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Abstract

Selective state-space models excel at long-sequence modeling, but their capacity for language
representation – in complex hierarchical reasoning – remains underexplored. Most large
language models rely on flat Euclidean embeddings, limiting their ability to capture latent
hierarchies. To address this, we propose Hierarchical Mamba (HiM), integrating efficient
Mamba2 with hyperbolic geometry to learn hierarchy-aware language embeddings for deeper
linguistic understanding. Mamba2-processed sequences are projected onto the Poincaré
ball or Lorentzian manifold with “learnable” curvature, optimized with a hyperbolic loss.
Our HiM model facilitates the capture of relational distances across varying hierarchical
levels, enabling effective long-range reasoning for tasks like mixed-hop prediction and multi-
hop inference in hierarchical classification. Experimental results show both HiM variants
effectively capture hierarchical relationships across four linguistic and medical datasets,
surpassing Euclidean baselines, with HiM-Poincaré providing fine-grained distinctions with
higher h-norms, while HiM-Lorentz offers more stable, compact, and hierarchy-preserving
embeddings-favoring robustness.1

1 Introduction
Large language models (LLMs), such as Transformers (Vaswani et al., 2017) and BERT (Devlin et al.,
2019), typically encode input sequences into a flat Euclidean space. However, they struggle to capture the
hierarchical and tree-like structures inherent in natural language (Chomsky, 1965), often leading to distor-
tions at different levels of abstraction and specificity (Nickel & Kiela, 2017; Ganea et al., 2018). Moreover,
transformer-based encoders face significant computational overhead due to the quadratic complexity of the
attention mechanism (Vaswani et al., 2017). This limitation becomes particularly evident when dealing with
hierarchical data (e.g., text ontologies, brain connectome (Ramirez et al., 2025; Baker et al., 2024)) with
exponentially expanding structure. State-space models, starting with the Structured State Space (S4) model
(Gu et al., 2021), have shown exceptional scalability for long-sequence modeling. Mamba’s selective mecha-
nism (Gu & Dao, 2023) dynamically prioritizes relevant information, achieving state-of-the-art performance
in tasks with long-range dependencies. Mamba2 refines the original Mamba model for long-range sequence
tasks by introducing a duality between state-space computations and attention-like operations, enabling the
model to function as either an SSM or a structured, “mask-free” form of attention (Dao & Gu, 2024).

Recently, leveraging hyperbolic geometry as the latent representation space in machine learning models has
shown great promise for learning meaningful hierarchical structures (Nickel & Kiela, 2018; Peng et al., 2021;
Petrovski, 2024). The Poincaré disk and Lorentz model are two prevalent representations of hyperbolic space.
The Poincaré disk model is often favored for its conceptual simplicity (bounded in a unit ball). However,
the Lorentz model (with unbounded infinite space) offers a closed-form distance function, but requires
careful handling of numerical functions dealing with space-like dimensions and a time-like dimension using
exponential mapping and logarithmic mapping (Peng et al., 2021). These numerical considerations are critical
because the improper handling of the time-like coordinate in Lorentz models can lead to manifold violations,
requiring specialized projection techniques (Fan et al., 2024; Liang et al., 2024). Existing hyperbolic LLM
architectures (He et al., 2024b; Peng et al., 2021) often rely on Transformer blocks and apply a simple

1The source code is publicly available at https://anonymous.4open.science/r/HiM-3202.
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Poincaré disk model, leading to O(L2) complexity that becomes prohibitive for long sequences typical in
deep hierarchies. A key challenge in implementing hyperbolic models is tuning the curvature to maintain
numerical stability, particularly in Lorentz parameterization.

In this paper, we introduce hyperbolic mamba with the Lorentz model, and compare it with its counter-
parts – Poincaré model and Euclidean model. To address the potential numerical instability in the Lorentz
model (Mishne et al., 2023), we explicitly bound the embedding norms and employ curvature-constrained
Maclaurin approximations for hyperbolic operations. HiM aims to achieve high-performance hierarchical
classification by preserving relational hierarchies. It demonstrates scalability for processing long sequences
without compromising on accuracy or computational efficiency. HiM’s novelty lies in integrating a state-
space model (Mamba2) with hyperbolic geometry, leveraging Mamba2’s O(L) complexity for efficient se-
quence modeling while preserving hyperbolic properties for hierarchical representation. Additionally, our
HiM incorporates task-specific hyperbolic losses that explicitly enforce parent-child distance constraints in
hyperbolic space, enabling end-to-end hierarchy learning without Euclidean biases and achieving significant
F1 gains on multi-hop inference tasks. To support HiM’s framework, we introduce SentenceMamba-16M,
a compact, Mamba2-based large language model with 16 million parameters designed to generate high-quality
sentence embeddings.

2 Related Works
Hyperbolic geometry has demonstrated strong potential in modeling hierarchical structures in both shal-
low and deep neural networks. Foundational works, such as Poincaré embeddings (Nickel & Kiela, 2017)
and hyperbolic entailment cones (Ganea et al., 2018), showed their effectiveness in capturing hierarchical
relationships in taxonomies with shallow neural networks. Moreover, hyperbolic manifolds have also been
applied to encode hierarchies in graph-structured data (Liu et al., 2019; Chami et al., 2019). More recent
efforts have extended hyperbolic representations to multimodal computer vision tasks, including visual and
audio modalities (Yang et al., 2024c; Mandica et al., 2024), further demonstrating their strength in capturing
both hierarchical structure and uncertainty.

However, hyperbolic approaches in language modeling remain limited. As an early approach to hyperbolic
word embeddings, Dhingra et al. (2018) provided an important early step by reparameterizing Poincaré
embeddings for GRU-based sequence modeling. This approach eliminated projection steps and supported
both shallow and parametric encoders, but it was ultimately limited by its shallow representations, which
restricted its expressive power and ability to capture long-range dependencies. More recent research has
extended these concepts to transformers and their variants (He et al., 2024b; Chen et al., 2021; 2024). These
approaches enable effective prediction of subsumption relations and transitive inferences across hierarchy
levels using hyperbolic embeddings, providing a principled framework for encoding syntactic dependencies
through geodesic distances. However, Hyperbolic BERT exhibits high computational cost than standard
BERT due to the complexity of hyperbolic operations (Chen et al., 2024). To improve efficiency, recent
works have explored fine-tuning LLMs directly in hyperbolic space with the Low-Rank Adaptation (LoRA)
technique (Hu et al., 2022). For example, HoRA (Yang et al., 2024a) and HypLoRA (Yang et al., 2024b)
apply LoRA to the hyperbolic manifold, allowing parameter-efficient fine-tuning while capturing complex
hierarchies. These methods show strong gains—up to 17.3% over Euclidean LoRA. However, these models
usually assume a constant curvature, which may not be optimal for all data, and can suffer from numerical
instability due to the exponential and logarithmic mappings required to transition between Euclidean and
hyperbolic spaces (López & Strube, 2020).

Limitations in Current Approaches and Our Contribution: Despite significant progress, most exist-
ing methods either exploit only partial hyperbolic representations (e.g., using adapters or static embeddings)
or rely heavily on attention-based architectures that scale poorly with long sequences and deep hierarchies.
For instance, Poincaré GloVe (Tifrea et al., 2018) is limited to word embeddings, failing to capture dynamic,
context-dependent relationships, while Hyperbolic BERT (Chen et al., 2024) and HiT (He et al., 2024b) in-
troduce significant computational overhead, especially for long sequences. Similarly, probing BERT’s embed-
dings in a Poincaré ball (Chen et al., 2021) to analyze hierarchical structures, but their diagnostic approach
does not train a new model for hierarchical reasoning tasks like HiM. Methods, such as HoRA (Yang et al.,
2024a) and HypLoRA (Yang et al., 2024b), only introduce hyperbolic geometry through adapter modules
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added post hoc to standard transformer backbones. These methods inherit the architectural inefficiencies of
transformers but cannot fully encode hierarchy directly within the hyperbolic latent space. Building on the
strengths and limitations discussed above, we propose Hierarchical Mamba (HiM) as a novel framework for
long-range hierarchical reasoning. Our contributions can be summarized as follows:

• Direct hyperbolic integration: Unlike HiT (He et al., 2024b), which fine-tunes pretrained
Euclidean embeddings (all-MiniLM-L6-v2) in low-curvature hyperbolic space (K = −1/384), or
HoRA/HypLoRA (Yang et al., 2024a;b), which adds hyperbolic LoRA adapters post-hoc to frozen
Euclidean transformer backbones, HiM trains a Mamba2 encoder from scratch directly in hyperbolic
space with learnable curvature, operating at strong negative curvature (K = −1.0) on both Poincaré
and Lorentz manifolds without inheriting Euclidean biases.

• SentenceMamba-16M: We develop the first Mamba2-based sentence encoder (SentenceMamba-
16M, 16M parameters) with specialized pooling strategies and hyperbolic projection interfaces tai-
lored for sentence representation.

• Stabilized hyperbolic operations: HiM addresses numerical instability in Lorentzian manifolds
using curvature-bounded Maclaurin approximations for hyperbolic functions, ensuring robust train-
ing for deep hierarchies and higher curvatures.

• Hyperbolic losses: Building on HiT’s clustering and centripetal losses (He et al., 2024b), we
introduce curvature-aware dynamic margin scaling that adapts margins proportionally with new
radius updated as per learned hyperbolic radius, and variance regularization in the centripetal loss
to prevent norm collapse at high curvature.

3 Methodology
Hyperbolic geometry, characterized by negative curvature K = −1/c, is well-suited for hierarchical data due
to its exponential growth properties, modeled using the Poincaré ball or Lorentz model (Nickel & Kiela,
2017; 2018). Mamba2, a state-space model (SSM), offers efficient sequence modeling with linear complexity,
using structured state-space duality to balance SSM and attention-like operations (Dao & Gu, 2024).

3.1 Hyperbolic Mamba (HiM)
The overall framework of HiM, including the integration of Mamba2 blocks and hyperbolic projections is
shown in Figure 1. Firstly, the raw text is tokenized into a sequence of tokens; these token IDs are mapped
into embedded tokens resulting in token IDs of shape [B, L, D, N ], where B is the batch size (B = 256), L is
the sequence length (L = 128), and D is the embedding dimension (D = 384), and N is the state dimension
(N = 96). These token embeddings are processed through four Mamba2 blocks. Given an input sequence
x1:L ∈ RL×D, the discrete-time SSM at each timestep t is defined by:

ht = Atht−1 + Btxt, yt = Ctht (1)

where ht ∈ RN is the hidden state at timestep t, and the selective mechanism makes the matrices At, Bt, Ct

input-dependent (see Appendix A.2 for detailed formulation of Mamba2). Alanis-Lobato et al. (2016) focuses
on efficient embedding of complex networks into hyperbolic space using the network Laplacian, achieving a
computational complexity of O(N2) and enabling the analysis of large networks in seconds. This highlights
the importance of computational efficiency in scaling hyperbolic models, a principle that HiM extends by
Mamba2 blocks (Equations 18 and 21) to achieve linear-time complexity O(L), making it particularly suited
for long sequences and deep hierarchical language structures. In the Mamba2 blocks, the inputs xt having 384
dimensions are projected into the intermediate state I having 768 dimensions using a linear transformation
(D : 384 → I : 768).

The x′
t component undergoes a convolution operation with a kernel size of 4. A SiLU activation function

follows this operation for non-linearity. In the output projection, the intermediate state dimensions are
projected back to their original embedding dimension I : 768 → D : 384 for compatibility with downstream
tasks. The SentenceMamba-16M model, central to HiM, is randomly initialized with Kaiming normal weights
instead of pretrained weights, enabling it to learn hierarchical structures directly from training data in
hyperbolic space without any biases. The SentenceMamba-16M model is trained using Triplet Contrastive
Loss, which brings embeddings of positive pairs closer together while pushing apart embeddings of other
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Figure 1: Overview of the Hierarchical Mamba (HiM) model, integrating Mamba2 blocks with hyperbolic
projections to the Poincaré ball (via tangent-based mapping) and Lorentzian manifold (via cosine/sine-based
mapping), enabling efficient and hierarchy-aware language embeddings for long-range reasoning tasks.

sentences in the batch. This loss function has proven effective in prior works involving hierarchical embedding
(Schroff et al., 2015; He et al., 2024b). After normalizing each embedding to unit length, we measure
the pairwise cosine similarity as sim(i, j) = ei · ej , where each embedding ei and ej belong to e ∈
{e1, e2, . . . , en}. We then calculate the contrastive loss for the batch by constructing a similarity matrix
from the similarity scores across nodes. The sentence embeddings are constrained using hyperbolic tangent
activation followed by L2 normalization to ensure numerical stability:

u = normalize(tanh(s)), (2)

where s is the mean-pooled embedding from the Mamba2 blocks and normalize(·) denotes L2 normalization.
This operation reduces the sequence to a single fixed-size vector, representing the pooled features of the
entire input sequence normalized to unit sphere.

To ensure numerical stability during hyperbolic projection, we apply norm scaling with a learnable parameter
γ:

h =
{

γ · u, for Poincaré,

γ · clamp(u, −8, 8), for Lorentz.
(3)

This approach mitigates numerical overflow and enhances training stability. The interplay between the norm
scaling parameter γ and curvature K = −1/c is mathematically significant. When we scale embeddings by
γ before projection, it effectively modulates the spread of embeddings in the hyperbolic space. Our model
learns both the curvature parameter c and a scaling factor γ that together determine the optimal geometry
for representing hierarchical relationships. This dual learning approach provides flexibility in adapting the
hyperbolic space to the structural complexity of the data while maintaining numerical stability. Then the
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vector h is mapped to a point e in hyperbolic space. The general form for a Poincaré ball with radius r =
√

c
(curvature K = −1/c = −1/r2) is:

eP =
√

c · tanh
(

∥h∥√
c

)
· h

∥h∥
, (4)

where ∥h∥ is the norm of embedding vector h. This scaling ensures the vector lies within the unit ball. This
yields the final sentence embedding e with values constrained between −1 and 1 (indicating a positive or
negative parent), allowing us to project the embedding onto the Poincaré Ball manifold.

We also project it onto the Lorentzian manifold as it yields richer features in a more convenient original
hyperbolic space. The pooled embeddings are instead mapped to the Lorentzian manifold using:

eL =

 √
c · cosh

(
∥h∥√

c

)
√

c · sinh
(

∥h∥√
c

)
· h

∥h∥

 . (5)

Here, ∥h∥ is the norm distance of embedding vector h,
√

c is the radius of the hyperbolic space; K < 0 ensures
hyperbolic geometry. For the Lorentz mapping we let z = ∥h∥/

√
c in Equation 5. The cosh, sinh functions

are the Hyperbolic cosine and sine functions used to compute projections. The first term
√

c · cosh
(

∥h∥√
c

)
in

the Lorentz projection is the time-like dimension. The remaining components
√

c · sinh
(

∥h∥√
c

)
· h

∥h∥ are the
space-like dimension. This step is crucial for hyperbolic geometry as it ensures the embeddings are bounded,
enabling seamless projection onto the Lorentzian manifold.

While the Lorentz projection typically uses exact hyperbolic functions, we stabilize the training even more
by approximating cosh and sinh via their Maclaurin (Taylor) expansions for |z| < 10−3. By substituting
truncated polynomial expansions, we limit overflow and hence solve the problem of exploding gradients.

cosh(z) = 1 + z2

2! + z4

4! + · · · ; sinh(z) = z + z3

3! + z5

5! + · · · . (6)

Then, the first (time-like) coordinate and the remaining (space-like) coordinates from Equation 5 become:

eL ≈


√

c
(

1 + z2

2 + z4

24 + · · ·
)

√
c

(
z + z3

6 + z5

120 + · · ·
) h

∥h∥

 . (7)

To fully exploit the hyperbolic structure of our model, we employ an advanced hyperbolic loss function
for the HiM model optimization, which is a weighted combination of centripetal loss and clustering loss.
These losses enhance the model’s ability to effectively learn hierarchical relationships by optimally posi-
tioning and grouping the embeddings in a strongly hierarchical structure within the Hyperbolic manifold.
Detailed equations for our hyperbolic loss are presented below, with the full calculation process provided in
Appendix B.

Clustering Loss: This loss function clusters related entities and distances unrelated ones within the hy-
perbolic manifold, promoting the grouping of similar entities while preserving hierarchical separation.

Lcluster =
∑

(e,e+,e−)∈D

max(dc(e, e+) − dc(e, e−) + α, 0). (8)

Centripetal Loss: This loss function ensures that parent entities are positioned closer to the origin of the
hyperbolic manifold than their child counterparts. This reflects the natural expansion of hierarchies from
the origin to the boundary of the manifold, while preventing norm collapse through variance regularization.

Lcentri =
∑

(e,e+,e−)∈D

max(∥e+∥c − ∥e∥c + β, 0) − λvar · Var({∥e∥c, ∥e+∥c}). (9)
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Here, (e, e+, e−) represent the hyperbolic embeddings of a randomly selected anchor node, its positive parent
node, and an unrelated negative node, respectively. ∥e∥c or dc(e, 0) measures the distance from the origin
to the hyperbolic embedding e in the Poincaré and Lorentzian manifold. dc(e, e+) measures the distance
between hyperbolic embeddings of node e and its positive parent node e+. dc(e, e−) measures the distance
between node e and a negative node e−. α and β denote margin parameters to enforce centripetal and
clustering properties, respectively. λvar is the variance regularization weight set to 0.002 in our experiments.

The Hyperbolic Loss Lhyperbolic is defined as the weighted sum of Centripetal Loss Lcentri and Clustering
Loss Lcluster:

Lhyperbolic = wceLcentri + wclLcluster, (10)

where wce and wcl are weights that control the contribution of each loss component. To the base forms of
clustering and centripetal losses, our implementation introduces curvature-aware dynamic margin scal-
ing, where margins α and β scale proportionally with the learned radius R = 1/

√
c to maintain geometric

consistency as curvature adapts during training (α = 0.255 × R, β = 0.0051 × R), and variance regular-
ization Lvar = −Var({∥e∥c}) added to the centripetal loss to prevent norm collapse under strong curvature
by encouraging diversity in hyperbolic norms. This loss ensures that the model maintains the hierarchical
structure during training, with parent entities closer to the origin and related entities clustered together. The
margins α and β in the clustering and centripetal losses (Equations 9 and 8) are implemented as dynamic
parameters optimized during training to adaptively enforce the hierarchical constraints. The margins for the
clustering and centripetal losses are adapted to the hyperbolic geometry by scaling proportionally with the
radius r =

√
c, ensuring the loss functions remain geometrically consistent across different curvatures. These

scaling factors were determined through empirical validation to maintain consistent separation properties
as the model adapts its curvature during training. The clustering margin is intentionally larger to enforce
robust hierarchical separation between related and unrelated entities, while the centripetal margin is smaller
to allow fine-grained positioning of parent nodes closer to the origin relative to their children, reflecting the
natural expansion of hierarchies in hyperbolic space. In all hierarchical classification tasks, hard negatives
were chosen to sharpen the model’s discrimination (Schroff et al., 2015). Rather than randomly sampling
unrelated nodes, we select negative examples that are semantically close to the anchor (or positive) in em-
bedding space. This training strategy forces the model to learn more subtle hierarchical distinctions, which is
crucial for tasks such as “multi-hop inference”. We observe that hard negatives lead to better generalization.

Following Chami et al. (2019), we optimize the learnable curvature parameter using the AdamW optimizer.
This is justified because the curvature parameter itself is a scalar Euclidean variable controlling the hy-
perbolic manifold geometry, making AdamW both theoretically valid and empirically stable. To ensure
numerical stability during training in hyperbolic space as the curvature adapts, we implement a geometric
stabilization technique that periodically projects the model parameters back onto the manifold. Specifically,
every 100 optimization steps, this stabilization counteracts numerical drift that can occur during curvature
optimization, preventing embeddings from violating the constraints of the hyperbolic geometry and ensuring
all distance computations remain well-defined throughout training.

4 Experiments
Dataset We compare our proposed HiM models with their Euclidean counterparts, evaluated across four
ontology datasets (i.e., DOID, FoodOn, WordNet, and SNOMED-CT) varying in scale and hierarchical com-
plexity.2. (1) DOID offers a structured representation of human diseases through “is-a” relationships (Schriml
et al., 2012). (2) FoodOn is a detailed ontology that standardizes food-related terminology, covering ingredi-
ents, dishes, and processes for nutritional classification and dietary research. It uses a hierarchical structure
and borrows from existing ontologies like LanguaL (Dooley et al., 2018). (3) WordNet is a well-known
benchmark that organizes English nouns, verbs, and adjectives into synonym sets connected by hypernym-
hyponym relationships (Miller, 1995). (4) SNOMED Clinical Terms (SNOMED-CT) is a comprehensive
clinical terminology system used in electronic health records (EHRs). It organizes concepts (e.g., diagnoses,
procedures, symptoms) into multiple hierarchies, linked by “is-a” and attribute relationships (Stearns et al.,
2001). All datasets are derived from structured taxonomies and can be represented as directed acyclic graphs,
where nodes denote entities and edges denote direct subsumption (i.e., parent-child) relations.

2Datasets are available from https://zenodo.org/records/14036213 and see Table 3 in Appendix C for details
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Implementation Details We use 4 NVIDIA A100 GPUs with 80GB of memory each, distributed across a
single compute node. Our model is implemented using the mamba-ssm library (Dao & Gu, 2024). To define
and operate over hyperbolic manifolds, we use GeoOpt (Kochurov et al., 2020), while DeepOnto (He et al.,
2024a) is employed to process and manage hierarchical structures in the ontology datasets. We leverage
distributed data-parallel training with PyTorch’s DistributedDataParallel wrapper (Paszke, 2019). Our
models were trained for ten epochs using the AdamW optimizer with a linear warm-up learning rate over the
first 100 steps (target learning rate set to 1e−4), and weight decay of 1e−3. The linear warm-up is followed
by a constant learning rate 1e−4. The maximum gradient norm is clipped to 1.0. We employ a combination
of hyperbolic clustering loss and hyperbolic centripetal loss during pretraining, with weights of 1.0 and 1.0,
respectively. Our model incorporates several learnable parameters, such as scaling factor γ (initialized to
0.01), curvature K (initialized to -1.0). We implement dynamic margin parameters for losses α and β, which
depend on the updated curvature. We use a batch size of 256 per GPU. To regularize the model during
training, a dropout rate of 0.2 is applied following each Mamba2 block. The detailed train/validation/test
splits for mixed-hop prediction and multi-hop inference tasks, can be found from Table 3 in Appendix C.
Evaluation Tasks and Metrics We evaluated our HiM models on two key tasks designed to assess
its hierarchical reasoning capabilities in ontology completion and knowledge graph inference: (1) multi-
hop inference, which involves predicting the existence of indirect relationships (e.g., “dog is a vertebrate”)
through transitive reasoning. (2) mixed-hop prediction, which focuses on estimating hierarchical distances
between entities (e.g., 1-hop vs. 2-hop relations). Both tasks are formulated as classification problems
based on hyperbolic distances. Detailed formulations are provided in Appendix D. We use three metrics
for evaluation: F1 score, Precision, and Recall. Among them, the F1 score serves as the primary metric,
as it provides a balanced measure of precision and recall, which is critical for hierarchical reasoning tasks.
Following prior work on these datasets (He et al., 2024b), we exclude Accuracy due to its vulnerability to
class imbalance, where negative samples significantly outnumber positive ones. During training, models are
optimized using entity triplets (anchor, positive, negative) under a contrastive learning framework; however,
evaluation is performed on entity pairs to directly assess subsumption prediction performance.

5 Results
We compare our proposed HiM models–HiM-Poincaré and HiM-Lorentz–against three Euclidean baselines
on four hierarchical datasets for two main downstream tasks: mixed-hop prediction and multi-hop infer-
ence. The Euclidean baselines include: (1) Pretrained SentenceMamba-16M, trained on the SNLI
dataset (Bowman et al., 2015); (2) Finetuned (with pretrained weights), which continues training from
the pretrained checkpoint on hierarchical datasets; and (3) Trained from scratch, which uses random
initialization (Kaiming normal for weights, zero for biases) and is trained directly on hierarchical datasets
in Euclidean space. Our HiM models share the SentenceMamba-16M backbone (≈ 16M parameters), but
incorporate learnable curvature and are trained from scratch without pretrained weights in hyperbolic space
using both Poincaré and Lorentzian manifolds.

5.1 Comparison between HiM models and their Euclidean baselines
We present a comprehensive comparison of HiM-Poincaré, HiM-Lorentz, and their Euclidean baselines, in-
cluding the pretrained SentenceMamba-16M, fine-tuned SentenceMamba-16M (with pretrained weights) and
trained SentenceMamba-16M (trained from scratch on hierarchical datasets) in Table 1. Both HiM mod-
els were trained with learnable curvature parameter K = −1/c. A deeper curvature (smaller radius r =>
smaller c => larger/deeper curvature K) allows us to exploit the hierarchical structure of the Hyperbolic
manifold much better, as the hyperbolic embeddings are confined in the conical manifold compact within a
smaller radius. The average δ-hyperbolicity (Gromov, 1987) for each dataset measures the tree-likeness of
the graph by calculating the maximum deviation from the four-point condition. Values closer to 0 indicate
a more hierarchical structure (Adcock et al., 2013), making these datasets well-suited for hyperbolic embed-
dings. The corresponding δ-hyperbolicity scores for the four datasets are reported in Table 1, reflecting a
descending order of hierarchy complexity: DOID → SNOMED-CT → WordNet → FoodOn. The experimen-
tal results illustrate that HiM-Lorentz model achieves more robust and stable performance (with extremely
small variance) in terms of the F1, precision, and recall values for both mixed-hop prediction and multi-hop
inference tasks across four datasets. Moreover, HiM-Lorentz outperformed the HiM-Poincaré variant on the
multi-hop inference task for both the WordNet and SNOMED-CT datasets, both of which are relatively
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large datasets and exhibit deeper hierarchies characterized by small δ-hyperbolicity. However, in the case
of FoodOn—which also has higher hyperbolicity—the Poincaré-based model achieved better performance.
To verify that the weak zero-shot performance of the pretrained Euclidean baseline is not merely an effect
of small parameter scale, we additionally report inference-only baselines for substantially larger pretrained
encoders in Appendix H.1.

Table 1: Performance comparison of Pretrained, Finetuned (with pretrained weights), Trained from scratch
across Euclidean manifold, and HiM models across Hyperbolic manifolds on various datasets (with varying
average δ-hyperbolicity). Pretrained SentenceMamba-16M is trained on SNLI; Finetuned (with pretrained
weights) continues training from the pretrained checkpoint; Trained from scratch uses random initialization
(Kaiming normal for weights, zero for biases). HiM models use learnable curvature for hyperbolic projections.
The mean and standard deviation of F1, Precision and Recall scores were computed over five independent
runs for each setting. (See details in Appendix F)

Metric Euclidean (K = 0) Hyperbolic (K < 0, learnable)

Pretrained Finetuned
(pretrained weights)

Trained
from scratch HiM-Poincaré HiM-Lorentz

Mixed-hop Prediction (DOID) : Average δ-hyperbolicity = 0.0190
F1 0.135 ± 0.022 0.744 ± 0.029 0.436 ± 0.043 0.795 ± 0.019 0.821 ± 0.003
Precision 0.087 ± 0.003 0.815 ± 0.013 0.776 ± 0.016 0.812 ± 0.020 0.822 ± 0.004
Recall 0.390 ± 0.207 0.685 ± 0.041 0.305 ± 0.040 0.780 ± 0.026 0.820 ± 0.007

Mixed-hop Prediction (FoodOn) : Average δ-hyperbolicity = 0.1852
F1 0.125 ± 0.046 0.634 ± 0.011 0.550 ± 0.017 0.836 ± 0.031 0.827 ± 0.002
Precision 0.090 ± 0.009 0.760 ± 0.008 0.688 ± 0.008 0.841 ± 0.024 0.852 ± 0.007
Recall 0.330 ± 0.232 0.544 ± 0.019 0.459 ± 0.023 0.831 ± 0.033 0.803 ± 0.002

Mixed-hop Prediction (WordNet) : Average δ-hyperbolicity = 0.1438
F1 0.135 ± 0.044 0.580 ± 0.015 0.615 ± 0.009 0.824 ± 0.024 0.823 ± 0.003
Precision 0.086 ± 0.014 0.702 ± 0.009 0.755 ± 0.018 0.853 ± 0.023 0.828 ± 0.006
Recall 0.430 ± 0.238 0.494 ± 0.018 0.519 ± 0.006 0.798 ± 0.029 0.815 ± 0.004

Mixed-hop Prediction (SNOMED-CT) : Average δ-hyperbolicity = 0.0255
F1 0.129 ± 0.017 0.790 ± 0.012 0.672 ± 0.009 0.886 ± 0.027 0.890 ± 0.004
Precision 0.084 ± 0.001 0.950 ± 0.002 0.886 ± 0.003 0.894 ± 0.024 0.901 ± 0.006
Recall 0.375 ± 0.207 0.673 ± 0.019 0.541 ± 0.012 0.877 ± 0.032 0.880 ± 0.005

Multi-hop Inference (WordNet) : Average δ-hyperbolicity = 0.1431
F1 0.134 ± 0.045 0.603 ± 0.009 0.648 ± 0.012 0.865 ± 0.026 0.872 ± 0.004
Precision 0.086 ± 0.016 0.739 ± 0.009 0.768 ± 0.012 0.867 ± 0.023 0.871 ± 0.007
Recall 0.431 ± 0.240 0.509 ± 0.011 0.560 ± 0.013 0.863 ± 0.031 0.872 ± 0.005

Multi-hop Inference (SNOMED-CT) : Average δ-hyperbolicity = 0.0254
F1 0.128 ± 0.016 0.754 ± 0.025 0.630 ± 0.010 0.919 ± 0.028 0.920 ± 0.003
Precision 0.083 ± 0.001 0.969 ± 0.001 0.902 ± 0.002 0.917 ± 0.024 0.919 ± 0.008
Recall 0.369 ± 0.205 0.620 ± 0.031 0.483 ± 0.011 0.921 ± 0.034 0.920 ± 0.008

To validate our design choices, we conducted comprehensive ablation studies on loss components, pooling
strategies, model depth, and negative sampling strategies which are presented in Appendix I.

5.2 Comparison with Hyperbolic Transformer Baseline
To further evaluate the effectiveness of HiM, we compare it with a hyperbolic transformer baseline. The
original HiT (He et al., 2024b) fine-tunes a pretrained model (all-MiniLM-L6-v2, 22M params) with low
curvature (K = −1/384, nearly Euclidean). To isolate architectural effects and ensure fair comparison under
identical training conditions, we implement HiT* using the MiniLM-L6-v2 transformer architecture trained
from scratch (randomly initialized). We conducted ablations across two different curvatures (K = −1.0 and
−1/d where embedding dimension d = 384) and model sizes (16M and 32M parameters) on both Poincaré
and Lorentz manifolds. The results in Table 2 show that HiM consistently outperforms the transformer-

8



Under review as submission to TMLR

based HiT* model across both manifolds and most experimental configurations. See Appendix J for detailed
model size configurations.

Table 2: F1 scores comparing HiM models with HiT* across different parameter scales and curvature set-
tings on mixed-hop prediction tasks. HiT* (Hyperbolic Transformer with random initialization) uses identical
hyperbolic projections, loss functions, and manifolds as HiM, differing only in the use of Transformer archi-
tecture instead of Mamba. Mean ± standard deviation computed over multiple independent runs. Bold red
values indicate the best performance within each row, bold blue indicates second-best. Results demonstrate
consistent advantages of the Mamba architecture over Transformers in hyperbolic settings.

#Param. Curvature
(K)

Poincaré Manifold Lorentz Manifold

HiM HiT* HiM HiT*

WordNet Dataset

16M −1.0 0.857 ± 0.007 0.846 ± 0.006 0.851 ± 0.004 0.838 ± 0.007
16M −1/d 0.791 ± 0.012 0.840 ± 0.008 0.783 ± 0.015 0.523 ± 0.025
32M −1.0 0.851 ± 0.006 0.836 ± 0.007 0.839 ± 0.005 0.829 ± 0.006
32M −1/d 0.771 ± 0.011 0.809 ± 0.014 0.817 ± 0.014 0.465 ± 0.030

DOID Dataset

16M −1.0 0.904 ± 0.008 0.837 ± 0.007 0.889 ± 0.005 0.844 ± 0.005
16M −1/d 0.861 ± 0.010 0.825 ± 0.009 0.706 ± 0.018 0.518 ± 0.028
32M −1.0 0.881 ± 0.007 0.831 ± 0.008 0.871 ± 0.006 0.832 ± 0.007
32M −1/d 0.837 ± 0.009 0.835 ± 0.008 0.709 ± 0.016 0.527 ± 0.026

Notably, performance degrades significantly under low curvature settings (K = −1/d), particularly in the
Lorentz manifold, where HiT* shows substantial performance drops. This suggests that stronger hyperbolic
curvature (K = −1.0) is essential for effective hierarchical modeling. Under our fixed curvature, Poincaré’s
bounded nature enables more stable norm dispersion and discriminative gradient flow, particularly when
combined with variance regularization in our centripetal loss. In contrast, Lorentz embeddings tend to col-
lapse toward the hyperboloid’s shell where time-like distances flatten and norm-based separation weakens.
To provide broader context for our results, we include additional analysis with comparing our model to
GPT-4o on zero-shot prompting as well as candidate ranking in Appendix H.2 and H.3 and also study HiM’s
computational efficiency in terms of sequence length in Appendix H.4. The success of hyperbolic embeddings
in these tasks suggests broader potential for improving hierarchical reasoning in future generative models,
where understanding semantic relationships could enhance factual consistency and knowledge grounding.
Our results demonstrate that specialized embedding architectures can achieve strong performance on hi-
erarchical reasoning tasks with significantly fewer parameters (16M) compared to general-purpose LLMs,
offering a complementary approach to scaling.

5.3 Visualization of Hyperbolic Embeddings
To demonstrate how HiM captures hierarchical structure in the learned embeddings, we visualize the hy-
perbolic representations on a representative semantic hierarchy with WordNet. The hyperbolic embeddings
learned by HiM is presented in Figure 2, which illustrates a representative hierarchical path, sport →
skating → skateboarding. The HiM-trained embeddings exhibit tight clustering of semantically related
nodes (e.g., skating and sport) in hyperbolic space, indicating enhanced semantic alignment. Moreover,
the embeddings clearly capture the hierarchical structure, as higher-level concepts such as sport are po-
sitioned closer to the origin, while more specific concepts like skateboarding are embedded farther from
the origin in a compact and organized manner. More details and geometric analysis of these hyperbolic
embeddings, including quantitative metrics comparing h-norms, geodesic distances, and hierarchical depth
correlations across both Poincaré and Lorentz manifolds, is provided in Appendix E. Additional examples
from FoodOn dataset and out-of-distribution inference test are provided in Appendix G, along with the
UMAP visualization methodology.
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Figure 2: Visualization of HiM’s embeddings trained on the WordNet dataset in the Poincaré ball manifold. Left:
The full hyperbolic space, illustrating the distribution of entities with parent nodes positioned closer to the origin
and child nodes extending toward the boundary, reflecting the exponential expansion of hyperbolic geometry. Right:
A zoomed-in view emphasizing the hierarchical structure, such as the path sport → skating → skateboarding. Dots
represent the entities, with colors indicating hierarchical relationships. For a selected node “skating” denoted by
the green dot, the blue node denotes its parent nodes (e.g., sport), and red indicates its hard negatives, such as
siblings/cousins (e.g., rowing). Yellow nodes (e.g, skateboarding, speed skating) indicate children nodes of the
selected node (skating), meaning the grandchildren nodes of the blue node (sport).

6 Conclusion
By integrating hyperbolic embeddings in the model, HiM successfully captures hierarchical relationships in
complex long-range datasets, providing a scalable and effective approach for handling long-range dependen-
cies. HiM’s unique approach, especially in hyperbolic embedding and its SSM incorporation, showcases its
strengths in hierarchical long-range classification, marking it as a significant advancement in hierarchical
learning models. Additionally, we find HiM to be more robust in training, primarily due to the Mamba2
blocks’ efficient memory usage and the synergy between hyperbolic geometry and SSM-based sequence mod-
eling.

Lorentz embeddings can provide a more natural fit for large-scale datasets with intricate hierarchical patterns
compared to other geometries, potentially enhancing performance and interpretability. By demonstrating
how a Lorentzian manifold can be effectively deployed for hyperbolic sentence representations, this paper
aims to motivate further exploration of hyperbolic geometry in diverse real-world applications, ultimately
broadening the scope and impact of geometry-aware neural architectures. Investigating HiM’s potential
for efficient temporal dependency modeling in intricate long-range hierarchical classification tasks holds
significant promise and study its practical applications. Future work could explore integrating CLIP-style
pretraining to incorporate multimodal data (e.g., text and images) for tasks like visual question answering,
or potentially building on work such as Cobra (Zhao et al., 2025), which demonstrates the potential of
extending Mamba models for efficient multimodal language modeling.
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A Preliminaries

A.1 Hyperbolic Geometry

In hyperbolic geometry, the notion of curvature is commonly represented by negative curvature K = − 1
c ,

where c > 0. Equivalently, one may define a ‘radius’ r =
√

c. A smaller radius r corresponds to a larger
and higher negative curvature (K), effectively making the hyperbolic manifold more curved, granting more
flexibility to the hierarchical depth. Conversely, letting r → ∞ approaches flat (Euclidean) space since K → 0.
Basically, r controls the rate of exponential expansion on the hyperbolic manifold. This choice impacts how
data at varying levels of abstraction distributes on the manifold and is crucial for tasks requiring fine-grained
or exponential separation of hierarchical data. By leveraging hyperbolic space, language models can encode
features more naturally in a hierarchical branching, keeping more generalized features located near the root
of the hierarchy tree, i.e., near the origin of the Hyperbolic Manifold, and the more specific or complex
entities are branched further from the origin towards the margin.

A popular way to realize hyperbolic geometry in an n-dimensional setting is via the Poincaré ball model.
Here, the underlying space is the open Poincaré unit ball:

Bn = {x ∈ Rn : ∥x∥ <
√

c}, (11)

equipped with a metric tensor that expands distances near the boundary. Concretely, each point x in the
ball maintains a local geometry that grows increasingly “stretched” as ∥x∥ approaches radius

√
c. Formally,

the distance between two points x and y in a Poincaré ball is computed by

dP(x, y) =
√

c · arcosh
(

1 + 2 ∥x − y∥2

(1 − ∥x∥2/c)(1 − ∥y∥2/c)

)
. (12)

This representation has gained attention in machine learning due to relatively simple re-parameterizations
for gradient-based updates, thus facilitating the embedding of hierarchically structured data (Nickel & Kiela,
2017).

While the Poincaré ball confines all points within the unit sphere (Equation 11), the Lorentzian mani-
fold leverages an (n + 1)-dimensional Minkowski space (Equation 13), enabling a different perspective on
hyperbolic geometry. Specifically, points reside on the “hyperboloid” defined by:

Ln =
{

x ∈ Rn+1 : ⟨x, x⟩M = −c, x0 > 0
}

, (13)
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where ⟨·, ·⟩M denotes the Minkowski inner product, typically −x0y0 +
∑n

i=1 xiyi. The hyperbolic distance
between two points x and y then appears in the form:

dL(x, y) =
√

c · arcosh
(

−⟨x, y⟩M
c

)
. (14)

Compared to the Poincaré ball, this approach can sidestep certain numerical instabilities near the boundary
because vectors are not constrained to lie within a finite radius. Moreover, Lorentz-based formulations often
allow more direct computation of geodesics and exponential maps, making them advantageous for large-scale
hyperbolic embeddings (Nickel & Kiela, 2018). Krioukov et al. (2010) provides a theoretical foundation for
the hyperbolic geometry of complex networks, showing that many real-world networks naturally embed into
hyperbolic spaces, supporting our choice of the Poincaré and Lorentzian models for hierarchical language
embeddings.
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Figure 3: Illustration of word embeddings in Euclidean (Left) vs. Hyperbolic Spaces for hierarchical repre-
sentation in Poincaré (Top right) and Lorentzian Manifolds (Bottom right).

We can see how hierarchies are represented differently in Euclidean space, the Poincaré manifold, and
the Lorentzian manifold as illustrated in Figure 3. On the left, the hierarchical structure is arranged as a
standard tree. While the relationships are maintained, Euclidean space does not naturally encode hierarchical
distances in 2D. In Figure 3 the upper-right diagram shows the hierarchy embedded into the Poincaré ball
(the root/origin being at the center). The more generalized parent nodes are positioned near origin, and
descendant nodes extend outward near the margin. This representation captures the exponential growth of
hierarchical structures, where sibling nodes are placed far apart in terms of geodesic distance. The lower-
right diagram visualizes the same hierarchy embedded in the Lorentz hyperboloid. The Lorentzian manifold
in Rn+1 consists of n spatial dimensions and one time-like dimension (x0). The origin is at the center-bottom
of the Hyperboloid, and nodes are arranged along the hyperboloid surface. More generalized parent nodes
are positioned near the bottom, and the descendants keep extending upward on the cone of Lorentz. Unlike
the Poincaré model, which confines embeddings within a finite ball, the Lorentz model represents hierarchies
in an unbounded space, making it particularly suitable for representing deeply nested hierarchies.

A.2 Mamba2

Mamba2 is a state-space model (SSM) introduced by Tri Dao and Albert Gu that refines the original
Mamba architecture with improved performance and simplified design (Dao & Gu, 2024). Mamba-2 builds
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upon the original Mamba architecture by introducing the State Space Duality (SSD) framework, which
establishes theoretical connections between State Space Models (SSMs) and attention mechanisms. Mamba2
achieves 2-8× faster processing while maintaining competitive performance compared to Transformers for
language modeling tasks. In order to formulate the overall computation for a single Mamba2 block, let
x1:L = [x1, . . . , xL] be the token (or embedding) sequence for a given input. A single Mamba2 block
transforms x1:L into an output sequence y1:L. Each input token embedding xt ∈ RD is first normalized via
RMSNorm. RMS normalization ensures that the norm of the embeddings remains stable across different
inputs, preventing extreme values from causing instability during training.

x̃t = RMSNorm(xt). (15)

Given weights W and bias b, we project the input into a higher-dimensional space to obtain u.

ut = Win x̃t + bin, (16)

yielding ut ∈ RI . ut is split it into two components, x′
t and z′

t.

ut =
[
x′

t

z′
t

]
. (17)

The component z′
t is reserved for the gating mechanism used later in the process. For each time step t,

hidden states ht evolve under:
ht = Atht−1 + Btxt, yt = Ctht (18)

where At is the state transition matrix, Bt is the input projection, and Ct is the output projection.

For each timestep t, the state matrices have dimensions At ∈ RN×N , Bt ∈ RN×I , and Ct ∈ RI×N , where N
is the state dimension and I is the intermediate dimension. To enable efficient O(L) complexity, Mamba2
uses structured versions of A, B, C (e.g., diagonal-plus-low-rank forms) and fast transforms (such as FFT-
based convolution). Mamba2 incorporates a gating mechanism to blend the output of the state-space layer
back with the original input, thus forming a residual block:

yt = σ(gt) zt + xt, gt = Wg x̃t + bg, (19)

where σ(·) is typically a SiLU activation that follows this operation for non-linearity.

σ(x) = x · sigmoid(x), sigmoid(x) = 1
1 + e−x

. (20)

This gating helps regulate the flow of information and provides additional stability during training.

Mamba2 establishes a theoretical framework connecting SSMs and attention mechanisms through “state
space duality”, allowing the model to function either as an SSM or as a structured form of attention via the
below formulation:

L := 1SS(a) and M = L ◦
(
C B⊤)

. (21)
where L is the semiseparable matrix structure derived from the state transition dynamics, ◦ denotes the
Hadamard (element-wise) product. Following Dao & Gu (2024), we denote a 1-semiseparable (1-SS) matrix
generated by scalar sequence a = (a0, a1, . . . , aL−1) as 1SS(a). This is a lower-triangular matrix L ∈ RL×L

where:

Li,i = 1, Li,j =
i∏

k=j+1
ak for i > j (22)

This structure enables efficient O(L) computation via parallel scan operations, which is fundamental to
Mamba2’s hardware-efficient implementation. This paper introduces a Mamba2-based LLM known as
SentenceMamba-16M, a lightweight model with 16M parameters, suitable for resource-efficient and high-
quality sentence embedding generation. As we can see in Figure 1, we incorporate four Mamba2 blocks in
our SentenceMamba-16M for efficient state-space modeling.
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B Hyperbolic Loss Calculations

Depending on our dataset, we can either apply Triplet Loss when we have a triplet relationship in our data and
need to enforce relative distance constraints or apply Contrastive Loss when we have pairwise relationships
in our data and need to classify pairs as similar or dissimilar. Based on either triplet relationship data or
pairwise relationship data, we perform triplet loss or contrastive loss calculation. Then, we calculate the
weighted loss of centripetal loss and clustering loss as the hyperbolic loss. Hyperbolic loss computation
framework is illustrated in Figure 4, which shows how these two loss components are weighted and combined
to create the final training objective. Loss minimization involves clustering related entities and distancing
unrelated ones (clustering loss) and tightening parent entities closer to the hyperbolic manifold’s origin than
their child counterparts (centripetal loss), giving it a hierarchical structure.

If 
d(child, parent) < d(child, non-parent)

Clustering Loss

Clustering Triplet Loss Clustering Contrastive Loss  CentripetalTriplet Loss Centripetal Contrastive Loss

If 
d(child,origin) > d(parent,origin)

ReLU(d(anchor,positive) −
d(anchor,negative) + margin)

ReLU(d(anchor,positive) − positive margin)
+ ReLU(negative margin − d(anchor,negative))

Centripetal Loss

ReLU(margin + d(parent,origin) −
d(child,origin))

labels × ReLU(margin +
d(parent,origin) − d(child,origin))

OR OR

Clustering Loss Centripetal Loss

Hyperbolic Loss

Loss Minimization

APPEND

Losses

Hierarchical
Embeddings

Hyperbolic Loss

If 
d(child,origin) > d(parent,origin)

If
d(child,parent) < positive_margin and 
d(child,non-parent) > negative_margin

Weighted Loss

Figure 4: Calculation of hyperbolic loss from clustering loss and centripetal loss.

C Dataset Statistics

To provide a comprehensive overview of the datasets used in our experiments, we detail the size, number of
entities (nodes), and train/validation/test splits for each dataset in Table 3. These datasets are represented
as directed acyclic graphs (DAGs), where nodes denote entities (e.g., diseases in DOID, synsets in WordNet)
and edges denote direct subsumption relations (is-a). Splits are created by sampling direct (E) and indirect
(multi-hop, T ) subsumptions, ensuring coverage of both mixed-hop prediction and multi-hop inference tasks.

Table 3: Statistics of hierarchical ontology datasets

Dataset #Entities #DirectSub #IndirectSub Splits (Train/Val/Test)
DOID 11,157 11,180 45,383 Mixed-hop: 111K / 31K / 31K
FoodOn 30,963 36,486 438,266 Mixed-hop: 361K / 261K / 261K

WordNet (Noun) 74,401 75,850 587,658
Multi-hop: 834K / 323K / 323K
Mixed-hop: 751K / 365K / 365K

SNOMED-CT 364,352 420,193 2,775,696
Multi-hop: 4,160K /1,758K/1,758K
Mixed-hop: 4,160K/1,758K/1,758K
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D Task Formulations

D.1 Multi-Hop inference

Let G = (V, E) denote a hierarchical graph, where V represents entities (nodes) and E denotes direct
subsumption edges (e.g., parent-child relationships). The transitive closure T of E encompasses all indirect
(multi-hop) subsumptions, such as relationships spanning two or more hops (e.g., grandparent-to-grandchild).
The multi-hop inference task trains a model fMI on the direct edges E and evaluates its ability to predict
the existence of unseen indirect relations in T :

fMI : (V, E) → T̂ , (23)

where T̂ approximates T . This binary classification task tests transitive reasoning, such as inferring “dog
is a vertebrate” from “dog is a mammal” and “mammal is a vertebrate.” The model computes hyperbolic
distances between entity embeddings, with a threshold determining relationship existence.

Evaluation uses precision, recall, and F1MI scores over test pairs sampled from T ∪ N , where N represents
negative pairs (non-subsumptions). Test sets Stest are constructed as:

Stest = {(vi, vj) | (vi, vj) ∈ T ∪ N, |N | = 10|T |}, (24)

with negatives, including hard cases like sibling entities (sharing a parent but not directly or transitively
linked). This assesses fine-grained discrimination across both upward (child-to-ancestor) and downward
(parent-to-descendant) directions, leveraging HiM’s hyperbolic embeddings.

D.2 Mixed-Hop prediction

The mixed-hop prediction task evaluates the model’s ability to predict the exact number of hops between
entities, encompassing both direct (1-hop) and multi-hop (2+ hops) subsumptions. Given a training subset
E, the model fMP is trained and tested on:

fMP : (V, E) → R̂, (25)

where R = E ∪ T includes all held-out direct and transitive subsumptions, and R̂ approximates R. Unlike
multi-hop inference, which focuses on existence, mixed-hop prediction quantifies hierarchical distance (e.g.,
1, 2, or 3 hops), such as distinguishing “dog to mammal” (1 hop) from “dog to vertebrate” (2 hops). This
is framed as a multi-class classification task, mapping hyperbolic distances to discrete hop counts.

Evaluation employs F1MP scores over test sets:

Stest = {(vi, vj) | (vi, vj) ∈ (E ∪ T ) ∪ N, |N | = 10|E ∪ T |}, (26)

where positive pairs from E ∪ T are labeled with their true hop distances, and negatives (e.g., siblings or
unrelated entities) are included at a 1:10 ratio. Hard negatives, such as sibling pairs sharing a parent vk

without a subsumption link, enhance the task’s difficulty. This bidirectional task also assesses reasoning in
both upward and downward directions.

E Learning Interpretable Hierarchical Semantics Through Hyperbolic Geometry

To provide more interpretable results of our HiM models for the hierarchical learning, we conducted a
deeper geometric analysis of the hyperbolic entity embeddings for semantically related WordNet entities
under HiM-Poincaré and HiM-Lorentz manifolds (see the visualization of hyperbolic embeddings in Fig-
ure 2). Specifically, we computed three key metrics with the learned hyperbolic embeddings: 1) “hyperbolic
geodesic distances” between each pair of entities, 2) “h-norm” represents the norm distance from the
origin, a higher h-norm often indicates a deeper or more specific concept in the hierarchy, 3) “depth” is the
WordNet tree depth. In both sets of entities, the h-norm correlates strongly with the hierarchical depth, see
Figure 5. For instance, in Table 4, the entity sport (depth 9) has an h-norm of 0.55, while skateboarding
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(depth 12) has an h-norm of 2.25, reflecting the hierarchical expansion from general to specific concepts.
However, a key difference emerges when comparing the two manifolds: HiM-Lorentz consistently produces
smaller hyperbolic distances and h-norms compared to HiM-Poincaré. For example, in Table 5 (HiM-
Lorentz), the parent-child relationships (e.g., sport → skating → skateboarding) have tighter distances and
h-norm gradients compared to Table 4.
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Figure 5: Alignment between the computed h-norms (derived from hyperbolic embeddings by HiM-Poinaré
and HiM-Lorentz) and the actual tree-depth for sports-related entities in the WordNet dataset. As the
depth increases from general terms like “sport” to specific ones like “skateboarding” and “speed skating”,
both HiM models show increasing h-norms, reflecting the underlying hierarchical structure. While HiM-
Poincaré produces higher h-norms that better differentiate fine-grained semantic levels, while HiM-Lorentz
yields more compact yet hierarchy-preserving embeddings with improved numerical stability. Our results
illustrate that both HiM models effectively encode semantic hierarchy, with Poincaré favoring detail and
Lorentz emphasizing robustness.

This reduction in distances under the Lorentz manifold is advantageous for hierarchical modeling. The
Lorentz model’s unbounded nature avoids the boundary constraints of the Poincaré ball, which can lead to
numerical instability near the boundary. By mapping embeddings into an unbounded hyperboloid, HiM-
Lorentz achieves tighter clustering of related entities (e.g., between sport and skating: 0.73 h-Norm of
HiM-Lorentz vs. 1.67 h-norm of HiM-Poincaré) while maintaining the hierarchical structure. This tighter
clustering enhances the model’s ability to distinguish fine-grained relationships, especially in deeper hierar-
chies, as evidenced by the smaller standard deviations of HiM-Lorentz in performance metrics (Table 1).

F Performance Comparisons between Hyperbolic embeddings and Euclidean
embeddings

For mixed-hop prediction (Figure 6), HiM-Lorentz achieves better performance on datasets with deeper
hierarchies, such as DOID (δ-hyperbolicity = 0.019) and SNOMED-CT (δ-hyperbolicity = 0.026). This
aligns with the Lorentz manifold’s ability to handle deeply nested structures more effectively. However, for
FoodOn (δ-hyperbolicity = 0.185), HiM-Poincaré slightly outperforms HiM-Lorentz. FoodOn’s higher
δ-hyperbolicity indicates a less tree-like structure, suggesting that the Poincaré model’s bounded nature
may better capture less hierarchical relationships in certain contexts. Both hyperbolic models significantly
outperform the Euclidean baselines.
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Table 4: Hyperbolic distances, h-norms, and depths for sports-related entities (from Figure 2) using HiM-
Poincaré, sorted by increasing depth.

sport outdoor sport skating rowing skateboarding speed skating
sport 0.00 1.17 1.67 1.62 2.43 2.40
outdoor sport 1.17 0.00 1.90 1.95 2.66 2.62
skating 1.67 1.90 0.00 2.36 3.12 3.07
rowing 1.62 1.95 2.36 0.00 3.10 3.11
skateboarding 2.43 2.66 3.12 3.10 0.00 3.76
speed skating 2.40 2.62 3.07 3.11 3.76 0.00
h-norm 0.55 0.97 1.48 1.48 2.25 2.25
depth 9 10 11 11 12 12

Table 5: Hyperbolic distances, h-norms, and depths for sports-related entities (from Figure 2) using HiM-
Lorentz, sorted by increasing depth.

sport outdoor sport skating rowing skateboarding speed skating
sport 0.00 0.55 0.73 0.71 0.87 0.87
outdoor sport 0.55 0.00 0.79 0.87 0.98 0.95
skating 0.73 0.79 0.00 0.95 1.08 1.08
rowing 0.71 0.87 0.95 0.00 1.07 1.07
skateboarding 0.87 0.98 1.08 1.07 0.00 1.20
speed skating 0.87 0.95 1.08 1.07 1.20 0.00
h-norm 0.30 0.48 0.65 0.65 0.81 0.81
depth 9 10 11 11 12 12

In multi-hop inference (Figure 7), HiM-Lorentz again demonstrates robust performance, particularly
on SNOMED-CT and WordNet, which exhibit deeper hierarchies (SNOMED-CT δ-hyperbolicity = 0.0254,
WordNet δ-hyperbolicity = 0.1431). The smaller standard deviations in HiM-Lorentz’s metrics (e.g., 0.003
for SNOMED-CT F1) compared to HiM-Poincaré (0.028) highlight its stability, a benefit of the Lorentz
manifold’s numerical advantages. Notably, HiM-Poincaré achieves a slightly higher recall on SNOMED-
CT, suggesting that the bounded nature of the Poincaré ball can occasionally enhance sensitivity. However,
the overall F1 score favors HiM-Lorentz, indicating better balance in precision and recall.

A key observation across both tasks is the impact of dataset’s tree-like structure as measured by δ-
hyperbolicity. Datasets with lower δ-hyperbolicity (meaning more tree-like) benefit more from HiM-
Lorentz, as its unbounded manifold better captures the exponential expansion of deep hierarchies. In
contrast, FoodOn’s higher δ-hyperbolicity correlates with HiM-Poincaré’s better performance, suggesting
that the choice of manifold may depend on the dataset’s structural properties.

Figures 8 to 10 illustrate the training dynamics of HiM-Poincaré and HiM-Lorentz across epochs for each
dataset and task, plotting Hyperbolic Loss and F1 Score. The Hyperbolic Loss decreases steadily for both
models across all datasets, indicating effective optimization of hierarchical relationships. HiM-Lorentz often
exhibits a slightly faster convergence rate and lower final loss compared to HiM-Poincaré, reflecting the
Lorentz manifold’s suitability for capturing exponential hierarchical expansion. The F1 Score trends mirror
the loss behavior, with HiM-Lorentz often achieving slightly better F1 scores.
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Figure 6: Comparisons of mixed-hop prediction performance for DOID, FoodOn, WordNet, and
SNOMED-CT datasets across our proposed hyperbolic Mamba (HiM) models–HiM-Poincaré and HiM-
Lorentz–and their Euclidean counterparts: Pretrained, Finetuned (with pretrained weights), and Trained
from scratch SentenceMamba-16M. HiM models trained from scratch in hyperbolic space substantially out-
perform all Euclidean baselines including the finetuned variant.
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Figure 7: Comparisons of multi-hop inference performance for WordNet and SNOMED-CT datasets
across our proposed hyperbolic Mamba (HiM) models–HiM-Poincaré and HiM-Lorentz–and their Euclidean
counterparts: Pretrained, Finetuned (with pretrained weights), and Trained from scratch SentenceMamba-
16M. Hyperbolic models demonstrate superior hierarchical reasoning capabilities compared to all Euclidean
variants.
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Figure 8: Comparison of hyperbolic loss and F1 score on DOID mixed-hop prediction across epochs.
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Figure 9: Comparison of hyperbolic loss and F1 score on WordNet multi-hop inference across epochs.
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Figure 10: Comparison of hyperbolic loss and F1 score on SNOMED-CT mixed-hop prediction across
the epochs.

G Additional Hierarchical Embedding Visualizations

G.1 FoodOn Ontology: Fruit Hierarchy

Figure 11 shows HiM’s learned embeddings for the FoodOn hierarchy fruit→nut fruit→{filbert nut,
common hazelnut}.

HiM Trained (Left): The model correctly encodes the three-level hierarchy with monotonically increasing
hyperbolic norms “fruit” is closest to the origin, “nut fruit” at moderate distance, and leaf nodes “filbert nut”
and “common hazelnut” farthest from the origin. This demonstrates the model’s ability to learn multi-level
taxonomic structure from FoodOn training data.

HiM Untrained (Right): The randomly initialized model shows no hierarchical organization, nodes are
scattered with inconsistent distance relationships.
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Figure 11: Comparison of trained vs. untrained HiM embeddings on FoodOn hierarchy fruit→nut
fruit→{filbert, hazelnut}. Trained model (left) preserves hierarchical distances; untrained model
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Figure 12: Out-of-distribution inference on hierarchy example from Figure 3. Root and intermediate levels
are correctly ordered; leaf-level separation is reduced due to lack of training supervision for more specific
entities.
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G.2 Custom Hierarchy Inference: Figure 3 Concepts

To evaluate generalization to unseen entities, we tested the trained HiM-Poincaré model on the conceptual
hierarchy from Figure 3: food→{desserts, appetizers}→{cheese cakes, crab cakes}. These exact
entity names were not present in the FoodOn training ontology, requiring the model to infer hierarchical
structure from sentence embeddings. Figure 12 shows that the model successfully positions the root concept
“food” closest to the origin (norm ≈ 0.30) and mid-level categories (“desserts”, “appetizers”) at intermediate
distances (norms ≈ 0.85). The grandchildren nodes achieve similar norms (≈ 0.85-0.86) but are distinguished
through angular separation, demonstrating that hyperbolic models can leverage both radial and angular
dimensions when explicit hierarchical supervision is unavailable.

G.3 Visualization Methodology for Hyperbolic Embeddings

The 2D visualizations in Figure 2 and Appendix Figures 11–12 were generated using the following procedure:

1. Embedding Extraction: For a selected entity and its hierarchical neighbors (parent, children, neg-
atives), we extracted their final 384-dimensional hyperbolic embeddings from the trained HiM-Poincaré
model.

2. Dimensionality Reduction: We applied UMAP (McInnes et al., 2018) configured for hyperbolic
geometry using the umap-learn library.

3. Projection: The 2D UMAP embeddings were re-projected onto the Poincaré disk using the exponential
map to preserve hyperbolic distances.

4. Rendering: Visualizations use polar coordinates where radial position corresponds to hyperbolic norm
and angular position follows UMAP embedding angles, rendered via matplotlib (Hunter, 2007).

This methodology ensures that the 2D projections respects the hyperbolic geometry, and the hierarchical
depth correlates with radial distance from the origin.

H Additional Experimental Analysis

H.1 Larger pretrained LM baselines vs. HiM

To address concerns about whether the weak pretrained Euclidean baseline is primarily an effect of small
parameter scale, we additionally report zero-shot inference-only results for substantially larger pretrained
encoders, evaluated with the similar candidate-ranking protocol used for our Euclidean baselines. The eval-
uation protocol used in both mixed-hop prediction and multi-hop inference evaluates each child against one
positive parent and multiple sampled negatives. Under this setting, zero-shot pretrained encoders frequently
assign moderately high similarity scores to a large subset of candidates, resulting in inflated recall despite
poor ranking fidelity. Consequently, several larger pretrained models exhibit near-saturated recall values
while maintaining very low precision and F1 scores, indicating that the high recall is primarily driven by
class imbalance rather than meaningful recovery of hierarchical parent relationships.
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Table 6: Zero-shot inference baselines of larger pretrained encoders on hierarchical prediction/inference tasks,
compared with HiM performance. Best per dataset column is bold; second-best is underlined (ties are broken
deterministically to keep a single highlight per column). Metric: F1.

Model Params (M) doid-mixed foodon-mixed wordnet-mixed wordnet-multi snomed-mixed snomed-multi

bert-base-uncased 110 0.155 0.128 0.197 0.201 0.173 0.176
bert-large-uncased 340 0.165 0.165 0.166 0.168 0.160 0.161
roberta-base 125 0.135 0.164 0.167 0.170 0.125 0.124
roberta-large 355 0.167 0.167 0.167 0.167 0.167 0.167
all-MiniLM-L6-v2 22 0.004 0.029 0.003 0.003 0.010 0.009
all-mpnet-base-v2 110 0.182 0.172 0.173 0.173 0.164 0.164
all-roberta-large-v1 355 0.167 0.167 0.167 0.167 0.167 0.167
HiM-Poincaré 16 0.795 0.836 0.824 0.865 0.886 0.919
HiM-Lorentz 16 0.821 0.827 0.823 0.872 0.890 0.920

Table 7: Same setting as Table 6; metric: Precision.

Model Params (M) doid-mixed foodon-mixed wordnet-mixed wordnet-multi snomed-mixed snomed-multi

bert-base-uncased 110 0.092 0.159 0.132 0.135 0.101 0.103
bert-large-uncased 340 0.090 0.090 0.092 0.093 0.088 0.088
roberta-base 125 0.077 0.095 0.095 0.096 0.073 0.073
roberta-large 355 0.091 0.091 0.091 0.091 0.091 0.091
all-MiniLM-L6-v2 22 0.179 0.080 0.090 0.091 0.077 0.076
all-mpnet-base-v2 110 0.105 0.099 0.099 0.100 0.096 0.095
all-roberta-large-v1 355 0.091 0.091 0.091 0.091 0.091 0.091
HiM-Poincaré 16 0.812 0.841 0.853 0.867 0.894 0.917
HiM-Lorentz 16 0.822 0.852 0.828 0.871 0.901 0.919

Table 8: Same setting as Table 6; metric: Recall. High recall values reflect class imbalance in the candidate-
ranking protocol (10:1 negatives-to-positive).

Model Params (M) doid-mixed foodon-mixed wordnet-mixed wordnet-multi snomed-mixed snomed-multi

bert-base-uncased 110 0.496 0.107 0.387 0.392 0.578 0.606
bert-large-uncased 340 0.978 0.972 0.874 0.883 0.920 0.927
roberta-base 125 0.556 0.581 0.711 0.721 0.423 0.416
roberta-large 355 0.993 0.993 0.994 0.994 0.992 0.993
all-MiniLM-L6-v2 22 0.002 0.018 0.002 0.002 0.006 0.005
all-mpnet-base-v2 110 0.697 0.667 0.669 0.670 0.588 0.582
all-roberta-large-v1 355 0.992 0.993 0.994 0.994 0.993 0.993
HiM-Poincaré 16 0.780 0.831 0.798 0.863 0.877 0.921
HiM-Lorentz 16 0.820 0.803 0.815 0.872 0.880 0.920

H.2 Prompted LLM Experiment (GPT-4o vs. HiM)

To evaluate HiM’s performance relative to contemporary large language models, we conducted a zero-shot
evaluation using GPT-4o3 on the WordNet mixed-hop prediction task. This comparison provides insight
into how our specialized hyperbolic architecture performs against general-purpose language models that rely
on vast pretraining but lack explicit hierarchical inductive biases. We generated 500 binary classification
questions following the structure “Is [entity1] a subtype/subclass of [entity2]?” sampled from the same test
set used for HiM evaluation. The experimental setup mirrored HiM’s training regime: for each sampled child
node, we generated one positive question and ten negative questions (corresponding to HiM’s 1 positive parent
+ 10 hard negatives). GPT-4o was provided with a list of 74,401 WordNet entities as context and answered all
500 questions in a single zero-shot prompt without additional training. The results in Table 9 demonstrate
that both HiM variants substantially outperform GPT-4o. GPT-4o performs well on general knowledge

3https://openai.com/index/hello-gpt-4o/
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hierarchies where concepts like ‘dog’ → ‘animal’ are well-represented in large-scale training corpora. HiM
(both Poincaré and Lorentz) still outperform GPT-4o by a clear margin, even on such general-knowledge
hierarchy. The superior performance of HiM highlights the effectiveness of our hyperbolic modeling approach
for hierarchical reasoning, even when compared to pretrained LLM with significantly larger parameter counts
and extensive pretraining.

Table 9: F1 scores comparing HiM models with GPT-4o on WordNet mixed-hop prediction task

Dataset HiM GPT-4o
Poincaré Lorentz

WordNet-mixed 0.859 0.850 0.750

H.3 Candidate-Selection Ranking Experiment (GPT-4o vs. HiM)

We evaluated GPT-4o using a candidate-selection/ranking methodology using similar evaluation strategy as
HiM. Instead of free-form generation like in Appendix H.2, GPT-4o was presented with a list of candidate
positive parents and negatives and tasked to select the correct hierarchical relationship. The comparison is
presented in Table 10.

Table 10: Performance comparison between GPT-4o (candidate-ranking) and HiM models on mixed-hop
prediction and multi-hop inference tasks.

Model Dataset F1 Precision Recall

DOID Dataset (Average δ-hyperbolicity = 0.0190)

GPT-4o doid-mixed 0.834 0.834 0.834
HiM-Poincaré doid-mixed 0.795 0.812 0.780
HiM-Lorentz doid-mixed 0.821 0.822 0.820

FoodOn Dataset (Average δ-hyperbolicity = 0.1852)

GPT-4o foodon-mixed 0.539 0.540 0.539
HiM-Poincaré foodon-mixed 0.836 0.841 0.831
HiM-Lorentz foodon-mixed 0.827 0.852 0.803

WordNet Dataset (Mixed-hop, δ-hyperbolicity = 0.1438)

GPT-4o wordnet-mixed 0.550 0.550 0.550
HiM-Poincaré wordnet-mixed 0.824 0.853 0.798
HiM-Lorentz wordnet-mixed 0.823 0.828 0.815

WordNet Dataset (Multi-hop, δ-hyperbolicity = 0.1431)

GPT-4o wordnet-multi 0.516 0.516 0.516
HiM-Poincaré wordnet-multi 0.865 0.867 0.863
HiM-Lorentz wordnet-multi 0.872 0.871 0.872

GPT-4o achieves competitive performance on the DOID dataset, likely due to its relatively small size and low
δ-hyperbolicity (0.0190), which indicates a near tree-like structure that aligns well with semantically descrip-
tive biomedical terminology present in the model’s pretraining corpus. However, HiM models substantially
outperform GPT-4o on FoodOn and WordNet. While GPT-4o benefits from extensive semantic knowledge, it
lacks the geometric inductive bias required to consistently encode hierarchical distances and transitivity con-
straints. In contrast, HiM explicitly learns these structural relationships through geometry-aware training,
enabling more robust hierarchical reasoning across ontologies, even under a candidate-selection evaluation
aligned with embedding-based ranking.
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H.4 Computational Efficiency Analysis

To substantiate our claims regarding Mamba’s linear complexity advantages, we conducted a sequence length
scaling study on the WordNet dataset for the mixed-hop prediction task. The results in Table 11 validate
Mamba’s theoretical linear complexity characteristics. Doubling the sequence length from 128 to 256 tokens
results in an exact 2× increase in both FLOPs (4.46G → 8.9G) and MACs (2.23G → 4.45G), while memory
consumption remains constant at 66.91MB due to the fixed number of model parameters and activations.
This linear scaling behavior contrasts sharply with transformer-based architectures, where sequence length
increases would result in quadratic growth in computational requirements.

Table 11: Sequence length scaling analysis for HiM-16M-Poincaré on WordNet mixed-hop prediction

Sequence Length FLOPs MACs Memory Training Time
128 4.46 G 2.23 G 66.91 MB 0:41:32
256 8.90 G 4.45 G 66.91 MB 0:42:13

I Ablation Studies

We conducted systematic ablation studies to validate key design choices in HiM architecture. All ablations
were performed on WordNet-mixed and DOID-mixed tasks using the default HiM configuration. Results are
reported as mean ± standard deviation over 5 independent runs.

I.1 Loss Component Ablation

We evaluated six loss configurations with varying margin ratios (α, β) where margins scale with hyperbolic
radius R:

• original (0.255 · R, 0.0051 · R): Our default balanced configuration
• only_clustering (0.255 · R, 0.0): Clustering loss only (no parent-child ordering)
• only_centripetal (0.0, 0.0051 · R): Centripetal loss only (no entity separation)
• high_clustering (0.510 · R, 0.0051 · R): Doubled clustering margin
• high_centripetal (0.255 · R, 0.0102 · R): Doubled centripetal margin
• standard_contrastive (0.051R, 0.0): Euclidean triplet loss

Table 12: Loss component ablation on WordNet-mixed and DOID-mixed. Standard contrastive loss (Eu-
clidean triplet) shows substantial degradation, confirming the necessity of hyperbolic-specific losses.

Loss Configuration WordNet-mixed DOID-mixed
Poincaré (F1) Lorentz (F1) Poincaré (F1) Lorentz (F1)

original 0.843 ± 0.007 0.843 ± 0.001 0.811 ± 0.008 0.823 ± 0.015
only_clustering 0.842 ± 0.011 0.844 ± 0.003 0.786 ± 0.021 0.813 ± 0.021
only_centripetal 0.817 ± 0.005 0.808 ± 0.005 0.775 ± 0.038 0.790 ± 0.010
high_clustering 0.833 ± 0.005 0.845 ± 0.005 0.797 ± 0.010 0.798 ± 0.014
high_centripetal 0.839 ± 0.011 0.843 ± 0.001 0.810 ± 0.008 0.809 ± 0.025
standard_contrastive 0.452 ± 0.085 0.605 ± 0.042 0.197 ± 0.020 0.264 ± 0.012

Results in Table 12 demonstrate that the original balanced configuration achieves competitive performance
across both manifolds. Critically, standard_contrastive loss performs substantially worse, demonstrating
that Euclidean triplet losses are fundamentally unsuitable for hyperbolic embeddings due to the mis-
match between flat Euclidean geometry and negatively curved hyperbolic space. Using only_clustering
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or only_centripetal may slightly reduces performance, supporting that both components contribute comple-
mentarily: clustering enforces entity separation while centripetal preserves parent-child hierarchy. Notably,
high_clustering achieves the best Lorentz performance on WordNet, suggesting that stronger negative sep-
aration may benefit deeper hierarchies in unbounded manifold.

I.2 Pooling Strategy Ablation

We compared three pooling strategies to aggregate Mamba2 sequence outputs: (1) Mean: averaging all token
embeddings (our default), (2) Max: element-wise maximum over sequence, (3) Last Token: using final
position embedding (analogous to transformer CLS tokens, but leveraging Mamba’s causal autoregressive
accumulation rather than a dedicated token).

Table 13: Pooling strategy ablation. Mean pooling achieves best overall performance; last token is competi-
tive on WordNet-Lorentz due to Mamba’s autoregressive state accumulation.

Pooling WordNet-mixed DOID-mixed
Poincaré (F1) Lorentz (F1) Poincaré (F1) Lorentz (F1)

Mean 0.843 ± 0.007 0.843 ± 0.001 0.811 ± 0.008 0.823 ± 0.015
Max 0.833 ± 0.006 0.833 ± 0.005 0.794 ± 0.007 0.726 ± 0.057
Last Token 0.843 ± 0.006 0.844 ± 0.008 0.802 ± 0.020 0.806 ± 0.011

Results in Table 13 show that mean pooling achieves the best overall performance. Last token pooling
performs comparably on WordNet (F1=0.844 for Lorentz), reflecting Mamba’s autoregressive nature where
final states accumulate the entire sequence information. Max pooling consistently underperforms, likely
because max operations can amplify outlier features unsuitable for hierarchical distance computation. These
findings validate our default choice of mean pooling.

I.3 Model Depth Ablation

We evaluated 2, 4, and 6 Mamba2 layers while keeping other hyperparameters fixed (d_model=384,
d_state=128, expand=4). The 6-layer configuration underperforms across both datasets. This suggests
that excessive depth is unnecessary for capturing hierarchical structure when combined with hyperbolic
geometry.

Table 14: Model depth ablation. 2-4 layers offer optimal capacity; 6 layers show overfitting on moderately-
sized ontologies.

Layers WordNet-mixed DOID-mixed
Poincaré (F1) Lorentz (F1) Poincaré (F1) Lorentz (F1)

2 0.844 ± 0.007 0.843 ± 0.002 0.805 ± 0.009 0.802 ± 0.026
4 0.843 ± 0.007 0.843 ± 0.001 0.811 ± 0.008 0.823 ± 0.015
6 0.834 ± 0.006 0.833 ± 0.006 0.799 ± 0.005 0.779 ± 0.000

I.4 Negative Sampling Ablation

We compared hard negative mining (selecting semantically similar siblings/cousins) against random
negative sampling (uniformly sampling unrelated entities). Results in Table 15 show mixed outcomes, hard
negatives improve WordNet performance, likely due to WordNet’s complex multi-level hierarchy requiring
fine-grained discrimination. However, on DOID, random negatives perform better, possibly because DOID’s
is smaller dataset where random negatives themselves provide sufficient separation.
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Table 15: Negative sampling ablation. Hard negatives improve complex hierarchies (WordNet) but show
mixed results on smaller datasets (DOID).

Sampling WordNet-mixed DOID-mixed
Poincaré (F1) Lorentz (F1) Poincaré (F1) Lorentz (F1)

Hard Negative 0.843 ± 0.007 0.843 ± 0.001 0.808 ± 0.005 0.823 ± 0.015
Random Negative 0.828 ± 0.016 0.841 ± 0.009 0.839 ± 0.022 0.852 ± 0.023

J Model Size Configurations

To investigate the effect of model capacity on hierarchical reasoning performance, we scaled our HiM archi-
tecture from 16M to 32M parameters. Table 16 details the complete hyperparameter configuration for both
model scales. We kept the base hidden dimension (d_model = 384), state dimension (d_state = 128), and
convolution kernel size (d_conv = 7) constant to maintain consistency in the input/output interfaces and
local temporal modeling.

Table 16: Hyperparameter configuration for 16M and 32M parameter models. Scaling is achieved through
combined depth (n_layer) and width (expand, headdim) increases.

Hyperparameter 16M 32M
d_model (Hidden Dim) 384 384
n_layer (Depth) 3 7
d_state (State Dim) 128 128
d_conv (Conv Kernel) 7 7
expand (Expansion Factor) 4 6
headdim (Head Dim) 96 128
Total Parameters ∼16M ∼32M

K Code Availability

The source code for the Hierarchical Mamba (HiM) model is publicly available at https://anonymous.
4open.science/r/HiM-3202 with detailed instructions for setup and execution.

L Declaration of LLM usage

LLMs were only used to assist with writing and formatting, not as part of the core methodology. Large
Language Models (LLMs) were used in a limited capacity during the preparation of this manuscript for
grammar checking and text refinement. All technical contributions, results and insights are the original
work of the authors.
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