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Abstract

Recent advances in Large Language Models (LLMs) have led to an emergent
ability of chain-of-thought (CoT) prompting, a prompt reasoning strategy that
adds intermediate rationale steps between questions and answers to construct
prompts. Conditioned on these prompts, LLMs can effectively learn in context
to generate rationales that lead to more accurate answers than when answering
the same question directly. To design LLM prompts, one important setting, called
demonstration selection, considers selecting demonstrations from an example bank.
Existing methods use various heuristics for this selection, but for CoT prompting,
which involves unique rationales, it is essential to base the selection upon the
intrinsic skills that CoT rationales need, for instance, the skills of addition or
subtraction for math word problems.

To address this requirement, we introduce a novel approach named Reasoning
Skill Discovery (RSD) that uses unsupervised learning to create a latent space
representation of rationales, called a reasoning skill. Simultaneously, RSD learns a
reasoning policy to determine the required reasoning skill for a given question. This
can then guide the selection of examples that demonstrate the required reasoning
skills. Our approach offers several desirable properties: it is (1) theoretically
grounded, (2) sample-efficient, requiring no LLM inference or manual prompt
design, and (3) LLM-agnostic. Empirically, RSD outperforms existing methods by
up to 6% in terms of the answer accuracy across multiple reasoning tasks.

1 Introduction

Large Language Models (LLMs) exhibit remarkable capabilities in solving various downstream tasks
through in-context learning (ICL) [4], even without being explicitly trained on the distribution of
in-context examples [29} 10} 24} [7,132]]. Using in-context learning, LLMs generate output for an input
query by conditioning on a prompt that contains a few input-output demonstrations.

Reasoning tasks have proven to be particularly difficult for language models and NLP in general [24,
3L 23]]. In the recent literature, chain-of-thought (CoT) prompting has been proposed to improve
LLMs on a wide spectrum of reasoning tasks by guiding LLMs to produce a sequence of intermediate
steps (rationale) for generating a (better) final answer [9} 33 [28]]. To achieve this, CoT prompts are
composed of demonstrations that contains not only input-output pairs, but also rationales.

The core challenge for ICL lies in designing effective demonstrations to prompt LLMs. Much
evidence has indicated the significant impact of demonstrations on the performance of ICL [20, [18].
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Figure 1: A diagram showing the generation of a rationale for a simple math word problem. The
causal graph on the left shows the dependencies between question (), reasoning skill z, and rationale
R. Candidate rationales are shown as italicized font in the two rectangle panels.

To form a prompt, one important setting considers selecting demonstrations from an existing example
bank, termed demonstration selection. While a variety of methods exist in the ICL literature for
automating this process, CoT prompts are distinct in that they include not only questions and answers
but also specially-designed rationales. This distinction highlights the importance of rationales in
selecting demonstrations for CoT prompting.

Motivated similarly, An et al. [2] propose to select examples with rationales showcasing requisite
skills for solving specific reasoning problems. For instance, the skills for simple math word problems
could be basic numerical operations, including addition, subtraction, multiplication, and division.
These skill labels are automatically annotated by pre-trained LLMs. While intuitively appealing, it is
unclear why the selection based on these skill labels can be effective for CoT prompting. Furthermore,
their skill annotations tend to be somewhat arbitrary, heavily reliant on human prompt design for
LLM annotations.

To address these challenges, this paper introduces skill model, a plausible framework for explaining
the generation of rationales, drawing inspiration from a modified topic model [30]. By representing a
rationale as R, a reasoning question as () and introducing a latent variable z € Z representing “skills”
with Z being the latent space, the generation of R can be formulated as follows:

P(R| Q) = /Z P(R| 2 Q)P(x | Q)d= ()

This generation process involves sampling a latent variable z based on () through a posterior distribu-
tion denoted as P(z | Q). Subsequently, the probability of generating a rationale R is conditioned on
both z and ). Within this framework, the “skills” can be formally defined as the latent variable z.
Conditioned on z and @, the rationales can be generated. We call z a reasoning skill and the posterior
P(z | Q) a reasoning policy. This reasoning policy encodes a strategic preference of reasoning
skills based on a particular question. Fig. [T|shows an illustration of this generation process. Further
justification for this formulation is provided in Section [2.1]

Under this formulation, a skill-based selection method, akin to An et al. [2]], can be precisely described
as selecting examples showcasing reasoning skills that align with an optimal choice of reasoning
skills that maximize answer accuracy for a given question. A formal definition of skill-based selection
is provided in Section Moreover, Appendix [E| presents a theoretical analysis underscoring the
optimality of this skill-based demonstration selection method.

Prior methods annotate reasoning skills by humans or LLMs. For example, Chen et al. [3]] use a few
discrete labels of known reasoning skills, from which humans or LLMs can use to label examples.
However, such annotations can be resource-intensive and vary across different tasks. To mitigate the
challenge, in this paper, we propose a novel framework called RSD that uses unsupervised learning to
discover reasoning skills in an expert-generated example bank of question-rationale pairs (with no
skill labels). Under our formulation of skill model, RSD learns the generation of rationales with a
conditional variational autoencoder (CVAE). As a result, two probabilistic models can be learned
concurrently: (1) a reasoning skill encoder, approximating P(z | @), R) to map question-rationale
pairs to reasoning skills; (2) a reasoning policy, approximating P(z | Q) that reflects an expert’s
preference of selecting reasoning skills. These discovered reasoning skills can be utilized to perform
the skill-based example selection for CoT prompting.

The effectiveness of RSD is evaluated on four different benchmarks based on four backbone LLMs
with varying scales. The method is also compared with reasonable baselines, including an oracle
method that assumes access to ground truth rationales. RSD achieves improvements of up to 6% over
non-oracle baselines with similar computational cost and matches the oracle performance in almost



half of the experiments. In summary, the paper presents three major contributions: (1) We introduce
the skill model, a plausible formulation for CoT reasoning, and empirically verity its effectiveness
through four sets of experiments; (2) We propose RSD, a novel unsupervised demonstration selection
approach for CoT prompting, which is both sample-efficient and LLM-agnostic; (3) We introduce
theoretical analysis that grounds the skill-based selection method.

2 Formulation

In this section, we formally describe the skill model, a new formulation for explaining the generation
of rationales in CoT reasoning. In Section[2.1] the skill model is first introduced to describe the
human-generated rationales. Then, Section [2.2]illustrates how the skill model can be adapted to
LLM-generated rationales. Finally, leveraging the concept of reasoning skill as outlined in the skill
model, a new skill-based demonstration selection method is formally described in Section @

2.1 Skill Model

Let X be the set of all sequences of tokens, Z be the continuous vector space of latent reasoning
skills, and Pg denotes the probability distribution of real-world natural language. The CoT reasoning
is to generate a rationale R € X given a question () € X, whose correctnesﬁ can be verified by an
indicator function 1(R, Q) := 1(R is the correct rationale for Q)).

The skill model assumes that the real-world conditional distribution of R given () is given as follows:
Pu(R| Q) = [ Pu(R| Q)Pulz| Qs @
Z

where, Pr(z | Q) is the posterior of selecting latent reasoning skills in human reasoning, called a
reasoning policy. Py (R | 2z, @) is the posterior distribution of generating R given a question () and a
reasoning skill z. A causal graph illustrating such a generation process involving a latent reasoning
skill z is presented in Fig. [T|on the left.

Unlike Wang et al. [30], this formulation considers a dependency of z on @ reflecting a preference
for selecting specific reasoning skills given a question. We justify this formulation as follows. First,
rationales can exhibit remarkable flexibility, manifesting diverse formats, topics, and knowledge,
which can naturally be abstracted into a high-level concept of skills. Second, the selection of these
skills is not bound by strict determinism. For instance, diverse reasoning paths and formats could all
contribute toward finding the correct final answer. Therefore, real-world data is a mixture of diverse
skills captured by a stochastic reasoning policy Py (z | Q).

2.2 CoT prompting

LLMs are pre-trained conditional generators. Given an input query X € X, the conditional distri-
bution of an output Y € X generated by LLMs can be written as Py, (Y | X). LLMs are usually
trained on generic real-world data distribution such that Py (Y | X) ~ Py (Y | X).

Prior studies have presented an implicit topic
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To elaborate, when generating rationales, LLMs’
conditional distribution Py (R | Q) can be ex-

tended as follows (with illustrations in Fig. 2)): Figure 2: Causal graphs for prompting with zero-

shot (left), zero-shot CoT (middle), and few-shot
CoT (right) for generating rationales via skills.

Pu(R| Q) = /Z Pu(R | Q) Pu(z | Q)dz

This implicit skill model assumes that LLMs also infer reasoning skills z, which resembles the
real-world generation of rationales.

"For math word problems, whose answers are discrete labels, the correct rationale should contain the correct
answer label as the final step. For code generation, the correct rationale should be the correct code.



The above formulation only encompasses the zero-shot generation of rationales. In practice, prompts
are commonly provided to guide LLMs’ generation. In general, two CoT prompting strategies exist:
zero-shot CoT, employing a prompt comprising a short prefix and a test question, and few-shot CoT,
employing a prompt containing pairs of questions and rationales. Denoting pt € X’ as a prompt, a
unified formulation for both prompting strategies can be derived as follows:

Pu(R|pt) = | Pu(R|%QPulz | pt)d: 3
z
0-shot CoT: pt = (prefix, Q) or (Q, prefix); k-shot CoT: pt = (Q1, R1,- -+ ,Qk, R, Q) (4)

Here, the formulation is simplified such that the use of prompts only influences the probability
distribution of z. For instance, a prefix specifying the generation’s format can be interpreted as
specifying the reasoning skill z by shaping the distribution from Py, (z | @) to Pys(z | pt). This
simplification aligns with empirical evidence suggesting that in-context examples serve as mere
pointers to retrieve already-learned knowledge within LLMs [27, 21]].

Drawing upon this formulation, we can gain insight into the failure of zero-shot generation. In
general, real-world data is inherently noisy, indicating that the reasoning policy Py (z | Q) may
be sub-optimal, and the reasoning skills are not chosen to maximize the accuracy of answering a
test question. Trained on this generic real-world data distribution, Pys(z | Q) could also be sub-
optimal, leading to the failure of zero-shot generation. On the other hand, CoT prompting improves
the reasoning performance by shaping the distribution of reasoning skills using carefully-designed
prompts that contain either instructions or few-shot examples.

2.3 SKkill-Based Demonstration Selection

The analysis above suggests that the key to the success of CoT prompting is to design an effec-
tive prompt that shapes the posterior distribution of reasoning skills, assuming that the real-world
distribution Py (z | Q) is potentially sub-optimal. In contrast to the real-world distribution, the
demonstration selection problem assumes access to an example bank of question-rationale pairs,
denoted as D = {(R, Q)}. This example bank is usually specially-crafted and has a distribution
different from the real-world distribution. Denoting Py as the distribution of the example bank, R is
distributed according to Pg(R | Q) for all (R, Q) € Dg.

Given D, the demonstration selection is to select a few question-rationale pairs from Dg. Assuming
that each selected demonstration is i.i.d, a demonstration selection method can be uniquely defined as
a probabilistic model g(Q, R|Qes) := X — A(X) that maps a test question Qs to a probability
distribution of demonstrations. Then, we can formally define the skill-based demonstration selection
method as follows:

Definition 1 Skill-based example selection is given by
gRSD(Q7 R | Qtesl) - / PE(Qa R ‘ Z)PE(Z | Qtest)dz (5)
z

Intuitively, this selection method maximizes the probability of a selected demonstration showcasing
the reasoning skill that is likely to be chosen according to Pr(z | Qest). Since the example bank is
usually specially-crafted and contains rationales showcasing “better” reasoning skills, the in-context
examples that align with the expert preference (Pr(z | Q, R) = Pgr(z | Qs)) are intuitively more
effective. In Appendix [E| we provide theoretical analysis of the optimality of this skill-based selection
when conditioned on certain ideal assumptions of the example bank and LLMs.

3 Method

To enable the skill-based demonstration selection (Definition , we introduce our approach RSD,
which involves learning a conditional variational autoencoder (CVAE) to approximate Pg using
the data from the example bank Dg. We then outline a practical demonstration selection process
aligning with the skill-based selection. The schematic overview of RSD (right) and the corresponding
demonstration selection process (left) are illustrated in Figure[3]
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Figure 3: An overview of RSD and the demonstration selection process.

3.1 Reasoning Skill Discovery

The conditional variational autoencoder (CVAE) has emerged as a popular approach for modeling
probabilistic conditional generation. As one specific case, the skill model, introduced in this paper,
can effectively be represented as a CVAE. Therefore, we introduce RSD that employs a CVAE to
approximate the generation of rationales using the data from the example bank Dr = {(Q, R)}.

In particular, this CVAE includes three coupled models: an encoder model, a decoder model, and a
reasoning policy model, independently parameterized by w, 1, and ¢ respectively. Drawing from
the notations introduced in the skill model, the reasoning policy model is a conditional Bayesian
network 74 (2 | (), determining the posterior distribution of latent reasoning skill z given a question
Q. The decoder model is also a conditional Bayesian network py (R | z,Q) that generates a
rationale R, conditioned on both () and z, where z is sampled from 74(z | Q). Finally, the encoder
model g, (z | @, R) is another conditional Bayesian network, mapping a question-rationale pair to
z. In this paper, we train this CVAE using classical variational expectation maximization and the
reparameterization trick. Detailed description of this training process is presented in Appendix [B.T]

Ideally, all three models would be represented by language models, processing token sequences
as input and generating token sequences as output. However, training full language models for
demonstration selections can be computationally expensive. Instead, we adopt a pre-trained em-
bedding model denoted as f : X — O, which maps the token space X to an embedding space
©O. Consequently, the decoder model, encoder model, and reasoning policy model transform into
pu(f(R)|z, f(Q)), 9.,(2| f(Q, R)), and my (2] f(Q)), respectively. They now condition on and gen-
erate the embeddings instead of the original tokens. In the actual implementation, we use the same
feed-forward neural network to represent both 74 and q.,, predicting the mean and variance of
Gaussian distributions of latent reasoning skills. On the other hand, p, is a feed-forward neural
network that deterministically predicts a value in the embedding space. Once the encoder and the
reasoning policy are learned, the demonstration can effectively be selected by the procedure described

in Appendix

4 Experiments

Section[4.T|describes the experiment settings including benchmarks, selection methods, and backbone
models. Then the main results of these experiments are presented in Section[d.2]

4.1 Selection Methods and Datasets

We refer to the skill-based selection by our RSD approach as Retrieval-RSD , which is compared
with three baselines detailed as follows: (1) Random, which randomly selects k in-context examples
from the example bank; (2) Retrieval-Q, which selects in-context examples based on the cosine
similarity between embeddings from examples’ questions and the test question; (3) Retrieval-R
(oracle), which selects in-context examples based on the cosine similarity between embeddings from
examples’ rationales and the ground-truth rationale. Detailed description and all the hyper-parameters
related to these methods are listed in Appendix [C]

For benchmarking, the selection methods are evaluated on four challenging datasets, including two
datasets of Math Word Problem (MWP): TabMWP, GSMS8K, one text-to-SQL dataset: Spider,
and one semantic parsing dataset: COGS. Each dataset is split into a training set used to learn RSD
models and a test set used to evaluate the selection methods. While the training sets may potentially
be large, we use randomly sampled 1K examples from the training set as the example bank, from



which, the examples can be selected for CoT prompting. Detailed descriptions of the datasets and
splitting are presented in Appendix [C|

To measure the performances, we use the answer accuracy for TabMWP and GSMS8K, with the
answers extracted by searching the texts right after a prefix The answer is. For Spider, we use
the official execution-with-values accuracyﬂ For COGS, we report the exact-match accuracy for
semantic parsing.

In terms of the backbone models, the ICL is conducted by two OpenAl language models: text-
davinci-003 and gpt-3.5-turbo, one Anthropic model: Claude-v2, and one smaller-scale Falcon-
40B-Instruct [36]. All the embedding is computed by a pre-trained embedding model, Deberta-v2-
xlarge [14]. We also investigate different choices of embedding model in Appendix

4.2 Main results

Table [T|presents a summary of the results. Detailed descriptions are provided as follows. In-depth
analysis and ablation studies are presented in Appendix

Backbone Method TabMWP GSMS8K  Spider COGS
Random 62.4 .00 75.7 00 468 100 67.5 .00
Retrieval-Q 723 09 756 oy 499 .5, 885 .59

gpt-3.5-turbo Retrieval-RSD (ours) 781,15, 768.., 53.0... 94.6..,
Retrieval-R (oracle) 774 ;150 755 0o 644 .76 957 050

Random 69.3 .00 622 00 47.1 00 73.4 .00
o . Retrieval—Q 76.5 +72 62.7 +0.5 50.2 +2.9 92.1 +18.7
text-davinci-003  poiieval-RSD (ours) 808, 627 ... 486..5 96.6..:-
Retrieval-R (oracle) 804 .11, 638,65 673 .0, 973 .39

Random 1.7 w00 86.9 .00 40.2 .00 77.6 .00
Retrieval-Q 80.1 1o 4 882,135 455.55 93.5 .59
Claude-v2 Retrieval-RSD (ours) 809 ...  883.,, 47.7..5 96.6..0
Retrieval-R (oracle) 80.3 1156 884 .15 60.8.206 973,107

Random 45.7 .00 388 00 20.6.00 45.1 .00
Retrieval-Q 51.9 6> 373 15 221 .5 739 .55
Falcon-40B-Instruct Retrieval-RSD (ours) 57.7 .o0 391 .05 248.., 89.5 ...
Retrieval-R (oracle) 61.2 155 404 .6 399 .95 903 5>

Table 1: Main results (%) across all backbone models and datasets. Numbers in bold represent
the best results for each backbone model across all selection methods. The subscripted gray values
indicate the relative improvement over Random selection.

Retrieval-RSD outperforms Retrieval-Q. Across all four benchmarks and four backbone models
tested, our proposed Retrieval-RSD consistently outperforms Retrieval-Q, which searches nearest
neighbors based on the raw embedding of questions. This observation suggests that the success of
demonstration selection lies in the learned reasoning skill representation rather than relying solely on
the raw information provided by the question.

Retrieval-RSD is LM-agnostic. The superiority of RSD is consistent across four different LMs,
including a small-scale Falcon-40B-Instruct, while not trained specifically for any of these LMs. This
finding highlights the universality of the learned reasoning skill representation, allowing any LMs to
benefit from it.

5 Conclusions

This paper introduces RSD, a novel demonstration selection method designed for CoT prompting. RSD
bases the selection on reasoning skills, which are latent representations discovered by unsupervised
learning via a CVAE. The effectiveness of RSD is empirically supported by the experiments conducted
across four LLMs and over four different reasoning tasks. We discuss limitations of this work in

Appendix [F

We use the official evaluation scripts for Spider in https://github.com/taoyds/test-suite-sql-eval.
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Appendix: Latent Skill Discovery for
Chain-of-Thought Reasoning

A Related Work

A.1 CoT Reasoning

CoT prompting is a special prompt design technique that encourages LLMs to generate intermediate
rationales that guide them towards providing accurate final answers. These rationales can exhibit
remarkable flexibility in their styles. For instance, the original work by Wei et al. [33] specially
designs rationales in the in-context demonstrations to suit different reasoning tasks. Moreover,
novel prompt designs that highlight diverse formats of the rationales have emerged to enhance CoT
prompting. For example, Kojima et al. [17] proposed Program of Thoughts (PoT) that disentangles
textual reasoning from computation, with the latter specially handled through program generation.

In contrast to manual design, our method RSD can be thought of as automatic discovery of diverse
rationale styles, termed as reasoning skills, from an example bank. This method can also dynamically
select reasoning skills based on the specific questions. Worth noting, Chen et al. [6] introduces
SKills-in-Context (SKiC), which confines rationale generation to predefined “skills” within the
prompt. Although sharing a similar motivation to RSD, we emphasize two crucial distinctions: (1)
while SKiC relies on manual “skills” design, RSD automatically discovers them, (2) SKiC presents
a full list of “skills” in the prompt, allowing LLMs to select from them, whereas RSD learns the
skill selection from the example bank, explicitly instructing LLMs on which skill to employ through
in-context examples.

A.2 Demonstration Selection for Prompt Design

Demonstration selection refers to a special setting, where the prompts are constructed by selecting
examples from an example bank. In this context, our RSD aligns with the paradigm of unsupervised
demonstration selection, which involves designing heuristics for this selection process. A variety
of heuristics have been explored, including similarity [12| [15]], diversity [38]], coverage [13], and
uncertainty [11]. Among these, Skill-KNN (An et al. [2]) shares the closest resemblance to our
approach. However, Skill-KNN relies on pre-trained LLMs to provide “skill” annotations, which
could be arbitrary and resource-intensive, requiring extensive inferences of LLMs and human prompt
design. In contrast, RSD automatically discovers reasoning skills by learning a very lightweight CVAE.
In addition, the selections based on these discovered reasoning skills are theoretically-grounded by a
plausible explanation for ICL.

B Details of Reasoning Skill Discovery

B.1 Training Loss

The CVAE in RSD is trained by the classical variational expectation maximization that optimizes a
loss function as follows:

LCVAE(¢> W, w) = »Crecon + [’KL (6)
Leecon = _E(Q,R)NDE,zwqwﬂQ,R) [10gpw(R|Z, Q)] @)
Lx = EQr)~ps PxL(qu(z | Q, R) || m4(2 | Q)] ®)

By training to minimize this loss function, ¢, and 7, can be learned to effectively approximate the
conditional distributions Pg(z | @, R) and Pg(z | Q). It is worth noting that the decoder model acts
an auxiliary model that only roughly reconstructs rationales for the purpose of training the encoder
and the reasoning policy model, and is not deployed to generate rationales in the downstream tasks.



B.2 Demonstration Selection

Since the distribution Pg(Q, R | z) in Deﬁnitionis practically intractable, we propose a selection
process that effectively aligns with the skill-based selection using the learned 74 and g,,. For a given
test question Qe the desirable reasoning skill 2 = arg max., [y (2| f(Qest))] can be computed
using the reasoning policy. Subsequently, each example from the example bank can be scored based
on the cosine similarity between zey and zpos, Where zpo = argmax,[q.,(z|Q, R))] represents
the maximum likelihood skill of the current example. Finally, a CoT prompt can be constructed
by selecting the top-k examples according to the computed scores. The step-by-step procedure is
outlined in Appendix [B.2] with a summarized visual representation provided in Fig. [3] (left).

Algorithm 1: Demonstration selection

Input: Test question Q. a pre-trained embedding model f, a reasoning policy 74 (2|f(Q)), a
reasoning skill encoder q,, (2| f(Q, R)), and an example bank D = {(Q?, R?)};.

Parameter: shot number &

OUtPUt: (Qh Rla Q27 R27 Tty ka Rk)

Compute Zeg <— mean of 7(z|f(Qiest))
for each (Q7, 7) in Df; do
Compute 2., < mean of g, (z|f(Q’, R7))

.
Compute 7/ = et Zpos
| Ziest| | Zgost|

end for

Select top-k demonstrations with the largest r/ and sort them in ascending order, denoted as
(Q1, R1,Q2, Ra, - -+, Qy, Ry).

7. return (Q1, R1,Q2, Ra, -+, Q, Ry)

AN A S s

C Experimental Details

C.1 Selection Methods

We refer to the skill-based selection by our RSD approach as Retrieval-RSD , which is compared with
the following three baselines.

Random This baseline randomly selects & in-context examples from the example bank. For each
test question, the accuracy is reported as an average over three independent random selections.

Retrieval-Q This baseline employs a pre-trained embedding model to encode a test question, and
selects in-context examples based on the cosine similarity between embeddings from examples’
questions and the test question.

Retrieval-R (oracle) This baseline employs a pre-trained embedding model to encode the ground-
truth rationale of a test question, and selects in-context examples based on the cosine similarity
between examples’ rationales and the ground-truth rationale.

C.2 Dataset

We provide detailed description of the dataset and the split of train and test set as follows:

TabMWP [[19] This dataset consists of semi-structured mathematical reasoning problems, compris-
ing 38,431 open-domain grade-level problems that require mathematical reasoning on both textual
and tabular data. We use the train set, containing 23,059 examples, to train our RSD models, and
testlk set containing 1K examples to evaluate the selection methods.

Spider [37] Spider is a large-scale text-to-SQL dataset. It includes a train set with 7,000 examples
and a dev set with 1,034 examples. We use the train set to train our RSD models, and the dev set as
the test set to evaluate the selection methods.



COGS [16] is a synthetic benchmark for testing compositional generalization in semantic parsing.
We transform the output format in the same way as An et al. [1l], and consider a mixture of two
sub-tasks: primitive substitution (P.S.) and primitive structural alternation (P.A.). This results in a
train set of 6916 examples to train our RSD models and a test set of 1000 examples to evaluate the
selection method.

GSMS8k [8] GSMS8k is a dataset containing 8.5K high-quality, linguistically diverse grade school
math word problems. It includes a train set of 7.5K problems and a test set of 1319 problems. We use
the train set to train our RSD models, and the test set to evaluate the selection methods.

To measure the performances, we use the answer accuracy for TabMWP and GSMS8K, with the
answers extracted by searching the texts right after a prefix The answer is. For Spider, we use
the official execution-with-values accurac For COGS, we report the exact-match accuracy for
semantic parsing.

C.3 Hyper-parameters

RSD contains a encoder, a decoder, and a reasoning policy model. The reasoning skill is represented as
a 128-dimensional continuous space. Both the encoder and the reasoning policy model are represented
as a feed-forward multiple layer perception (MLP) with two 256-unit hidden layers, predicting the
mean and variance of a multivariate Gaussian distribution in the latent space of reasoning skills. The
decoder is a MLP with two 256-unit hidden layers that predicts a value in the embedding space
deterministically. The dimension of the embedding space depends on the choice of pre-trained
embedding models. The models are trained using the loss function in Equation[6] with a batch size
of 256 and a learning rate of 0.0001 for 1000 epochs. Those hyper-parameters apply for all four
datasets.

During inference, the temperature is set to O (i.e., greedy decoding) to reduce the variance. The
CoT prompts contain k = 2,4, 8 in-context examples for TabMWP, GSM8K, Spider, and COGS,
respectively.

*We use the official evaluation scripts for Spider in https://github.com/taoyds/test-suite-sql-eval.



D Analysis and Ablation

This section provides in-depth analysis and explains the reasoning of the success of RSD .

What skills does RSD
discover? In TabMWP
dataset, 200 examples are
labeled based on the skills
being showcased out of 12
manually-crafted skills la-
bels, including “compute
statistics", ‘“compute rate
of change", “Reason time

Reasoning skill of (Q, R)

Reasoning skill of Q

R v

Reasoning skills

o Compute statistics

Compute rate of change
Compute money cost
Filter tree leaves

v Addtion/subtraction

Search minimum/maximum

e Multiplication
v Filter table entries

Compute probability
Shortage or surplus?

schedule", “Compute prob-

ability", et. al. We in- | Reason ume scheaule
vestigate how the unsuper- - « Others
visedly discovered reason- g
ing skills by RSD align
with human’s understand- =
ing of skills. More specif- St :
ically, a visualization of 3 .§ A
how human-labeled skills t
distribute based on the t- .
SNE projections of four dif-
ferent types of embedding
is shown in Fig. [Tl Both the
reasoning skill encoder (rea-
soning skill of (@, R)) and
the reasoning policy (rea-
soning skill of Q) trained by
RSD demonstrate clear separation of the labeled 12 skills. At the mean time, the human-labeled
skills are not well-separated by raw question embedding, and even raw rationale embeddings. This
indicates that the discovered reasoning skills aligns well with human-labeled skills even without
explicit labels being provided during the training. This sheds the light on why the demonstration
selection based on similar reasoning skills can improve the CoT prompting.

Figure 1: t-SNE projections of reasoning skills predicted from (Q, R)
(top-left), reasoning skills predicted from () (top-right), raw question
embedding (bottom-left), and raw rationale embedding (bottom-right).
The 12 different colors correspond to 12 skill labels provided by human.

Robustness to different pre-trained embedding models. Fig. [2|compares the performances of
Random, Retrieval-Q, and Retrieval-RSD based on three pre-trained embedding models, including
Sentence-BERT [25]], Deberta-v2-xlarge, and, text-embedding-ada-02 [22] from OpenAl. We observe
that the performances of retrieval-based selection methods monotonously improve with more capable
pre-trained embedding models. However, our Retrieval-RSD shows consistent improvements over
Retrieval-Q given the same embedding models.

Robustness to k: the number of in-context examples. This study compares three selection
methods, including Random, Retrieval-Q, and Retrieval-RSD under three different number of in-
context examples 2, 4, and 8. The results are summarized in Fig. [3| While the accuracy monotonously
improves with the increasing number of in-context examples, Retrieval-RSD consistently outperforms
Retrieval-Q.

E Theoretical Analysis

In this section, we provide theoretical analysis on the optimality of the skill-based selection by
Definition[Il

Let Py(R | @, g) denotes LLMs’ conditional distribution of a rationale R given a test question @
under a demonstration selection method g. Py (R | @, g) can be extended as follows:

Pu(R|Q,9) = /Xk Py (R | pt)I_ [9(Qi, Ri | Q)d(Qi, R;)] )]
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Figure 2: The accuracy of Random, Retrieval-Q, Figure 3: The accuracy of Random, Retrieval-Q,
and, Retrieval-RSD based on three different pre- and Retrieval-RSD using different number of in-
trained embedding models. context examples.

Here, each demonstrations (Q;, R;) is independently sampled from g(Q;, R; | @),Vi = 1,--- | k.
These k demonstrations form a prompt pt = (Q1, Ry, -+ , Qk, Rk, Q).

We want to show that Py(R | Q,g) is the optimal conditional distribution that maximizes the
accuracy of rationales if the selection follows skill-based selection method or g = grsp. We begin by
defining the optimal conditional distribution as follows:

Definition 2 Optimal conditional distribution of rationales given questions P*(R | Q) is given by:
PURIQ) = agmax [ 1(RQP(R| Q) (10)
P(lQ)eA(x) Jx

Here 1(R, Q) is the indicator function of the correctness of R given a question Q) (see Section .

Then, we state two major assumptions as follows:

Assumption 1 Example bank is sampled from the optimal conditional distribution, or Pg(R | Q) =

PY(R| Q).

Assumption 2 Humans and LLMs are expert rationale generators given reasoning skills and ques-
tions, meaning that Py (R | z2,Q) = Pg(R | 2,Q) = Py(R | 2,Q) and Py (z | Q, R) = Pg(z |
Q,R)=Py(z| Q,R).

Assumption [T] is rooted in the fact that example banks are human-crafted that contains the most
useful rationales for answering the questions. In Assumption [2] Py, capturing Py is a common
assumption in the literature studying LLMs [35L 26, 31]. Pg(R | z,Q) = Py (R | z,Q) is based on
the assumption that reasoning skills are shared across humans, and the generation of rationales is
identical given the same reasoning skills and questions.

Based on the above definiton and two assumptions, we prove the following theorem.

Theorem 1 A LLM gives the optimal conditional distribution of rationales given questions:
PM(R | Q7gRSD) = P*(R | Q)

If (1) it is prompted by k — oo in-context examples selected by the skill-based selection grsp defined
by Definition[l} (2) Assumption 2and Assumption[I|hold.

To prove Theorem [I] we start by extending CoT prompting under the skill-based demonstration
selection method gggp as follows:

Pr(R [ Q, grsp)

= /X  Pu(R] POIY_ [grsp (Qi, Ri | Q)d(Qi, Ry))]

# Plug in Equationd|and pt = (Q1, R1,- -, Qk, Rk, Q)

= [ PRI QPG QLT[ P | Qo Rgean(@u | Q(Qu R

(Qi,Ri)ex



- /ZPM(R | 2,Q)Par(2 | QUE_ | [Pasp (2 | Q)]dz "
Here,
Prsp(2 ] Q)
— /(Q’,R’)EX Pu(z | Q' Rgesn(Q', R | Q)d(Q', R')

B / / Puy(z| Q,R)Pp(Q, R | 2/)Pp(z" | Q)d?
(Q,Rex Jz'ez

# Plug in Assumption 2] with Py (2 | @', R') = Pr(z | Q', R')

- / / Pp(2 | Q,R)Pp(Q R | 2')Pr(" | Q)dZ
(Q',ReX Jz'eZ

- / 5( = #)P(e' | Q)d=
2'eZ

Plug Equation 10 back into Equation 9, we have

Pur(R | Q. gaso) = /Z Pu(R | 2.Q)Pu(z | QI [Pe(= | Q)]
#k — +o00

— [ PulR] % Q) Pe= | Qs
z
# Plug in Assumption 2] with Py (R | 2,Q) = Pg(R | 2,Q)

— /ZPE(R | 2,Q)Pp(z | Q)dz

# Plug in Assumption|I]
=P (R|Q) (13)

Equation|13|means that the CoT prompting under the skill-based demonstration selection method
give the optimal conditional distribution of rationales given questions by Definition[I0] This proves
the Theorem [[]under Assumption [T]and Assumption

F Limitations

Despite the success of RSD, a few limitations and potential future directions are worth noting. First,
the impact of the order of examples in the prompts is not considered. Introducing additional heuristics
to sort the examples could potentially lead to better performance. Second, in the CVAE, the decoder
is represented by an MLP neural network. However, it would be ideal to represent the decoder as
a prompt-tuning formulation that aligns better with the implicit skill model assumption. Finally,
one single reasoning skill might not be sufficient to effectively represent the entire rationale that
might contain multiple steps of reasoning. Learning and selecting reasoning skills for each individual
reasoning step is an interesting direction to explore next.
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