
Quantization Error Propagation:
Revisiting Layer-Wise Post-Training Quantization

Yamato Arai
Fujitsu Limited

Department of Basic Science
The University of Tokyo

Yuma Ichikawa
Fujitsu Limited

RIKEN center for AIP

§ Code: https://github.com/FujitsuResearch/qep

Abstract

Layer-wise PTQ is a promising technique for compressing large language models
(LLMs), due to its simplicity and effectiveness without requiring retraining. How-
ever, recent progress in this area is saturating, underscoring the need to revisit its
core limitations and explore further improvements. We address this challenge by
identifying a key limitation of existing layer-wise PTQ methods: the growth of
quantization errors across layers significantly degrades performance, particularly in
low-bit regimes. To address this fundamental issue, we propose Quantization Error
Propagation (QEP), a general, lightweight, and scalable framework that enhances
layer-wise PTQ by explicitly propagating quantization errors and compensating
for accumulated errors. QEP also offers a tunable propagation mechanism that
prevents overfitting and controls computational overhead, enabling the framework
to adapt to various architectures and resource budgets. Extensive experiments
on several LLMs demonstrate that QEP-enhanced layer-wise PTQ achieves sub-
stantially higher accuracy than existing methods. Notably, the gains are most
pronounced in the extremely low-bit quantization regime.

1 Introduction

Large Language Models (LLMs) have achieved impressive performance in various natural language
processing tasks, including open-ended text generation, multi-step reasoning, and dialogue modeling.
Notable examples include ChatGPT [Achiam et al., 2023] and the Llama family [Touvron et al.,
2023, Grattafiori et al., 2024]. However, deploying LLMs cost-effectively remains difficult because
of their substantial memory usage and computational demands [Chen et al., 2023]. This limitation is
especially critical for edge computing and latency-sensitive applications. To address these challenges,
a wide range of model compression techniques, such as quantization [Lang et al., 2024, Gong et al.,
2024], pruning [Wang et al., 2024, Cheng et al., 2024], low-rank approximation [Yang et al., 2024a,
Hu et al., 2022], and knowledge distillation [Xu et al., 2024a, Yang et al., 2024b], have been explored.

Among these methods, layer-wise post-training quantization (PTQ) has emerged as a practical and
widely used approach for large-scale LLMs [Frantar et al., 2022, Lin et al., 2024, Yao et al., 2022,
Chee et al., 2023]. Unlike block-wise PTQ [Tseng et al., 2024, Shao et al., 2023], global fine-tuning
[Egiazarian et al., 2024, Tseng et al., 2024], quantization-aware training (QAT) [Xu et al., 2024b,
Wang et al., 2023, Liu et al., 2023], and all of which require heavy retraining and backpropagation,
layer-wise PTQ quantizes model parameters layer-by-layer without retraining or backpropagation,
resulting in significantly lower computational and memory demands. Despite its simplicity, layer-wise
PTQ effectively preserves model quality even at lower bit widths [Frantar et al., 2022, Lin et al., 2024,
Chee et al., 2023]. As a result, layer-wise PTQ is increasingly adopted in real-world applications due
to its efficient quantization, reduced computational cost, and broader compatibility with large-scale
LLMs, varying bit widths, and diverse quantization strategies.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/FujitsuResearch/qep

7B 13B 70B
Model Size

3.5

4.5

5.5

6.5

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2

INT4 Quantization
RTN
QEP-RTN
GPTQ
QEP-GPTQ

AWQ
QEP-AWQ
QuIP
QEP-QuIP

7B 13B 70B
Model Size

5.0

10.0

15.0

20.0 INT3 Quantization

7B 13B 70B
Model Size

10.0

25.0

40.0

55.0 INT2 Quantization

Figure 1: WikiText-2 perplexity comparison across Llama-2 models (7B-70B) quantized to INT-4,
INT-3, and INT-2, employing RTN, GPTQ, AWQ, and QuIP methods. Solid bars indicate PTQ with
QEP; border bars represent PTQ without QEP. Truncated bars indicate perplexities exceeding axis
limits. QEP consistently reduces perplexity, with greater improvements observed at lower bitwidths
and smaller model sizes. See Section 6 for detailed settings and results.

Despite significant progress in layer-wise PTQ, advancements in this area are saturating [Malinovskii
et al., 2024]. This study aims to push the performance boundaries of layer-wise PTQ by revisiting its
core design strategy. This study begins by identifying a fundamental limitation of existing layer-wise
PTQ approaches. These approaches do not adequately account for the propagation of quantization
errors across layers. Quantization errors accumulate significantly, leading to a degradation in overall
model performance, especially in low-bit settings. This represents a key bottleneck for the practical
deployment of layer-wise PTQ in large-scale LLMs.

To address this issue, we propose Quantization Error Propagation (QEP), a general and computation-
ally efficient framework that enhances the performance of layer-wise PTQ methods. QEP modifies
the layer-wise optimization objective to propagate and compensate for accumulated quantization
errors, while maintaining computational complexity comparable to existing layer-wise PTQ methods.
Furthermore, we introduce a tunable propagation mechanism whose adjustable propagation strength
prevents overfitting, a known issue previously observed in GPTQ [Lin et al., 2024]. This mechanism
also enables adaptive control over computational overhead, especially in parameter-heavy components
such as MLP blocks. Notably, the enhancement of QEP is orthogonal to existing PTQ methods and
can be seamlessly integrated with any layer-wise PTQ pipeline.

Extensive experiments on several LLMs across various bit-width settings show that QEP significantly
enhances layer-wise PTQ methods, including GPTQ [Frantar et al., 2022], AWQ [Lin et al., 2024],
QuIP [Chee et al., 2023], as shown in Figure 1. These improvements are particularly pronounced
in extreme low-bit regimes, such as 2-bit quantization, where standard layer-wise PTQ methods
typically degrade significantly.

2 Related Work

Quantization techniques primarily include data-free PTQ [Dettmers and Zettlemoyer, 2023], layer-
wise PTQ [Frantar et al., 2022, Lin et al., 2024, Chee et al., 2023], block-wise PTQ [Tseng et al.,
2024, Shao et al., 2023], global fine-tuning PTQ [Egiazarian et al., 2024, Tseng et al., 2024], and
QAT [Xu et al., 2024b, Wang et al., 2023, Liu et al., 2023]. Among these methods, weight-only
layer-wise PTQ has become especially popular for large-scale models because of its computational
efficiency and strong performance [Frantar et al., 2022, Lin et al., 2024, Chee et al., 2023]. Recent
benchmarking further highlights that most PTQ advances specifically target layer-wise methods [Zhao
et al., 2025]. Following the taxonomy in [Zhao et al., 2025], we outline three distinct approaches and
recent developments.

Compensation-based layer-wise PTQ This category, pioneered by GPTQ [Frantar et al., 2022],
uses a sequential quantization strategy, in which model weights are quantized based on the Hessian
computed from a calibration dataset, while compensating for subsequent unquantized weights.
Several studies refined the compensation mechanism by improving update rules [Behdin et al., 2023],
integrating nonlinear quantization schemes [Liu et al., 2024a], employing adaptive grid selection
[Zhang and Shrivastava, 2024], and using block-wise optimization [Guan et al., 2024].

2

Rotation-based layer-wise PTQ A second promising direction, advanced by QuIP [Chee et al.,
2023], involves preprocessing weights through structured rotation matrices to more uniformly re-
distribute weight magnitudes. This approach was improved by randomized Hadamard transforms
and block-wise and global fine-tuning optimization [Tseng et al., 2024]. Learning-based methods
to determine rotation matrices have also been introduced [Liu et al., 2024b]. This rotation-based
strategy has also been extended to activation quantization [Ashkboos et al., 2024].

Salience-based layer-wise PTQ Other approaches focus on identifying and preserving salient
weights, often using mixed-precision quantization frameworks [Dettmers et al., 2022, 2023, Shang
et al., 2023]. Although mixed-precision methods usually add complexity due to various data types,
AWQ [Lin et al., 2024] mitigates these implementation difficulties. AWQ strategically employs
a global scaling mechanism to align salient weights with the quantization grid better, simplifying
deployment while maintaining high accuracy.

Recent advances in layer-wise PTQ have mainly focused on nonlinear quantization and block-wise
and global fine-tuning extensions; however, the fundamental layer-wise optimization has remained
largely unchanged since GPTQ [Frantar et al., 2022]. This study revisits this foundational strategy,
identifies its key limitations, and proposes improvements, demonstrating performance gains on
the fundamental benchmarks such as GPTQ [Frantar et al., 2022], QuIP [Chee et al., 2023], and
AWQ [Lin et al., 2024]. Therefore, our contributions complement and are orthogonal to recent
advancements, such as nonlinear quantization and structured extensions.

3 Background

Post-training quantization Post-training quantization (PTQ) is a technique that converts the
parameters of pre-trained models into discrete quantized representations. Formally, let Wl ∈ Rnl×dl

denote the pre-trained weight matrix associated with the l-th linear operation. Note that the index
l specifically refers to individual linear transformations rather than entire transformer blocks. The
objective of PTQ is to find a quantized approximation Ŵl ∈ Qnl×dl that closely approximates the
behavior of the original model, preserving performance while reducing computational costs and
memory usage. The set Q ⊂ R denotes the discrete quantization domain, which is represented as
a finite set of 2b distinct quantization levels, referred to as a b-bit quantization scheme. To achieve
accurate quantization, many approaches leverage a small calibration dataset. Specifically, given
a calibration dataset X ∈ Rd1×m consisting of m samples, these methods aim to find optimal
quantized parameters Ŵl that minimizes the deviation from the performance of the original model.

Layer-wise PTQ Layer-wise PTQ has emerged as a promising framework [Frantar et al., 2022,
Frantar and Alistarh, 2022] for compressing large-scale LLMs. Recent advancements in this area
have significantly reduced the computational overhead and memory requirements of deploying LLMs.
Despite methodological differences, existing layer-wise PTQ approaches typically follow a shared
sequential quantization scheme, processing each layer independently and sequentially from the input
layer toward the output layer.

Formally, these techniques quantize the model parameters {Wl}Ll=1 by solving the following layer-
wise independent optimization problem:

min
Ŵl∈Qnl×dl

∥∥∥WlXl − ŴlXl

∥∥∥2
F
, (1)

where Xl denotes the input activations to the l-th layer. This quantization proceeds sequentially
from l = 1 toward the output layers. Due to the quadratic form of the reconstruction objective, the
associated Hessian, Hl := XlX

⊤
l , can be efficiently precomputed and cached for reuse in subsequent

optimization steps, improving computational efficiency in practice.

Existing PTQ methods typically use one of two possible forms for activation inputs Xl: Either
quantized activations Xl, obtained by forward propagating the calibration dataset through previously
quantized weights {Ŵ1, . . . , Ŵl−1}, or full-precision activations Xl, resulting from forward propa-
gation through the original, unquantized weights {W1, . . . ,Wl−1}. There is no consensus among
existing PTQ methods [Frantar et al., 2022, Lin et al., 2024, Chee et al., 2023] regarding whether
quantized or full-precision activations produce better quantization outcomes.

3

0 10 20 30
m (Block)

0.0
5.0

10.0
15.0

m

2-bit Quantization
BASE
With QEP

0 10 20 30
m (Block)

0.0
0.2
0.4
0.6

3-bit Quantization

0 10 20 30
m (Block)

0.0

0.1

0.2

0.3 4-bit Quantization

Figure 2: Accumulation and growth of quantization errors across layers in a partially quantized
Llama2-7B model [Touvron et al., 2023]. The first 10 Transformer blocks are quantized using
standard RTN (BASE) and QEP-enhanced RTN (With QEP), while the remaining Transformer blocks
after the 10th remain at full precision. The plot shows the squared Frobenius norm ∆m, defined in
Eq. (2), between the original and partially quantized outputs at each Transformer block m.

Leading layer-wise PTQ methods use distinct optimization strategies to approximate the behavior of
the original model while adhering to the foundational sequential layer-wise framework in Eq. (1).
GPTQ [Frantar et al., 2022], for example, uses quantized activations, Xl = X̂l, and quantizes
parameters row-wise by sequentially minimizing reconstruction error and correcting residuals in the
remaining unquantized entries until each row is fully quantized. AWQ [Lin et al., 2024] uses original
activations, Xl = Xl, and identifies a small subset of salient weights whose magnitudes significantly
influence the layer outputs, subsequently rescaling these weights before quantization.

4 Bottleneck: Quantization Error Accumulation and Growth

To motivate our proposed approach, this section first revisits the core layer-wise optimization formu-
lation given by Eq. (1), emphasizing its key limitation: The accumulation and growth of quantization
errors across layers significantly degrade the performance. We investigate this phenomenon using
experiments conducted on the pre-trained Llama-2-7B model [Touvron et al., 2023]. Specifically, we
quantize only the first 10 Transformer blocks [Vaswani et al., 2017], while keeping all subsequent
blocks in full precision. To quantify the propagation and accumulation of the errors, we measure
the discrepancy between fully precise and partially quantized outputs at each block using a calibra-
tion dataset. Let TransBlockm(·) denote the original full-precision m-th Transformer block, and

̂TransBlockm(·) denote its quantized counterpart. We evaluate the following metric at the m-th
block:

∆m =
∥∥∥fm(X)− f̂m(X)

∥∥∥2
F
, (2)

fm(X) := TransBlockm ◦ · · · ◦ TransBlockn+1 ◦ TransBlockn ◦ · · · ◦ TransBlock1(X),

f̂m(X) := TransBlockm ◦ · · · ◦ TransBlockn+1 ◦ ̂TransBlockn ◦ · · · ◦ ̂TransBlock1(X).

This experiment sets n = 10. Figure 2 shows an approximately exponential accumulation or
errors within the quantized layer, as well as an error growth that persists in the unquantized layers.
This growth occurs due to the layer-wise independent quantization approach described in Eq. (1),
which neither accounts for quantization error propagated from previous layers nor corrects previously
accumulated errors, thus exacerbating error growth in subsequent unquantized layers. The exponential
accumulation of quantization errors observed empirically can also be theoretically explained under
mild conditions, as detailed in Appendix B.2. Therefore, instead of treating layer-wise quantization
as a series of independent optimization problems, it is essential to reformulate the original layer-wise
optimization presented in Eq. (1) to mitigate error accumulation and growth.

5 QEP: Quantization Error Propagation

Existing layer-wise independent PTQ has inherent limitations, particularly the accumulation and
growth of quantization errors discussed in Section4. To address these limitations, we introduce
Quantization Error Propagation (QEP), a general, lightweight, and scalable framework that improves

4

layer-wise PTQ by propagating quantization errors. In subsequent sections, we provide theoretical
evidence showing that QEP effectively reduces quantization errors.

5.1 Problem Reformulation

We reformulate the layer-wise independent optimization strategy presented in Eq. (1) to propagate
quantization errors across layers effectively. Instead of minimizing output differences based on shared
input activations Xl, our reformulation directly minimizes the discrepancy between full-precision and
quantized outputs, each computed using their respective upstream inputs. Formally, for each layer l,
we optimize the discrete quantized weight matrix Ŵl as follows:

min
Ŵl∈Qnl×dl

∥∥∥WlXl − ŴlX̂l

∥∥∥2
F
. (3)

This objective ensures that the quantized weights Ŵl are optimized not only to independently
approximate the full-precision weights Wl but also to counteract and compensate for the cumulative
quantization errors introduced by previous layers. In contrast to the existing objective in Eq. (1),
where the trivial optimal solution is Ŵl = Wl if Wl ∈ Qnl×dl , the optimal solution under the
formulation in Eq. (3) is generally Ŵl ̸= Wl, explicitly enabling error correction and accounting for
accumulated quantization errors.

Although the modification from Eq. (1) seems straightforward, Eq. (3) inherently breaks the key
structural simplification that facilitates efficient quantization in existing PTQ frameworks. Specifically,
the optimization in Eq. (3) no longer solely depends on the Hessian matrix Hl, thereby preventing
the direct use of existing Hessian-based acceleration methods for quantization. In the following
section, we address this challenge by proposing a practical and efficient weight correction scheme
that overcomes this limitation while retaining the advantages of our error-propagation approach.

5.2 Weight Correction

To efficiently perform quantization by the objective in Eq. (3) as in existing layer-wise PTQ methods,
we relax the discrete feasible set to a continuous domain, leading to the following proposition.

Proposition 5.1. Assume that the matrix Ĥl is invertible. Then, after relaxing the discrete feasible
set Qnl×dl into the continuous domain Rnl×dl , the optimal solution W ∗

l is given by the following
closed-form expression:

W ∗
l := Wl +WlδlX̂

⊤
l Ĥ−1

l = argmin
Ŵl∈Rnl×dl

∥∥∥WlXl − ŴlX̂l

∥∥∥2
F
, (4)

where δl := Xl − X̂l represents the accumulated quantization error from proceeding layers,
Ĥl := X̂lX̂

⊤
l denotes the empirical Hessian constructed from quantized activations.

The proof of Proposition 5.1 is provided in Appendix B.1. Proposition 5.1 highlights an important
distinction from the existing formulation given by Eq. (1). Specifically, when upstream quantization
introduces non-negligible errors, i.e., δl−1 ̸= 0, the optimal quantized weights differ from straightfor-
ward approximations of the original weights Wl. Instead, the optimal solution explicitly includes a
correction term that compensating for accumulated quantization errors.

This corrected weight enables us to reformulate the equivalent optimization objective within the
original discrete set Ŵl ∈ Qnl×dl as follows:

min
Ŵl∈Qnl×dl

∥∥∥W ∗
l X̂l − ŴlX̂l

∥∥∥2
F
. (5)

This objective shares the same structure as Eq. (1), with Wl replaced by its corrected counterpart W ∗
l .

This reformulation restores the quadratic structure found in Eq. (1), facilitating efficient optimization
through the Hessian matrix Hl = Ĥl. The structure of Eq. (5) allows for seamless integration with
various existing layer-wise PTQ methods, as discussed in Section2. Furthermore, the proposed
layer-wise quantization formulation in Eq. (3) formally guarantees improved quantization accuracy
compared to the existing layer-wise independent PTQ defined in Eq. (1). Specifically, we establish
the following theoretical result:

5

Theorem 5.2 (Informal). Consider an L-layer neural network defined by:

fθ(X) = σL(WLσL−1(WL−1 · · ·σ2(W2σ1(W1X)) · · ·)),
where each activation function σl is Lipschitz continuous and θ denotes the set of all full-precision
parameters {Wl}Ll=1. The output quantization error of the proposed quantization method defined in
Eq. (3) is bounded by that of the existing layer-wise PTQ defined in Eq. (1):∥∥∥fθ(X)− fθ̂QEP

(X)
∥∥∥
F
≤
∥∥∥fθ(X)− fθ̂BASE

(X)
∥∥∥
F
.

where θ̂QEP and θ̂BASE denote the sets of parameters quantized by the objective in Eq. (3) and the
base PTQ method by the objective in Eq. (1), respectively.

Explicit conditions and detailed proof are provided in Appendix B.3. The additional computational
overhead arises solely from computing the correction term δlX̂

⊤
l , since computing the Hessian inverse

Ĥ−1
l remains unchanged from existing layer-wise independent PTQ. As empirically demonstrated

in Section 6.1, this additional computation requires significantly less runtime compared to the
quantization processes of layer-wise PTQ methods, even for large-scale LLMs, due to the tunable
mechanism described in the next section.

5.3 Controlling Propagation Strength

Although solving Eq. (5) effectively reduces the accumulation of quantization error, it can lead
to overfitting. This issue is particularly pronounced when the calibration dataset is small and
insufficiently representative of the target task, or when the model includes blocks with a large number
of parameters such as the MLP blocks commonly found in transformer architectures, causing the
correction to overfit the calibration dataset.

To address this issue, we introduce a tunable propagation mechanism that generalizes the correction
term using a scaling parameter αl ∈ [0, 1]:

W ∗
l (αl) = Wl + αlWlδlX̂

⊤
l Ĥ−1

l . (6)

Here, setting αl = 1 recovers original fully-corrected case presented in Eq. (4), whereas setting
αl = 0 corresponds to the existing approach in Eq. (1) under the setting that Xl = X̂l. This tunable
correction mechanism relates to the following regularization optimization:
Proposition 5.3. The parameter αl corresponds to the regularization parameter λ in the following
optimization problem:

min
Ŵl∈Qnl×dl

∥WlXl − ŴlX̂l∥2F + λl∥Wl − Ŵl∥2F , λl ∈ R+.

Specifically, as αl increases from 0 to 1, the corresponding parameter λl decreases from +∞ to 0.

The derivation is provided in Appendix B.4. Additionally, the following proposition is established.
Proposition 5.4. Under the same assumptions in Theorem 5.2, the output quantization error of the
method employing QEP with parameter {αl}Ll=1 decreases monotonically as each αl approaches 1.

Explicit conditions and comprehensive proofs of this proposition are provided in Appendix B.3.
Consequently, the parameter αl effectively controls overfitting, analogous to regularization techniques,
and importantly provides a systematic way to balance overfitting and underfitting in layer-wise PTQ
methods. Indeed, this parameter is crucial for preventing overfitting, especially in MLP blocks, which
contain more parameters than other blocks.

Furthermore, in large-scale LLMs, the high-dimensional activations in MLP layers often result in
computationally expensive correction terms. In these cases, selectively setting αl = 0 for specific
layers eliminates the computational cost of the correction term and acts as implicit regularization,
potentially improving generalization. Therefore, appropriately setting αl = 0 can reduce the
correction time by approximately one-third and one-half. Developing adaptive strategies for layer-
wise, data-aware, or resource-efficient tuning of αl is a promising direction for future research. In the
following, we refer to the overall approach, including the tunable mechanism controlled by {αl}Ll=1,
as Quantization Error Propagation (QEP).

6

6 Experiments

We conduct experiments to validate the effectiveness of QEP in improving the performance of
layer-wise PTQ relative to existing methods.

Baselines We use representative layer-wise PTQ methods based on linear quantization such as
round-to-nearest (RTN) [Frantar et al., 2022, Dettmers and Zettlemoyer, 2023], GPTQ [Frantar
et al., 2022], AWQ [Lin et al., 2024], and QuIP [Chee et al., 2023]. Although previous studies have
explored extensions, such as non-linear and block-wise quantization, as discussed in Section 2, these
techniques are orthogonal to the core improvement introduced by QEP. Therefore, to isolate and
emphasize the impact of QEP, we focus on these representative layer-wise PTQ methods.

Quantization This study focuses on weight-only quantization schemes, specifically per-channel
and group-wise quantization, which have recently shown superior trade-offs between efficiency
and accuracy [Dettmers and Zettlemoyer, 2023, Frantar et al., 2022, Lin et al., 2024]. The main
text evaluates per-channel quantization under INT4, INT3, and INT2 precision settings. Due to
space constraints, detailed results for group-wise quantization are presented in Appendix D. For the
propagation strength parameter αl, we adopt a representative default value of αl = 1/2 for all layers,
except for the MLP layers in the Llama-2 70B model, for which we set αl = 0. Tuning αl can further
improve performance but is beyond the scope of this study and is left for future work.

Datasets Following previous studies, we evaluate the Hessian matrix using the same default
calibration datasets used in their original implementations. Specifically, GPTQ and QuIP use the
C4 dataset [Frantar et al., 2022] for calibration, while AWQ uses the Pile dataset [Gao et al., 2020].
Following Frantar et al. [2022], we evaluate the correction term in Eq. (4) using 128 randomly
sampled segments of 2048 tokens each from the C4 dataset[Raffel et al., 2020], which consists of
web-crawled text excerpts.

Models Following Lin et al. [2024], Frantar et al. [2022], we evaluate our method on recent
popular LLMs, namely the Llama-2 and Llama-3 model families [Touvron et al., 2023], with size
ranging from 7B to 70B parameters, as well as Mistral-7 B [Jiang, 2024]. These models demonstrate
superior performance compared to other open-source LLMs [Zhang et al., 2022, Workshop et al.,
2022] and have become widely adopted as foundational models for numerous derivative open-source
models [Taori et al., 2023, Chiang et al., 2023].

Evaluations Following established evaluation protocols from prior studies [Dettmers et al., 2022,
Xiao et al., 2023, Frantar et al., 2022, Dettmers and Zettlemoyer, 2023, Yao et al., 2022], we evaluate
the quantized LLMs using the perplexity (PPL) on WikiText2 [Merity et al., 2016], Penn Treebank
(PTB) [Marcus et al., 1994], and C4 [Raffel et al., 2020], and zero-shot accuracy on benchmarks
including ARC Easy (ArcE) [Boratko et al., 2018], PiQA [Bisk et al., 2020], and StoryCloze (SC)
[Mostafazadeh et al., 2016]. Due to space limitations, detailed results for each dataset are provided in
Appendix D. All experiments are conducted using a single NVIDIA V100 GPU.

6.1 Results

Perplexity Table 1 summarizes PPL results of various quantized models evaluated on WikiText2,
comparing several bit-widths and different layer-wise PTQ methods, both with and without QEP.
Additional C4 and PTB dataset results are provided in Appendix D.1, demonstrating consistent trends
in the following. Our results indicate that incorporating QEP significantly enhances the performance
of layer-wise PTQ, substantially reducing perplexity across nearly all tested methods and quantization
levels. In medium-bit scenarios such as INT4 and INT3, where AWQ already exhibits strong
performance, applying QEP yields further improvements. At 2-bit quantization, existing layer-
wise PTQ methods based on linear quantization typically suffer severe PPL degradation, rendering
deployment infeasible. However, QEP effectively mitigates this issue, making INT2 quantization
achievable with practical perplexity levels. Notably, QEP-enhanced QuIP achieves state-of-the-art
perplexity results among all tested layer-wise PTQ methods. Similar significant improvements are
observed for RTN, GPTQ, and AWQ at INT2g32, INT2g64, and INT2g128 quantization levels; see
Appendix D.1 for details.

7

Table 1: Evaluation of perplexities (↓) for Llama models on WikiText-2 under various layer-wise
PTQ methods and bitwidths.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B Llama-3-8B Mistral-7B

FP16 - - 5.472 4.883 3.319 6.137 5.255

INT4

RTN ✗ 6.116 5.206 3.672 8.540 5.997
✓ 6.017 5.165 3.621 8.021 5.877

GPTQ ✗ 6.083 5.167 3.594 147.912 5.643
✓ 5.933 5.127 3.576 9.509 5.528

AWQ ✗ 5.831 5.064 3.484 7.108 5.716
✓ 5.756 5.041 3.479 6.981 5.636

QuIP ✗ 8.434 5.137 3.826 6.998 11.109
✓ 5.753 5.034 3.485 6.650 5.479

INT3

RTN ✗ 539.866 10.688 7.530 2276.227 29.390
✓ 17.309 7.458 5.648 86.430 10.241

GPTQ ✗ 10.881 6.632 4.860 64.457 8.247
✓ 7.898 6.245 4.102 18.845 7.347

AWQ ✗ 15.299 6.448 4.362 11.802 7.902
✓ 11.131 6.092 4.103 10.713 7.169

QuIP ✗ 12.048 5.503 4.135 8.288 7.108
✓ 6.154 5.347 3.813 7.703 5.842

INT2

RTN ✗ 17783.918 51152.832 26077.172 1437176.750 78488.328
✓ 97153.266 61158.555 26063.672 554142.313 50540.059

GPTQ ✗ 13051.469 1301.395 107.458 236596.891 3543.708
✓ 7214.328 2782.353 52.472 282245.188 1665.287

AWQ ✗ 199448.797 93036.517 81834.344 1044956.250 31391.543
✓ 229888.406 74735.836 88684.156 639158.313 32668.666

QuIP ✗ 65.593 11.232 6.536 70.518 26.632
✓ 11.972 8.417 5.869 27.326 9.586

Zero-shot tasks We evaluate the zero-shot accuracy of quantized models on several tasks. Table
2 summarizes the average accuracy for the ArcE, PiQA, and SC datasets. Detailed results for
each dataset are provided in Appendix D.2. Consistent with the perplexity results, QEP effectively
improves existing layer-wise PTQ methods. Notably, the performance gains from QEP are especially
pronounced with INT2 quantization. For Llama-2-70B, the QEP-enhanced QuIP at INT2 achieves
performance comparable to RTN and GPTQ at INT3 quantization.

Table 3: Runtime comparison of the
quantization process.

Runtime Llama-2
7B 13B 70B

GPTQ 14.9m 26.4m 2.9h
AWQ 13.6m 25.4m 2.4h
QEP + RTN 10.9m 19.6m 1.7h

Runtime We examine the impact of computation time
required for the correction term. Table 3 shows the process-
ing time of each layer-wise PTQ. Since the quantization
processing time for RTN is only a few seconds and thus
negligible, the measured time for QEP+RTN is primar-
ily due to computing the preprocessing of the correction
term. This result indicates that calculating the QEP correc-
tion term requires significantly less computation time than
other existing layer-wise PTQ quantization processes. Moreover, using the same calibration dataset
for weight correction and quantization reduces preprocessing overhead by approximately one-half to
one-third by reusing computational steps.

Table 4: Perplexity relative to RTN on Wiki-
Text2, comparing GPTQ and QEP+RTN cali-
brated with C4, PTB, and WikiText2.

PPL to RTN (↓) Calibration Dataset
C4 PTB WikiText2

GPTQ -0.25 +0.07 -0.46
QEP + RTN -0.33 -0.30 -0.49

Robustness As discussed in Section 5.3, our
method adaptively controls propagation strength
in Eq. (6) to mitigate overfitting to the calibration
dataset. In this section, we empirically validate this
approach. Table 4 compares the perplexity differ-
ence among QEP-enhanced RTN, GPTQ, and RTN
when quantizing Llama-2-7B, evaluated on Wiki-

8

Table 2: Zero-shot average accuracy (↑) on ARC-Easy, PIQA, and StoryCloze for Llama models
across three quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B Llama-3-8B Mistral-7B

FP16 - - 0.7601 0.7840 0.8014 0.7920 0.8056

INT4

RTN ✗ 0.6802 0.7160 0.7325 0.7643 0.7831
✓ 0.6844 0.7131 0.7343 0.7686 0.7921

GPTQ ✗ 0.6817 0.7134 0.7306 0.4812 0.7906
✓ 0.6795 0.7104 0.7308 0.7531 0.7904

AWQ ✗ 0.6832 0.7120 0.7257 0.7821 0.7956
✓ 0.6870 0.7126 0.7331 0.7879 0.7967

QuIP ✗ 0.6500 0.7248 0.7285 0.7872 0.7204
✓ 0.6920 0.7167 0.7311 0.7800 0.8012

INT3

RTN ✗ 0.4770 0.6082 0.6402 0.4560 0.6448
✓ 0.5802 0.6550 0.6939 0.5388 0.6963

GPTQ ✗ 0.6367 0.6747 0.7043 0.4891 0.7305
✓ 0.6549 0.6853 0.7078 0.5901 0.7422

AWQ ✗ 0.5840 0.6886 0.7209 0.7074 0.7534
✓ 0.6264 0.6916 0.7283 0.7216 0.7675

QuIP ✗ 0.6232 0.7034 0.7246 0.7433 0.7422
✓ 0.6804 0.7128 0.7273 0.7549 0.7933

INT2

RTN ✗ 0.4139 0.4283 0.4147 0.4183 0.4130
✓ 0.4199 0.4191 0.4145 0.4108 0.4084

GPTQ ✗ 0.4162 0.4222 0.4356 0.4116 0.4159
✓ 0.4263 0.4283 0.4714 0.4228 0.4148

AWQ ✗ 0.4213 0.4176 0.4129 0.4164 0.4177
✓ 0.4162 0.4165 0.4140 0.4150 0.4181

QuIP ✗ 0.4667 0.5945 0.6628 0.4600 0.5422
✓ 0.5926 0.6404 0.6998 0.5121 0.6858

Text2 across various calibration datasets. Consistent with prior findings [Lin et al., 2024], GPTQ
exhibits significant sensitivity to the calibration dataset: it outperforms RTN on C4 and WikiText2 but
experiences notable performance degradation on PTB. In contrast, QEP-enhanced RTN consistently
improves performance across all calibration datasets, demonstrating robustness to distributional shifts.
This highlights the effectiveness of propagation control in preventing overfitting to the calibration
dataset.

7 Conclusion

We revisit the core design of layer-wise PTQ and identify a critical limitation: the exponential
accumulation and growth of quantization errors across network layers. To address this issue, we
propose QEP, a general framework that explicitly propagates and compensates for accumulated
quantization errors. Extensive experiments demonstrate that QEP substantially improves performance,
especially in low-bit quantization scenarios. These findings underscore that meaningful progress in
layer-wise PTQ can still be made by revisiting fundamental strategies, complementing recent trends
primarily centered around non-linear and block-wise quantization techniques. Integrating QEP with
these advanced quantization methods in the future presents a promising approach toward achieving
extreme compression, potentially exceeding QAT performance.

Limitations QEP relies on a small calibration set, as in other layer-wise PTQ approaches, which
makes performance sensitive to data quality; however, it overfits less than comparable methods such
as GPTQ and AWQ. The method also introduces a per-layer propagation-strength parameter αl;
Although this parameter is tunable, a fixed value, e.g., αl = 1/2, works well in most cases, and
automatic learning of αl is left for future work.

9

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Alemán,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The LLaMA 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Jiedong Lang, Zhehao Guo, and Shuyu Huang. A comprehensive study on quantization techniques for
large language models. In Proceedings of the 4th International Conference on Artificial Intelligence,
Robotics, and Communication (ICAIRC), pages 224–231. IEEE, 2024.

Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Haotong Qin,
Jinyang Guo, Michele Magno, and Xianglong Liu. A survey of low-bit large language models:
Basics, systems, and algorithms. arXiv preprint arXiv:2409.16694, 2024.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin, Deng
Cai, and Xiaofei He. Model compression and efficient inference for large language models: A
survey. arXiv preprint arXiv:2402.09748, 2024.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Menglin Yang, Jialin Chen, Yifei Zhang, Jiahong Liu, Jiasheng Zhang, Qiyao Ma, Harshit Verma,
Qianru Zhang, Min Zhou, Irwin King, et al. Low-rank adaptation for foundation models: A
comprehensive review. arXiv preprint arXiv:2501.00365, 2024a.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. LoRA: Low-rank adaptation of large language models. International Confer-
ence on Learning Representations (ICLR), 2022.

Xiaohan Xu, Ming Li, Chongyang Tao, Tao Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of large language models. arXiv preprint
arXiv:2402.13116, 2024a.

Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and
Yiqiang Chen. Survey on knowledge distillation for large language models: Methods, evaluation,
and application. ACM Transactions on Intelligent Systems and Technology, 2024b.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. AWQ: Activation-aware weight quantization for
on-device LLM compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M. De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36:
4396–4429, 2023.

10

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint
arXiv:2402.11295, 2024b.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Vladimir Malinovskii, Denis Mazur, Ivan Ilin, Denis Kuznedelev, Konstantin Burlachenko, Kai Yi,
Dan Alistarh, and Peter Richtárik. PV-Tuning: Beyond straight-through estimation for extreme
LLM compression. Advances in Neural Information Processing Systems, 37:5074–5121, 2024.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
Proceedings of the International Conference on Machine Learning (ICML), pages 7750–7774,
2023.

Jiaqi Zhao, Ming Wang, Miao Zhang, Yuzhang Shang, Xuebo Liu, Yaowei Wang, Min Zhang,
and Liqiang Nie. Benchmarking post-training quantization in LLMs: Comprehensive taxonomy,
unified evaluation, and comparative analysis. arXiv preprint arXiv:2502.13178, 2025.

Kayhan Behdin, Ayan Acharya, Sathiya Keerthi Aman Gupta, and Rahul Mazumder. Quantease:
Optimization-based quantization for language models—an efficient and intuitive algorithm. stat,
1050:5, 2023.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. VPTQ: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024a.

Tianyi Zhang and Anshumali Shrivastava. Leanquant: Accurate and scalable large language model
quantization with loss-error-aware grid. arXiv preprint arXiv:2407.10032, 2024.

Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu. APTQ: Attention-
aware post-training mixed-precision quantization for large language models. In Proceedings of the
61st ACM/IEEE Design Automation Conference, pages 1–6, 2024.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024b.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated LLMs. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3.INT8(): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

11

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless LLM weight compression. arXiv preprint arXiv:2306.03078, 2023.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. arXiv preprint arXiv:2310.00034, 2023.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800 gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

Fengqing Jiang. Identifying and mitigating vulnerabilities in llm-integrated applications. Master’s
thesis, University of Washington, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. https://arxiv.org/abs/2205.01068, 2022.

BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
Jonathan Tow, Alexander M. Rush, Stella Biderman, et al. BLOOM: A 176b-parameter open-access
multilingual language model. arXiv preprint arXiv:2211.05100, 2022. v4.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following LLaMA model.
GitHub repository, 2023. URL https://github.com/tatsu-lab/stanford_alpaca.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, et al. Vicuna: An open-source chatbot impressing
GPT-4 with 90%* chatgpt quality. https://lmsys.org/blog/2023-03-30-vicuna/, March
2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In Proceedings of the
International Conference on Machine Learning (ICML), pages 38087–38099, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. https://arxiv.org/abs/1609.07843, 2016.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger. The Penn Treebank: Annotating predicate argument structure.
In Human Language Technology Workshop (HLT), 1994.

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al. A
systematic classification of knowledge, reasoning, and context within the ARC dataset. https:
//arxiv.org/abs/1806.00358, 2018.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7432–7439, 2020.

12

https://arxiv.org/abs/2205.01068
https://github.com/tatsu-lab/stanford_alpaca
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1806.00358
https://arxiv.org/abs/1806.00358

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of NAACL-HLT, pages 839–849, 2016.

Ji Lin, Chuang Gan, and Song Han. Defensive quantization: When efficiency meets robustness. arXiv
preprint arXiv:1904.08444, 2019.

Yuhang Li, Ruokai Yin, Donghyun Lee, Shiting Xiao, and Priyadarshini Panda. Gptaq: Efficient
finetuning-free quantization for asymmetric calibration. In Forty-second International Conference
on Machine Learning, 2025. URL https://openreview.net/forum?id=QdELyl0FST.

Dongwon Jo, Taesu Kim, Yulhwa Kim, and Jae-Joon Kim. Mixture of scales: Memory-efficient token-
adaptive binarization for large language models. In Advances in Neural Information Processing
Systems (NeurIPS), 2024. URL https://arxiv.org/abs/2406.12311.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang,
Qiang Wang, Wei Xue, Yike Guo, and Xiaowen Chu. Stbllm: Breaking the 1-bit barrier with
structured binary llms. In International Conference on Learning Representations (ICLR), 2025.
URL https://openreview.net/forum?id=6XUSDvBFkV.

Vladimír Boža and Vladimír Macko. Addition is almost all you need: Compressing neural networks
with double binary factorization. CoRR, abs/2505.11076, 2025. doi: 10.48550/arXiv.2505.11076.
URL https://arxiv.org/abs/2505.11076.

Banseok Lee, Dongkyu Kim, Youngcheon You, and Youngmin Kim. Littlebit: Ultra low-bit quantiza-
tion via latent factorization. In Advances in Neural Information Processing Systems (NeurIPS),
2025. URL https://openreview.net/forum?id=zJzu9evD5K.

Ziang Long, Penghang Yin, and Jack Xin. Learning quantized neural nets by coarse gradient method
for nonlinear classification. Research in the Mathematical Sciences, 8(3):48, 2021.

Yuma Ichikawa, Shuhei Kashiwamura, and Ayaka Sakata. High-dimensional learning dynamics of
quantized models with straight-through estimator. arXiv preprint arXiv:2510.10693, 2025.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Yuma Ichikawa and Hiroaki Iwashita. Continuous parallel relaxation for finding diverse solutions in
combinatorial optimization problems. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=ix33zd5zCw.

Yuma Ichikawa and Yamato Arai. Optimization by parallel quasi-quantum annealing with gradient-
based sampling. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=9EfBeXaXf0.

Haoran Sun, Katayoon Goshvadi, Azade Nova, Dale Schuurmans, and Hanjun Dai. Revisiting
sampling for combinatorial optimization. In International Conference on Machine Learning, pages
32859–32874. PMLR, 2023.

Yuma Ichikawa. Controlling continuous relaxation for combinatorial optimization. Advances in
Neural Information Processing Systems, 37:47189–47216, 2024.

13

https://openreview.net/forum?id=QdELyl0FST
https://arxiv.org/abs/2406.12311
https://openreview.net/forum?id=6XUSDvBFkV
https://arxiv.org/abs/2505.11076
https://openreview.net/forum?id=zJzu9evD5K
https://openreview.net/forum?id=ix33zd5zCw
https://openreview.net/forum?id=9EfBeXaXf0

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: The abstract and Introduction explicitly state (i) the limitation of existing
layer-wise PTQ, (ii) the proposal of QEP, and (iii) the empirical and theoretical gains; all
are substantiated by proofs in Appendix B and experiments in Section 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5.3 and Section 6.1 acknowledge over-fitting risks, calibration-set bias,
and the need for layer-wise tuning of αl; computational trade-offs for large MLP blocks are
also discussed.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

14

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: All assumptions are stated before Proposition 5.1, Theorem 5.2, etc., and full
proofs are given in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 6 and Appendix C detail the datasets, bit-widths, calibration sizes, and
default values of αl; Table 3 reports the runtimes for the quantization process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

15

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All datasets are publicly available, and the supplementary material includes an
anonymized ZIP file containing the code, execution scripts, and a README file with a list
of required packages.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so“No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Datasets in Section 6, calibration procedure, number of tokens, and hyper-
parameters (group size, αl defaults) are listed; no additional training optimiser is used
because PTQ is post-training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The impact of random seeds on QuIP and QEP-QuIP is evaluated using error
bars and reported in Appendix D.3.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Table 3 reports wall-clock time on a single NVIDIA V100 for 7B–70B models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work only processes publicly released models and text corpora; no
personal, sensitive, or protected data are used.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

17

https://neurips.cc/public/EthicsGuidelines

Justification: This work focuses on an algorithmic advance in model quantization; given
space constraints we prioritized technical details and empirical results, so a full societal-
impact discussion was omitted.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new generative models; it only provides a compres-
sion method and therefore poses minimal additional misuse risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Every external asset we use (Llama-2/3, Mistral-7B, C4, PTB, WikiText-2,
ARC-E, PIQA, StoryCloze) is fully cited, publicly available, where the respective download
pages state their open-source licenses.

Guidelines:

18

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper introduces no new dataset or model; it only supplies an algorithmic
framework.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human-subject data or crowdsourcing is involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

19

paperswithcode.com/datasets

Justification: Not applicable, no human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: An LLM was used only for writing assistance, proofreading, and minor code
refactoring; it played no role in the core methodology or experiments.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Additional Related Work

Quantization error mitigation Defensive Quantization (DQ) [Lin et al., 2019] mitigates error
accumulation by adding an orthogonality penalty to weights to reduce the correlation-driven amplifi-
cation of quantization noise and by employing gradient-based quantization to position quantization
levels that further suppress propagated error, thereby enhancing robustness. In contrast, the QEP
module is a plug-and-play component for general layer-wise quantization that explicitly modulates
propagation strength under standard linear, gradient-free quantization methods, such as GPTQ, AWQ,
and QuIP.

Relation to GPTAQ GPTAQ [Li et al., 2025] optimizes the same local objective but is closely
related to GPTQ and therefore does not easily generalize to other layer-wise PTQ methods, such
as AWQ and QuIP. In contrast, QEP adds the correction term in Eq. (4) directly to the pre-trained
weights, enabling plug-and-play use with diverse PTQ algorithms and strong performance in low-
bit regimes. Moreover, whereas GPTAQ offers no guarantee that its local optimization reduces
global quantization error, our analysis provides such a guarantee. QEP also introduces a per-layer
propagation-strength parameter, αl, which mitigates the overfitting often observed with GPTQ and
GPTQA.

Extreme low-bit layer-wise PTQ In the ultra-low precision regime, the layer-wise PTQ pipeline
described in the main text, such as GPTQ and AWQ with standard linear quantizers, often becomes
inadequate. As a result, many methods adopt alternative formalisms that introduce additional degrees
of freedom beyond naive rounding to avoid catastrophic quality degradation. Representative examples
include SVID-based 1-bit parameterizations [Xu et al., 2024b], token-adaptive mixtures of scaling
factors [Jo et al., 2024], and structured sparsity designed for extreme quantization [Dong et al., 2025].
In parallel, binary-factor formats decompose each weight matrix into bit-packed sign factors with
lightweight diagonal scaling, allowing inference to be largely driven by efficient 1-bit kernels [Boža
and Macko, 2025, Lee et al., 2025]. In these formats, optimization is also more challenging: strictly
binary variables and highly non-smooth objectives can render straight-through estimators brittle [Long
et al., 2021, Ichikawa et al., 2025, Yin et al., 2019], motivating the use of discrete optimization or
robust relaxation-based solvers. Recent advances in controlled continuous relaxations and annealing-
style objectives have emphasized promising techniques such as QQA and iSCO [Ichikawa and
Iwashita, 2025, Ichikawa and Arai, 2025, Sun et al., 2023, Ichikawa, 2024]. A natural direction for
future work is to examine how these extreme low-bit approaches interact with our error-propagation
perspective. For instance, we should investigate whether combining QEP with binary-factor or
sparsity-based methods can further suppress cross-layer error growth while maintaining the strong
INT2 performance observed here and yielding larger gains as precision approaches 1 bit.

B Additional Theoretical Results

This section presents proofs of the propositions stated in the main text along with additional theoretical
analyzes. To avoid ambiguity, we will fix the following notation throughout this section:

Symbol Description

X ∈ Rd1×m Calibration dataset (input activations at layer 1)
Wl ∈ Rnl×dl Full-precision weight matrix at layer l
Ŵl ∈ Qnl×dl Quantized weight matrix at layer l
σl(·) Activation function at layer l
Xl+1 := σl(WlXl) Full-precision activations at layer (l + 1)

X̂l+1 := σl(ŴlX̂l) Quantized activations at layer (l + 1)

δl := Xl − X̂l Quantization error matrix at layer l
Hl := XlX

⊤
l Empirical Hessian of a full-precision model at layer l

Ĥl := X̂lX̂
⊤
l Empirical Hessian of a quantized model at layer l

21

In the following section, we assume that Hl and Ŵl are invertible. This assumption is standard
in existing layer-wise PTQ methods, which also use these inverse matrices. To ensure numerical
stability, a diagonal matrix ρI , ρ > 0 is commonly added to the Hessian when its inversion becomes
numerically unstable. The subsequent analysis remains consistent and valid even when applying this
stabilization procedure, which simply involves adding ρI to the Hessian in the following derivations.

Throughout this section, we examine the first-order linear term in the weight perturbations {El}.
Concretely, we define each quantity as A = A(0) +A(1) +R, where A(1) collects all terms linear
in {El} and the remainder satisfies ∥R∥ = O(maxk ∥Ek∥22) as maxk ∥Ek∥2 → 0. This matches
practice: with INT8 rounding ∥El∥F /∥Wl∥F = 10−2 ∼ 10−1, so quadratic terms are one order
of magnitude smaller than any first–order contribution. Furthermore, The baseline PTQ and the
QEP pipeline use the same quantiser configuration, hence they induce errors of the same order. We
therefore write the same symbol El for the error matrix in either scheme; any difference is at most a
few percent and does not affect first–order bounds.

B.1 Derivation of Proposition 5.1

This section presents detailed proofs of Proposition 5.1 stated in the main text.

Proof. First, we rewrite the residual inside the Frobenius norm by using the following relationship:
WlXl = WlX̂l +Wlδl. Thus, the objective can be expressed as follows:∥∥∥WlXl − ŴlX̂l

∥∥∥2
F
=
∥∥∥(Wl − Ŵl)X̂l +Wlδl

∥∥∥2
F
.

Since the objective is a strictly convex quadratic function of Ŵl when Ĥl is invertible, the stationary
point is the unique minimizer. To find the minimizer Ŵl, we set the gradient of the expression with
respect to Ŵl, equal to zero. Using standard matrix calculus, we find that the calculus for a stationary
point is

(Wl − Ŵl)X̂lX̂
⊤
l +WlδlX̂

⊤
l = 0.

By defining Ĥl := X̂lX̂
⊤
l , the above condition can be rewritten as

(Wl − Ŵl)Ĥl = −WlδlX̂
⊤
l .

Assuming Ĥl is invertible, we multiply both sides on the right by Ĥ−1
l , obtaining

Wl − Ŵl = −WlδlX̂
⊤
l Ĥ−1

l ,

and hence
Ŵl = Wl +WlδlX̂

⊤
l Ĥ−1

l .

This closed-form expression is indeed the unique minimizer of the Frobenius norm objective, thus
completing the proof.

B.2 Quantization Error Accumulation

This section demonstrates that, under standard layer-wise PTQ, where each layer is quantized
independently without considering downstream effects, the activation difference at the output layer,
defined as δL := XL − X̂L, grows exponentially with depth, to first order in the quantization noise,
under mild conditions.

Proposition B.1. For each layer l = 1, . . . , L+ 1, the activation error can be expressed as follows:

δl = −
l−1∑
k=1

(
l−1∏

s=k+1

JsWs

)
JkEkXk +O

(
max
k≤l−1

∥Ek∥2F
)
,

where the empty product
∏l−1

s=l is defined to be the identity matrix, and Ek := Ŵk −Wk represents
the weight quantization error at layer k.

22

Proof. Consider explicitly the activations at layer l in both full-precision and quantized forms:

Xl = σl−1(Wl−1Xl−1), X̂l = σl−1(Ŵl−1X̂l−1).

By recursively applying this relation back to the first layer, we derive the activation difference δl as

δl = Xl − X̂l

= σl−1(Wl−1Xl−1)− σl−1(Ŵl−1X̂l−1)

= Jl−1(Wl−1Xl−1 − Ŵl−1X̂l−1) +O
(
max{E2

l−1, δ
2
l−1}

)
= Jl−1 [−El−1Xl−1 +Wl−1δl−1] +O

(
max{E2

l−1, δ
2
l−1}

)
= −Jl−1El−1Xl−1 + Jl−1Wl−1δl−1 +O

(
max{E2

l−1, δ
2
l−1}

)
.

By explicitly expanding δl−1, we obtain

δl−1 = −Jl−2El−2Xl−2 + Jl−2Wl−2δl−2 +O
(
max{E2

l−2, δ
2
l−2}

)
.

Substituting this expression into the previous equation yields

δl = −Jl−1El−1Xl−1

+ Jl−1Wl−1 [−Jl−2El−2Xl−2 + Jl−2Wl−2δl−2] +O
(
max{E2

l−1,E
2
l−2, δ

2
l−2}

)
= −Jl−1El−1Xl−1 − Jl−1Wl−1Jl−2El−2Xl−2

+ Jl−1Wl−1Jl−2Wl−2δl−2 +O
(
max{E2

l−1,E
2
l−2, δ

2
l−2}

)
.

By recursively repeating this explicit expansion down to the first layer, we obtain the fully expanded
form as follows, noting δ1 = 0:

δl = −
l−1∑
k=1

(
l−1∏

s=k+1

JsWs

)
JkEkXk +O

(
max
k≤l−1

∥Ek∥2
)
,

where the empty product for s = l, . . . , l − 1 is defined as the identity matrix.

Proposition B.2. Assume each activation σl : Rnl×m → Rnl×m is γl-Lipschitz with respect to the
Frobenius norm and satisfies σl(0) = 0:

∥σl(U)− σl(V)∥F ≤ γl∥U − V ∥F , γl > 0.

Let X1 = X̂1 = X; for l = 1, . . . , L− 1 define

Xl+1 = σl(WlXl), X̂l+1 = σl(ŴlX̂l), Ŵl = Wl +El,

and δl := Xl − X̂l. Assume ∥Wl∥2 > 0 for all l = 1, . . . , L− 1 and set

GL−1 :=

L−1∏
l=1

γl∥Wl∥2, r := max
1≤k≤L−1

∥Ek∥2
∥Wk∥2

.

Then the final activation mismatch satisfies the explicit bound

∥δL∥F ≤
(
(1 + r)L−1 − 1

)
GL−1∥X∥F . (7)

Proof. Since σl(0) = 0 and σl are γl-Lipschitz,

∥Xl+1∥F = ∥σl(WlXl)− σl(0)∥F ≤ γl∥WlXl∥F ≤ γl∥Wl∥2∥Xl∥F .
By induction,

∥Xl∥F ≤

(
l−1∏
t=1

γt∥Wt∥2

)
∥X∥F = Gl−1∥X∥F , l ≥ 1. (8)

Using Lipschitz continuity again,

∥δl+1∥F = ∥σl(WlXl)− σl(ŴlX̂l)∥F
≤ γl∥WlXl − ŴlX̂l∥F .

23

Since Ŵl = Wl +El and δl = Xl − X̂l,

WlXl − ŴlX̂l = WlXl − (Wl +El)X̂l = −ElXl + Ŵlδl,

hence, by the triangle inequality and ∥AB∥F ≤ ∥A∥2∥B∥F ,

∥δl+1∥F ≤ γl

(
∥El∥2∥Xl∥F + ∥Ŵl∥2∥δl∥F

)
. (9)

By definition of r, ∥El∥2 ≤ r∥Wl∥2. Additionally, ∥Ŵl∥2 ≤ ∥Wl∥2 + ∥El∥2 ≤ (1 + r)∥Wl∥2.
Combining these with (8) in (9) yields

∥δl+1∥F ≤ γl∥Wl∥2
(
rGl−1∥X∥F + (1 + r)∥δl∥F

)
.

Define the normalized quantity

al :=
∥δl∥F

Gl−1∥X∥F
, l ≥ 1.

Note a1 = 0 because δ1 = 0. Dividing the previous inequality by Gl∥X∥F (where Gl =
Gl−1γl∥Wl∥2) yields

al+1 ≤ r + (1 + r)al.

Let bl := al + 1. Then bl+1 ≤ (1 + r)bl and b1 = 1; hence bl ≤ (1 + r)l−1; therefore

al ≤ (1 + r)l−1 − 1.

Taking l = L gives Eq. (7).

Proposition B.3. Assume each activation σl : Rnl×m → Rnl×m is γl-Lipschitz with respect to the
Frobenius norm and satisfies σl(0) = 0:

∥σl(U)− σl(V)∥F ≤ γl∥U − V ∥F .

Assume moreover that σl is Fréchet differentiable at the full-precision pre-activation Yl := WlXl

for each l = 1, . . . , L− 1. Let X1 = X̂1 = X and for l = 1, . . . , L− 1 define

Xl+1 = σl(WlXl), X̂l+1 = σl(ŴlX̂l), Ŵl = Wl +El.

Assume ∥Wk∥2 > 0 for k = 1, . . . , L− 1 and define

GL−1 :=

L−1∏
l=1

γl∥Wl∥2, r := max
1≤k≤L−1

∥Ek∥2
∥Wk∥2

.

Define the first-order component δ(1)L as follows. For t ∈ R let Ŵl(t) := Wl + tEl and define
X̂1(t) := X , X̂l+1(t) := σl(Ŵl(t)X̂l(t)). Let δl(t) := Xl − X̂l(t). Then δ

(1)
L is defined by the

derivative

δ
(1)
L :=

d

dt

∣∣∣∣
t=0

δL(t).

Under these assumptions,
∥δ(1)L ∥F ≤ (L− 1)rGL−1∥X∥F . (10)

In particular, if γl∥Wl∥2 ≤ 1 + ε for all l, then

∥δ(1)L ∥F ≤ (L− 1)r(1 + ε)L−1∥X∥F . (11)

Proof. Since σl(0) = 0 and σl is γl-Lipschitz,

∥Xl+1∥F = ∥σl(WlXl)− σl(0)∥F ≤ γl∥WlXl∥F ≤ γl∥Wl∥2∥Xl∥F .

By induction,

∥Xl∥F ≤

(
l−1∏
t=1

γt∥Wt∥2

)
∥X∥F , l ≥ 1. (12)

24

Fix l ∈ {1, . . . , L − 1}. By assumption, σl is Fréchet differentiable at Yl := WlXl. Let Jl :=
Dσl(Yl) denote its Fréchet derivative. Because σl is γl-Lipschitz, the operator norm of Jl, induced
by the Frobenius norm, satisfies

∥Jl∥op ≤ γl. (13)
Indeed, for any H ,

∥Jl[H]∥F = lim
t→0

∥σl(Yl + tH)− σl(Yl)∥F
|t|

≤ lim
t→0

γl∥tH∥F
|t|

= γl∥H∥F .

Now consider X̂l+1(t) = σl(Ŵl(t)X̂l(t)). Since matrix multiplication is smooth and σl is differen-
tiable at Yl, the chain rule gives

d

dt

∣∣∣∣
t=0

X̂l+1(t) = Jl

[
ElXl +Wl

d

dt

∣∣∣∣
t=0

X̂l(t)

]
.

Because δl(t) = Xl − X̂l(t), we have d
dt

∣∣
t=0

X̂l(t) = −δ
(1)
l . Therefore,

δ
(1)
l+1 = −Jl[ElXl −Wlδ

(1)
l] = −Jl(ElXl) + Jl(Wlδ

(1)
l), δ

(1)
1 = 0.

Taking Frobenius norms, using (13) and ∥AB∥F ≤ ∥A∥2∥B∥F ,

∥δ(1)l+1∥F ≤ γl∥El∥2∥Xl∥F + γl∥Wl∥2∥δ(1)l ∥F . (14)

Define al := ∥δ(1)l ∥F . From (14) and a1 = 0, straightforward induction yields

aL ≤
L−1∑
k=1

(
L−1∏

s=k+1

γs∥Ws∥2

)
γk∥Ek∥2∥Xk∥F .

Apply Eq. (12) to ∥Xk∥F and factor out GL−1:

∥δ(1)L ∥F ≤ GL−1

(
L−1∑
k=1

∥Ek∥2
∥Wk∥2

)
∥X∥F ≤ (L− 1)rGL−1∥X∥F ,

which is Eq. (10). If additionally γl∥Wl∥2 ≤ 1 + ε for all l, then GL−1 ≤ (1 + ε)L−1, proving
Eq. (11).

Proposition B.4. Consider the 1-dimensional network (dl = nl = 1) with σl(z) = z. Let Wl = 1+ε
for all l = 1, . . . , L− 1 with ε > 0, and let the input be X = C > 0. Choose quantized weights

Ŵl = Wl + El, El ≡ cE > 0, l = 1, . . . , L− 1.

Then, for all L ≥ 2, the exact activation mismatch at layer L satisfies

|δL| = |XL − X̂L| ≥ (L− 1)cEC(1 + ε)L−2. (15)

In particular,

|δL| ≥
cEC

1 + ε
(1 + ε)L−1. (16)

Proof. Since σl is the identity map, we have

XL = (1 + ε)L−1C, X̂L = (1 + ε+ cE)
L−1C.

Hence
|δL| = C

∣∣(1 + ε+ cE)
L−1 − (1 + ε)L−1

∣∣ .
Apply the mean value theorem to f(t) = tL−1 on the interval [1 + ε, 1 + ε + cE]: there exists
ξ ∈ (1 + ε, 1 + ε+ cE) such that

(1 + ε+ cE)
L−1 − (1 + ε)L−1 = f ′(ξ)cE = (L− 1)ξL−2cE .

Since ξ ≥ 1 + ε, we obtain
|δL| ≥ (L− 1)cE(1 + ε)L−2C,

which proves Eq. (15). Finally, Eq. (16) follows from (1 + ε)L−2 = 1/1+ε(1 + ε)L−1 and L− 1 ≥ 1
for L ≥ 2.

25

B.3 Derivation of Theorem 5.2 and Corollary 5.4

This section presents a rigorous statement and proof of Theorem 5.2 and Corollary 5.4. We first
formally restate Theorem 5.2 below.

Theorem B.5. Consider an L-layer network

X1 = X, Xl+1 = σl(WlXl), l = 1, . . . , L.

Assume each σl is γl-Lipschitz with respect to ∥ · ∥F and satisfies σl(0) = 0. Let the quantized
forward pass be

X̂1 = X, X̂l+1 = σl(ŴlX̂l).

Define the activation mismatch as δl := Xl − X̂l.

Fix any matrices El and set
ŴBASE

l := Wl +El.

For QEP, define each l

W ∗
l (αl) := Wl + αlWlδlX̂

⊤
l Ĥ−1

l , αl ∈ [0, 1],

and set
ŴQEP

l := W ∗
l (αl) +El.

Define the per-layer pre-activation residuals

RM
l := WlXl − ŴM

l X̂M
l , M ∈ {BASE,QEP},

the global Lipschitz upper bound on the output mismatch

UM :=

L∑
k=1

(
L∏

s=k+1

γs∥Ws∥2

)
γk∥RM

k ∥F .

Then for every choice of {αl}Ll=1 ⊂ [0, 1],

UQEP ≤ UBASE.

Consequently,
∥δQEP

L+1 ∥F ≤ UQEP ≤ UBASE, ∥δBASE
L+1 ∥F ≤ UBASE.

Proof. Fix a method M ∈ {BASE,QEP}. By Lipschitz continuity,

∥δMl+1∥F = ∥σl(WlXl)− σl(Ŵ
M
l X̂M

l)∥F ≤ γl∥WlXl − ŴM
l X̂M

l ∥F = γl∥RM
l ∥F .

Iterating this inequality through the remaining layers yields

∥δML+1∥F ≤
L∑

k=1

(
L∏

s=k+1

γs∥Ws∥2

)
γk∥RM

k ∥F = UM .

It remains to show UQEP ≤ UBASE. We prove a stronger per-layer inequality:

∥RQEP
l ∥F ≤ ∥RBASE

l ∥F , ∀l. (17)

Fix l and write X̂l := X̂QEP
l and δl := Xl − X̂l. Define the orthogonal projection

Pl := X̂⊤
l (X̂lX̂

⊤
l)−1X̂l,

which satisfies P 2
l = Pl and P⊤

l = Pl.

By the construction of W ∗
l (αl), we have the exact identity

W ∗
l (αl)X̂l = WlX̂l + αlWlδlPl.

26

Therefore, using ŴQEP
l = W ∗

l (αl) +El,

RQEP
l = WlXl − (W ∗

l (αl) +El)X̂l

= Wl(X̂l + δl)−W ∗
l (αl)X̂l −ElX̂l

= Wlδl − αlWlδlPl −ElX̂l

= Wlδl(I − αlPl)−ElX̂l.

Consider the BASE residual at the same layer evaluated on the same X̂l:

R̃BASE
l := WlXl − (Wl +El)X̂l = Wlδl −ElX̂l.

Hence
RQEP

l = R̃BASE
l − αlWlδlPl.

Since Pl is an orthogonal projection and 0 ≤ αl ≤ 1, Lemma B.8 implies

∥Wlδl(I − αlPl)∥F ≤ ∥Wlδl∥F .

Therefore, by the triangle inequality,

∥RQEP
l ∥F = ∥Wlδl(I − αlPl)−ElX̂l∥F ≤ ∥R̃BASE

l ∥F .

Finally, since X̂BASE
l is the BASE activation produced by the BASE recursion, RBASE

l is exactly
R̃BASE

l evaluated at X̂BASE
l . Thus, taking X̂l = X̂BASE

l in the above inequality yields Eq. (17).
Summing with nonnegative weights (

∏L
s=k+1 γs∥Ws∥2)γk yields UQEP ≤ UBASE, thus completing

the proof.

We further demonstrate that the final quantization error decreases monotonically as each propagation
strength parameter αl approaches 1.

Corollary B.6. Fix the layer index l ∈ {1, . . . , L} and assume that Ĥl := X̂lX̂
⊤
l is invertible. Let

the activation mismatch be δl := Xl − X̂l. Define the orthogonal projection

Pl := X̂⊤
l (X̂lX̂

⊤
l)−1X̂l ∈ Rm×m.

For α ∈ [0, 1], define the QEP corrected weight in the continuous domain as

W ∗
l (α) := Wl + αWlδlX̂

⊤
l Ĥ−1

l ,

and let Ŵl(α) := W ∗
l (α) +El be for some fixed matrix El. Then, for any 0 ≤ α′ ≤ α ≤ 1,

∥Wlδl(I − αPl)∥F ≤ ∥Wlδl(I − α′Pl)∥F . (18)

Moreover, the pre-activation residual satisfies the exact identity

WlXl − Ŵl(α)X̂l = Wlδl(I − αPl)−ElX̂l, (19)

and hence the following upper bound is also monotone in α:

∥WlXl − Ŵl(α)X̂l∥F ≤ ∥Wlδl(I − αPl)∥F + ∥El∥2∥X̂l∥F . (20)

Proof. First, Pl is an orthogonal projection. Indeed,

P⊤
l = X̂⊤

l (X̂lX̂
⊤
l)−1X̂l = Pl,

and
P 2

l = X̂⊤
l (X̂lX̂

⊤
l)−1 X̂lX̂

⊤
l︸ ︷︷ ︸

=Ĥl

(X̂lX̂
⊤
l)−1X̂l = Pl.

Hence, Lemma B.8 applies with Z := Wlδl and P := Pl, yielding

∥Wlδl(I − αPl)∥F ≤ ∥Wlδl(I − α′Pl)∥F ,

which proves Eq. (18).

27

Next, using the definitions of W ∗
l (α) and Ĥ−1

l = (X̂lX̂
⊤
l)−1,

W ∗
l (α)X̂l = WlX̂l + αWlδlX̂

⊤
l (X̂lX̂

⊤
l)−1X̂l = WlX̂l + αWlδlPl.

Therefore, since Ŵl(α) = W ∗
l (α) +El and Xl = X̂l + δl,

WlXl − Ŵl(α)X̂l = Wl(X̂l + δl)− (W ∗
l (α) +El)X̂l

= Wlδl − αWlδlPl −ElX̂l

= Wlδl(I − αPl)−ElX̂l,

which is (19). Finally, (20) follows from the triangle inequality and ∥ElX̂l∥F ≤ ∥El∥2∥X̂l∥F .

B.4 Relationship of QEP Correction and Ridge Regularization

We formally establish a rigorous mathematical connection between the Quantization Error Propagation
(QEP) correction parameter αl and the ridge regularization parameter λ. We show that tuning the
QEP parameter αl is equivalent to adjusting the strength of ridge regularization with parameter λ.
We prove the monotone inverse relationship between these two parameters.
Proposition B.7. The QEP update with mixing factor αl ∈ [0, 1] is

Ŵ ∗
l (αl) = Wl(I + αδlX̂

⊤
l Ĥ−1

l).

The unique minimizer of the ridge objective

min
Ŵl∈Rnl×dl

f(Ŵl), f(Ŵl) = ∥WlXl − ŴlX̂l∥2F + λl∥Wl − Ŵl∥2F , λl ≥ 0,

equals
Ŵ ∗

l (λl) = Wl

(
I + δlX̂

⊤
l (Ĥl + λI)−1

)
. (21)

Let the positive definite matrices be

G(αl) := αĤ−1
l , R(λl) := (Ĥl + λI)−1.

Then
α1 ≤ α2 ⇒ G(α1) ⪯ G(α2), λ1 ≤ λ2 ⇒ R(λ1) ⪰ R(λ2),

and the scalar mapping as follows:

α(λ) :=
1

d
TrĤlR(λ) =

1

dl

dl∑
i=1

γi
γi + λl

with γ1 ≥ · · · ≥ γd1
> 0 the eigenvalues of Ĥl, is strictly decreasing, satisfies α(0) = 1 and

limλ→∞ α(λ) = 0, and obeys

TrĤlG(α(λ)) = TrĤlR(λ).

Thus, decreasing λ from +∞ to 0 corresponds to increasing αl from 0 to 1.

Proof. A standard differential identity ∂∥A∥2F = 2A gives

∇
Ŵl

f(Ŵl) = 2
(
ŴlĤl −WlXlX̂

⊤
l

)
+ 2λ(Ŵl −Wl).

Setting this gradient 0 yields

Ŵl(Ĥl + λI) = Wl(XlX̂
⊤
l + λI),

and right multiplication by inverse of Ĥl+λI produces Eq. (21). Convexity of f ensures uniqueness.

Diagonalise Ĥl = UΓU⊤ with Γ = diag(γ1, . . . , γdl
). Then G(αl) = UαlΓ

−1U⊤ has eigenval-
ues αl/γl, which increase strictly with αl, while R(λl) = U(Γ+ λI)−1U⊤ has eigenvalues 1/γi+λ,
which decrease with λl, which means Loewner relations follow directly.

28

Furthermore, the following equation holds:

α(λ) =
1

d1
Tr(ĤlR(λ)) =

1

dl

d1∑
i=1

γi
γi + λ

Each summand has derivative

∂

∂λ

γi
γi + λ

= − γi
(γi + λ)2

< 0,

which means α′(λ) < 0,∀λ ≥ 0. Thus, α(·) is strictly decreasing on [0,∞). One has

lim
λ→0

γi
γi + λ

= 1, lim
λ→∞

γi
γi + λ

= 0.

α(·) is strictly decreasing from 1 to 0 and smooth on [0,∞). Because α is continous, strictly
decreasing, it is a bijection from [0,+∞) onto (0, 1]. By construction

TrĤlG(α(λ)) = TrĤlR(λ).

Thus, decreasing λ from +∞ to 0 corresponds to increasing αl from 0 to 1.

B.5 Technical Lemma

Lemma B.8. Let Z ∈ Rm×n be arbitrary, and let P ∈ Rn×n be an orthogonal projection, i.e.,
P 2 = P and P⊤ = P . For every pair 0 ≤ α′ ≤ α ≤ 1,

∥Z(I − αP)∥F ≤ ∥Z(I − α′P)∥F ≤ ∥Z∥F . (22)

Proof. Write f(α) := ∥Z(I − αP)∥2F . Because P⊤ = P and P 2 = P ,

f(α) = Tr
[
(I − αP)Z⊤Z(I − αP)

]
= ∥Z∥2F − 2α(1− α) Tr(Z⊤ZP)︸ ︷︷ ︸

t≥0

.

Thus, f ′(α) = −(2− α)t ≤ 0 on [0, 1] indicates that f(α) is non-increasing. Taking square roots
yields the first inequality in Eq. (22). Setting α′ = 0 yields the second inequality: ∥Z(I −αP)∥F ≤
∥Z∥F .

C Additional Implementation Details

C.1 Damping for Hessian

A standard numerical issue in PTQ arises when the Hessian matrix Ĥl is ill-conditioned or singular,
rendering its inversion unstable or undefined. Following GPTQ [Frantar et al., 2022], we resolve
this issue by employing a damping strategy that adds a small scalar value λ to the diagonal elements
of Ĥl to ensure positive definiteness. In our implementation, we set λ to the mean of the diagonal
elements of Ĥl, providing a straightforward yet effective method to stabilize the inversion process.

D Additional Experiments

D.1 Additional Perplexity Results

Due to space constraints, the main text reports perplexity results solely for the WikiText-2 dataset.
Here, we provide additional results for PTB (Table 6) and C4 (Table 7), along with extended results
for WikiText-2 (Table 5). These supplementary results further validate that QEP consistently enhances
PTQ performance, particularly in low-bit quantization scenarios.

29

7B 13B 70B
Model Size

10

20

30

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2 INT4 Quantization

QEP-QuIP
QuIP

7B 13B 70B
Model Size

10

20

30
INT3 Quantization

7B 13B 70B
Model Size

0

20

40

60

80
INT2 Quantization

7B 13B 70B
Model Size

0.60

0.65

0.70

Av
er

ag
e

ac
cu

ra
cy

INT4 Quantization

7B 13B 70B
Model Size

0.55

0.60

0.65

0.70

INT3 Quantization

7B 13B 70B
Model Size

0.5

0.6

0.7
INT2 Quantization

Figure 3: Results averaged over 5 random seeds comparing QuIP with and without QEP across
different quantization levels. Each subplot shows results for INT4, INT3, and INT2 quantization,
respectively, with the horizontal axis indicating model size (7B, 13B, 70B). The top row reports
perplexity on WikiText-2 (lower is better), while the bottom row shows the average of normalized
accuracy scores on ARC (easy), PIQA, and StoryCloze benchmarks (higher is better), representing
generalization capability. Error bars represent the standard error of the mean (SEM). Models using
QEP-QuIP consistently outperform or match the performance of baseline QuIP, especially under
more aggressive quantization (INT3 and INT2).

D.2 Detailed Accuracy Results for Individual Tasks

Due to space limitations, the main text reports only the average accuracy across three tasks. Here, we
provide task-specific accuracies for PIQA (Table 8), StoryCloze (Table 9), and ARC-Easy (Table 10),
further confirming that QEP consistently improves layer-wise PTQ.

D.3 Stability of QuIP Results Across Random Seeds

We assess the stability of QuIP-only experiments by averaging five independent runs per configuration.
Model sizes, quantization levels, and benchmarks align with the main Experiments section. Figure
3 plots QuIP with or without QEP at three quantization levels. Each marker is the mean of five
seeds, and the error bars show the standard error of the mean. The top row gives perplexity on
WikiText 2; the bottom row reports mean normalized accuracy on ARC easy, PIQA, and StoryCloze.
Seed-to-seed variation is small and does not change the main conclusions. QEP-QuIP keeps its
advantage, especially at INT3 and INT2. The main text lists the best seed per configuration for
consistency with past work. This appendix confirms that the gains are not seed-specific but robust
and reproducible, supporting using QEP.

D.4 Comparison with OmniQuant Baseline Table 11: WikiText-2 perplexity for LLaMA-
2-7B at different bit-widths. NaN denotes di-
vergence.

Method INT4 INT3 INT2

RTN+QEP 6.017 17.309 97153.266
GPTQ+QEP 5.933 7.898 7214.328
AWQ+QEP 5.756 11.131 229888.406
QuIP+QEP 5.753 6.154 11.972
OmniQuant 5.880 7.065 NaN

For completeness, we compare QEP-enhanced layer-
wise PTQ with block-wise OmniQuant [Shao et al.,
2023] on LLaMA-2-7B using WikiText-2 perplex-
ity; lower values indicate better performance. As
shown in Table 11, QuIP+QEP achieves the low-
est perplexity at INT4/INT3 and remains stable at
INT2, whereas OmniQuant diverges. These findings
align with recent PTQ benchmarks that indicate Om-
niQuant’s underperformance relative to layer-wise
PTQ [Zhao et al., 2025].

30

Table 5: Perplexities (↓) on WikiText-2 for Llama-2 (7B, 13B, 70B) under eight quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 5.726 4.984 3.463
✓ 5.687 4.966 3.431

GPTQ ✗ 5.698 4.987 3.419
✓ 5.609 4.969 3.416

AWQ ✗ 5.599 4.987 3.408
✓ 5.580 4.969 3.404

INT4

RTN ✗ 6.116 5.206 3.672
✓ 6.017 5.165 3.621

GPTQ ✗ 6.083 5.167 3.594
✓ 5.933 5.127 3.576

AWQ ✗ 5.831 5.064 3.484
✓ 5.756 5.041 3.479

INT3g128

RTN ✗ 6.662 5.518 3.978
✓ 6.330 5.412 3.882

GPTQ ✗ 6.411 5.459 3.880
✓ 6.160 5.358 3.838

AWQ ✗ 6.247 5.315 3.740
✓ 6.108 5.295 3.724

INT3

RTN ✗ 539.866 10.688 7.530
✓ 17.309 7.458 5.648

GPTQ ✗ 10.881 6.632 4.860
✓ 7.898 6.245 4.102

AWQ ✗ 15.299 6.448 4.362
✓ 11.131 6.092 4.103

INT2g32

RTN ✗ 90.692 10.563 6.802
✓ 12.249 7.920 5.869

GPTQ ✗ 12.023 8.394 5.621
✓ 9.245 7.362 5.445

AWQ ✗ 15887.204 106933.227 63663.707
✓ 51.874 80654.797 37096.516

INT2g64

RTN ✗ 431.595 26.220 10.312
✓ 19.371 9.917 6.992

GPTQ ✗ 278.302 11.584 6.546
✓ 14.737 8.685 6.030

AWQ ✗ 217111.860 121737.148 71703.781
✓ 241136.594 126944.578 74227.539

INT2g128

RTN ✗ 4270.828 122.063 27.268
✓ 35.291 12.779 8.799

GPTQ ✗ 43.915 16.653 8.123
✓ 17.886 19.952 6.825

AWQ ✗ 222344.250 122795.898 72446.680
✓ 247751.203 126813.172 74192.570

INT2

RTN ✗ 17783.918 51152.832 26077.172
✓ 97153.266 61158.555 26063.672

GPTQ ✗ 13051.469 1301.395 107.458
✓ 7214.328 2782.353 52.472

AWQ ✗ 199448.797 93036.517 81834.344
✓ 229888.406 74735.836 88684.156

31

Table 6: Perplexities (↓) on PTB for Llama-2 (7B, 13B, 70B) under eight quantization settings. “N/A”
denotes numerical overflow (NaN).

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 61.750 53.835 24.146
✓ 47.798 49.503 24.604

GPTQ ✗ N/A 51.133 24.101
✓ N/A 50.072 24.243

AWQ ✗ 43.894 53.863 24.525
✓ 40.445 55.345 24.554

INT4

RTN ✗ 82.641 60.749 23.545
✓ 50.168 53.117 23.346

GPTQ ✗ N/A 53.561 24.720
✓ 124291.961 53.537 24.149

AWQ ✗ 60.261 56.152 25.542
✓ 46.937 57.445 24.411

INT3g128

RTN ✗ 55.467 64.638 23.586
✓ 48.576 54.866 24.776

GPTQ ✗ N/A 57.079 24.091
✓ N/A 62.083 24.092

AWQ ✗ 64.932 57.273 24.668
✓ 52.356 61.479 26.309

INT3

RTN ✗ 37167.801 294.802 64.002
✓ 5514.820 113.856 34.212

GPTQ ✗ 44807.926 106.715 27.839
✓ N/A 81.117 27.469

AWQ ✗ 130.308 121.698 26.887
✓ 81.606 93.260 25.592

INT2g32

RTN ✗ 20280.412 262.244 63.428
✓ 1685.683 96.913 36.677

GPTQ ✗ 18292.635 152.169 29.163
✓ N/A 110.507 30.465

AWQ ✗ 47850.137 60977.195 48520.398
✓ 3741.642 47591.414 20185.246

INT2g64

RTN ✗ 9252.538 551.510 153.528
✓ 1096.720 158.306 42.991

GPTQ ✗ N/A 275.949 37.024
✓ N/A 187.477 37.384

AWQ ✗ 202939.484 113584.867 79866.031
✓ 220728.234 117658.867 82598.511

INT2g128

RTN ✗ 9685.755 1213.282 767.896
✓ 4462.478 207.651 63.806

GPTQ ✗ 10694.694 395.689 56.685
✓ N/A 325.407 45.569

AWQ ✗ 202164.484 113784.242 80543.727
✓ 222388.375 117059.742 82493.251

INT2

RTN ✗ 31824.279 42619.883 26063.672
✓ 10824.680 55286.305 26077.172

GPTQ ✗ N/A 3868.426 2438.034
✓ N/A 3850.578 4050.844

AWQ ✗ 183984.766 87673.695 90442.352
✓ 198744.750 62160.063 91939.883

32

Table 7: Perplexities (↓) on C4 for Llama-2 (7B, 13B, 70B) under eight quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 7.584 6.869 5.826
✓ 7.513 6.839 5.786

GPTQ ✗ 7.522 6.860 5.778
✓ 7.421 6.828 5.770

AWQ ✗ 7.443 6.840 5.772
✓ 7.416 6.829 5.767

INT4

RTN ✗ 8.165 7.146 6.012
✓ 7.945 7.067 5.947

GPTQ ✗ 7.866 7.069 5.905
✓ 7.719 6.998 5.880

AWQ ✗ 7.721 6.962 5.842
✓ 7.634 6.932 5.828

INT3g128

RTN ✗ 8.977 7.582 6.266
✓ 8.510 7.402 6.150

GPTQ ✗ 8.502 7.463 6.105
✓ 8.185 7.316 6.072

AWQ ✗ 8.300 7.310 6.036
✓ 8.105 7.264 6.019

INT3

RTN ✗ 524.279 13.883 10.886
✓ 21.436 10.284 8.202

GPTQ ✗ 11.780 8.826 7.067
✓ 9.950 8.429 6.869

AWQ ✗ 17.418 9.049 6.631
✓ 13.934 8.257 6.353

INT2g32

RTN ✗ 225.440 13.879 9.720
✓ 16.148 10.561 8.459

GPTQ ✗ 14.365 10.719 7.932
✓ 11.839 9.685 7.717

AWQ ✗ 9028.133 76591.883 57596.215
✓ 51.811 49645.738 33026.816

INT2g64

RTN ✗ 553.766 30.445 15.155
✓ 22.089 12.762 9.850

GPTQ ✗ 20.860 13.394 8.981
✓ 14.084 11.039 8.508

AWQ ✗ 164477.422 95241.625 64913.477
✓ 181582.719 98917.820 67203.359

INT2g128

RTN ✗ 4811.772 131.665 47.878
✓ 34.022 15.398 12.081

GPTQ ✗ 33.370 18.008 10.535
✓ 18.184 12.704 9.433

AWQ ✗ 168465.266 95617.305 65646.594
✓ 187329.625 98457.031 67248.492

INT2

RTN ✗ 28258.385 52642.387 24912.074
✓ 108424.680 71050.250 29042.623

GPTQ ✗ 3048.671 299.684 56.719
✓ 276.638 629.527 30.874

AWQ ✗ 156266.797 81233.602 73251.945
✓ 177576.750 64098.504 75607.211

33

Table 8: Accuracy (↑) on PIQA for Llama-2 (7B, 13B, 70B) under eight quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 0.773 0.792 0.804
✓ 0.773 0.790 0.806

GPTQ ✗ 0.770 0.789 0.807
✓ 0.771 0.792 0.806

AWQ ✗ 0.768 0.790 0.807
✓ 0.764 0.791 0.810

INT4

RTN ✗ 0.763 0.789 0.811
✓ 0.767 0.788 0.812

GPTQ ✗ 0.755 0.789 0.804
✓ 0.761 0.787 0.811

AWQ ✗ 0.760 0.789 0.807
✓ 0.763 0.784 0.814

INT3g128

RTN ✗ 0.757 0.770 0.793
✓ 0.761 0.779 0.806

GPTQ ✗ 0.758 0.778 0.806
✓ 0.764 0.782 0.807

AWQ ✗ 0.760 0.780 0.805
✓ 0.765 0.780 0.805

INT3

RTN ✗ 0.563 0.705 0.724
✓ 0.677 0.752 0.764

GPTQ ✗ 0.720 0.757 0.783
✓ 0.745 0.770 0.791

AWQ ✗ 0.647 0.760 0.787
✓ 0.725 0.770 0.801

INT2g32

RTN ✗ 0.588 0.696 0.760
✓ 0.693 0.735 0.771

GPTQ ✗ 0.690 0.732 0.772
✓ 0.714 0.748 0.776

AWQ ✗ 0.568 0.505 0.503
✓ 0.702 0.514 0.501

INT2g64

RTN ✗ 0.597 0.614 0.714
✓ 0.676 0.710 0.748

GPTQ ✗ 0.647 0.705 0.745
✓ 0.677 0.713 0.765

AWQ ✗ 0.502 0.506 0.502
✓ 0.702 0.506 0.504

INT2g128

RTN ✗ 0.511 0.566 0.635
✓ 0.652 0.678 0.721

GPTQ ✗ 0.581 0.639 0.715
✓ 0.659 0.683 0.747

AWQ ✗ 0.501 0.505 0.503
✓ 0.501 0.507 0.503

INT2

RTN ✗ 0.509 0.493 0.499
✓ 0.510 0.506 0.510

GPTQ ✗ 0.500 0.509 0.511
✓ 0.493 0.507 0.544

AWQ ✗ 0.507 0.504 0.502
✓ 0.505 0.504 0.504

34

Table 9: Accuracy (↑) on StoryCloze for Llama-2 (7B, 13B, 70B) under eight quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 0.765 0.785 0.791
✓ 0.770 0.788 0.794

GPTQ ✗ 0.768 0.784 0.793
✓ 0.771 0.789 0.798

AWQ ✗ 0.777 0.782 0.792
✓ 0.777 0.785 0.798

INT4

RTN ✗ 0.756 0.777 0.796
✓ 0.763 0.777 0.798

GPTQ ✗ 0.765 0.776 0.794
✓ 0.766 0.775 0.792

AWQ ✗ 0.760 0.774 0.789
✓ 0.766 0.777 0.794

INT3g128

RTN ✗ 0.749 0.766 0.790
✓ 0.756 0.773 0.789

GPTQ ✗ 0.763 0.776 0.793
✓ 0.759 0.770 0.796

AWQ ✗ 0.761 0.767 0.795
✓ 0.761 0.782 0.795

INT3

RTN ✗ 0.546 0.669 0.738
✓ 0.672 0.728 0.776

GPTQ ✗ 0.722 0.752 0.780
✓ 0.745 0.766 0.782

AWQ ✗ 0.689 0.767 0.787
✓ 0.702 0.764 0.782

INT2g32

RTN ✗ 0.645 0.668 0.745
✓ 0.704 0.721 0.776

GPTQ ✗ 0.758 0.715 0.724
✓ 0.763 0.748 0.766

AWQ ✗ 0.660 0.511 0.516
✓ 0.703 0.570 0.569

INT2g64

RTN ✗ 0.607 0.617 0.718
✓ 0.670 0.696 0.766

GPTQ ✗ 0.654 0.686 0.756
✓ 0.712 0.720 0.758

AWQ ✗ 0.476 0.479 0.476
✓ 0.474 0.479 0.475

INT2g128

RTN ✗ 0.509 0.577 0.647
✓ 0.651 0.677 0.741

GPTQ ✗ 0.588 0.634 0.724
✓ 0.649 0.690 0.753

AWQ ✗ 0.475 0.478 0.476
✓ 0.475 0.478 0.476

INT2

RTN ✗ 0.468 0.491 0.482
✓ 0.488 0.487 0.482

GPTQ ✗ 0.485 0.501 0.539
✓ 0.514 0.513 0.589

AWQ ✗ 0.489 0.478 0.475
✓ 0.482 0.476 0.477

35

Table 10: Accuracy (↑) on ARC-Easy for Llama-2 (7B, 13B, 70B) under eight quantization settings.

Bits Method QEP Llama-2-7B Llama-2-13B Llama-2-70B

INT4g128

RTN ✗ 0.554 0.567 0.596
✓ 0.540 0.572 0.596

GPTQ ✗ 0.531 0.573 0.586
✓ 0.521 0.579 0.592

AWQ ✗ 0.537 0.577 0.585
✓ 0.526 0.580 0.592

INT4

RTN ✗ 0.521 0.582 0.590
✓ 0.524 0.574 0.593

GPTQ ✗ 0.525 0.575 0.594
✓ 0.512 0.570 0.589

AWQ ✗ 0.529 0.572 0.580
✓ 0.532 0.577 0.591

INT3g128

RTN ✗ 0.528 0.569 0.575
✓ 0.517 0.556 0.572

GPTQ ✗ 0.521 0.568 0.580
✓ 0.515 0.568 0.569

AWQ ✗ 0.534 0.561 0.597
✓ 0.527 0.561 0.592

INT3

RTN ✗ 0.322 0.450 0.459
✓ 0.391 0.485 0.541

GPTQ ✗ 0.468 0.514 0.550
✓ 0.474 0.520 0.551

AWQ ✗ 0.416 0.539 0.588
✓ 0.452 0.540 0.602

INT2g32

RTN ✗ 0.339 0.445 0.533
✓ 0.426 0.474 0.557

GPTQ ✗ 0.421 0.481 0.506
✓ 0.441 0.486 0.547

AWQ ✗ 0.352 0.272 0.263
✓ 0.449 0.280 0.263

INT2g64

RTN ✗ 0.332 0.371 0.467
✓ 0.390 0.430 0.557

GPTQ ✗ 0.377 0.455 0.485
✓ 0.404 0.458 0.548

AWQ ✗ 0.266 0.270 0.262
✓ 0.265 0.270 0.263

INT2g128

RTN ✗ 0.269 0.253 0.395
✓ 0.376 0.407 0.479

GPTQ ✗ 0.338 0.383 0.443
✓ 0.367 0.418 0.508

AWQ ✗ 0.266 0.269 0.260
✓ 0.265 0.269 0.261

INT2

RTN ✗ 0.265 0.253 0.263
✓ 0.262 0.264 0.261

GPTQ ✗ 0.263 0.256 0.257
✓ 0.272 0.265 0.281

AWQ ✗ 0.267 0.270 0.262
✓ 0.262 0.270 0.261

36

	Introduction
	Related Work
	Background
	Bottleneck: Quantization Error Accumulation and Growth
	QEP: Quantization Error Propagation
	Problem Reformulation
	Weight Correction
	Controlling Propagation Strength

	Experiments
	Results

	Conclusion
	Additional Related Work
	Additional Theoretical Results
	Derivation of Proposition 5.1
	Quantization Error Accumulation
	Derivation of Theorem 5.2 and Corollary 5.4
	Relationship of QEP Correction and Ridge Regularization
	Technical Lemma

	Additional Implementation Details
	Damping for Hessian

	Additional Experiments
	Additional Perplexity Results
	Detailed Accuracy Results for Individual Tasks
	Stability of QuIP Results Across Random Seeds
	Comparison with OmniQuant Baseline

