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Abstract

The increasing prevalence of Large Language Models (LMs) in critical applications highlights
the need for controlled language generation methods that are not only computationally
efficient but that also enjoy performance guarantees. To achieve this, we use a common
model of concept semantics as linearly represented in an LM’s latent space. In particular,
we take the view that natural language generation traces a trajectory in this continuous
semantic space, realized by the language model’s hidden activations. This view permits
a control-theoretic treatment of text generation in latent space, in which we propose a
lightweight, gradient-free intervention that dynamically steers trajectories away from regions
corresponding to undesired meanings. In particular, we propose to directly intervene the
activations of the token that is being generated in embedding space in an online fashion.
Crucially, we do not simply steer activations towards a desirable region. Instead, our method
relies on classical techniques from control theory to precisely control activations in a context-
dependent way, and guarantees that they are brought into a specific pre-defined region of
embedding space that corresponds to allowed semantics. Our intervention is computed in
closed-form according to an optimal controller formulation, minimally impacting generation
time. This control of the activations in embedding space allows for fine-grained steering
of attributes of the generated sequence. We demonstrate the effectiveness of our approach
on different objectives—toxicity avoidance and sentiment control—while maintaining text
quality.

1 Introduction

Language Models (LMs) have become widespread in critical applications such as content moderation and
real-time information dissemination (Zeng et al., 2024). Despite their transformative impact, these models
require updates to remain accurate post-deployment. Moreover, as demand for more nuanced text generation
rises, strategies that enforce constraints during text generation are increasingly needed. To address these
challenges, controllable text generation has emerged as a pivotal research area. In many applications of LMs,
it is desirable to set certain attributes of the model’s output text, like tone or toxicity, to a certain range. In
practice, this range is often quantified via numerical scores; for example, text toxicity rated on a Likert scale,
or the likelihood of having a positive sentiment.

Several approaches have been proposed towards controllable text generation (Kumar et all 2021; [Lu et al.)
2021} [Li et al.l [2022; |Qin et al.| |2022). Of them, a popular approach is prompt engineering (Luo et al. 2023;
Bhargava et al., 2023; |Cai et al.l [2023), where natural language prompts are carefully chosen at input time to
steer generation. Other approaches modify LM weights to achieve the desired outputs (Yao et al., 2023; |Li
et al} 2023b). Lastly, some methods engineer LM activations, or input representations, to steer them into
the representations of desired outputs (Dathathri et al.l 2019; [Hernandez et al., [2023; [Konen et al., 2024; |Li
et al.l |2024a; Rodriguez et all 2024; Wu et al.| [2024).

Despite current efforts, ensuring the controllability of these models remains a challenge due to their limited
interpretability. In particular, existing methods offer steering capabilities, rather than true control: their
interventions on the representations nudge a target attribute in a direction. Such direction is deemed
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through learning to best capture the nature of desired outputs, but current methods lack guarantees on
the effectiveness of the steering, compliance, or accuracy with which the control goal will be achieved. For
example, some approaches like knowledge editing (Hernandez et al., [2023)) provide an efficient alternative
to exhaustive retraining, it also poses risks akin to the butterfly effect: minor adjustments can lead to
unintended consequences on the knowledge graph. Similarly, works like ReFT suffer from
the same problem since they operate solely on the prompt representations and do not intervene in the model’s
activations as generation unfolds. Thus, achieving robust and verifiable controllability remains a critical goal
for the safe and reliable deployment of language models. We clarify this distinction by defining two terms
that are often conflated in the literature: steering and control.

Steering vs. Control

Steering refers to interventions that bias the model’s internal representations or outputs toward a
desired outcome—such as reduced toxicity or positive sentiment—without enforcing guarantees on
success. Most steering methods operate by learning a direction in latent space that correlates with
desired outputs and nudging the model towards it. In contrast, control implies an explicit mechanism
that enforces constraints on model outputs with formal guarantees. A controlled generation system
ensures that outputs lie within a well-defined, often numerically specified, set of acceptable values.

In this work, we focus on control at the activation level, and provide theoretical tools that guarantee the
attainment of target outcomes. To this end, we propose to use control theory to tackle controlled language
generation. Specifically, optimal control theory offers principled methods to steer trajectories in
latent space that enjoy theoretical guarantees on the performance of the intervention. In the framework of
optimal control theory, our intervention method, which we call Linear Semantic Control (LiSeCo), derives from
a theoretical formulation of controlled text generation. Our contributions are both theoretical and empirical:
(1) we formally pose LM control during generation in activation space as a constrained optimization problem
and provide its closed-form solution with guarantees for where the resulting activations lie in embedding space;
(2) we study how control in the activation space can, in theory, translate to controllable token generation
during decoding, and (3) we empirically demonstrate our method on text attribute steering for toxicity
and sentiment. We confirm, with experiment corroborating theory, that LiSeCo dynamically controls the
activation’s trajectory during generation to avoid disallowed concepts while maintaining text quality and
minimal impact on inference time latency. Experimentally, we show that principled control in activation
space that lends itself to reliable steering of the output attributes.

Control of activations leads to Reliable steering
| |
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Figure 1: The LiSeCo intervention is computed as the solution to an optimal control problem, whose value
is dependent on the current activation (z; € R?). When activations naturally fall inside some pre-defined
bounds, the value of the intervention is zero. However, when activations fall outside of some pre-defined
bounds, the intervention controls the activation to guarantee that the updated state z; + 6; € R? lies in the
desired location of the space. This precise control in the activation space yields to fine-grained steering of the
output sequence in token space according to the attribute of interest.
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2 Related Work

Contemporary language models are deep neural networks pre-trained on trillions of tokens of Internet-scale
text. In part due to their vast scale and limited interpretability, methods to control them in a fine-grained
way remain elusive. A number of approaches have already been proposed towards this end, spanning the
whole spectrum of permanent (Meng et al.l 2022b; Belrose et al., 2023) to online intervention strategies
let all |2021; Dathathri et al. 2019} [Rodriguez et al. [2024)). Here, we review post-hoc intervention methods
and situate LiSeCo with respect to the current landscape.

Post-hoc intervention methods can intervene on various components of the LM: for instance, weights via
finetuning 2023); decoding, like FUDGE and GeDI (Yang & Klein, 2021} [Krause et all, [2021));
or activations, like ActAdd and AcT (Turner et al., 2023 [Rodriguez et all [2024). LiSeCo falls in the later
category. All such methods aim to modify some attribute, such as toxicity, while maintaining text fluency.
Ultimately, all methods work towards this goal by modifying the LM’s final probability distribution, either
directly or indirectly. We can situate where different method classes intervene, viewing an LM as a series of
T function compositions corresponding to the T' layers, where s is a sequence of tokens:

Prai(sils<i) = frofr—1---ofi(s<i) == LM (s<;).

Decoding-based methods fix the function LM := fro fr_jo--- f; and directly edit its output probability
distribution Prps(s;|s<;) (Yang & Klein) 2021} [Liu et al.| [2021} Krause et al.| 2021)). These methods require
access to an external evaluator whose feedback is used to calibrate token probabilities, which can result in
high inference latency.

Prompt engineering is a technique that controls the LM’s output by varying the input context s.;, keeping
the function LM := fr o fr_jo--- f fixed (Luo et all|2023; [Bhargava et all 2023} |Cai et al.| 2023 [Wei
let al., [2022; [Li & Liang), 2021)). Prompts are often highly task-specific, requiring either manually crafting
or ad-hoc computationally-taxing techniques, and success can be brittle to prompt choice
. While the space of natural language prompts is discrete, LM weights and activations live in continuous
high-dimensional space, which is more expressive; then, rather than search over discrete prompts, other
approaches that exploit this expressivity directly intervene in the internals of the model.

Of them, weight-based methods modify the functions f; themselves, which permanently constrains the
space of final probability distributions Py ;. These methods comprise, e.g., reinforcement learning from
human feedback (Ouyang et al., [2022)), instruction-tuning, parameter-efficient adaptation 2022), or
targeted weight-editing (Meng et al., |2022b; Belrose et al.,|2023). In such approaches, weights are modified
according to the goal of the controlled generation by, for instance, learning the necessary update (De Cao
let al., 2021; Mitchell et al., [2021)), or localizing and editing target parameters encoding specific knowledge
(Dai et al., [2022; Meng et al., 2022a4c} [Li et al., [2024b)). Pitfalls range from potential inconsistencies and
distortions, to the fact that weight-based methods can only correct errors in the LM’s parametric knowledge,

but not in-context (Li et al., |2023D).

Activation-based methods, such as LiSeCo, fix LM := fr o fr_1o--- f1, but intervene at the domain of
each f;, where introducing a steering vector transforms the input to f; (Li et all 2023a; [Turner et al.| [2023)).
These interventions can be seen as restricting the domain of each f;, eventually constraining the space of
probability distributions Py s when composed up through the layers. A key advantage of activation steering
is rapid adaptation that can be made context-dependent. An initial work in this domain was Plug and Play
(Dathathri et al.,|2019)), where a linear intervention is computed at every layer. The control goal is encoded
as the objective function in an optimization that is then solved via back-propagation, adding significant
computational overhead at inference time. Subsequent approaches also compute linear modifications to the
latent state, but reduce computational overhead, act on only a few layers (Subramani et al., [2022; [Konen|
, pre-compute steering vectors to avoid back-propagation (Turner et al., 2023), or address the issue
of computational efficiency at the expense of optimality (the intervention is not formulated as an optimizer)
2024a). Recent approaches like REMEDI (Hernandez et al, [2023) or ReFT find
optimal interventions to achieve different target outputs, but these are only used to edit representations
in the prompt since they require to first compute all original representations in order to then compute the
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appropriate intervention. Lastly, AcT (Rodriguez et al., [2024) learns an optimal transport map between two
distributions of outputs (toxic and nontoxic), and applies this lightweight map online to the representation
being generated. Steering is done in-distribution and, although it can be tuned with a strength parameter,
gives coarse control over how much to shift. All in all, none of the existing methods provide a principled control
strategy—defined here as one that guarantees the activations meet a precise target specification—rather than
merely steering them in a general direction with the hope of reaching a desired region, often disregarding
intermediate regions. In contrast, our method offers control by provably characterizing the distributional
structure of the activation space, enabling precise control of the activations. This, in turn, enables a more
fine-grained steering of the token generation, including bidirectional steering along the full spectrum of the
attribute to be controlled.

Contributions of LiSeCo

The accepted use of steering vectors for text generation in the literature empirically grounds the promise of
this approach. However, none of the approaches found in the literature provide formal guarantees on the
effectiveness of the steering, compliance, or accuracy with which the control goal is achieved, nor at the
activation level neither in the resulting token generations. Here, we provide an intervention that controls the
activations during generation and is theoretically guaranteed to steer them into the allowed region. Our work
differs from existing literature by the following novel contributions:

1. Formal Control with Theoretical Guarantees. We frame online language model intervention as
an optimal control problem, providing a closed-form solution that ensures outputs fall within a target
attribute range. Unlike steering methods, which nudge activations toward desired outcomes without
guarantees, our method enforces attribute bounds as hard constraints—delivering true control over
activations. This is enabled by the use of an optimal control framework to cast the problem for the
first time in a domain that has been overwhelmingly empirical. Providing guarantees on the output
text attribute requires further assumptions; we provide sufficient conditions for activation control to
translate to output text control in Appendix [C]

2. Score-Space Control and Interpretability. Our approach enables precise targeting of continuous-
valued attributes (e.g., toxicity, sentiment) using interpretable numerical scores. Rather than
implicitly influencing the model, we directly specify a target value or range and guarantee compliance
in embedding space. This affords control over generation at a level of granularity and transparency
unmatched by existing approaches. For instance, our method allows for bidirectional steering,
meaning that it can be used to both lower or increase an attribute in a given range. Moreover,
the level of guarantee compliance in token space, given compliance in activation space, serves as an
interpretability tool that tests the functional representation of concepts and their causal relevance in
generation.

3. Closed-form, Low-latency Online Intervention. The intervention is computed analytically
in closed form, avoiding the need for backpropagation or iterative optimization at inference time.
This yields minimal computational overhead compared to popular steering methods such as FUDGE
(Yang & Klein) 2021)) or PPLM (Dathathri et al 2019)), while achieving stronger and more reliable
control outcomes. Using control-theoretic and optimization tools, we derive an intervention that is
lightweight, introduces minimal computation overhead, and is adaptive, i.e., only intervenes when
activations are outside of the allowed region. This allows for our intervention to be applied to every
layer to achieve dynamic control with guarantees on the activations, and fine-grained steering at the
token-level.

We extend the vision of Dalrymple et al.| (2024) by demonstrating a concrete instantiation of guaranteed
safe Al principles in a real-world language modeling task. Though Soatto et al.| (2023]) apply theoretical
tools from control to LM text generation, to the best of our knowledge, our method is the first to propose
a control-theoretic intervention whose theoretical guarantees are validated in practice. We analyze other
state-of-the-art activation-based methods, such as ReFT or AcT, under a control theoretic lens in Appendix [F]
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3 Problem Statement

In this section we present the problem studied in this paper, as well as the assumptions and approach. In
particular, we approach the problem of controlled language generation as a standard optimal control problem
in the field of control theory (Kirkl, [2004).

3.1 Problem Formulation

Given a language model, controlled language generation aims to steer the model’s output into a desired one.
We study the problem of setting attributes of the model’s output text, like tone or toxicity, to a certain range.
In practice, this range is often quantified via numerical scores, for example, constraining text perplexity to
a subset of Ry, text toxicity to a subset of the Likert scale from 1 to 5, or likelihood of having a positive
sentiment greater than a value in [0, 1]. Formally, an attribute is a function a : ¥* — A from a language
model’s string output to a numerical score or categorical label in AE| In this work, we consider how to steer
the output of an already trained model towards such a user-defined desired range A* C A. Specifically, the
requirements for the generated output sequence are two fold: its latent trajectory (a) is guaranteed to lie in
the allowed region, and (b) stays as close as possible to that of the original output sequence, so that text
quality is not compromised. In doing this, two questions need to be answered:

1. Given desired attribute scores A* C A, how can the allowed region be defined for a given language
model in latent space?

2. How can an intervention be designed to guarantee that the output stays within the allowed region,
as defined by scores, while retaining maximal similarity with the original model?

In what follows, we answer the above questions and show that the proposed approach adds minimal
computational overhead to language generation without modifying model weights.

3.2 Approach

We design an online method that, by acting on the activations, precisely steers each token generation so that
a specific attribute a of the sequence remains within A*. To do this, we employ a control-theoretic approach
at the level of activations. Given the sequential, feedforward nature of LM layers, we consider each new token
generation to realize a trajectory through the layers’ activation spaces. In particular,

xo = E(s), 41 ="lir1(z), y=U(xr), witht=0,...,7 -1 (1)

where E and U are the embedding and unembedding maps respectively, ¢; is the t** LM layer, T is the
number of layers in the LM, s € ¥* is the prompt sequence, and x; € R? is the latent representation of string
s after layer I;.

Our strategy is to find a region X; of layer ¢’s latent space corresponding to the desired output range A*.
Concretely, we provide a control mechanism by altering each layer’s vector embedding, such that latent
trajectories are guaranteed to lie in X, i.e.,

i) :E(S), i’t :xt+9t(mt)7 xt+1 :ét+1(fit)7 y:U(xT), Wltht:07,T—1, (2)

where 6, € R? is a control input to the activation after layer t. For each token generation pass, this control
mechanism is to be applied to a number of layers: as others have shown that semantic steering performs best
when done in intermediate layers (Rimsky et al., [2024)), the layers to be controlled is a design parameter,
T C[0,...,T — 1], that we explore experimentally in Section @ Using a control-theoretic optic, we argue
that intervening on several layers across the generation pass allows for robustification to the effects of the
intervention, since unintended downstream deviations can be corrected by subsequent interventions in later
layers. We note that this control intervention acts directly on the representation of the token to be generated,
is designed online, and it depends on all previous tokens in the sequence.

INotation: £* is the set of input strings, formally, the Kleene closure over the alphabet ¥.
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Figure 2: LiSeCo is based on applying a control intervention to the activations after each layer. The
intervention is the result of applying a probing classifier f; = v o W, mapping from the latent space R? to the
attribute space R. Given an input sequence, the probe is trained to map the activation of each layer, x; for
every layer t, to its corresponding attribute score for the input sequence, a. The classifier is then used at
inference time to characterize the allowable region (X;) to which each latent state Z; is constrained. Keeping
trajectories (sequences of {z;}7_;) out of the disallowed region in latent space is equivalent to keeping their
image out of the disallowed region in attribute space. At inference time, the state in latent space (z; € RY) is
mapped via the learned classifier. If it falls outside of the bounds (forbidden region), an intervention (6; € R¢)
is computed via optimal control as to guarantee the updated state z; + 6; € R? lies in the allowable region.

The goal of this paper is to design the control input 6; : R? — R%; z; + 0;(x¢) such that &, := x; +0;(z4) € X,
is guaranteed for each intervened layer ¢ € 7. In what follows, we provide an overview of the approach, which
we illustrate in Fig. 2] and present in mathematical detail in Section [4

3.2.1 At post-training time (offline): Semantic Probe.

We want to nudge the output attribute a towards our desired range A* by intervening in latent space. Doing
so requires access to the function a : ¥* — A, which could be given by, e.g., an off-the-shelf toxicity classifier.
In our case, we are interested in functions a : ¥* — R that assign strings to continuous ratings. Similar to
[Park et al. (2023)), we take the view that, for each layer ¢, “safe" language occupies a region X; of activation
space. Formally, a sequence s € ¥* falls within the desired score range A* if and only if its corresponding
representations z; € X;. Identifying the allowed region X; depends on how the attribute a is encoded in
latent space: let layer t’s activations encode a as f; : R? — A. Then, the region X; in latent space can be
identified as A*’s pre-image under f; (see Lemma for formal statement and proof). The key insight is
that the desired outcome a € A* is proxied by enforcing the activation z; € X;.

At each layer t, we learn, via regression, a lightweight linear probe f; that maps the latent state x; to its
output score a(s). We define f; : RY — R; 2, + a(s), such that

fe(ze) = y(Wtht), (3)
where W, € R4 is a vector and v a strictly monotonic nonlinear map of choice, e.g., sigmoid, for the given

application. We provide mathematical details for these maps in Section [d Intuitively, the allowed region X;
of layer t is the pre-image of an allowed classification under f;. That is, if A* = [a™™, a™?*] is the range of
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allowed scores, then _
X={x e Rd| o™ < fi(x) < o™} (4)

We remark that LiSeCo’s framework permits interpretation of [a™i", @™*] in any continuous space, including,
e.g., human rating space. Importantly, this setup allows us to directly control activations instead of merely
steer them into a particular direction, since we restrict attributes to specifically chosen and interpretable
scores. So far, this control ability has not been introduced in the literature.

3.2.2 At inference time (online): Optimal Control in Semantic Space

In this step, we apply the control intervention to the representation at each layer ¢ to steer generations
towards a desirable region. To this end, we make use of the probe f; trained offline. We work under the
assumption that the feature to be controlled is separable by a linear classifier, hence linearly controllable
(Park et all, 2023)). This means, the representation z; can be controlled by means of an additive intervention,
i.e. Ty = x¢ + 0, where 6; is computed as an optimal control input at each layer ¢ sequentially. In particular,
0; is designed as

0; = Oy (x; Wy, v, ™ a™*)  such that & =z, + 0, € &,. (5)

Mathematically, at layer ¢ we solve an optimization problem over 6; where the pre-computed probe W;
enters as a hard constraint in the formulation. This control strategy guarantees that the latent state x;
remains in the allowed region and retains maximal similarity with the original model. We emphasize that 6,
is computed online and is gradient-free at inference time. The specific expression and derivation for
0, is provided in Section

4 Optimal Controller for Language Generation

In this section, we describe the theoretical contribution of this work. First, we provide the offline and online
algorithms for the approach described in the previous section. Then, we provide the mathematical details,
expressions, and derivations that ground all of this. In particular, we show the training procedure for the
probing classifier that allows for linear (additive) control interventions. Then, using the probing classifier, we
design a controller to restrict text generation to the safe region. The optimal intervention is derived in closed
form, thus computationally efficient at inference-time. Lastly, we compare existing methods with LiSeCo and
prove a control theoretic interpretation for their proposed approaches as well.

4.1 Identification of Allowed Region

min max]
)

In order to keep the generation within the allowable score range [« « , we learn the scoring function
from data: string-score pairs, (s,«) € ¥* x A. In particular, at each layer ¢ we learn a lightweight linear
probe f; : RY — A;x; — o that maps the encoded latent state z; € R? representation of string s to its score

aec Al

While LiSeCo supports any invertible nonlinearity v, we will focus on the case where v is the sigmoid. In this
case, scores « are the likelithood a sentence has a certain attribute. Then, for each layer ¢, we minimize with
respect to W; the following loss over the dataset {s(?), () }¥ | of (string, score) pairs. The loss is the cross
entropy between the scores a and the probes f;:

ft(z¢)=p(toxic) p(nontoxic)
min £y(s, @) = min -y | a¥log vW, ) +(1 = a®)log(1 — v(W, z{")) |, (6)
¢ o=l

where :vgi) is the string s(9)’s representation at layer t. The cross entropy loss is minimized (=0) when

fi (xgl)) = a for all datapoints 1.

2Note that the learning task is regression-like, not classification-like~ we want the probes to be calibrated to the scoring
function, not just the binary labels.
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Algorithm [I] summarizes the post-training computations to be carried out offline.

Algorithm 1 Post-training computation (offline)
. Input: Labeled dataset {(s),a())}
: Output: Classifier W;
: for t € T do 4
Extract activations from Eq. xiz) — (... (E(sy)))
Train probe using Eq. |§|0n {(xiz), a)} to obtain W,
end for

4.2 Optimal Controller Design in Linear Feature Space

The goal is to design an intervention at each layer ¢ such that the output activation z; is modified to guarantee
that it lies within the allowed region X;. Mathematically, this is to compute 0; for #; := z; + 0;(x;) such that
the goal is satisfied. In what follows, we show how 6; can be seen as the solution to a constrained optimal
control problem. We first pose the problem mathematically, and then introduce a relaxation that allows for
an efficient online computation of the intervention ;. We remark that, as shown in Lemma control in
activation space leads to reliable steering for output sequences.

Optimal Control Setup

The optimal controller aims to keep latent trajectories out of the unsafe region without compromising output
quality. That is, we perform constrained optimization where latent trajectories maximally approximate the
original ones (proxying text quality) while avoiding the unsafe region as defined by the probe. This gives rise
to the following optimization problem:

: 2
i > l6d3 (7a)
teT
s.t. ™ < (W, (2 +6;)) < o™, VteT (7b)
Ti41 =€t(xt—|—9t)7 Vt:1,7T (7C)
xo = E(prompt sequence), (7d)

Optimization problem [7| aims to find the minimum /3-norm interventiorﬂ 0, for t € T (Eq. that satisfies
the following constraints: Eq. requires the modified activation z; + 0; be classified as disallowed by the
probe v o W,T; Eq. captures LM dynamics, i.e., layer ¢ maps the modified activation x¢, 6, to the next
latent state zy41; Eq. @ states that the LM’s input embeds the input context, so that interventions are
context-dependent. The intervention that solves optimization problem [7]is guaranteed by construction to keep
intervened activations #; V¢ € T in the allowed region.

Whether attribute control is expressed as a cost or a constraint depends on the use case. Other approaches,
in contrast to ours, encode attribute control in the optimization objective, but not via hard constraints
(Dathathri et al., |2019; [Hernandez et al., 2023). LiSeCo’s constrained optimization framework also permits
this interpretation by relaxation of constraints; though we leave its testing to future work, we state its
equivalent problem and prove its closed-form optimal solution, which has only been empirically approximated
by hyperparameter search in the literature (Li et al.| [2023a)), in Appendix

Optimal Controller Computation

Optimization problem [7|is a standard problem in the optimal control literature (Kirk, [2004). By Bellman’s
Optimality Principle, the standard approach to solving problem is dynamic programming (DP) (Kirk} |2004):

3The choice of Ly norm is standard in classical optimal control problems. The Ly norm is usually interpreted as energy,
or effort, of the control input to steer the system. In this context, it can be seeing as trying to minimize the “effort” of the
intervention. Moreover, the fact that Lo is also used to measure distances in an Euclidean space, like the embedding space that
we consider in this work, makes it an appropriate choice to measure the “similarity” between the intervened representation and
the original one.
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the optimal solution is computed for the last layer T, then via backward induction for 7"— 1,...,1. But,
layer dynamics [7d are highly non-convex, and solutions incomputable in closed form, hence their optimality is
not guaranteed. Further, DP requires gradient backpropagation at each LM forward pass, adding significant
inference latency.

To overcome these limitations, we relax problem [7] No longer searching for a globally optimal solution across
layers, we now search for locally optimal solutions at each layer. Now, Eqgs. [7d and [7d] cease to play a role, as
each layer is optimized for separately. Then, problem [7]is relaxed into:

min 162113 (8a)
s.t. o™ < p(W, (x4 + 6,)) < o™ (8b)

for each layer ¢ € T. The sequence of 6, that solve problem [8| may not optimize the original formulation [7}
However, one is not anyway guaranteed to find global optima anyway due to the high nonconvexity of layer
computations. Furthermore, optimality is not essential as the cost aims only to preserve similarity with the
original model. Meanwhile, the guarantee to avoid unsafe region X; is still enforced via Eq. 8B}

A key advantage of relaxed formulation [§] is that it is solvable in closed-form, per-layer, with minimal
computational overhead. The following theorem states the analytical solution for optimal 6;.

Theorem 4.1 (Optimal ). The optimal solution 0; € R? to the optimization problem@ is given by Table :

Condition v(W, x,) > amax v(W, x,) < amin otherwise
9: V—l(amax) _2 Wt—rft Wt V—l(amin) _QWtht Wt 0
W3 [Well3
Table 1: Optimal value of intervention 6; at layer ¢.
Proof. Proof relies on leveraging the KKT conditions. See Appendix [D| for details. O

Geometrically, the optimal solution is the vector from z; to the closest point in X;. When z; ¢ Xtc, which is
the set-complement of X}, no update is needed; hence 6 = 0. Otherwise, the update is a factor of W;. We
note that the value of the control intervention 6; depends on the current latent state x;, and it magnitude and
direction are explicitly dependent on x;. This is in contrast to many steering methods, where the activations
are often over- and under-steered towards a constant direction with a constant magnitude. Moreover, since
07 exists in closed-form, computing an intervention incurs negligible computational cost. Crucially, it is
guaranteed to keep the latent state outside the disallowed region.

Although control occurs locally at each layer, the local control steps result in a globally allowed distribution
over the next token. To see this, consider a single token generation. Each sequential control action at layer ¢
guarantees that latent state Z; € AX; is classified as “allowed", or equivalently, eliminates the set of disallowed
trajectories. By the time we reach the last layer T, the latent trajectory is guaranteed to have been rated
as “allowed" at every preceding intervened layer. Then, the last layer T’s activation is transformed via the
unembedding matrix (linear map) and softmax to the distribution over the vocabulary, then sampled to
produce the next token 7 € 3. As a result of the control in the activations, the LM’s output is steered
towards scoring in the allowable range A*.

Algorithm [2] summarizes online generation of intervened representations. The problem presented in optimiza-
tion problem equation [§ and Algorithm [2] addresses the most general case of linear semantic classification. A
special case of this one is setting an attribute below (or above) a threshold p, as in the example of toxicity
avoidance. The optimization problem is |§| is relaxed into

min (63 (%)

s.t. o(W," (z¢ +6,)) —p <0, (9b)
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Algorithm 2 Inference time computation (online)

1: Input: Prompt s, control layers 7, parameters Wy, v, o™i, o™a*
2: Output: Generated token 7
3: xg < E(s)
4: for t € [1,...,7] do
5: Compute activation from Eq. |1} a¢ < € (x:—1)
6: if t € T then
7: Compute score from Eq. [3} p + v(W]z;)
8: Solve for 6; (from Table [1)) using Wy, o™i, qmax;
9: if p > a™** then N

-1 max
10: 0, % (OCHAWf,)IéWt 2,
11: else if p < a™™ then

—1 min T
12: g, + LU (aHWt)‘éWt oy,
13: else
14: 0, <0
15: end if
16: Compute modified representation: x; < z; + 0,
17: end if
18: end for
19: 7« U(xr)

for each layer t = 1---T. Optimal 6, is given by the following corollary:

Corollary 4.2 (Optimal 6, threshold). The optimal solution 6 € R? to the optimization problemlg s given
by
V_l(p) — Wt—rxt

0; =
' W13

W, (10)

if (W, 2¢) > p, and 0} = 0 otherwise.

While the emphasis here is on tuning of an attribute over a continuous range of scores, LiSeCo also permits a
binary attribute classification, e.g., toxic vs non-toxic. To that end, the value of p could be interpreted as the
probability that a given generation is, for instance, toxic.

Remark 4.3. In the degenerate case where ™™ = o/™?% =: p, the intervention is always as in equation [10| for
all values of v(W,"z;). This case corresponds to the application of setting an attribute to a specific value.
Although, in theory, it is possible to do this, in practice it is impossible to guarantee that the scores of the
generations will be equal to p do to the uncertainty introduced by the classifier, as well as numerical errors.
Further robustness analysis to ensure that score is within a ball around p is left for future work.

5 Experimental Methods

In this section we provide a description of the LiSeCo pipeline. First, there is an initial probe training phase
to find the unsafe regions and probes per layer, see Algorithm [I] Then, probes are integrated into the model
at inference-time and the optimal intervention dynamically applied, see Algorithm [2} In this paper, LiSeCo
was tested on two separate tasks: toxicity and sentiment steering.

Models We test on three state-of-the-art causal language models: Llama-3-8B (Metal |2024), Gemma-2-2b
(Team et al., 2024), and Mistral-7B (Jiang et al.| [2023]). While the architectural details of a layer (attention
+ MLP) differ slightly between models, our intervention treats layers as black boxes and operates at the level
of the residual stream (Elhage et al., 2021). This permits our intervention to be applied as a lightweight layer
wrapper, in an architecture-agnostic way.

10
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Attribute scoring functions Recall that LiSeCo is trained with respect to a scoring function a : ¥* — R
that the practitioner has access to. Therefore, in evaluating whether guarantees hold, we use a to not only
label the training points in the constraint set, but also evaluate the generations at test time. While one can
use any scoring function a : 3* — R, we use off-the-shelf neural classifiers from Huggingface. In particular,
to score toxicity, we choose a to be the RoBERTa-based toxicity scorer (Logacheva et al., [2022) that maps
sentences to a likelihood of being toxic in [0, 1]. Logacheva et al| (2022)’s classifier is trained on binary
classification on Kaggle’s Jigsaw dataset (Adams et all 2017)). To score sentiment, we similarly choose a to
be a RoBERTa-based sentiment classifier (Camacho-collados et al., 2022)), trained on annotated Twitter data
(Barbieri et al., [2020), which assigns sentences to the likelihood of being negative in [0, 1].

5.1 Offline step: Probe calibration

We explain the offline (calibration) step of the LiSeCo pipeline, i.e., dataset preprocessing and probe training.

5.1.1 Probe-training dataset

We test our method on fine-grained steering of text toxicity and negativity. Borrowing terminology from
Ashok & Poczos| (2024), we first learn probing classifiers f using a labelled constraint dataset. Then, we
evaluate text generation on a task dataset.

For toxicity, we use Kaggle’s Jigsaw dataset (Adams et all 2017) as the constraint dataset. The dataset
contains 30k label-balanced natural language comments. Then, we use our toxicity scorer to label all sentences
in the constraint set to produce a probe training set of (sentence, score) pairs.

As sentiment datasets tend to be domain-specific (e.g., movie reviews), we combine several datasets to form
the constraint dataset (N =30k). This consists of +/- label-balanced samples of 7500 datapoints each from
IMDb film reviews (Maas et al., [2011)), Tweets (Barbieri et al., [2020), Yelp reviews (Zhang et al., [2015), and
Amazon reviews (Hou et al., 2024). For preprocessing details, see Appendix We score all texts using
Camacho-collados et al.| (2022) to produce the probe training set of (sentence, score) pairs.

5.1.2 Probing classifiers

Our theoretical guarantees rely on a key assumption: that at each layer ¢, there indeed exists a R; separable
by linear f; which together capture a semantics of the text being generated. We first verify, using a linear
probe, that it is possible to learn the text attribute score from each layer of the LM. Towards this aim, we
split each of the constraint datasets into an 80% training set and 20% validation set. Then, for each model,
dataset, and layer, we extract the last token hidden representations z; € R? for each training sequence; we
choose the last token embedding to represent the entire sequence, as in causal LMs, it is the only to attend to
the entire input sequence. We then train one binary classifier f; per-layer to minimize the cross-entropy loss
between the probe prediction and ground-truth scorer in [0, 1]. See Appendix [H| for implementation details.

5.2 Online step: Text generation

For each LM, we insert trained probes f; at each layer to evaluate layer-wise toxicity likelihood at each
forward pass. If layer t’s representation x; is evaluated toxic, then the control input ; is dynamically applied.
We fix text generation for all methods to max 100 new tokens with top-p = 0.3 sampling, a temperature of
1.0 and repetition penalty of 1.2, the same as in published baselines (Rodriguez et al.| 2024; [Li et al., |2023a)).

5.2.1 Baselines

To the best of our knowledge, there are no baselines in the literature offering native guarantees. Therefore, we
report only on LiSeCo for fine-grained activation control, but we compare LiSeCo against existing methods
for attribute reduction on the text generation. For toxicity and negativity reduction, we test several baselines:
no-control and prompting with instruction-tuned models, as well as two activation steering methods Activation
Addition (ActAdd) (Turner et al.l|2023) and Linear AcT (Rodriguez et al.| [2024).

11
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Instruction-tuned models All tested models have instruction-tuned variants. During evaluation, we
prompt the instruction-tuned model using a template whose instructions are slightly modified from Mistral’s
system prompt provided in Jiang et al.| (2023)) (see Appendix [l for details).

ActAdd Like LiSeCo, ActAdd steers text generation in activation space (Turner et al. 2023)). For each
model, the steering vector is computed as follows: (1) a source and target prompt, e.g., (“hate"—“love"), are
each fed through the model and activations collected; (2) for each layer, the steering variable is computed
as the difference from source to target activation; (3) at inference time, the steering variable is added to
the intermediate representations of the input data. Like LiSeCo, ActAdd is gradient-free at inference-time.
But, there are key differences: since steers derive from natural language prompts, ActAdd does not require a
supervised learning phase on annotated data as in LiSeCo. For the same reason, the method lacks guarantees.
For implementation details, see Appendix [J}

AcT Similar to LiSeCo, AcT also steers text generation in activation space (Rodriguez et al., [2024). Using
an optimal transport framework, an optimal transport map between two distributions of outputs (toxic and
nontoxic) is learned offline at post-training. At inference time, this lightweight map is applied online to the
activations being generated. Similar to LiSeCo, it is gradient-free at inference-time. However, there are
some fundamental differences. In AcT, steering is done in-distribution and, although it can be tuned with a
strength parameter, gives coarse control over how much to shift. Moreover, steering is only one-direction
(from toxic to non-toxic) and is not used in a bi-directional manner. Moreover, it lacks guarantees on the
effect of the interventions on the controllability of the method.

5.2.2 Evaluation

We evaluate LM generations on toxicity and sentiment steering. At the same time, we want our intervention
to minimally compromise language modeling performance. To do so, we score generations’ toxicity and
sentiment, as well as proxy their naturalness using sequence perplexities.

Test set For the inference-time test set, we repurpose the datasets in Section [5.1.1] To make the test
dataset for each task, toxicity and sentiment, we sample N = 1000 sentences from the respective dataset and
truncate each to the first 10 words. We collect the (intervened) models’ continuations for evaluation.

Semantic control We rate text generation toxicity and sentiment using the previously described attribute
scoring functions. We convert the scorer’s ratings into labels, where sequences are labeled toxic (negative) if
the classifier returns a likelihood higher than 0.5, and non-toxic (positive) otherwise.

The trained linear probes also provide toxicity likelihoods for the generated text, which we use to post-hoc
validate LiSeCo, but not to evaluate generation toxicity /negativity per-se. The probe score returns the
likelihood that a sequence is toxic/negative as determined by the probes’ learned semantics, and is used to
evaluate control in activation space.

Text naturalness The applied intervention ideally should not compromise language modeling performance.
We quantify performance using the average perplexity (PPL) of generations under a different LM, Qwen-2.5-3B
(Bai et al., 2023). We used a different model family to score PPL, given evidence that LMs are biased towards
their own generations (Long et al., 2024).

6 Experimental Results

We first observe that toxicity and sentiment are approximately linearly represented in latent space (Park
et al., [2024). We then demonstrate that LiSeCo predictably reduces the controlled attribute as a function
of p while maintaining text naturalness. Second, we demonstrate that LiSeCo achieves precise control of
activations, such that specifying the desired range [« a™?*] indeed controls the activations’ probe scores
to that range. Finally, we show that LiSeCo performs competitively with existing baselines for attribute
reduction while achieving the best naturalness, without extensive finetuning nor online inference latency.

min
)

12
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6.1 Attributes are approximately linearly represented in latent space

Figure [3] shows, for all models, linear probe validation accuracies per-layer, averaged across 5 random seeds.
Probes attain high accuracies of ~90% for toxicity (Figure [3|left) and ~ 80% for sentiment (Figure [3| right),
confirming the disallowed toxic (negative) regions R, are approximately linearly decodable.

-~ toxicity sentiment
§ 0.90 gemma 2b
3 W llama 8b
Qo851 /> } mistral 7b
5 ' T~ A
£0.80
©
ke
=0.75
>
Lo0.70 Y
o /
e 0 10 20 30 0 10 20 30
layer layer

Figure 3: Linear probe validation accuracy for toxicity (left) and sentiment (right) detection. All
curves are shown 4 1 SD across 5 random seeds. Tasks converge to reasonable accuracies of > 75% for most
layers of all models, with mid-layers attaining =~ 90% for toxicity, and above 80% for sentiment.

While we use 80% of the constraint set to train the probes (N=24k), we demonstrate in Appendix [H| that
probes can be learned with much fewer samples. Moving forward, results are shown on the original N = 24k
training set, as training each layer only took 2 minutes on an A30 GPU.

Finally, Figure |3 in line with prior work (Rimsky et all 2024; |Cheng et al., |2025)), suggest to control
activations starting from intermediate layers, as this is where high-level semantic attributes like sentiment
are most linearly decodable. We therefore apply LiSeCo on all layers after layer 8, where probing validation
accuracy appears to plateau in Figure @

6.2 LiSeCo achieves control with guarantees in activation space

LiSeCo controls activations to the correct safe set. To demonstrate this, we ran LiSeCo for various ranges
[a™in omax] from 0.01 £ 0.01 to 0.99 £ 0.01. If LiSeCo truly achieves control in activation space, then we
expect the trained probes to score the layer activations, post-intervention, to between [a™i" o™maX],

Figure [4] demonstrates this in practice. The figure shows the distribution of the intervened activations’
attribute (toxicity, sentiment) scores, scored by the trained probes. Each point is the trained probe’s score
of a single layer; the bottom row of each plot depicts the activations’ score distribution before LiSeCo
(brown points), and other rows depict the distribution after LiSeCo. The desired regions of activation space,
corresponding to attribute scores [a™", a™?¥] computed by the trained linear probes, are shown in green. No
matter the LM or task, LiSeCo systematically controls activations (colored points) to the desired range.

6.3 Control in activation space translates to reliable steering in output space

Here, we study how control in activation space leads to reliable steering in output space. Specifically, we
show that LiSeCo outperforms existing baselines on attribute steering and text naturalness. We show that
controlling activations reliably steers the output attribute, where the dependence between LiSeCo a and the
output attribute is empirically monotonic, but not identity. Finally, we discuss a path forward for guarantees
in activation space to translate to guarantees on the output.

6.3.1 LiSeCo is competitive with baselines for steering and text quality

Empirically, all models without control produced toxic (negative) content on N a2 300 of the original 1000
prompts, see Figure o} To understand how baselines reduce toxicity and negativity, we first consider these
would-be toxic (negative) generations. That is, for each LM, we scored the toxicity (negativity) of all 1000

13
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Figure 4: LiSeCo controls attributes in activation space. Attribute probe scores for LiSeCo are shown
for sentiment (top) and toxicity (bottom), on the models Llama, Gemma, and Mistral (left to right). The
y-axis of each plot shows the desired range [a™i", o], also shaded in green on the plot. The colored points
are the actual distribution of the attribute as measured by the trained probes, after applying LiSeCo. A
no-control baseline is shown on the bottom row, indicating the distribution if LiSeCo is not applied. In all
cases, LiSeCo successfully controls activations to the desired range, seen by the colored dots falling within
the green intervals.

no-control continuations using the neural classifiers in Section [} Then, we filtered for prompts whose no-
control continuations were toxic (negative). Finally, on the other baselines, we evaluated attribute reduction
for this would-be toxic (negative) prompt set.

Figure |5| shows, for sentiment (top) and toxicity (bottom), the safety-naturalness plane, where the output
text attribute is plotted against its perplexity. Each baseline’s (safety, naturalness) distribution is shown as
an ellipse centered at the mean, shown with one standard deviation. Only the best hyperparameter settings
for each baseline are shown (LiSeCo [a™", a™*] = [0,0.01]. Moreover, LiSeCo reduces the desired attribute
without sacrificing text naturalness, seen by blue ellipses (LiSeCo) being vertically aligned with the green
ones (baseline). In the case of negativity reduction (top row), LiSeCo outperforms all baselines for both
negativity reduction and text naturalness. LiSeCo’s minimal effect on text naturalness is baked into its
design, as it introduces the minimum norm intervention when the activation falls into the unsafe region, and
does not intervene if the activation is already classified safe. The design choice of minimal intervention, by
contrast, is not a part of prompting, ActAdd, or Act, where the intervention is always applied
let all 2024} [Turner et all, [2023)). To that end, we show in Figure how while LiSeCo abstains from
intervening if the generation is already classified safe, AcT, ActAdd, and prompting with Instruct are always
applied. In practice, LiSeCo well-preserves the original safety and naturalness distribution as desired, while
other methods may negatively impact either factor (see Appendix .

6.3.2 Control in activation space permits reliable steering in output space

We have shown that LiSeCo achieves control in activation space. But, how do guarantees in activation space
translate to guarantees in generation space? Recall that Lemma states that activation guarantees will
transfer to outputs if the guarantee is calibrated for every reachable point in R%. This is a strong assumption
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Figure 5: Generations are plotted on the safety-naturalness plane (bottom left is best). Each ellipse represents
the mean (-) with one standard deviation of a single method; only the best hyperparameter setting is shown
for each method. The shaded red region represents the region of the safety-naturalness plane that would
be classified negative or toxic by the neural scorer. In general across models and tasks, LiSeCo performs
competitively to baselines while consistently demonstrating the highest naturalness. In the
negativity reduction task (top row), LiSeCo also demonstrates the best negativity reduction.

that we hypothesize rarely holds in practice. Thankfully, empirically, we find that control in activation space
translates to reliable steering in output space.

Figure [6] shows a clear monotonic trend between LiSeCo « and the number of unsafe generations. For all
models and tasks, smaller LiSeCo « (x-axis) predictably decreases the proportion of toxic/negative generations
(y-axis). This allows LiSeCo « to act as an interpretable knob that one can adjust at inference-time to obtain
the desired effect. Interestingly, while LiSeCo effectively increases or decreases the target attribute, even
extreme values of o do not result in 100% attribute reduction, a pitfall of existing activation steering methods
(Rodriguez et al., |2024; [Turner et al.l [2023)). This suggests a shortcoming of the Linear Representation
Hypothesis (Park et all [2023), where linear decodability does not necessarily translate to linear controllability.

LiSeCo is able to steer sentiment to a wider range than toxicity (Figure |§| top vs. bottom), achieving higher
separation of outcomes with different intermediate settings of a. We hypothesize that this is because the
sentiment training labels have better coverage over the entire score range, compared to the toxicity training
labels (Figure |§| right); this permits a better calibration of the linear probe for intermediate ranges of
«. Crucially, calibrating the probe on intermediate scores brings the setting closer to that described in
Lemma which predicts probes calibrated everywhere to best steer output generations. This lends itself to
a practical recommendation for the probe constraint set, where we expect worse performance for effectively
binary labels (toxicity, Figure |§| bottom-right), and better performance for continuous labels (sentiment,
Figure [6] top-right).
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Figure 6: (Left) LiSeCo « steers output sentiment (top left) and toxicity (bottom left). We show, for a range
of [a™in ™8] = o £ 0.01 (x-axis), the true proportion of toxic/negative generations (y-axis, N = 1000)
with one standard error. For all settings, there is a clear monotonic trend where smaller LiSeCo «
translates to fewer unsafe generations. For reference, the no-control baseline is plotted in gray for
each setting. Intervention with LiSeCo a ~ 0.01, a ~ 0.99 significantly changes the distribution of unsafe
generations, seen by non-overlapping error bars between gray and dark blue, dark red, respectively. (Right)
The training set y-label distributions for sentiment scores (top) and toxicity scores (bottom). Sentiment
(top left) achieved steerability to a wider range than toxicity (bottom left). The sentiment training set’s
scores (top right) are more evenly distributed than the toxicity training set (bottom right). This suggests
that intermediate score coverage are important for better steerability.

7 Discussion

We have proposed LiSeCo, a controlled language generation method that is theoretically guaranteed to stay
within permitted regions of latent space. Empirically, the method produces non-toxic and non-negative,
but still natural, text. By design, the parameters o™ and o™ were shown to steer the probability of
generating unwanted text. LiSeCo is compatible with any layered deep learning architecture (not limited to
Transformers), as it is agnostic to the layer computation (dynamics) and involves a negligible inference-time
latency. In future work, we are interested in applying our approach to different tasks and joint constraints,
as well as to alternatives to linear probes as the way to ascertain whether a token falls into the undesirable
region. An important enhancement of the proposed method would be to study conditions under which the
control of the activations directly translates to control in token space. Some preliminary theoretical conditions
are provided in Appendix [C] where we demonstrate necessary conditions for activation control to translate to
output attribute control: in short, the linear encoding of the output attribute trained on data must apply
uniformly to all regions of activation space R?.

With the increasing ubiquity of LMs comes a growing need to understand their behavior. LiSeCo helps
address this need by providing practical and theoretical tools for LM interpretability and control. That said,
using LiSeCo has several caveats: (1) it requires supervised learning of the linear probes on annotated data;
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(2) the intervention is only as good as the probes, which is only as good as their training data. Thus, when
training probes, it is crucial that the training data well-represent the use domain. We emphasize that this
bottleneck is inherent to any steering method that learns from data (Rodriguez et al. [2024}; [Dathathri et al.|
[2019; [Li et all [2023a).
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Ethics statement Controlling text generation can be used for benefit or harm. While we have demonstrated
our method on toxicity and negativity avoidance, it can equivalently be applied to increase harmful traits.
However, the When designing the linear probes, it is essential to choose a constraint set that accurately
reflects the use-case.

Reproducibility statement Code and data will be made public upon acceptance. The compute resources
used are described in Appendix [A] and the specific datasets and models used are linked in Appendix [B] The
proof of Theorem 1 is detailed in Appendix [D}
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A Computing resources

Experiments were run on a cluster with 12 nodes with 5 NVIDIA A30 GPUs and 48 CPUs each.

Extracting LM representations took a few wall-clock hours per model-dataset computation. Training linear
probes took around 2 minutes per layer, so overall 64 wall-clock hours. Running evaluation experiments took
a total of 30 wall-clock hours.

We parallelized all training and testing computation, and estimate the overall parallelized runtime, including
preliminary experiments and failed runs to be around 16 days.

B Assets

Llama https://huggingface.co/meta-1lama/Meta-Llama-3-8B; license: llama3

Mistral https://huggingface.co/mistralai/Mistral-7B-v0.1; license: apache-2.0

Gemma https://huggingface.co/google/gemma-2-2b; license: gemma

Qwen https://huggingface.co/Qwen/Qwen-2.5-3B; license: qwen-research

PyTorch https://scikit-learn.org/; license: bsd

Toxicity constraint https://huggingface.co/datasets/google/jigsaw_toxicity_pred; license: CCO

Sentiment constraint https://huggingface.co/datasets/stanfordnlp/imdbj license: unknown.
https://huggingface.co/datasets/cardiffnlp/tweet_evalj license: unknown.
https://huggingface.co/datasets/Yelp/yelp_review_full; license: yelp-license.
https://huggingface.co/datasets/McAuley-Lab/Amazon-Reviews-2023; license: MIT.

C Identifying the allowable region in latent space

We provide the following lemma, which gives a sufficient condition for control in activation space to transfer
to control in attribute space. In brief, if the probe f; at layer t is the same function as the attribute scorer
o the rest of the LM layers on all of R?, then if we constrain the image of f; by constraining the layer ¢
activations, then we equivalently constrain the end attribute.

Lemma C.1 (Identification of allowed region in activation space). Let x; be the layer t activation. Let the
probe f; : RY — Ry x> fi(xy) and attribute a : ©* — R satisfy
fi(xy) =aolpolr_jo---oliyi(xy) Vay e R4 (C.11)

LM output

Write a; = aolro---olyp1. Then, for any A* C R, if preimage(l;+1) = preimagey, (A*) for all xy, then
im(a,) = A*.

Proof. 1t is given that, for all z € R?, fi(z) = a;(x). This means that preimage, (A*) = preimage,, (A*)
for all sets A* C R. Suppose the pre-image of l; is modified such that preimage(l;y1) = preimage, (A*).
Applying a; to both sides yields

at(preimage(l;11)) = a¢(preimage , (A™)) (C.12)

im(a;) = a;(preimage,, (A")) (C.13)

im(a;) = A", (C.14)

This completes the proof that setting preimage(l;y1) = preimage, (A*) constrains im(a;) = A*. O
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D Proof of Theorem

Theorem D.1 (Optimal §). The optimal solution 0; € R to the optimization problem@ is given by

v(a™®)—w,]

Ttwy if (W, ) > a™mer,

llwell3
miny_, T . )
0 = WUR if (W zp) < amin, (D.15)
0 otherwise,

where wy :== W} — W2, the difference of the columns of Wy, =: [W}  WZ].
Proof. We start by defining the Lagrangian for the optimization problem in Equation as
L(0p, A1 A2) = [[6c]13 + M (@™ —v(WT (2, +6,))) + A2 (w(W T (2 + 6,)) — ™), (D.16)

where A, A2 € R are the Lagrange multipliers.

We now solve this optimization problem by using KKT conditions, which are first-order necessary conditions
for optimality:

1. Stationarity.

0. € A(|0c]13 + A (™™ = v(W T (2¢ + 6))) + Ao (w(W T (21 + 0)) — a™)) (D.17)

2. Complementary slackness.

A (™ — (W (x,4+6,))) =0 (D.18)
Ao (v(W T (zy + 6;)) — ™) =0 (D.19)
3. Primal feasibility:
™ < y(W T (2 + 6;)) < amax (D.20)
4. Dual feasibility:
A1, 2 >0 (D.21)

We now consider three cases:
Case 1: v(W, x;) > a™ma*
In this case, the upper bound constraint is violated, so As > 0, Ay = 0. From complementary slackness,
v(W, (2, 4+ 60,)) = ™ = W, (2 + 6;) = v (a™>), (D.22)
where v~ is well defined because v is strictly monotonic. Minimizing ||6;]|3 subject to Equation gives:
max) T

v(a —w, Ty

0; = w. (D.23)

w13

Case 2: v(W 'x;) < o™in,

In this case, the lower bound constraint is violated, so Ay > 0, Ay = 0. From complementary slackness,

Z/(WtT(J)t + Ht)) = amin = WtT (It + Gt) = V*l(amin). (D24)
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Minimizing ||6;]|3 subject to Equation (D.24) gives:

v(amin) — w, 2,
0 = —~2 _—* . D.25
t A (D-25)

Case 3: o™ < p(W Tay) < o™X,
In this case, the score is already within the acceptable range, so no intervention is needed. Therefore,

6; = 0. (D.26)

These three cases correspond exactly to the conditions and solutions given in equation of the theorem,
thus completing the proof. O

E Naturalness-first formulation

There is an empirical trade-off between intervention strength and text naturalness (Turner et al., |2023): a
larger intervention causes larger shifts in the language modeling distribution. This tradeoff can be formally
expressed within our framework: while in Section we present naturalness as a cost (ming, ||0;||3) and
toxicity avoidance as a constraint, one can also do the opposite. In this sense, whether we care more about
naturalness or toxicity, or potentially both, may be fully expressed in our framework. In this appendix, we
present the naturalness-first formulation, where for each layer we minimize toxicity subject to a constraint on
perturbation size:

n%in V(Wt—r (z¢ +6)) (E.27a)
st. o5 —-B<o. (E.27b)

Here, v is a strictly monotonic and bounded function that quantifies toxicity of the predicted logits. The
choice of v can vary depending on the application, and the optimal solution remains the same for any such
function due to its monotonicity.

Theorem E.1. The optimal 0; to Equation (E.27) is
. VD (E.28)

= Wt
P el
where wy == W} — W2,
Proof. By monotonicity of v, minimizing v(W," (z; + 6;)) is equivalent to minimizing its argument. Since

W, (z¢ + 0;) affects the logits of two target classes (e.g., toxic vs. non-toxic), define w; and wy as the
corresponding rows of W;. Then:

n;in v(W," (x; + 6;)) = r%ax(wl —wy) 'O, (E.29)
st [|6:]3 — B <0. (E.30)

The optimal perturbation is thus in the direction of w; := w; — wy with norm +/3:

o= V0 . (E31)

 lwell2

O

We note that this result holds for any choice of strictly monotonic and bounded function v since, by
monotonicity of v, minimizing v(W," (z; + 6;)) is equivalent to minimizing its argument.
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F LiSeCo compared to other activation methods

Here, we provide a formal comparison of LiSeCo with other state-of-the-art methods for intervening represen-
tations.

Online representation interventions

A multitude of approaches exist in the literature that linearly intervene the per-layer representations in an
analogous way to LiSeCo. Here, we focus on the AcT approach (Rodriguez et al., 2024)). This approach is
based on an optimal transport map, and it was shown to generalize previously proposed approaches (interested
readers are referred to Table 1 in (Rodriguez et al., |2024)). The resulting intervention, expressed in the
LiSeCo notation, is of the form:

9t = Mtl’t + Bta (F32)

where M; := diag(w;), and w;, B; € R? are element-wise scaling and bias terms that are estimated from data
for each layer ¢. Specifically, they are computed from a set of activations corresponding from source and target
examples that exhibit the desired shift in behavior, and are chosen to minimize the squared distance between
transformed source activations and their target counterparts under a univariate optimal transport objective
(see (Rodriguez et all 2024) for details). We remark that in order for AcT to achieve good performance, it
needs access to the extremes of the distribution. Without access to these extremes, the transformation does
not interpolate well.

Proposition F.1. The LiSeCo intervention provided in Theorem [{.1] can be written in the same affine form
as the AcT transformation equation that is, where the matriz M € R™? and the bias vector B € R? are
given by

WtWtT V*l(amax)Wt . T
My = ——5, By = ———"—, if v(W, xy) > o™, F.33a
O T =Wl iz (F330)
WtWtT l/il(amin)Wt . T .
M, = ——%, = if v(W, z) < a™", F.33b
t ||WtH% 5t HWtHQ f ( t t) ( )
M, =0, Bt =0, otherwise. (F.33c)

Proof. We start from the expression for the optimal intervention 6; given in Theorem which defines three
cases based on the quantile v(W," z;):

o If v(W, z;) > o™ then
V—l(amax) _ WTJ?t
o; = LW,
t Ak

o If v(W, zy) < ™ then
V*l(amin) _ WTIf
0F = LW,
! W3 '

o Otherwise, §f =0

In both non-zero cases, the expression can be rewritten in affine form:

yl(a)) (WtWtT>
0; = Wy — Ty,
! < AN AT YA

where a = a™** or ™" depending on the condition.

Let us define:
Wy WtT

_ v H )Wy
W3

M, =
W13

B =
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Then we have:
07 = Mixy + By

Finally, when the condition is not triggered (i.e., ™" < v(W," ;) < a™*), we have 0} = 0, which corresponds
to My =0 and 5, = 0.

Thus, in all three cases, 6; can be written in the affine form 6; = M,x; + §; with the expressions for M; and
B¢ given in the proposition. O]

LiSeCo offers a versatile version of AcT, since it is capable of steering along the two directions of the real
line, as opposed of only one as in the case of all other interventions with one single (M, 5;) combinations.
While the general version of AcT, Linear-AcT, appears to be more general since rank(M;) =1 for LiSeCo, it
does so at the cost of increased computational overhead. The simplified version of AcT, mean-AcT, applies
a transformation assuming equal variance and no directional structure. LiSeCo, which can also be seen as
a constrained optimal transport problem per Proposition introduces a rank-one intervention along a
learned direction W;, guided by a quantile target v~!(p). This allows LiSeCo to modulate representations in
a concept-specific way, providing finer control while remaining lightweight. A key advantage in our setting
is that the intervention direction W; is learned via a classifier trained directly on unpaired data, removing
the need for aligned source—target pairs as required by AcT. Moreover, the LiSeCo yields a principled and
guaranteed form of intervention currently lacking in all other online representation intervention approaches.

Offline representation interventions

A prominent example of offline representation interventions is ReFT (Wu et al., [2024), which includes DiReFT
and LoReFT as specific instances. These methods edit representations by learning an intervention that
is applied post-hoc, typically at specific layers or token positions. Unlike online methods such as AcT or
LiSeCo that modify representations at inference time, ReFT-based methods operate in an offline setting,
learning from examples and intervening only once representations are computed. For instance, ReFT requires
a full forward pass to obtain the activations to be edited, followed by a second forward pass with the edited
activations injected. This design makes ReFT suitable for interventions at the prompt level (e.g., steering
generation from the start), but less suited for dynamic, token-level control during generation. In this sense,
ReFT can be viewed as a form of open-loop control realized through mechanistic edits to internal activations.

In what follows, we show that ReFT can also be interpreted under a control optic. In particular, for LoReFT
(the most general ReFT proposal), we observe that it can be interpreted as a solution to a constrained optimal
control problem, where the goal is to find the smallest possible intervention that maps a given representation
onto a desirable subspace.

Proposition F.2. The LoReFT intervention of the form
0 =RT(Wz+b— Rx)
is the unique solution to the following constrained optimization problem:

main 1013 subject to  R(x +6) = Wa +b.

Proof. We formulate the Lagrangian for the constrained optimization problem:
L(0,2) =[l6]3 + AT (R(z +6) — (Wz +1b)),

where A is the vector of Lagrange multipliers. Taking the gradient with respect to 6 and setting it to zero:

1
VoL=20+R"A\=0 = 6= —§RT)\.
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Substitute this into the constraint:
R(x +0) =Wz +0,
Rx — %RRT/\ =Wz +b,
= —%/\ = (W - R)xz+b, (since RR" =1),
=A=-2((W—-R)x+b).
Now substitute back to recover 6:
0= —%RTA =R"(W—-R)z+b)=R'"(Wz+b— Rx),

which matches the LoReFT formula. Hence, 8 is the unique solution to the constrained optimization
problem. [

This result gives LoReFT a principled interpretation as a control-theoretic intervention: the minimal
intervention needed to achieve a desired behavior under a structured rotation constraint. If paired source—
target representations are available, LoReFT can be trained analogously to AcT using regression objectives on
paired data. However, unlike AcT, LoReFT learns a transformation that is constrained to be consistent with a
linear rotation and projection, rather than a full-rank affine map. Compared to LiSeCo, which also minimizes
intervention norm under a linear constraint but does so dynamically and online, LoReFT is currently an
offline method.

G Data preprocessing
For the sentiment constraint set, the following extra steps were taken to preprocess the data:

1. Tweets: we mapped labels neutral and positive to not negative

2. Yelp and Amazon: ratings are integers 1 to 5 stars, inclusive. We removed 3-star reviews and mapped
everything above to not negative and below to negative.

The IMDDb dataset’s labels were already binary in {negative, non-negative}.

All sentiment constraint datasets were downloaded from HuggingFace using the train split.

H Linear Probes

H.1 Setup

For each model and layer, we train one binary classifier linear probe with the following hyperparameters:
e Number of epochs: 1000
o Ir: le-3

o Optimizer: Adam (with default PyTorch hyperparameters)

Figure [3| shows the per-layer probe validation accuracy across all models. Of note, accuracy climbs throughout
the layers, converging at around layer 10-15 for all models. Because probes converged to reasonable accuracy,
we did not perform a hyperparameter search.
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Figure H.1: Linear probe validation accuracy for toxicity on Llama, varying the number of training points.
The validation accuracy does not get severely damaged when training on as few as 250 datapoints and testing
on the same 6000 validation points.

H.2 Probe training stress test

Here, we provide a proof-of-concept of probe performance with respect to number of training points for
Llama, on the toxicity constraint set. While in the main paper, we train using N =~ 24k datapoints, it is
possible to achieve decent probing test accuracy with only 250 training points, validated on the same test set
of 6k points. The scaling behavior per-layer is shown in Figure

| Instruction-tuning

1.1 Setup

For Gemma, Llama and Mistral, publicly available intruction-tuned variants were available. In particular, we
use the Gemma-2-2B-IT, Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2 models from HuggingFace. To
prompt the instruction-tuned models, we slightly modified the system prompt of Mistral (Jiang et al. 2023):

Instructions:

Always assist with care, respect, and truth. Respond with utmost utility yet securely.
Avoid harmful, unethical, prejudiced, or negative content. Ensure replies promote
fairness and positivity. With this in mind, please continue the following text.

Text:
PROMPT

where we replace PROMPT with the natural language prompt.

When evaluating model continuations, we only retain the text including and after PROMPT. The instructions
were the same for both toxicity and negativity reduction tasks.

J Activation Addition Implementation

J.1 Setup

We closely follow the setup detailed in Appendix B of |[Turner et al.| (2023)), testing recommended ranges.
Although we do not vary the prompts, we perform a coarse-grained hyperparameter grid search on the
intervention layer [ and intervention strength c:
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» Toxicity (source, target) prompts: (toxicity, kindness)

o Sentiment (source, target) prompts: (optimism, despair)

o Intervention layer I: {6, 15,24}

o Intervention strength ¢: {0.01,0.1,1,3,9,15}

As the text generation is often longer than the source and target prompts, we apply the intervention at the
first token position, as reported in Turner et al| (2023]). The ActAdd forward generation process is completely
deterministic.

We find for all hyperparameter settings starting with ¢ > 1 the same qualitative patterns in text generation:
sequences of repeated tokens. The best hyperparameter setting we found corresponded to (¢, 1) = (1, 15) for
both tasks.

K Already-safe generations

Ideally, intervention should not turn safe generations toxic or negative. Figure [K:I] shows the distribution of
these would-be safe generations, under different intervention methods. While LiSeCo abstains from intervening
if the generation is already classified safe, AcT, ActAdd, and prompting with Instruct are always applied. We
see in the figure that LiSeCo (blue) well-preserves the original safety and naturalness distribution as desired,
while other methods may negatively impact either factor.
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Figure K.1: Already-safe generations remain safe under intervention. We show the safety-naturalness
plane for would-be safe generations. While in all settings, intervention via prompting (Instruct, purple),
best ActAdd setting (green), and to a lesser extent AcT (orange) compromise naturalness compared to the
baseline (red), the minimum-norm design of LiSeCo (blue) preserves naturalness. In all cases, the baseline
safety-naturalness distribution for safe generations is well-preserved by LiSeCo, where others may fail.
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L LiSeCo Output Generation Distributions
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Figure L.2: Attribute distributions for LiSeCo. To complement Figure El, we show the full distributions
of attributes for generations intervened with LiSeCo, as well as without (gray). The sentiment task (top)
and toxicity (bottom) are shown; each point is a single generation, scored by the corresponding attribute
classifier. For sentiment, there is a clear gradation in the attribute distribution with increasing LiSeCo «;
lower « leads to lower negativity /toxicity scores. For toxicity, this effect is less visible as the distributions are
bimodal, likely due to the bimodality of the labels in the training set. However, the same gradation exists,
where the proportion of toxic generations is indeed monotonic in «, see Figure @

M Additional Results: Text Naturalness

The table on the last page shows a representative example from the toxicity task set with no-control,
instruction-tuned, LiSeCo (p = 0.01,0.1), ActAdd (best), and AcT (1.0).
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Prompt: “"Every Monday we publish the most unbelievable stories"

Meta-Llama-3-8B

Mistral-7TB-v0.1

Gemma-2-2b

No-

control

from the world of football.
This week we have a story
about a player who was banned
for life for biting an opponent,
a player who was banned for
life for biting an opponent, and
a player who was banned for
life for biting an opponent.

of climbing stupidity submit-
ted by our readers. See some-
thing unbelayvable? Tell us in
the comments and your story
could be featured in a future
edition, online or in print. For
more Unbelayvable, check out
the Un

in the News archives. Here
is the weirdest story we could
find from this week 20 years
ago today. A former New Mil-
ford teacher has been charged
with sexual assault after a for-
mer student claims sexual in-
tercourse took place

Instruct

from the world of science, tech-
nology, and innovation. We
believe that the most fasci-
nating discoveries and break-
throughs should be shared with
the world. Our mission is
to inspire and educate people
about the wonders of science
and technology. We

"from the previous week.
Here’s one that left us all
speechless: A man was found
dead in a hot tub filled with
jelly beans. The police are
still investigating the cause of
death. Response:"

from around the world that
will make you laugh out loud!

LiSeCo
(0.01)

from our community. If you
have a story to share, please
send it in here. The best way
to get started is by joining one
of our many groups on Face-
book or Discord and introduc-
ing yourself! We are always
happy to welcome new mem-
bers into our family!

of climbing weirdness and
hubris from the previous 7
days. Don’t miss a single edi-
tion. Subscribe to our weekly
newsletter, The Dirtbag. A
New Climbing Boulder in Col-
orado Is So Good It Has Al-
ready Been Vandalized. A new
bouldering problem has been
discovered on

from around the world. 1) A
man in Russia has been ar-
rested for stealing a cow, and
then trying to sell it as his own
pet dog! The animal lover had
posted pictures on social me-
dia showing him with what ap-
peared to be two dogs but when
officers arrived at their home

LiSeCo
(0.1)

from around the world. We
have a lot of fun doing it,
and hope you do too.If there’s
something that has happened
to you or someone else in
your life which is so bizarre
it could only be true — please
get in touch with us at [email
zaOprotected]. You can also
send pictures/videos if

of climbing stupidity submit-
ted by our readers. See some-
thing unbelayvable? Email un-
belayvable Qclimbing.com and
your story could be featured on-
line or in print. For more Un-
belayvable, check out the Unbe-
layvable Archives.

from around the world. This
week, a man in India was ar-
rested for stealing 10 million
rupees (about $257,684) worth
of gold bars and then hiding
them under his bed! The story
starts with an anonymous tip-
off to police that someone had
stolen over Rs 9 crore ($3M
USD).

ActAdd
(best)

from our readers. Today, a
woman who helps strangers
in need. A few years ago I
was driving home on my way
to work and saw an old lady
at the side of the road with
her hand outsted for help A
stranger helped me when she
did something that changed

of kindness that come to us
from around the world. This
week, a stranger’s act made all
the difference for an 8-year old
boy. .. ## A Kind Stranger I
was in line at Walmart when
I saw this little girl standing
behind me with her mom and

dad. She looked sad.

from around the world., and is
always full of surprises... The
first thing you do when wak-
ing up in a new place:
make friends with animals or
pets?  The story begins at
10 years ago..  https://of-
kindness/stories/... /to_a...
to an animal that has been
kind

AcT
(1.0)

from our community. This
week, we’re featuring a story
about how one woman’s love
for her dog inspired her to
start an online business. I'm
so excited that you ve joined us
today! I am passionate about
helping women like yourself
who are

of escape that came to us
from our readers. This week,
a story about an American
woman who was captured by
the Japanese in 1942 and spent
three years as a prisoner of
war. The Léollowing is adapted
from “Sisters at War: A True
Story of World War II”

from around our community.
This week, a man in New York
Clity was arrested for allegedly
stealing $1 million worth of
goods at an Amazon warehouse
and then selling them on eBay;
two people were killed when
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