Basel Face Model. For each synthetic identity, all
of the face images shared the same randomly sampled shape and texture latents but had different
expression latents, pose, lighting direction, and lighting intensity. Within-identity variability was
further increased with 16 naturalistic augmentations [35], including different forms of noise addition,
cutout, blurring, and grayscale transformation. 363 images of each identity were generated to roughly
match the total number of training images in the VGGFace2 dataset [22]. The rendered images were
preprocessed similarly to our VGGFace2 face identification model, with random cropping during
training and centered cropping during validation. The training (minimizing the cross-entropy loss)
was carried out by SGD with a weight decay of 0.0001, momentum of 0.9, and mini-batches of 512
images. The learning rate was initialized to 0.01 and reduced by a factor of 10 every ten epochs. The
model was trained for 30 epochs and reached a 0.00169 validation loss and 99.95% top-1 and 99.99%
top-5 classification accuracy for the validation set.

Autoencoding (VGGFace2). We trained a variational autoencoder (VAE, [36, 37]) on the VG-
GFace2 dataset. The autoencoder consisted of a VGG-16 as an encoder and an “upconvolutional”
decoder. The penultimate layer of the VGG-16 was mapped by two fully connected layers to a
predicted mean of a 500-dimensional Gaussian latent representation and to a variance parameter
for each dimension, defining a diagonal covariance matrix. During training, the 500-dimensional
latent vector was sampled according to the predicted mean and covariance and was then transformed
back to an image by the decoder. The decoder network mapped the latent from its 500-dimensional
space to a stack of 256 8 × 8 activation maps. These maps were then upsampled by four trainable
upconvolutional blocks. Each block doubled the size of the maps and halved the number of channels.
Each block included a 3 × 3 convolutional layer followed by a PixelShuffle upsampling operation,
ReLU non-linearity, an additional 3 × 3 convolutional layer that maintained the activation dimen-
sionality, and a second ReLU non-linearity. After the last block, the resulting 16 128 × 128 maps
were mapped by a 3 × 3 convolutional layer and a sigmoid non-linearity to the original RGB image
format. The VAE was trained to minimize the evidence lower bound (ELBO). The β hyper-parameter
(the trade-off between reconstruction error and prior regularization) was set to 1.0 and the σ hyper-
parameter (the scaling of the reconstruction error) was empirically fitted during training to minimize
the ELBO [i.e., we used an “σ-VAE”, 37]. We trained the network with ADAM [38] with β0 = 0.9,
β1 = 0.999, ϵ = 10−4, a weight decay of 0.00001, and mini-batches of 256 images. The learning
rate was initialized to 0.0005 and was reduced by a factor of 10 after 20 epochs. After training for 30
epochs, the network achieved 0.679 MSE for validation images. Visually, the reconstructed validation
images had high fidelity. After training was completed, we discarded the decoder and used only the
VGG-16 encoder as our representational model. For the ultimate layer, we used only the predicted
mean of the latent representation without sampling from the predicted Gaussian in latent space.

Autoencoding (BFM). We repeated the VAE training procedure with the dataset of BFM synthetic
faces described in the section Face identification (BFM) above. After training for 30 epochs, the
network achieved 0.554 MSE for validation images. Here as well, the reconstructions had high visual
fidelity.

Inverse rendering (BFM). Inspired by the Efficient Inverse Graphics (EIG) model by Yildirim et al.
[32], we trained a VGG-16 to predict BFM face latents and extrinsic properties–pose and lighting.
In the EIG model, different intermediate layers were trained to fit different representational targets,
ranging from image segmentation to identity. Here, we trained a neural network to map each input
image to a single output vector consisting of six components: 199 shape latents, 199 texture latents,
100 expression latents, four face pose parameters (expressed as a quaternion), three lighting color and
three lighting direction parameters. This target representation resembles the EIG’s f5 representation,
which was found by [32] to best match the macaque anterior face patch AM. We generated 3,300,000
unique synthetic faces using BFM by randomly sampling face latents, pose, lighting color, and
direction. The loss function was defined as the sum of the normalized mean squared error (NMSE)
for the six components. To maintain the veracity of the training targets, the only data augmentation
during training was random cropping. We trained the network with ADAM [38] with β0 = 0.9,
β1 = 0.999, ϵ = 10−8, no weight decay, and mini-batches of 512 images. The learning rate was
initialized to 0.0001 and was reduced by a factor of 10 every 40 epochs. After training for 120 epochs,
the model achieved 2.31 NMSE loss for validation images (where 0.0 is perfect performance and
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6.0 is the error of the best constant predictor). Feeding the inferred latent representations back to the
BFM renderer generated face images highly consistent with the input images.

A.2 Basel Face Model

The Basel Face Model (BFM) was conceived as a PCA-based probabilistic graphics model of faces
[39] that combines 3D shape and mapped texture components to render nearly photorealistic images of
human faces. The BFM characterizes each face by a shape, a texture, and (optionally) an expression,
using separate latent vectors for each of these three determinants of face appearance. The shape of
a face is parameterized by a latent vector α, defined such that s(α) = s̄+

∑r
i=1 αi

√
λiui , where

s(α) is a vector of vertex coordinates defining a 3D face mesh, s̄ is the vector of vertex coordinates
of the average face mesh, λi is the i-th shape eigenvalue, and ui is the i-th shape eigenvector. Texture
components are handled analogously, enabling general linear mixing of 3D face models. The shape
and texture components define a normal distribution in latent space, which in the 2017 version
was based on 3D scans of 200 people (not randomly sampled to be representative of any particular
population). The normal distribution model enables us to sample faces at random by drawing the
parameters αi ∼ N (0, 1) or to evaluate the likelihood of a face with respect to that distribution. Note,
however, that this distribution is not representative of the human population. In our optimization
procedure, we adjust the latent vectors for both the shape and texture models. See [23] for a detailed
mathematical description of the more recent BFM versions, where the PCA was generalized to a
truncated Karhunen–Loève expansion over face deformations.

A.3 Stimulus optimization procedure

The synthesized stimuli were initialized as shape and texture BFM latent vectors randomly sampled
from the BFM normal distribution model and then projected into a hyper-cube subtending ± 2 SDs.
The face latents were then iteratively adjusted to maximize the optimization objective (Eq. 2).

Note that the stimulus optimization objective in Eq. 2 considers two trained model instances per
model architecture and objective. This approach serves to safeguard against confusion of random
variability across instances of a model trained from different random seeds for variability between
different model architectures and objectives. For conceptual clarity, we defined one instance for each
model as the “reference instance”, denoting its predictions as ŷm. This instance for each model
was also used in data analysis. The other instance was used as the ground-truth model during the
stimulus optimization, and its predictions are denoted by ỹm. The optimization objective in Eq. 2
considers only correlations between the reference and ground-truth instances. Note, however, that our
stimulus-synthesis procedure can be improved by also considering the correlations between distinct
models within each instance set. Furthermore, the minimal setup of two instances per model can be
extended to a larger instance sample at the cost of greater GPU compute requirements.

We used the Adam optimizer with a learning rate set to 0.01. In this context, the learning rate
controls the speed of face latent adjustment. In each optimization iteration, we evaluated the
optimization objective ten times with jittered versions of the stimuli. We used a differentiable scale
jitter between 99.5% and 100.5%, followed by a differentiable translation jitter of up to 10 pixels.
After averaging the objective across these ten presentations, we took an optimization step ascending
the gradient. Reparameterization kept the optimized face latents within the hyper-cube constraint:
we parameterized each face latent dimension αi by αi = 2 tanh(α′

i), optimizing α and using α,
which lies in (−2, 2), to generate faces. The learning rate was reduced by a factor of 2 after apparent
convergence. Apparent convergence was defined as no significant improvement of the mean objective
in the last 20 iterations compared to the mean objective in the preceding 20 iterations. Learning
rate reduction was carried out twice. After the third apparent convergence (or the 1000-th iteration,
whichever happened first), the optimization was terminated.

We used a compute server with eight GeForce RTX 2080 Ti GPUs. Two GPUs were devoted to
PyTorch3D image rendering and the other six to model evaluation (we evaluated 144 images on 12
neural networks: 2 instances × 6 models). We used activation checkpointing to reduce GPU RAM
requirements.
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A.4 Model-recovery experiments

For noiseless simulations (the datapoints on the left edge of Fig. 1), model-recovery accuracy was
estimated by

A(ξ) =
∑
m

p(m) ·
∑

l∈{1,...,Lm}

p(l | m) ·1
[
max
l′

ψ
(
ỹm,l(ξ), ŷm,l′(ξ)

)
> max

m′ ̸=m
max
l′

ψ
(
ỹm,l(ξ), ŷm′,l′(ξ)

)]
,

(4)
using uniform priors p(m) and p(l | m). The reference dissimilarities ŷm,l′(ξ) were obtained from
the same reference-model instances as used in the stimulus optimization. Ground-truth dissimilarities
(ỹm,l(ξ)) were obtained from held-out instances.

This proportion measures how often the ground-truth representational dissimilarities are better
predicted by the ground-truth model rather than by any of the other models. It is estimated on average
across all possible ground-truth models and layers.

For simulations including measurement noise (i.e., the rest of the data points in Fig. 1), the ground-
truth representational dissimilarities were first normalized by the mean representational dissimilarity
of the same model and layer presented with the random stimulus set. We then added independent
standard Gaussian noise to each ground-truth representational dissimilarity before comparing them to
the reference representational dissimilarities.

A.5 Human experiment screening criteria and participation compensation

Screening criteria. We took several steps to ensure that the participants recruited through prolific.co
understood the arrangement task and made a sincere effort. A participant was excluded from the data
analysis if they failed to meet any of the three criteria:

• Successful completion of a practice trial. In the practice trial, the participants arranged
image pairs of various objects. We tested whether each participant’s arrangement conformed
to all of the following dissimilarity relations:

1. (dog, strawberry) > (apple, orange)
2. (car, apple) > (apple, orange)
3. (apple, orange) > (apple, apple)
4. (apple, orange)> (strawberry, strawberry).

• Low within-subject reliability. Since each participant was presented with every trial twice,
we could estimate within-subject reliability by correlating the dissimilarity ratings in the two
repetitions, yielding one (Speamran’s τ ) correlation coefficient per trial. For each participant,
we tested the significance of the Fisher-transformed correlation coefficients by a one-sample
t-test against zero. Participants with p ≥ .05 were disqualified for low reliability.

• Short participation duration. Participants who spent less than 10 minutes doing the experi-
ment were excluded from analyses.

Participation compensation. We paid $816 in total to 136 participants, including 30 replication
study participants and 16 disqualified participants who failed one the screen criteria. Three participants
failed more than one screening criteria and were not paid. The hourly payment was $15.4, on average.
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Figure S1: An example experimental trial. After completing an object-pair arrangement task for
practice, participants were shown an annotated illustration of the face-pair arrangement task, with the
following instruction alongside:

In the following task, you will arrange face pairs vertically according to their similarity.
In each trial, each pair of faces that are relatively more dissimilar from each other
should be placed above each pair of faces that is relatively more similar to each
other. Note that only the vertical positioning of faces will be taken into account.
Horizontal space is provided so you can arrange the face pairs more easily.

For each arrangement screen, participants dragged each face pair from the grey area to the white
arena and arranged the pairs vertically to indicate their perceptual similarity.
Note that the high prevalence of Caucasian faces reflects the particular sample underlying the
Basel Face Model. Using alternative generators (or modified BFM latent distributions) can enable
tuning the ethnic composition of the faces to better fit particular human populations.
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Figure S2: Stimuli and dissimilarity rankings in one randomly sampled trial from each stimulus
set: random, systematic and controversial stimuli. Each colored line indicates the dissimilarity
ranking of one face pair. The average human ranking is shown on the left (the ranked average across
all participants’ ranked dissimilarity ratings). The ranked predictions of each of the neural network
models are shown on the right. For each model, we show here the predictions of its best-performing
layer (see Fig. 2, top row), which is not necessarily the one that best predicts these particular trials.
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Figure S3: Stimulus optimization ablation study. We generated controversial stimulus sets either
with the full optimization procedure described in the main text (orange-brown) or with various
components turned off (red hues). We simulated model recovery accuracy for each stimulus set
(see Fig. 1) and averaged the results across 10 stimulus sets of each optimization condition (each
stimulus set was generated from a different random initialization of the face stimuli). The curves
depict the mean model recovery accuracy as a function of simulated noise. The gray shaded regions
depict ±1 SE of this measure. (A) Optimizing only the texture component of the faces while keeping
the randomly sampled shape component fixed leads to a slightly reduced model recovery accuracy
compared to optimizing both components. Optimizing only the shape component leads to a dramatic
reduction in model recovery accuracy. (B) Using only a single instance of each neural network
model leads to a small reduction in model recovery accuracy. In this setting, the first term in Eq. 2
is constant, and the optimization focuses on features that are more idiosyncratic to the particular
weight initializations of the neural network instances used (see [40]). (C) Setting the function f(·)
in Eq. 2 to identity (i.e., f(x) = x instead of f(x) = −e−10x) reduces model recovery accuracy
and increases the variability of this measure across repeated stimulus optimization runs. When f(x)
is set to identity, there are no diminishing returns for further separating a pair of representations
that are already well-separated compared to other representation pairs. (D) The effect of alternative
model-performance pooling functions. “smoothmax”: replacing the maximum over models in Eq. 2
with a smooth maximum, defined as Sα(x) =

∑
i xi · eα·xi/

∑
i e

α·xi . Here α was set to 10.0.
“mean”: replacing the maximum over models with an average over models. “max”: a hard maximum
over alternative models, as employed in our behavioral experiment. The hard maximum yielded the
highest model-recovery accuracy, even though it is not a smooth function.
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Figure S4: A replication of the controversial
stimuli experiment using a different contro-
versial stimulus set. Conventions are as in Fig-
ure 2. Since the controversial stimulus set was a
product of random initialization followed by lo-
cal optimization, we assessed the replicability of
the results arising from using such stimulus sets
by testing another group of 30 subjects with an-
other controversial set, initialized with a different
random seed. We found a result pattern consis-
tent with the first controversial stimulus set we
tested (Fig. 2, right column). Importantly, the neu-
ral network trained to invert the rendering of 2D
face images performed significantly better than
all other models in this replication.
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