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Instilling Parallel Reasoning into Language Models
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Abstract
Sequential chain-of-thought reasoning signifi-
cantly improves the performance of Large lan-
guage models (LLMs) on complex tasks. How-
ever, sequential reasoning has structural limita-
tions: Long chains are expensive due to atten-
tion’s quadratic complexity, and multiple diverse
strategies cannot be considered simultaneously.
To address this we propose a method that instills
parallel reasoning capabilities in LLMs by distill-
ing parallel reasoning traces from a teacher model.
This approach enables models to decompose prob-
lems, explore diverse strategies via concurrent rea-
soning traces, and aggregate trace outputs for the
final answer. Evaluating on a variety of math and
puzzle benchmarks such as MATH 500, AIME
and Countdown, we show our approach can de-
compose parallelizable problems, and that the per-
formance scales with the number of parallel traces.
The resulting model can dynamically allocate rea-
soning strategies based on problem complexity,
outperforming standard sampling methods.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able improvements on benchmarks that benefit from inten-
sive reasoning, largely driven by prompting methods that
scale test-time compute through extensive generation, such
as Chain-of-Thought (CoT) prompting (Wei et al., 2022).
CoT encourages step-by-step reasoning, allowing models to
explicitly generate intermediate steps instead of relying on
implicit computations within their activations.

Recent research (Shao et al., 2024) has aimed to reinforce
and refine the sequential reasoning behaviors during pre-
training. While step-by-step reasoning has been effective in
improving performance, sequential reasoning comes with
structural limitations for efficient problem solving. Scaling
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to larger sequence lengths incurs significant latency and
computational overhead, which scales quadratically w.r.t the
input length for exact attention. Second, errors made early
in the sequence can compound throughout the reasoning
process (Wu et al., 2025), leading to unstable or incorrect
final answers. To address these limitations, we propose a
parallel reasoning approach that enables models to explore
multiple reasoning paths simultaneously, improving both
efficiency and robustness.

Parallel computation methods in LLM inference, such as
majority voting (Wang et al., 2022), and self-certainty (Kang
et al., 2024), have been used to improve inference-time per-
formance by aggregating multiple independent reasoning
traces. However, since these traces are generated indepen-
dently from the same prompt and rely solely on sampling,
they often result in similar or identical outputs. This limits
the diversity and effectiveness of parallel inference, high-
lighting the need for a more structured and coordinated
approach to fully exploit the potential of parallel reasoning.

Our approach builds a parallel reasoning strategy directly
into the chain of thought, where threads collaborate to ex-
plore diverse reasoning traces or collectively breakdown
inherently parallelizable computations. This strategy pre-
vents redundant computations through coordination among
the parallel threads before execution. However, such paral-
lel reasoning strategies cannot emerge from current training
regimes, which are designed for sequential auto-regressive
generation. However we find that teacher models can be
used to to simulate parallel reasoning, which when com-
bined with a verification step provides high quality targets,
which can then be used to teach a student model to execute
true parallel reasoning.

We explore explicitly instilling the ability to perform parallel
reasoning into LLMs. Our central insight is that we can use
a highly capable “teacher” model to generate high-quality,
parallelizable reasoning traces but generated via a sequential
generation process. This data can then be used to train a
model to execute the inference in parallel.

We show the following. First, we effectively distill the abil-
ity to decompose inherently parallelizable problems and
generalize to decomposable tasks beyond the training distri-
bution into a student model. Second, we demonstrate that
scaling the number of parallel reasoning threads serves as a
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Instilling Parallel Reasoning into Language Models

powerful scaling axis for improving the performance. Lastly,
we show that the trained model is able to perform efficient
inference while maintaining high performance, leveraging
the benefits of parallelism, compared to chain of thought
budget-forcing methods.

2. Related Work
Test-time inference strategies aim to improve LLM perfor-
mance without modifying model weights, instead utilizing
different strategies for decoding the auto-regressive model
during inference. These can be broadly divided into sequen-
tial and parallel approaches. Chain of thought prompting
(Wei et al., 2022) introduced auto-regressive generation of
intermediate tokens before generating the answer, encourag-
ing the model to think through the solution before arriving
at an answer. Numerous additional iterations of this infer-
ence strategy have been proposed, such as Tree of Thoughts
(ToT) (Yao et al., 2023) allowing for look-ahead and back-
tracking and Graph of Thoughts (GoT) (Besta et al., 2023)
which models reasoning as a directed acyclic graph.

2.1 Parallel Inference

Sampling-based verifier-free methods such as self-
consistency (Wang et al., 2022) are a form of parallel reason-
ing, generating multiple samples from a model and selecting
the most consistent answer through voting, mitigating er-
roneous steps, especially in arithmetic and logical tasks.
Kang et al. (2024) extend this with a self-certainty-based
best-of-N selection, using output distribution peakedness
to guide weighted voting aggregation. Verification-based
filtering, such as with generative verifiers (Zhang et al.,
2024), use a LLM to filter incorrect paths, combining par-
allel exploration with robust evaluation. Probabilistic in-
ference methods that leverage parallelism have also been
explored; Zhao et al. (2024) use Sequential Monte Carlo
(Liu & Chen, 1998), viewing LLM inference as probabilis-
tic sampling from an unnormalized distribution. Parallel
tree search methods like Dynamic Parallel Tree Search
(DPTS) (Ding et al., 2025) accelerate reasoning by explor-
ing diverse tree nodes concurrently, dynamically prioritiz-
ing promising paths for faster, accurate problem-solving.
Fractured Chain-of-Thought (Liao et al., 2025) explores
the trade-off between scaling compute in sequence length
and parallel samples. Scaling inference compute along the
parallel dimension has proven an effective way to improve
decision making. The “Large Language Monkeys” frame-
work (Brown et al., 2024) showed massive parallel sampling
significantly boosts correctness (e.g., in code generation).
Inference scaling laws (Wu et al., 2024; AbdElhameed &
Halim, 2024) further investigate compute-optimal strategies,
often favoring parallel compute over model size scaling.

2.2 Training for Parallel Inference

While it is possible to leverage parallel inference in existing
LLMs without any explicit training, various works have in-
vestigated the benefits from explicitly training for this type
of test time inference. PASTA (Jin et al., 2025) trains mod-
els to emit semantically disjoint output segments for asyn-
chronous decoding, reducing latency. Skeleton-of-Thought
(SoT) (Ning et al., 2023) prompts models for an initial con-
cise skeleton, then expands points in parallel, speeding up
structured responses, with an adaptive router (SoT-R) for
selective application. Hogwild! Inference (Rodionov et al.,
2025) enables parallel token generation via multiple work-
ers with a shared Key-Value cache, allowing existing LLMs
to collaborate dynamically without fine-tuning. APR (Pan
et al., 2025) extends Stream of Search (Gandhi et al., 2024)
by generating training data with explicit heuristic examples
in the dataset of search strategies for components that could
be executed in parallel and then fine tune this policy with
GRPO (Shao et al., 2024). The Parallel Scaling Law for
Language Models (Chen et al., 2025b) explores using par-
allel inference to improve each next token prediction by
generating P independent threads that have different prefix
embeddings but share the same parameters for each token
generation. Multiverse (Yang et al., 2025), similar to our
approach, use a teacher model, however instead of generat-
ing data explicitly for parallel reasoning they use existing
chain of thought data and find ways to parallelize it. This
reduces the cost of generation but means the data does is not
designed to leverage parallel reasoning as much as possible
leading to low utilization in practice.

Reasoning in continuous spaces is another promising direc-
tion for being able to reason in parallel at test time. Co-
conut (Hao et al., 2024) performs reasoning in a continuous
latent space (”latent chain-of-thought”), potentially allowing
implicit parallelism, but does not demonstrate that this type
of parallel reasoning indeed emerges. Lastly, architectures
like Universal Transformers (Dehghani et al., 2018), with
iterative layer application at test time, could theoretically
perform parallel reasoning, though current methods might
not explicitly learn these strategies.

3. Background

3.1 Chain of Thought

Chain-of-thought (CoT) prompting (Wei et al., 2022) en-
courages large language models (LLMs) to generate inter-
mediate reasoning steps before producing a final answer.
This approach leverages the autoregressive nature of LLMs,
where each token is predicted based on prior context. Includ-
ing reasoning traces in the prompt increases the likelihood
of accurate responses, especially for tasks requiring logical
or multi-step reasoning. For a question q, the probability
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Instilling Parallel Reasoning into Language Models

of generating answer a, denoted p(a | q), is improved by
conditioning on a sequence of reasoning steps r, yielding
p(a | q, r), where r represents intermediate tokens mimick-
ing human-like reasoning.

3.2 Budget Forcing

Chain-of-thought prompting allows the model to decide
when to stop reasoning and generate an answer, which
can lead to under-thinking (insufficient reasoning) or over-
thinking (excessive reasoning that introduces errors). Bud-
get forcing is a test-time prompting strategy that enforces
a fixed reasoning budget B, measured in tokens, before an
answer is produced. If the model tries to end reasoning early
(before B tokens), continuation prompts like “wait, think
some more” are appended to extend the process. Once B
tokens are reached, reasoning is terminated, often with a
token like </think>.

4. Methodology
Our approach enhances reasoning in LLMs by introducing
two complementary and parallelizable reasoning strategies:
diversify and decompose. The diversify strategy generates
multiple instructions that explore different solution strate-
gies for a given problem. The decompose strategy takes each
instruction and breaks it down into smaller sub-problems,
i.e., threads, that can be addressed independently. Both
strategies are learnable operations that enable the explo-
ration of multiple reasoning paths and the division of com-
plex problems into sub-problems. We believe these two core
skills can be a foundation for inherently parallel reasoning,
where on-policy learning could be leveraged to generate
policy improvement.

In the following sections, we describe our core contribution:
a method to train a student model to learn both the diver-
sify and decompose reasoning strategies. Specifically, in
Section 4.2, we describe the process of generating synthetic
training data using a teacher model that simulates paral-
lel reasoning strategies. Section 4.3 details how this data
is used to train a student model to imitate these strategies.
Finally, in Section 4.4, we demonstrate how the trained stu-
dent model executes parallel reasoning at inference time.
We highlight that we are able to teach these parallelism
strategies using a teacher model, which does not have ability
to execute parallelism strategies, but can instead simulate
such strategies via a sequentially generated trace that mimic
parallelism. This distinguishes our work from previous ap-
proaches that attempt to identify parallelism opportunities
in existing chain of thought traces.

4.1 Parallel Reasoning Strategies

Diversify reasoning involves exploring multiple, fundamen-
tally different approaches to solve a problem. For instance,
when evaluating a chess position, the model can generate
several hypotheses for the best move and investigate the
consequences of each in parallel. Such parallelism is dis-
tinct from naive sampling as it explicitly coordinates the
reasoning paths to pursue diverse strategies, thereby pre-
venting redundant computations. Moreover, it also allows
the exploration of riskier strategies that might yield high
rewards but would normally have low likelihood under a
prior policy optimized for single-sample performance.

Decompose reasoning focuses on breaking down a single
complex strategy for solving a problem into smaller, self-
contained sub-problems. These sub-problems can be com-
puted independently and in parallel before their results are
aggregated to form the final solution. For example, a com-
plex mathematical calculation can be solved by concurrently
evaluating its independent sub-expressions and then combin-
ing the results. This type of parallelism is primarily aimed
at improving inference speed by leveraging computations
that can be executed in parallel.

Prompt template

Parallel Reasoning Mode:

I will use N threads for this

<thread 1> Instruction 1 </thread 1>
<thread 2> Instruction 2 </thread 2>
<thread 3> Instruction 3 </thread 3>

<thread 1> Response 1 </thread 1>
<thread 2> Response 2 </thread 2>
<thread 3> Response 3 </thread 3>

<think> Summary </think>
<answer> Final Answer </answer>

4.2 Data Generation

Our data generation process is designed to create structured
data points for training. Each data point is a complete col-
lection represented by the tuple (x,N, I,R, c, a), where x
is the problem statement, N is the number of parallel thread
instruction, I = {instr1, instr2, · · · , instrN} is the set
of thread instructions, R = {r1, r2, · · · , rN} is the set of
corresponding thread responses, and c and a are the final
summary and answer, respectively.

For both diversify and decompose strategies, we generate
this data sequentially using a single chain-of-thought pro-
cess from a teacher model. The key is a prompt-and-verify
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Result AggregationThread Instruction Execution
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Figure 1: Inference using both the Diversify and Decompose parallel reasoning strategies. Diversify is first applied to try to
solve the problem using many diverse strategies; Decompose is then used to break down these targeted approaches into
parallelizable computations.

method that ensures the resulting threads are sufficiently
distinct and independent for parallelization, as assessed by
an LLM-as-a-Judge (Zheng et al., 2023). We prompt the
teacher model to generate the components of the tuple in a
specific structured format, as illustrated below.

Grok-3-mini (xAI, n.d.) was used for data generation, due
being the only model evaluated (also investigated Gemini-
2.5.flash, GPT 4.0 mini) that could consistently produce
data in this structured format. Adherence to this format was
a higher priority than achieving policy improvement during
the Supervised Fine-Tuning (SFT) process itself. Hence
Grok-3-mini was chosen over other models that have top
performance on standard benchmarks.

4.2.1 DIVERSIFY DATA GENERATION

For generating data to learn the diverse reasoning strategy,
the teacher model was prompted to generate N threads, each
representing a different approach to a given problem. To
ensure the quality of this diversity, we employ an LLM-
based judge to filter out any generated samples where the
threads are not sufficiently distinct from one another.

A key consideration is determining the appropriate number
of threads, N , for any given problem. Simpler problems
may require only a single thread, whereas more complex
problems can benefit from a multitude of approaches. To
formalize this, we sample from the distribution p(nmin|x),
which represents given a single sample what is the mini-
mum number of threads the teacher model requires to solve
a problem x. We sampled from this distribution using the
following iterative data collection method: For each prob-
lem, we begin by attempting a solution with a single thread
(N = 1). If this attempt is successful, the data point is
added to our dataset. If it fails, we double the thread count

and generate a new sample. This process is repeated up to a
maximum of 64 threads. If the problem remains unsolved
after reaching this limit, it is discarded.

This iterative approach serves two critical functions. First,
it encourages a wide variety of thread counts within the
dataset, addressing the tendency of the model to otherwise
lack diversity in the number of threads it self-selects. Sec-
ond, it naturally allocates more computational resources—in
the form of higher thread counts—to more difficult prob-
lems, precisely where they are most needed.

4.2.2 DECOMPOSE DATA GENERATION

For decomposition, we prompt the model to consider a
problem and a specific solution strategy, and then to break
down that strategy into parallelizable sub-tasks. We leverage
two types of data for decomposition generation. Synthetic
data where the number of possible threads the task can be
decomposed into is known and forced in prompting. We
also use self generated data using the task, problem pairs
from the diversify generation phase. In this case, we allow
the teacher model to determine the appropriate number of
threads since this value is not a priori known.

For all data points we perform an independence check using
LLM-as-a-judge to check that the computations of each
thread do not rely on each other. We perform a maximum
of 3 retries to generate data with independent threads, after
which the data-point is discarded. See Appendix B for full
details including prompts.

4.3 Training

In order to enable parallelism at inference, we train a single
model with parameters θ, to perform three distinct types of
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Instilling Parallel Reasoning into Language Models

inference, each guided by a unique prompt.

The first type is Thread Instruction Generation. The
model learns a single function conditioned on the problem
x and the prompt pi (note this is different depending on
whether we are performing diversify or decompose reason-
ing). In order to enable a thread count chosen by the model
or by the user, we factorize instruction generation by first
generating the thread count and then the thread instructions:

pθ(n, instr | pi, x) = pθ(n | pi, x) · pθ(instr | pi, x, n)

The second type is Thread Instruction Execution. The
model generates a response rk for each instruction instrk
without conditioning on any of the other instructions. We
model this as:

pθ(rk | pr, x, instrk), for each k ∈ {1, . . . , n}.

The final type is Think and Answer Generation. In the
final step of inference the model conditions on all thread
responses, does a final round of thinking c before generating
the answer a. This is modeled as:

pθ(c, a | pa, x, r).

, where r is all the thread responses concatenated together.

For each problem in our dataset, the training data consists of
one instruction generation example (using the appropriate
pi), n parallel execution examples (each using pr), and one
result aggregation example (using pa). To prevent overfit-
ting on the more frequent parallel execution tasks, we scale
the sampling probability for each execution data point by
1/n. This ensures that for any given problem, there is an
equal likelihood of sampling from each of the three task
types.

4.4 Inference

Having discussed data generation and the functions that we
model during training, we now discuss how these functions
can be used to perform parallel reasoning at inference. Paral-
lel inference starts with a diversity-first approach, optionally
applying the decompose strategy for deeper, nested paral-
lelism. The process begins with Instruction Generation.
Given a problem x and the diversity prompt pinstr,1, the
model first generates the number of threads, n, and a set
of diverse, high-level instructions or strategies to solve the
problem, {instr1, . . . , instrn}, by drawing from their joint
distribution, pθ(n, i | pinstr,1, x). The number of threads, n,
can also be set manually (we refer to this as thread-forcing).

With these high-level instructions established, we proceed
to Thread Instruction Execution. For each instruction
instrk, we generate a corresponding response rk, which

can be accomplished in two ways. The first method is direct
execution, where we generate the response immediately
for each of the n instructions in parallel, drawing from the
distribution:

rk ← pθ(rk | pr, x, instrk)

Alternatively, for potentially faster inference on complex
instructions, we can apply the Decomposition Operator.

rk = DecomposeAndExecute(x, instrk)

This generates the response by recomposing the problem
and instruction into parallelizable computations before it
returns a response, see Appendix D for more details on
the Decomposition Operator. Regardless of the method
chosen, all n response-generation processes are performed
concurrently . Finally, in the Result Aggregation stage, the
model gathers the complete set of n responses, {r1, . . . , rn},
It then produces the final summary and answer by drawing
from the distribution:

(c, a)← pθ(c, a | pa, x, r).

5. Experiments
In our experiments, we aim to evaluate the model trained
for parallel inference based on its ability to: 1. Decompose
embarrassingly parallel problems into parallelized subtasks.
2. Demonstrate that the parallel dimension of reasoning
over diverse approaches serves as a powerful test-time in-
ference scaling axis. 3. Investigate how this model com-
pares to other test-time scaling methods, evaluated both
on a throughput basis, leveraging the assumption of freely
available parallelizable computation.

5.1 Setup

We evaluate parallel reasoning capabilities through a se-
ries of experiments. First, we assess the model’s ability
to decompose problems using a held-out set of embarrass-
ingly parallel synthetic problems. Next, we measure per-
formance across multiple benchmarks, including AIME
2024 and 2025 (Art of Problem Solving, 2025), MATH-
500 (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021),
Countdown 3-to-4 (Pan, 2024), and Enigmata Eval (Chen
et al., 2025a), using Qwen-3-4B-Parallel to investigate
the scaling properties of thread count. Finally, we com-
pare Qwen-3-4B-Parallel to Budget Forcing and Chain-of-
Thought (CoT) approaches, evaluating generation time on
a single H100 GPU with a batch size of 1 against accuracy.
To ensure a fair comparison, we fine-tune a separate model,
Qwen-3-4B-Grok-Distill, on the same problems using stan-
dard CoT reasoning traces generated by Grok-3-Mini. This
controls for the potential impact of fine-tuning itself on
performance.
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5.2 Dataset Generation

We employ three main dataset types to train our parallel
reasoning strategies. The S1K dataset (Muennighoff et al.,
2025) a curated collection of mathematical problems, the
Enigmata dataset (Chen et al., 2025a) for its diverse, non-
mathematical problems that often require search and cre-
ative reasoning. Finally, to explicitly teach decomposition,
we generate synthetic simple arithmetic problems that are
inherently parallelizable where the number of subtasks is
predefined. We give full details of datasets used in Ap-
pendix A.

5.3 Decompose Reasoning

We investigate the ability for Qwen-3-4b-parallel to rec-
ognize computations that can be executed in parallel by
comparing the number of threads predicted by the model
versus the intended number of synthetic sub tasks of the
problem. We perform this evaluation on a held out subset
of tasks not seen during training. Figure 2 shows a clear
strong positive correlation between these two variables. This
demonstrates that the student model has effectively learned
the skill of spotting parallelism opportunities which is the
critical skill needed for leveraging the decompose operator
to speed up inference in Qwen-3-4b-parallel.

5.4 Timing

Since our parallelism approach is not fully parallelizable,
due to still making use of sequential instruction generation
and a thinking section as we scale the number of threads gen-
eration time increases. However this scaling is far less, when
compared to budget forcing, which due to the quadratic
complexity of transformers as sequence length increases
generation time becomes very slow. In Figure 3 we compare
how generation time scales as compute is scaled for budget
forcing and thread forcing (forcing the model to generate
fixed number of threads via variable n). Due to parallelism
Qwen-3-4b-parallel has far better scaling properties when
assessed on generation time, of course since it is also a
transformer it still has quadratic complexity however since
inference is split across n shorter sequences the cost of
scaling to high token budgets is far less.

5.5 Strawberry Example

In order to give better intuitions on the computations per-
formed by both the diversify and decompose reasoning
strategies learned by Qwen-3-4b-parallel, we provide ex-
amples of generations, see Appendix H for additional gen-
erations. Firstly, we give an example of only the diversify
operator being used. Table 1 shows the diversify operator
being executed on a task that LLMs often struggle with. In
this execution, we find that indeed some threads make errors

Figure 2: Decompose Operator evaluated on a dataset of
synthetic calculation problems with known number of oper-
ations that can be parallelized over.

Figure 3: Average generation time for varying token budgets
for Parallel Reasoning and Budget Forcing on Math 500
dataset

in their approach to solve the problem. What is particularly
interesting about this generation is that there is an even split
across answers of 1, 2, and 3. Aggregation strategies such
as majority voting would not lead to the correct answer in
this case. However, since Qwen-3-4b-parallel has learned
to aggregate the reasoning and analyze it, it is able to assess
the different reasoning traces and decide what is most con-
vincing, which in this case ultimately leads to generating
the correct answer. We provide two additional generations
in Appendix H where we also demonstrate the execution
of the decompose operator on a mathematical calculation,
showing its ability to identify parallelizable computations.
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Problem: How many r’s are there in the word strawberry?
Predicted number of threads: 6

N Instruction Response

1 Examine the word “strawberry” letter by letter
and count each occurrence of the letter ‘r’
sequentially.

Start with the word “strawberry”. Begin at the first letter: ’s’
is not ’r’. Next, ’t’ is not ’r’. Then, ’r’ is ’r’, so that’s one.
Continue: ’a’ is not ’r’. ’w’ is not ’r’. ’b’ is not ’r’. ’e’ is not
’r’. ’l’ is not ’r’. ’l’ is not ’r’. ’y’ is not ’r’. The word has
only one ’r’ at the third position. No further ’r’s are present.
Thus, the count is one.

2 Spell the word “strawberry” and use positional
analysis to identify and count the letter ‘r’ based on
its spelling.

The word “strawberry” is spelled S-T-R-A-W-B-E-R-R-Y.
By writing it out, I can visually [...] Position 1: S, not R. [...]
I’ve identified three instances of ‘R’. [...]

3 Break down “strawberry” into its root words or
etymological components and check for the
letter ’r’ in those parts.

“Strawberry” originates from Old English “straewyrbe,”
combining “straew” (straw) and “yrbe” (apple). [...] Thus,
two ‘r’s are evident. [...]

4 Write out “strawberry” and use a phonetic
approach to mentally identify letters that
correspond to the sound ‘r’.

Phonetically, “strawberry” is pronounced as
“struh-BRAH-fee”. [...] This phonetic method confirms it’s
just one. [...]

5 Search for the letter ‘r’ in “strawberry” by
eliminating letters one at a time and focusing
on remaining ones.

Start with “s-t-r-a-w-b-e-r-r-y”. Eliminate ‘s’ first [...]
Eliminate ‘e’, so “r-r-r-y”. Now, we have three ‘r’s at the
start. [...]

6 Think about common letters in the word
“strawberry” and determine the presence and
count of ‘r’ based on frequency patterns.

“Strawberry” is a common word with a mix of vowels and
consonants. [...] Thus, there are two ‘r’s.

Aggregated thinking: <think>The threads provide diverse approaches to counting the ’r’s in ”strawberry.” Thread 1
sequentially checks each letter, identifying one ’r.’ Thread 2 spells out the word and counts systematically, finding three
’r’s. Thread 3 uses etymology to split the word, revealing two ’r’s. Thread 4 focuses on pronunciation, confirming one ’r.’
Thread 5 eliminates letters to isolate ’r’s, resulting in three ’r’s. Thread 6 leverages common letters in English words,
suggesting two ’r’s. Insights show discrepancies: some threads count one, others three, or two. The most consistent
evidence comes from spelling-based methods (Threads 2 and 5) and etymology (Thread 3), as they directly examine the
word’s structure. Pronunciation (Thread 4) and simplified approaches (Thread 1) may overlook some ’r’s. Aggregating,
the accurate count is three ‘r’s, as verified by direct examination.</think>

Final answer: <answer>3 </answer>

Table 1: Diversify parallel reasoning execution example for the problem “How many r’s are in strawberry?”

5.6 Performance

We find in Figure 4 that the thread dimension of our paral-
lelism approach delivers strong scaling performance across
a range of math and problem solving benchmarks. These
results show that the Qwen3-4b-parallel out-performs Qwen-
3-4b-Grok-distill both in terms of final performance but also
in terms of faster inference speed, which enables steeper
scaling with compute. Parallel inference also gains on the
original base model. We also find that standard chain of
thought inference is prone to generating very short chains
resulting in very low performance but fast inference. In
addition see Figure 5 for full scaling evaluation of Qwen3-

4b-parallel across 6 different tasks showing stronger scaling
performance in the thread dimension across all tasks .

6. Conclusion
In this work, we find that generating pseudo parallel data
sequentially with a teacher model, and distilling it into a
student model is a valid paradigm for teaching parallel rea-
soning. We demonstrated the effectiveness of targeting two
operations: diversify and decompose. Diversify demon-
strated strong scaling properties in the number of threads
dimension, with performance consistently improving as the
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Figure 4: Budget forcing (max 8192 tokens) base and distill, Chain of Thought, Qwen-3-4b-parallel (max 16 threads)

number of parallel reasoning threads increased across vari-
ous benchmarks, serving as a powerful test-time inference
scaling axis. We also show that decompose reasoning is able
to effectively predict the number of subtasks that problems
can be parallelized over. When leveraged together our paral-
lel reasoning approach exhibits faster inference compared to
methods like budget forcing at test time while maintaining
strong performance.

Limitations and Future Work

Our current approach has several limitations that suggest av-
enues for future work. Firstly we found low performance in
the Grok fine-tune of Qwen3-4b which could be further in-
vestigated to ensure fair comparisons. Secondly, we did not
investigate the model’s ability to perform adaptive compu-
tation, as this would likely require some form of on-policy
learning to correct for the differences between what the
teacher and student model find difficult. Future work could
also investigate extending our method with reinforcement
learning to generate policy improvements beyond distilla-
tion alone.
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A. Datasets

A.1 S1K

The S1K dataset is a collection of 1,000 questions, each accompanied by a detailed reasoning trace. It was specifically
designed to enable strong reasoning performance with minimal training compute. The dataset was created by distilling
questions and reasoning traces from the Google Gemini Flash Thinking API. The curation process started with an initial pool
of 59,029 questions from 16 diverse and high-quality sources, including NuminaMATH, AIME (1983-2021), OlympicArena,
OmniMath, and AGIEval. This larger set was then filtered down to 1,000 high-quality, difficult, and diverse samples. The
filtering process involved removing API errors and low-quality examples, excluding questions that were easily solved by
baseline models (Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct), and selecting for domain diversity across 50 categories
based on the MSC system. Questions with longer reasoning traces were favored as an indicator of higher difficulty. The S1K
dataset is open-source and has demonstrated significant sample efficiency for training reasoning models. In this work we do
not leverage the reasoning traces from the S1K dataset but use the curated problem set that represents a wide covering but
also curated set of problems that can be used to teach LLMs to reason.

Table 2: S1K Dataset Overview

Factor Description
Size 1,000 questions with reasoning traces and answers.
Curation Principles Quality, Difficulty, and Diversity.
Initial Pool Size 59,029 questions.
Number of Domains 50 unique domains (e.g., Geometry, Number Theory, Biology).

A.2 Enigmata

The ENIGMATA suite is a comprehensive framework designed to enhance the logical reasoning abilities of Large Language
Models (LLMs), particularly in solving puzzles. Unlike traditional reasoning benchmarks that often lack diversity or
scalability, ENIGMATA features 36 distinct puzzle tasks across seven broad categories: Crypto, Arithmetic, Logic, Grid,
Graph, Search, and Sequential puzzles. Each task is equipped with a unique auto-generator capable of producing unlimited
examples with controllable difficulty and a rule-based verifier for automatic evaluation. For this benchmark the generators to
generate training data for each problem has not been made public. Therefore in the current version of the paper we split
the ENIGMATA dataset into two sub-datasets sampled randomly across tasks with the same distribution of tasks for each
dataset. We generate a train and evaluation dataset both of size 2048.

Table 3: ENIGMATA Suite Overview

Factor Description
Tasks 36 unique puzzle tasks.
Categories 7 (Crypto, Arithmetic, Logic, Grid, Graph, Search, Sequential).
Verification Rule-based auto-verifiers for all 36 tasks.
Original Benchmark 4,758 puzzle instances.
Training Dataset (this paper) 2048 puzzle instances.
Evaluation Dataset (this paper) 2048 puzzle instances.

A.3 Synthetic Parallel

The Synthetic Parallel dataset was created to produce complex problems that are inherently decomposable into multiple,
independent sub-problems. This design facilitates the training and evaluation of a large language model’s ability to perform
parallel reasoning. The dataset was generated using the x grok-3-mini-beta model.

The generation process involves two main stages. First, a problem is synthetically created. The model is prompted to design
a complex problem from one of nine distinct problem types: calculation, algorithm, optimization, simulation, sorting,
matrix, calculator, one-step simulation, and n-body problems. The complexity and the number of inherent sub-tasks (ranging
from 1 to 64) are specified during this creation phase. The prompt explicitly instructs the model to avoid any language that
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would overtly suggest a parallel approach to solving the problem, ensuring that the decomposable nature of the problem is a
natural characteristic of the problem itself.

In the second stage, the same x grok-3-mini-beta model is used to solve the generated problem using a structured, parallel
reasoning approach. The model is prompted to first break the problem down into a number of distinct reasoning ”threads.”
For each thread, it must generate a concise and unique instruction. Following the instructions, the model provides the
reasoning for each thread independently, enclosed in specific XML tags (e.g., <thread n instruction> and <thread n>).
This structured output allows for the clear separation and analysis of each reasoning path. A key feature of our data
generation is the ability to force the model to use a specific number of threads, which allows for the study of how the model
performs under such constraints. The generated solutions are then automatically evaluated to ensure they adhere to the
required format. This process yielded a dataset of 128 samples.

Table 4: Synthetic Parallel Dataset Overview

Factor Description
Size 128 problems with structured parallel solutions.
Generation Model x grok-3-mini-beta for both problem and solution generation.
Problem Types 9 (e.g., Calculation, Optimization, Simulation).
Sub-tasks A range of 1 to 64 independent sub-tasks per problem.
Reasoning Structure Explicit instructions and reasoning for each parallel thread.
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B. Data Generation
This section details the data generation methodology, specifying the configurations for the primary generation model and
the subsequent evaluation models. The process involves a main generation step followed by distinct validation stages for
correctness and independence, each utilizing a specifically tuned model. The entire pipeline leverages API calls to X.AI
models.

B.1 Main Generation (“Diverse Approaches”)

The core synthetic dataset was produced using the x grok-3-mini-beta model. The parameters were configured to
accommodate extensive parallel reasoning tasks.

Table 5: Hyperparameters for Main Data Generation

Parameter Value
Model x grok-3-mini-beta
Max Tokens 100,000
Temperature 0.3 (default)
Top-p 1.0 (default)

B.1.1 PROMPTS

System Prompt template

You are a helpful assistant solving problems using a parallel reasoning process to explore
diverse ways to solve a problem, implemented sequentially. Follow this exact structure:

1. Generate {num_threads} distinct thread instructions, each concise (<=100 words), unique
in approach that has a chance of solving the problem. Output each as <
thread_n_instruction> </thread_n_instruction>.

2. For each thread, provide reasoning based only on the problem and its specific
instruction, using around 40 sentences to explore the assigned direction, enclosed in <
thread_n> </thread_n> tags.

3. Aggregate insights from all threads in a <think> </think> section, synthesizing their
reasoning.

4. Provide the final answer in an <answer> </answer> section.
5. The final answer should only be a concise answer, if the answer is a number give only

the number and no filler text, if it is a string or proof give the string or proof and
no additional filler text. Start with thread instructions, followed by thread reasoning
, then aggregation, then the answer. Ensure clarity in instructions. The instructions
must be diverse to spread the load of the reasoning and prevent redundancy.
Instructions must be independent of each other and not rely on each other’s reasoning
or results. The threads should not condition on each other’s results or reasoning in
any way to ensure they can be evaluated independently. Do not make use of <result> </
result> tags at all, you should only ever use code block tags, if they are mentioned in
the problem, they are only used as placeholders for the answer in the question, they
are not to be used at generation time. Use code block tags for the solution. Follow the
exact format the problem asks for the answer to be given in, for example if matrices
are specified in list of list format do that or using \n tags then use those.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Instilling Parallel Reasoning into Language Models

User Prompt template

Problem: {problem}
Use code block tags for the solution. Do not use <result> tags at all, they are only used

as placeholders for the answer in the question, they are not to be used at generation
time. Follow the exact format the problem asks for the answer to be given in, for
example if matrices are specified in list of list format do that or using \n tags then
use those.

B.2 Validation and Independence Checks

To ensure the integrity and quality of the generated data, we implemented a two-fold validation procedure using the more
capable x grok-3-beta model. This process assessed both the correctness of the generated answers and the statistical
independence of the instructions intended for parallel execution.

B.2.1 LLM ANSWER EVALUATION

For correctness validation, we configured the model to act as an evaluator. It was prompted to compare the generated
answer against a ground truth, responding with a simple binary classification (”1” for correct, ”0” for incorrect). A higher
temperature was used to provide more nuanced judgment.

Table 6: Hyperparameters for LLM Answer Evaluation

Parameter Value
Model x grok-3-beta
Max Tokens 10
Temperature 0.3
Top-p 1.0

System Prompt template

You are an evaluator. Given a problem, a ground truth answer, and a generated answer,
determine if the generated answer is correct. The generated answer does not need to be
identical to the ground truth answer. For example, in problems like countdown, there
can be multiple ways to solve the problem. Respond with only ’1’ if correct and ’0’ if
incorrect. Ensure your response contains *only* the digit ’1’ or ’0’ and nothing else.

User Prompt template

Problem: {problem} Ground Truth Answer: {ground_truth_answer} Generated Answer: {
generated_answer} Is the Generated Answer correct? Respond with only ’1’ for correct or
’0’ for incorrect.

B.2.2 PARALLEL INSTRUCTION INDEPENDENCE EVALUATION

To verify that problem instructions could be executed independently in parallel, a separate evaluation step was performed.
The model was prompted to assess a set of instructions and determine if they were free from dependencies, again providing
a binary response.
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Table 7: Hyperparameters for Instruction Independence Evaluation

Parameter Value
Model x grok-3-beta
Max Tokens 10
Temperature 0.3
Top-p 1.0

System Prompt template

You are an evaluator assessing whether computational thread instructions can be executed
independently and in parallel. For instructions to be independent, each thread must be
able to complete its work without needing results from other threads. Threads should
not have sequential dependencies. Respond with ONLY ’1’ if all instructions are
independent and can be executed in parallel, or ’0’ if any instructions depend on
results from other threads. Your response must contain ONLY the digit ’1’ or ’0’ and
nothing else.

User Prompt template

Evaluate whether the following thread instructions can be executed independently and in
parallel. The instructions should not depend on each other’s results or computations.

Thread Instructions:
{thread_instructions}

Are all these instructions independent and can be executed in parallel without waiting for
each other’s results? Respond with ONLY ’1’ for yes (completely independent) or ’0’ for
no (some dependencies exist).

C. Data Generation Statistics
This section provides a statistical overview of the data generated using both parallel and Chain of Thought (CoT) method-
ologies. The correctness of generated solutions was evaluated for each approach across different datasets.

C.1 Parallel Generation

This subsection presents the statistics for data generated using the parallel reasoning approach, evaluating performance
across various thread configurations. Each table details the performance for a specific dataset, with overall metrics and
correctness percentages for each thread count organized as individual rows.
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C.1.1 ENIGMATA DATASET

Table 8: Statistics for Parallel Generation on Enigmata

Metric Value
Total Problems 2500
Total Correct Problems 553
1 Thread 74.14%
2 Threads 12.12%
4 Threads 4.70%
8 Threads 4.88%
16 Threads 1.99%
32 Threads 1.99%
64 Threads 0.18%

C.1.2 S1K DATASET

Table 9: Statistics for Parallel Generation on S1K

Metric Value
Total Problems 1000
Total Correct Problems 653
1 Thread 48.10%
2 Threads 6.20%
4 Threads 3.60%
8 Threads 2.50%
16 Threads 2.40%
32 Threads 1.50%
64 Threads 1.00%

C.1.3 SYNTHETIC DATASET

For the synthetic dataset problems that are decomposable were generated by ”grok-3-mini” using the prompt. The number
of sub-tasks were sampled uniformly in the range (1-64).

C.2 Chain of Thought Generation

This subsection details the statistics for data generated using the traditional Chain of Thought approach.

C.2.1 ENIGMATA DATASET

Table 10: Statistics for Chain of Thought Generation on Enigmata

Metric Value
Total Problems 2048
Total Correct Problems 400
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C.2.2 S1K DATASET

Table 11: Statistics for Chain of Thought Generation on S1K

Metric Value
Total Problems 1000
Total Correct Problems 579
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D. Parallel Inference

D.1 Decompose and Execute

The ‘DecomposeAndExecute‘ operator provides a mechanism for nested parallelism, breaking down a single, complex
reasoning instruction into smaller, parallelizable sub-problems. This process mirrors the main parallel inference framework
but operates on a sub-task level.

Given a problem x and a high-level instruction instrk from the initial diversity step, the ‘DecomposeAndExecute‘(x,
instrk) function executes the following three stages:

1. Sub-Instruction Generation: The operator first recomposes the problem and the high-level instruction into a new prompt
for decomposition. Using this, it generates a set of m sub-instructions, {j1, . . . , jm}, by drawing from the distribution:

(m, j)← pθ(m, j | pi,2, x, instrk)

Here, pi,2 is the specific prompt for decomposition instruction generation. This step effectively breaks down the single
complex task instrk into multiple, simpler, and concurrently executable sub-tasks.

2. Parallel Sub-Task Execution: With the sub-instructions established, the operator executes them in parallel to generate
a set of sub-responses, {o1, . . . , om}. Each sub-response ol is generated by conditioning on the problem, the original
high-level instruction, and the corresponding sub-instruction jl:

ol ← pθ(ol | pr, x, instrk, jl), for each l ∈ {1, . . . ,m}

Note that we use the same parallel response prompt, pr, as in the main execution stage.

3. Sub-Result Aggregation: Finally, the operator aggregates the set of sub-responses, o, to produce the final, consolidated
response rk for the original high-level instruction instrk. This is achieved by drawing from the aggregation distribution,
now conditioned on the sub-responses:

rk ← pθ(c, a | pa, x, instrk, o)

This aggregated result, rk, is then passed back to the main diversity-level Result Aggregation stage, which synthesizes it
along with all other parallel thread responses to produce the final answer.
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E. Baselines

E.1 Chain of Thought (CoT)

Chain of Thought (CoT) is an inference technique where a model generates a sequence of intermediate reasoning steps
before providing a final answer. For a given problem x, the model produces a reasoning trace (analogous to a single response
r) which culminates in an answer a. This process can be denoted as (r, a) = Mθ(x). This approach improves performance
on complex tasks by breaking them down into smaller, more manageable steps.

E.2 Budget Forcing

Budget Forcing is a strategy to control the computational resources allocated to a model’s response. This is achieved by
setting an explicit budget, B, which constrains a parameter such as the maximum number of tokens for the output. For a
given problem x and a specified budget B, the model Mθ is prompted to generate a reasoning trace r and a final answer
a, conditioned on this constraint. The generation process is denoted as (r, a) = Mθ(x | B), where the total length of
the generated response is limited by the budget. This technique is used to study the trade-off between performance and
computational cost and to analyze model behavior under explicit resource limitations.

E.3 Majority Voting

Majority Voting, also known as self-consistency, is an ensembling method used to determine a final answer from multiple
reasoning paths. Given n paths generated (e.g., via thread forcing), which yield a set of answers {a1, a2, . . . , an}, the final
answer, afinal, is selected by choosing the most frequent one:

afinal = argmax
a′

n∑
i=1

I(ai = a′)

where I is the indicator function. This technique improves accuracy by filtering out sporadic errors and amplifying the
correct answer, which is assumed to appear more consistently across different valid reasoning approaches.
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F. Hyperparameters
This section details the hyperparameters used for the training and inference of our models.

F.1 Training

F.1.1 CHAIN OF THOUGHT

Table 12: Training Hyperparameters for Chain of Thought

Hyperparameter Value

Model Name/Size Qwen 3-4b
Batch Size 16
Learning Rate 1× 10−5

Learning Rate Scheduler Constant with Warmup
Warmup Steps 100
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.95
Adam Epsilon 1× 10−8

Gradient Clipping 1.0
Number of Epochs 1
Max Input Sequence Length 40960

F.1.2 PARALLEL REASONING

Table 13: Training Hyperparameters for Parallel Reasoning

Hyperparameter Value

Model Name/Size Qwen 3-4b
Batch Size 16
Learning Rate 1× 10−5

Learning Rate Scheduler Constant with Warmup
Warmup Steps 100
Weight Decay 0.1
Adam Beta1 0.9
Adam Beta2 0.95
Adam Epsilon 1× 10−8

Gradient Clipping 1.0
Number of Epochs 1
Max Input Sequence Length 40960
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F.2 Inference

F.2.1 CHAIN OF THOUGHT

Table 14: Inference Hyperparameters for Chain of Thought

Hyperparameter Value

Temperature 0.6
Top-p (Nucleus Sampling) 0.95
Max Tokens 100k
Number of Generated Sequences 1

F.2.2 BUDGET FORCING

Table 15: Inference Hyperparameters for Budget Forcing

Hyperparameter Value

Number of Generated Responses 1
Max Tokens per Response [512, 1024, 2048, 4096, 8192]
Temperature 0.6
Top-p (Nucleus Sampling) 0.95

F.2.3 MAJORITY VOTING

Table 16: Inference Hyperparameters for Majority Voting

Hyperparameter Value

Number of Generated Samples (k) [1, 3, 5, 7 ,9, 11, 13]
Temperature 0.6
Top-p 0.95
Max Tokens 1024

F.2.4 PARALLEL REASONING

Table 17: Inference Hyperparameters for Parallel Reasoning

Hyperparameter Value

Number of Parallel Reasoning Paths [1,2,4,8,16]
Temperature 0.6
Top-p (Nucleus Sampling) 0.95
Max Tokens per generation 8000
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G. Further Experiments

G.1 Scaling

In this section, we investigate the scaling behavior of the Diversify Operator across a range of benchmarks, focusing on
the impact of increasing the number of threads as a key scaling axis. Figure 5 illustrates the performance of the Diversify
Operator as the compute is scaled along the thread dimension across six diverse evaluation datasets. The results demonstrate
a consistent trend of improved performance with increased thread counts, highlighting the operator’s ability to effectively
leverage parallelization.

Figure 5: Diversify Operator reasoning compute scaled on the number of threads dimension for 6 evaluation datasets.
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H. Parallel Reasoning Examples
In addition to our experimental results, we also provide examples of both the diversity operator and the decomposition
operator. For examples of the diversity operator, we chose Fermi problems as a good choice. We chose these since most
Fermi problems have no ground truth answer and, therefore, are amenable to different approaches to solve the problem. For
decomposition tasks, we use examples of synthetic tasks that have inherently parallelizable operations, such as calculations
that can be parallelized.
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Problem: Estimate the total number of pizzas ever eaten.
Predicted number of threads: 4

N Instruction Response

1 Start with pizza production statistics: Calculate
the total number of pizzas ever made by
multiplying average daily production
worldwide by the number of days since pizza’s
origin, assuming continuous production.

Pizza production statistics: Assume an average of 1 million
pizzas made daily globally. Since pizza’s origin in the 18th
century (about 250 years), that’s roughly 92,500 days.
Multiplying 1 million by 92,500 gives about 92.5 billion
pizzas. This is a simplified estimate based on production
rates. Historical data from sources like the Pizza Chain
shows growth, so adjusting for increases might add 20-30
billion more. Thus, the total could range from 112.5 to 122.5
billion. This method focuses on output figures. It’s a
production-centric view.

2 Begin with dietary data: Estimate the total
number of pizzas ever eaten by analyzing
global dietary consumption statistics, focusing
on pizza as a regular meal for specific
demographics.

Dietary data indicates that pizza is a staple in certain regions,
like Italy and the U.S., where it’s consumed regularly.
Global dietary surveys suggest that millions of people eat
pizza weekly, with estimates of 100 million people
consuming it at least once a month. If we assume an average
of 2 pizzas per person per year for this group, it totals
around 200 million pizzas annually. Extending this to the
entire history, say 10,000 years, gives 2 billion pizzas. This
approach uses dietary patterns to extrapolate consumption,
focusing on frequency and demographics. It doesn’t account
for non-dietary factors like cultural events.

3 Use cultural event data: Estimate pizza
consumption based on data from major events
like the World Pizza Championships,
extrapolating to total historical eats through
participation and attendance records.

Cultural events like the World Pizza Championships, with
over 500 participants globally since 1999, could be
extrapolated to total eats by assuming similar events
occurred in local variations. If each event consumes 100
pizzas and there are 10,000 such events, that’s 1,000,000.
This is a small fraction of total. Attendance at these events
might be in the thousands annually, but it’s not
comprehensive. Overall, this approach yields a conservative
estimate of around 500,000 to 1,000,000.

4 Inspect waste and leftovers: Estimate the total
number of pizzas ever eaten by analyzing data
on pizza waste, leftovers, and disposal to infer
consumption rates globally.

Pizza waste and leftovers provide a tangible measure of
consumption. Globally, millions of tons of food waste are
generated annually, with pizza being a common item. [....] If
we estimate that 10% of all pizzas produced end up as waste
or leftovers, and considering global production, this could
add up to billions of pizzas discarded. For example, if 1
billion pizzas are wasted each year worldwide, and assuming
a 10% waste rate from total production, that implies around
10 billion pizzas produced annually, leading to a cumulative
total over history. This method uses environmental data to
extrapolate consumption, treating waste as a proxy for total
intake. It’s a bottom-up approach that complements direct
consumption data.

Aggregated thinking: <think>Thread 1 (production) provides the highest estimate, ranging from 112.5 to 122.5 billion
pizzas. Thread 2 (dietary data) gives a much lower estimate of 2 billion pizzas, but the assumption of 10,000 years for
pizza history is significantly longer than commonly accepted (18th century, 250 years) [...]. The waste data (Thread 4)
also points to a very large number, on the order of tens of billions. Therefore, a robust estimate should fall within this
higher range.</think>

<answer>Around 100 billion pizzas </answer>

Table 18: Decompose parallel reasoning execution example for pizza consumption problem. Use of [...] compression to
remove long verbose text.
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Problem: Calculate this mathematical expression:
(((5× 5× 5× 5) + (99× 98))/((10000/25)− (

√
1000000)))× (((210)− (50!/48!)) + (123 + 456 + 789))

Predicted number of threads: 6

N Instruction Response

1 Calculate the value of (5×5×5×5) and
determine how it contributes to the overall
expression.

5×5×5×5 is calculated as 5 cubed times 5, which is 125
times 5, resulting in 625. This value is added to 99×98 in
the numerator, so it contributes to the total sum before
division. In the context of the entire expression, 625 helps
form the numerator’s base. This step is straightforward
multiplication and powers. It sets the stage for the
subsequent addition. The result is a key component in
evaluating the overall fraction.

2 Compute the result of (99×98) and assess its
role in the first part of the expression.

The expression (99×98) involves multiplying two
consecutive integers. First, calculate 99×98: 99×98=9702.
This value is added to 5×5×5×5 in the numerator. The
result, 9702, contributes to the overall magnitude of the first
part of the expression. In the full formula, this addition
scales the numerator significantly. Thus, 9702 plays a key
role in determining the final outcome.

3 Evaluate the denominator (10000/25) and
subtract (

√
1000000) to find its value.

The denominator is (10000/25) minus
√
1000000. First,

divide 10000 by 25 to get 400. Then,
√
1000000 is 1000.

Subtract 1000 from 400 to get -600. This negative result is
crucial for the overall fraction. The operation highlights the
subtraction’s impact. It sets the base for the division in the
main problem. This step ensures accuracy in the calculation.

4 Calculate (210) and explore its impact on the
second part of the expression.

(210) is 1024, a standard exponentiation result. This value is
used in the subtraction with 50!/48!. It contributes to the
overall magnitude of the second part. In mathematical
contexts, powers like 210 are common in computing and
algebra. This calculation is straightforward and independent.
It sets a base for further operations in the expression.

5 Compute (50!/48!) and analyze how it fits into
the second part of the expression.

50!/48! equals 50×49×48!/48!=50×49=2450. This
simplifies the factorial division, showing how factorials can
be reduced. In the context of the full expression, it’s a key
subtraction term. This computation is straightforward once
the factorial property is applied. It helps in evaluating the
overall arithmetic.

6 Sum the values 123, 456, and 789, and
determine their combined contribution.

Summing 123, 456, and 789: 123+456=579, then
579+789=1368. This is a straightforward addition of three
numbers. The result is 1368, which is added to the other
components in the expression. This step provides a base for
the final calculation.

Aggregated thinking: <think>Thread 1 provides 5×5×5×5=625 for the numerator. Thread 2 adds 99×98=9702 to
this, so numerator is 625+9702=10327. Thread 3 calculates the denominator as -600. Division gives 10327/−600≈
−17.2117. Thread 4 gives 210=1024, and Thread 5 gives 50!/48!=2450, so 1024−2450=−1426. Thread 6 provides
123+456+789=1368, so add to -1426: −1426+1368=−58. Final multiplication: −17.2117×−58≈998.2886, rounded to
the nearest whole number as per context.</think>

<answer>998 </answer>

Table 19: Decompose parallel reasoning execution example for calculation problem
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