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Abstract

As the complexity of AI systems and their in-
teractions with the world increases, generating
explanations for their behaviour is important for
safely deploying AI. For agents, the most natu-
ral abstractions for predicting behaviour attribute
beliefs, intentions and goals to the system. If an
agent behaves as if it has a certain goal or belief,
then we can make reasonable predictions about
how it will behave in novel situations, including
those where comprehensive safety evaluations are
untenable. How well can we infer an agent’s be-
liefs from their behaviour, and how reliably can
these inferred beliefs predict the agent’s behaviour
in novel situations? We provide a precise answer
to this question under the assumption that the
agent’s behaviour is guided by a world model.
Our contribution is the derivation of novel bounds
on the agent’s behaviour in new (unseen) deploy-
ment environments, which represent a theoretical
limit for predicting intentional agents from be-
havioural data alone. We discuss the implications
of these results for several research areas includ-
ing fairness and safety.

1. Introduction
Humans understand each other through the use of abstrac-
tions. We explain our intentions by appealing to our “goals”
and “beliefs” about the world around us without knowing the
underlying cognition going on inside our heads. According
to Dennett (1989; 2017) the same is true of our understand-
ing of other systems. For example, a bear hibernates during
winter as if it believes that the lower temperatures cause
food scarcity. This is a useful description of the bear’s be-
haviour, with real predictive power. For example, it gives us
(human observers) the ability to anticipate how bears might
act as the climate changes. There is a correspondence be-
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tween beliefs and behaviour that is foundational to rational
agents (Davidson, 1963).

Artificial Intelligence (AI) systems appear to have similarly
general capabilities, not totally unlike that of humans and
animals. They can generate text that is fluent and accurate in
response to a very diverse set of questions. Whenever they
display consistent types of behaviour across many different
tasks, we are tempted to apply our own mentalistic language
more or less at face value (Shanahan, 2024), taking seriously
questions such as: What do the AIs know? What do they
think, and believe? Taking the analogy further, it is as if
they learn “world models” that mirror the causal relation-
ships of the environment they are trained on, guiding their
future plans and behaviour1. And as a consequence, their
interactions with an environment will leave clues that might
give us the ability to predict their future behaviour in novel
domains. This possibility engages with a core AI Safety
problem: how to guarantee and predict whether AI systems
will act safely and beneficially?

The main result of this paper is to offer a new perspective
on this problem by showing that:

With an assumption of competence and optimality,
the behaviour of AI systems partially determines

their actions in novel environments.

Here behaviour means our observations of the decisions
made by the AI system, contextual variables, and utility or
reward values in some environment. The “partial” determi-
nation of actions in new environments is a consequence of
our lack of knowledge about the AI’s actual world model
(different models may induce different optimal actions).
However, even though we can’t uniquely identify the AI’s
future behaviour and beliefs, we can narrow it down to a
range of possible outcomes. This paper characterises those
outcomes.

1Recent research suggests that an AI’s behaviour, to the extent
that it is consistent with rationality axioms, can be formally de-
scribed by a (causal) world model (Halpern & Piermont, 2024).
The same conclusion can also be obtained for AIs capable of solv-
ing tasks in multiple environments (Richens & Everitt, 2024). For
large language models, there is increasing empirical evidence for
the “world model” hypothesis, see e.g., Toshniwal et al., 2022; Li
et al., 2022; Gurnee & Tegmark, 2023; Goldstein & Levinstein,
2024 and Vafa et al., 2024.
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In the literature, the under-determination of agent “beliefs”
and “preferences” has been considered in the fields of in-
verse reinforcement learning (Abbeel & Ng, 2004; Skalse
& Abate, 2023; Amin & Singh, 2016) and decision theory
(Savage, 1972; Afriat, 1967; Jeffrey, 1990), among others.
In settings with distribution shift between training and de-
ployment environments, this under-determination can be
understood as a consequence of the Causal Hierarchy The-
orem, that defines precise limits on the kinds of inferences
that can be drawn across domains (Bareinboim et al., 2022;
Pearl, 2009). It implies, for example, that behaviour in an
environment subject to an intervention cannot be established
from “non-interventional” data alone. Robins (1989), Man-
ski (1990) and Pearl (1999) showed that useful information
in the form of bounds can nevertheless be extracted from
“non-interventional” data, without actually knowing the un-
derlying data-generating process. In the causality literature,
several methods and algorithms exist to solve different ver-
sions of this problem, see e.g., Balke & Pearl, 1997; Tian &
Pearl, 2000; Zhang et al., 2021; Bellot, 2024; Rosenbaum
et al., 2010; Tan, 2006.

This paper extends the causal formalism to reason about
the possible behaviours and beliefs of an AI system, itself
assumed to be governed by an unknown data generating
process or world model. With this interpretation we are able
to define mathematically notions such as an AI’s preferred
choice of action in novel environments, its perception of
fairness, and its perception of harm due to the actions it
takes. Our main contribution is a set of inequalities on these
“beliefs” in terms of quantities that can in principle be es-
timated from behavioural data, and that hold irrespective
of the underlying cognitive architecture of the AI system
as long as it can be represented by a well-defined set of
causal mechanisms (a world model) that tracks its behaviour
(Sec. 4). We then extend these results to characterize AI be-
haviour under several relaxations for applications in practice
(Sec. 5), ultimately with the goal of defining the theoretical
limits of what can be inferred from data about AI behaviour
in new (unseen) environments.

This has consequences for the wider AI Safety community
and society. For example, we show that an AI’s percep-
tion of the potential fairness and harm of its decisions (e.g.,
whether the AI’s resource allocation is believed to be eq-
uitable, or its generations unbiased) can provably not be
inferred from observing its behaviour alone. There are theo-
retical limits to how much we can understand about an AI’s
cognition and decision-making process from observations.
We believe our results can help justify the claim that the
design and inference of world models is important to ensure
AIs can behave predictably and act safely and beneficially,
as argued by Dalrymple et al., 2024; Legg, 2023; Bengio
et al., 2025.

2. Preliminaries
In this section we outline some basic principles that we use
to reason about how beliefs might be (implicitly) defined
within an AI system.

We use capital letters to denote variables (X), small letters
for their values (x), bold letters for sets of variables (X)
and their values (x), and use supp to denote their domains
of definition (x P suppX ). To denote P pY “ y | X “ xq,
we sometimes use the shorthand P py | xq. We use 1t¨u

for the indicator function equal to 1 if the statement in t¨u

evaluates to true, and equal to 0 otherwise.

Actions, plans, and hypothetical outcomes can be evalu-
ated by symbolic operations on a model that represents the
functional relationships in the world, known as a Structural
Causal Model (Pearl, 2009, Definition 7.1.1), or SCM for
short.

Definition 1 (Structural Causal Model). An SCM M is
a tuple M “ xV ,U ,F , P y where each observed vari-
able V P V is a deterministic function of a subset of
variables PaV Ă V and latent variables UV Ă U , i.e.,
v :“ fV ppaV ,uV q, fV P F . Each latent variable U P U
is distributed according to a probability measure P puq. We
assume the model to be recursive, i.e., that there are no
cyclic dependencies among the variables.

In an SCM M, each draw u „ P puq evaluates to a potential
response Y puq “ y and entails a distribution over the
possible outcomes P pyq. The power of SCMs is that they
specify not only the joint distribution P pvq but also the
distribution of variables under all interventions, including
incompatible interventions (counterfactuals). Formally, an
intervention dopxq is modelled as a symbolic operation
where values of a set of variables X are set to constants x,
replacing the functions tfX : X P Xu that would normally
determine their values. This effectively induces a sub-model
of M, denoted Mx. The variables obtained in Mx are
denoted Yx and we will loosely write PMxpyq ” Pxpyq ”

P pyxq ” P py | dopxqq to denote the probabilities over the
possible outcomes of Y in Mx.

Different environments can be modelled by different SCMs.
Let M1 “ xV ,U ,F1, P 1y,M2 “ xV ,U ,F2, P 2y be the
SCMs for two environments over the same set V and U . We
say that there is a discrepancy or a shift on a variableX P V
between them if either f1X ‰ f2X or P 1pUXq ‰ P 2pUXq

or both. Shifts might therefore encode arbitrary changes in
the causal mechanisms for a set of variables. For a reference
SCM M, a so-called “shifted” SCM will be represented
by a sub-model Mσ where σ represents the discrepancies
between M and Mσ. For example, an environment with a
shift σ on a set of variables X introduces (possibly arbitrary)
discrepancies in the functional assignment or (independent)
exogenous variables of X while keeping other mechanisms
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unchanged. See Pearl (2009, Chapter 4) and Correa &
Bareinboim (2020b) for more details.

We make a note here that all proofs of statements are given
in Appendix C and that the derivations of examples are
given in Appendix A.

3. Agents, Beliefs, and the Environment
In this section we lay out a framework to interface between
the AI system’s internal world model and our own observa-
tions of their behaviour in the real world. Both rely on the
same SCM abstraction.

We assume that the AI operates according to an SCM xM
over V , its (implicit) world model2, that guides its be-
haviour. V includes the AI’s decision variable D, the inputs
to those decisions C, possible additional variables, and the
utility variable Y , such as the training signal or a measur-
able target given to the AI (Everitt et al., 2021). Beliefs3 are
defined as quantifiable aspects of that model or derivations
of it.
Definition 2 (Beliefs). An AI belief is a probabilistic state-
ment derived from its internal model xM.

For example, a statement like P xMdpY “ yq “ 0.8 de-
scribes the subjective belief “The AI is 80% confident that
taking decision D “ d will lead to event Y “ y”. The
sub-model in this mathematical expression represents what
the AI “thinks” the world looks like after taking the decision
D “ d.

We assume that the AI makes decisions d by sampling from
a policy πpd | cq, which is a function mapping from the
domain of the observed covariates C Ă V (i.e., all the
inputs given to the AI) to the probability space over the
domain of the decision D P V . The choice of π is assumed
to be driven by its perceived utility4 Y P V within the AI’s
model xM, that is,

argmax
π

E
P yM r Y | dopπqs . (1)

The AI interacts with the real-world that is described by a
(likely different) SCM M that encodes the true dynamics

2Here SCMs are meant to represent, mathematically, the
decision-making process going on “in the AI’s head” in a way
that tracks its behaviour, without making any claims about the AI’s
actual cognitive architecture.

3We might prefer to use terms like “credences” or “subjective
probabilities” to emphasize the subjective nature of beliefs and
avoid the connotation of strong conviction or certainty as done by
(Schwitzgebel, 2024, Sec. 2.3).

4To account for possible uncertainty in the AI’s “satisfaction”
about a given state of the world w we assume Y is a random
variable (induced by UY Ă U ), also known as a stochastic util-
ity model (Manski, 1977). We assume that the support of Y is
bounded in the r0, 1s interval.

of the environment. In principle, we have no reason to
expect that the model xM internalized by the AI matches the
underlying reality M. AI systems might hope to reproduce
some aspects of M (the AI might have learned, for instance,
to mimic the distribution of the observed data). Competent
AIs might go further and be able to reliably predict the
effects of different decisions in the world. We define this as
grounding below.

Definition 3 (Grounding). Let xM represent the AI’s internal
model. We say that the AI is grounded in a domain M if
P

xMdpV q ” PMdpV q for any decision d P suppD.

Grounding tells us that the AI’s beliefs about the effect of
a particular decision d in the training environment match
the effects that would be observed in the real world, i.e.
pPdpV q ” PdpV q5. It is an assumption on the relationship
between our observations of AI behaviour P pV q with what
might be going on in the AI’s “mind” pP pV q. This might
be reasonable, for example, if the AI is explicitly trained by
reinforcement learning in M.

By assumption, a grounded AI’s choice of decision in envi-
ronment M is in principle predictable from data since we
can compute Eq. (1) uniquely. But this might not necessarily
be the case in a new (unseen) environment.

Example 1 (The Uncertain Medical AI). Imagine an AI
system assisting patients with their treatmentD for a disease
Y known to be influenced also by a third variable Z, blood
pressure. The AI is competent and learns the precise effect
of all treatments. In other words it is grounded in M, i.e.
pPdpz, yq “ Pdpz, yq. For concreteness, let the environment
M be given by,

Z Ð 1U“1 or 4,

Y Ð

#

Z ¨ 1U“4 ` p1 ´ Zq ¨ 1U“1,3 or 4 if d “ 0

Z ¨ 1U‰2 ` p1 ´ Zq ¨ 1U“2 or 4 if d “ 1,

with equal probability P for all values U P t1, 2, 3, 4, 5u.
Here U is latent, summarizing all other contributions to
both the disease and blood pressure, such as an individual’s
(unobserved) attitudes to health, fitness, etc. Could we
confidently deploy this AI system more widely, for example,
on individuals that also take a second drug that artificially
improves their blood pressure (e.g., fixing Z to 1, replacing
the original assignment)? If the AI system is instructed to
maximize Y on average, what decision does the AI believe
is optimal in this new environment? The answer is we do
not know, meaning that it is possible to find a second model

5We use the shorthand Pd ” PMd and pPd ” P
xMd to simplify

the notation.
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xM defined by the mechanisms:

Z Ð 1U“1 or 4,

Y Ð

#

Z ¨ 1U‰1 ` p1 ´ Zq ¨ 1U“3 or 4 if d “ 0

Z ¨ 1U“1 or 4 ` p1 ´ Zq ¨ 1U“1 or 2 if d “ 1,

that entails exactly the same observations pPdpz, yq “

Pdpz, yq but induces different optimal decisions in the
new environment (under the intervention Z Ð 1). Un-
der MZÐ1, the highest utility Y on average is given by
d “ 1, while under xMZÐ1 the highest utility Y on average
is given by d “ 0. A priori, we have no way of knowing
which model (M or xM) is governing the AI’s behaviour
and so no way of knowing what decision will be favoured
by the AI. ˝

This example illustrates a canonical point in a simple setting:
as observers, with access to the AI’s interactions in some
domain, its behaviour outside of that domain might not be
uniquely determined (Pearl, 2009).

4. The Limits of Behavioural Data
In this section, we explore the limits of behavioural data for
predicting the decisions of AIs in new environments.

As external observers, we do not have access to the mech-
anisms underlying the actual environment nor the agent’s
internal model. We assume that we must rely for our in-
ferences on watching the agent’s behaviour and its conse-
quences. That is we have access to (samples of) PdpV q6

for all d. As a starting point, we might expect competent
AIs to be weakly predictable in the sense that a subset of
decisions can be ruled out as provably sub-optimal given
our observations.

Definition 4 (Weak Predictability). We say that an AI is
weakly predictable under a shift σ in situation C “ c if
there exists a decision d˚ that is provably sub-optimal, i.e.,

d˚ ‰ argmax
d

E
P yM r Y | dopσ, dq, cs , (2)

for any valid SCM xM describing the AI’s internal model.

Here, “valid” means that the AI’s internal model is compati-
ble with the observed data under our assumptions about the
relationship between the data and the AI’s internal model,

6Technically, the AI system may choose to follow an arbitrarily
complex policy π in the training domain, inducing a (assumed
positive) distribution Pπpvq. It holds that PdpV q can be computed
from any such PπpV q as long as Pπpvq ą 0,@v, and vice versa,
see e.g. Lem. 1. The positivity assumption Pdpvq ą 0 rules
out fully deterministic policies in the available data but might be
reasonable if the AI spends some time exploring before committing
to a course of action.

e.g., grounding. Weak predictability means that there exists
at least one decision that we can guarantee the AI will not
take in the shifted environment. Specifically, we can rule
out a decision d˚ if and only if we can find a (superior)
alternative decision d ‰ d˚ such that,

min
xMPM

p ∆dąd˚ q ą 0, (3)

where,

∆dąd˚ :“

E
P yM r Y | dopσ, dq, cs ´ E

P yM r Y | dopσ, d˚q, cs .

M denotes the set of “valid” SCMs. Here ∆ can be inter-
preted as the AI’s preference gap between two decisions in
some situation C “ c. When it evaluates to a positive num-
ber d is preferred to d˚ and when it evaluates to a negative
number d˚ is preferred to d (in the AI’s mind). If our infer-
ences on ∆ allow us to rule out decisions d˚ considered to
be “unsafe” then weak predictability gives us an important
safety guarantee.

We can strengthen this notion to define strong predictability,
that describes a situation in which all but a single AI decision
can be ruled out.

Definition 5 (Strong Predictability). We say that an AI is
strongly predictable under a shift σ in situation C “ c if
the optimal decision is uniquely identifiable, i.e., there exists
a single decision d˚ such that,

d˚ “ argmax
d

E
P yM r Y | dopσ, dq, cs , (4)

for any valid SCM xM describing the AI’s internal model.

4.1. AI decisions out-of-domain: interventions

Our first result shows that, in some cases, a subset of AI
decisions can be provably ruled out, i.e., the AI is weakly
predictable.

Theorem 1. An AI grounded in a domain M is weakly
predictable under a shift σ :“ dopzq,Z Ă V , in a context
C “ c if and only if there exists a decision d˚ such that,

EPd
r Y | c, z sPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq
(5)

´
EPd˚ r Y | c, z sPd˚ pc, zq ` 1 ´ Pd˚ pzq

Pd˚ pc, zq ` 1 ´ Pd˚ pzq
ą 0,

for some d ‰ d˚.

All terms on the l.h.s are in principle computable from
the AI’s behaviour. Loosely speaking, the value of this
difference is determined (in part) by “Pd˚ pzq”: if Z “ z
(the value set by the intervention) is likely under the training
distribution, the difference will more likely evaluate to a
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Figure 1. Grounding and observations in multiple environments constrains the AI’s world model and improves our prediction of AI
behaviour out-of-distribution (o.o.d). Approximate grounding is defined in Sec. 5.

positive value. The “if and only if” condition means that
whenever this inequality does not hold we can construct two
SCMs xM1, xM2 for the grounded AI’s internal model that
generate the observed behaviour PdpV q, d P suppD, but
that induce different optimal actions. That is, for all d ‰ d˚,

E
P

yM1
r Y | dopz, dq, cs ą E

P
yM1

r Y | dopz, d˚q, cs ,

E
P

yM2
r Y | dopz, dq, cs ă E

P
yM2

r Y | dopz, d˚q, cs .

Remark. We can derive a similar condition for strongly
predictable AIs by replacing “for some d ‰ d˚” with “for
all d ‰ d˚” in Thm. 1.

We illustrate Thm. 1 with the following example.

Example 2 (Grounded Medical AI). In Example 1, we have
shown that there exists a particular intervened environment
in which the AI’s intentions cannot be determined as in
principle the AI could believe that either decision is optimal.
Is this true in general? Thm. 1 suggests that it depends on
the likelihood of different events Pdpz, yq in the observed
data. For Example 1, we can show that the medical AI is not
weakly predictable as the expression in Thm. 1 is negative
for all pairs of decisions. In other words, no decision can
be ruled out in general: in some AI internal models d1 is
inferior to d0 as min

xMPM p ∆d1ąd0 q “ Pd1pZ “ z, Y “

1q ` Pd0pZ “ z, Y “ 0q ´ 1 “ ´0.4 while in others d0 is
inferior to d1 as min

xMPM p ∆d0ąd1 q “ Pd1pZ “ z, Y “

0q ` Pd0pZ “ z, Y “ 1q ´ 1 “ ´0.8 and we don’t know
which one the AI system has internalised. ˝

In this example, AI behaviour does provide some informa-
tion as it can be constrained to larger values than its a priori
minimum ∆ “ ´1, but not enough to rule out a decision
completely. Our next result shows that Thm. 1 could be ex-
tended to get tight bounds for AI systems that are grounded
in multiple environments.

Theorem 2. Let σ :“ dopzq be a shift on a set of variables
Z Ă V . For Ri Ă Z Ă V , i “ 1, . . . , k, consider an AI
grounded in multiple domains tMri

: i “ 1, . . . , ku. The
AI is weakly predictable in a context C “ c under a shift
σ :“ dopzq if and only if there exists a decision d˚ such
that,

max
i,j“1,...,k

Apri, rjq ą 0, for some d ‰ d˚, (6)

where

Apri, rjq :“
EPd,ri

r Y | c, zzri sPd,ripc, zzriq

Pd,ri
pc, zzriq ` 1 ´ Pd,ri

pzzriq
´

EPd˚,rj
r Y | c, zzrj sPd˚,rj

pc, zzrjq ` 1 ´ Pd˚,rj
pzzrjq

Pd˚,rj
pc, zzrjq ` 1 ´ Pd˚,rj

pzzrjq
.

In this result, tMri
: i “ 1, . . . , ku describes k domains

in which experiments on different subsets of Z have been
conducted, i.e., tPd,ripV q : i “ 1, . . . , ku is available. This
includes possibly the null experiment Ri “ H that refers to
the unaltered domain M. Note that grounding in multiple
domains is useful for the prediction of the AI’s preference
gap because the resulting bounds in Thm. 2 are tighter than
those in Thm. 1 (this is given formally as Corol. 3 in the
Appendix).

Fig. 1 illustrates how different assumptions and observations
give us information about the possible world models that
the AI is operating on, which then has implications for the
AI’s behaviour out-of-distribution. This knowledge allows
us to reduce the uncertainty around the AI’s preference gap
∆, and possibly rule out certain actions that are unambigu-
ously sub-optimal out-of-distribution, inferred solely from
observed behaviour.
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4.2. AI decisions out-of-domain: general shifts

We might wonder about predictability under more gen-
eral shifts such as an arbitrary change in a subset of the
mechanisms tfZ : Z P Zu and distribution of variables
tUZ , Z P Zu in M. For example, in practice we are likely
able to convey to the AI that the mechanisms for a set of
variables Z are expected to change but not know exactly
how. For example, demographic properties of patients might
change across hospitals. How could the AI interpret the con-
sequences of such an under-specified shift? To begin to
answer this question, the following theorem shows that in
the extreme case where the nature of the shift is completely
unknown the AI’s preference gap is unconstrained.

Theorem 3. Consider an AI grounded in a domain M made
aware of an (under-specified) shift on non-empty Z Ă V .
Then the AI is provably not weakly (or strongly) predictable
in any context C “ c.

This result means that no decision could ever be ruled
out from AI behaviour. We can show moreover that
min

xMPM p ∆ q “ ´1 for any pair of decisions, meaning
that the observed data (no matter what it is) gives us no
information on AI decision-making.

In practice, however, it might be realistic to have access to
some information in the shifted environment, such as covari-
ate data, i.e., (samples from) Pσ,dpcq, that could be given to
the AI for it to update its internal model accordingly (with
some abuse of terminology we say that the AI is grounded
in Pσ,dpcq). The next theorem shows that this additional
information coupled with the AI’s behaviour makes the AI
more predictable.

Theorem 4. Consider an AI grounded in a domain M and
Pσ,dpCq made aware of a shift σ on Z Ă C. The AI is
weakly predictable under this shift in a context C “ c if
there exists a decision d˚ such that,

1 ´
2 ` EPd˚ r Y | c sPd˚ pcq ´ EPd

r Y | c sPdpcq

Pσ,d˚ pcq

`
Pdpcq ´ 2Pdpzq

Pσ,d˚ pcq
ą 0, for some d ‰ d˚.

This bound is not tight in general, however, meaning that
it is possible that the AI is actually predictable in settings
where Thm. 4 suggests it might not be.

Example 3 (Shifted Medical AI). The AI from Example 2,
originally developed from data primarily from young pa-
tients, is now considered for deployment on an older patient
population. Their probability of having high blood pres-
sure PσpZ “ 1q “ 0.9 is known to be substantially higher
than that observed during training P pZ “ 1q “ 0.4: there
is a shift in the underlying mechanisms of Z. How do
these changes influence the AI’s beliefs on ∆? Thm. 4

suggests that the medical AI might not be weakly pre-
dictable as the expression evaluates to a negative value for
all pairs of decisions. The lower bounds on the AI prefer-
ence gap are given by min

xMPM p ∆d1ąd0 q ě ´0.55 and
min

xMPM p ∆d0ąd1 q ě ´1. That is, no decision is always
inferior to any other decision. ˝

4.3. AI’s perceived fairness of decisions

An AI’s policy, even if optimal on average, has the potential
to bring about a state of the world that is intrinsically harm-
ful or unfair. Harm and fairness can be defined relative to
a causal model (Beckers et al., 2022; Plecko et al., 2024).
This means that a notion of perceived or subjective harm
and fairness could be attributed to AI systems that operate
according to an (implicit) causal model. As a consequence,
it is conceivable that AIs could be held morally accountable
for the harm and unfairness that they cause. How might one
estimate the AI’s beliefs about the harm and unfairness that
its decisions cause?

To ground our discussion, we consider here explicitly coun-
terfactual accounts of fairness and harm. These appeal to
hypothetical situations, imagining “what might have been if
...”, that can force us to confront our assumptions and values
in a way that our regular thought processes might not7. For
example, the counterfactual event pYx “ 1 | X “ x0q refers
to the outcome pY “ 1q under an intervention X “ x when
under normal circumstances X would have evaluated to x0.
In the literature, probabilities over counterfactuals emerge
from the definition of an SCM. For a set of (counterfactual)
events pzw, . . . ,yxq,

P pzw, . . . ,yxq “

ż

u:Zwpuq“zw,...,Yxpuq“yx

P puq. (7)

Kusner et al. (2017) made a concrete proposal arguing that
an AI’s decision is said to be fair towards an individual if,
from the AI’s perspective, it entails the same utility in the
actual world and in a counterfactual world where the indi-
vidual belonged to a different group (defined by a sensitive
attribute, e.g., gender, race). We adapt this notion to define
an AI’s counterfactual fairness gap.

Definition 6 (Counterfactual Fairness Gap). Let Z P

tz0, z1u be a protected attribute and z0 a baseline value
of Z. For a given utility Y , define an AI’s counterfactual
fairness gap relative to a decision d, in a given context c, as

Υpd, cq :“ E
pP r Yd,z1 | z0, c s ´ E

pP r Yd | z0, c s . (8)
7Alternative accounts to harm and fairness have been proposed

(Barocas & Selbst, 2016; Zhang & Bareinboim, 2018; Plecko et al.,
2024), sometimes motivated by scenarios where counterfactual
accounts give incomplete results. For some of them, the AI’s
beliefs can be shown to be similarly constrained by its external
behaviour. We provide a longer discussion in Appendix D.
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We say that an AI “intends” to be fair with respect to an
attribute Z if under any context C “ c and decision D “ d
the counterfactual fairness gap Υ evaluates to 0. This means
that, under its own internal world model, changing the value
of Z on the subset of situations with context c in which Z
was observed to z0 does not change the AI’s expected utility.
In the following theorem we show that, unfortunately, the
answer to this question is impossible to obtain given only
the AI’s external behaviour.

Theorem 5. Consider an agent with utility Y grounded in
a domain M. Then,

´EPd
r Y | z0, cs ď Υ ď 1 ´ EPd

r Y | z0, cs. (9)

This bound is tight.

The bound is tight in the sense that for each context, deci-
sion, and baseline attribute, we can find compatible models
for which the equalities hold. The counterfactual fairness
gap Υ is under-constrained. Since Υ “ 0 is consistent with
any external behaviour we can never conclude that the AI
system "intends" to be unfair. Moreover, since the width
of the bound is equal to 1, we can also never conclude that
the AI is anywhere "close" to being fair, according to this
counterfactual criterion.

4.4. AI’s perceived harm of decisions

Prominent definitions of harm are similarly counterfactual
in nature: the counterfactual comparative account of harm
defines a decision d to harm a person if and only if she
would have been better off if d had not been taken (Hanser,
2008; Richens et al., 2022; Beckers et al., 2022; Mueller &
Pearl, 2023). It is a contrast between events in hypothetical
scenarios in which different decisions are made. Here, we
quantify how “well off” a particular situation W “ w is
with a binary utility variable Y Ð fY pW ,UY q P t0, 1u

that we assume is tracked in experiments, i.e., Y P V . The
following definition describes this notion of harm mathe-
matically.

Definition 7 (Counterfactual Harm Gap). Consider an AI
with internal model xM and utility Y P t0, 1u. The AI’s
expected counterfactual harm of a decision d1 with respect
to a baseline d0, in context c, is

Ωpd1, d0, cq :“ E
pP r maxt0, Yd0 ´ Yd1u | c s . (10)

Operationally, the counterfactual harm gap Ω is the expected
increase in utility had the AI made a default decision d0,
with respect to a different decision d1 that the AI is contem-
plating. Counterfactual harm is therefore lower bounded at
0 with larger values indicating more harm. The following
theorem shows that the external behaviour constraints the
AI’s perception of its counterfactual harm.

Theorem 6. Consider an AI with utility Y grounded in a
domain M. Then,

Ω ě maxt0,EPd1
r Y | c s ` EPd0

r Y | c s ´ 1u

Ω ď mintEPd1
r Y | c s ,EPd0

r Y | c su

This bound is tight.

This result it is an extension of bounds on the probability of
causation given by (Pearl, 1999) and (Tian & Pearl, 2000). It
suggests that an AI’s beliefs about the harm that its decisions
cause can be inferred approximately from data.

5. The “Practical” Limits of Behavioural Data
The inductive biases implied by causal models and ratio-
nal behaviour are powerful constraints on AI behaviour.
But they might not capture the practical limitations of AI
decision-making. In this section we show that grounding,
expected utility maximization, observed data, etc., can be
relaxed in practice.

5.1. Approximate grounding

Grounding implies that the AI’s beliefs on the likelihood of
events in the environment matches the observed probabili-
ties. In practice, it might be reasonable to allow for some
amount of error, and consider a notion of “approximate”
grounding.

Definition 8 (Approximate Grounding). Let xM represent
the AI’s internal model. Given a discrepancy measure ψ,
we say that the AI is approximately grounded in a domain
M to a degree δ ą 0 if ψp pPd, Pdq ď δ for any d P suppD.

The choice of ψ and δ, in practice, depend on what error
model is reasonable for the AI and problem at hand (we
give an example below). Approximate grounding specifies
a looser relationship between our observations of AI be-
haviour P with what might be going on in the AI’s “mind”
pP . For example, the world model of an approximately
grounded AI is compatible with one distribution in the set
t pPd : ψp pPd, Pdq ď δu.

A more conservative bound (than Thm. 1) on predictability
could be derived for AIs that are approximately grounded
in an environment M.
Corollary 1. Given a discrepancy measure ψ, an AI ap-
proximately grounded in a domain M is weakly predictable
in a context C “ c under a shift σ :“ dopzq,Z Ă V , if
and only if there exists a decision d˚ such that,

min
pP : ψp pP,P qďδ

#

E
pPd

r Y | c, z s pPdpc, zq

pPdpc, zq ` 1 ´ pPdpzq

´
E

pPd˚
r Y | c, z s pPd˚ pc, zq ` 1 ´ pPd˚ pzq

pPd˚ pc, zq ` 1 ´ pPd˚ pzq

+

ą 0,
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Figure 2. Building on Fig. 1, AIs that are approximate expected utility maximizers (EUM), that internalize proxy objectives, or that obey
known causal structure carve out different constraints on the set of possible AI models (from an observer’s perspective) which may be
exploited to improve our prediction of AI choices out-of-distribution (o.o.d).

for some d ‰ d˚.

The strategy in Corol. 1 can be applied to all bounds on be-
haviour in Sec. 4 to get results under approximate grounding.
We can compare quantitatively the two notions of grounding
with an example.
Example 4 (Approximately Grounded Medical AI). The
results in Example 2 exploit the grounding relationship
pPdpV q “ PdpV q in M. We might want to relax the
equality by assuming that the AI is instead approximately
grounded. Minimum values on the AI’s preference gap
min

xMPM p ∆d1ąd0 q would then be given by,

min
pP : ψp pP,P qďδ

pPd1pZ “ z, Y “ 1q ` pPd0pZ “ z, Y “ 0q ´ 1.

These terms now capture an additional source of uncertainty
due to external behaviour more loosely constraining xM. An
empirical estimate of this quantity could be obtained by
sampling distributions pP close to P according to the distri-
butional distance ψ and threshold δ, and taking the empirical
minimum, as follows. Given that the data pz, d, yq „ P is
discretely valued in this example, we could sample proba-
bilities t pPdpz, yquz,y from a Dirichlet distribution centred
at the vector tPdpz, yquz,y with a small variance. The dis-
tance of each proposal from the reference distribution could
then be evaluated according to ψ and each proposal either
accepted or rejected using δ. For illustration, we implement
a version of this idea setting ψ to be the total variation dis-
tance and δ “ 0.1. The two minimum values now evaluate
to ´0.55 and ´0.88, respectively, which is slightly lower
than under the assumption of grounding in Example 2 (that
evaluate to ´0.4 and ´0.8, respectively). ˝

5.2. Approximate expected utility maximization

In real-world environments it might be appropriate to treat
the rationality of AI systems as “approximate” or “bounded”

in some sense: AIs might choose actions that only approxi-
mately maximize expected utility (rather than exactly maxi-
mize expected utility), given their model.

Mirroring Eq. (3), we might say that a “bounded” AI is
weakly predictable in some context C “ c if and only if
there exists a decision d˚ such that,

min
xMPM

p ∆dąd˚ q ą λ, for some d ‰ d˚. (11)

λ ą 0 is a constant that determines how much better a
decision d needs to be relative to decision d˚ for the AI to
reliably rule out d˚ in favour of others. This representation
appeals to the idea of imperfect discrimination, suggesting
that the AI discerns between two alternatives only if they
yield a sufficiently different utility (Dziewulski, 2021).

We might tighten our conditions on the observational data to
reflect this behaviour and get a new set of results describing
when AIs can be expected to be predictable. For instance,
as a corollary to Thm. 1 we have the following.

Corollary 2. An AI grounded in a domain M and bounded
in the sense of Eq. (11) is weakly predictable in some context
C “ c under a shift σ :“ dopzq,Z Ă V , if and only if
there exists a decision d˚ such that,

EPd
r Y | c, z sPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq

´
EPd˚ r Y | c, z sPd˚ pc, zq ` 1 ´ Pd˚ pzq

Pd˚ pc, zq ` 1 ´ Pd˚ pzq
ą λ,

for some d ‰ d˚.

Note the addition of the scalar λ ą 0 in the inequality.
Similar corollaries could be stated for all results in Sec. 4.
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5.3. Approximate inner alignment

A further assumption embedded in our results is the exact
observation of an AI’s utility in the data. In general, we
might expect an AI system to have internalized a proxy Y ˚

that reflects properties correlated with, but distinct from, the
observed utility Y we ultimately wish to optimize, a setting
we refer to as approximate inner alignment (Hubinger et al.,
2019).

We face a problem of partial observability: we don’t have
empirical access to the AI’s actual utility function Y ˚ and
notions such as the preference gap ∆ are therefore not
computable. Without any assumptions on the relationship
between Y and Y ˚, the preference gap ∆ will be uncon-
strained and no inference about the AI’s intended action
out-of-distribution is possible. However, the observed Y
will typically be statistically related to the AI’s implicit util-
ity Y ˚, especially if optimizing for Y ˚ serves the AI well
during training where success is measured by the observed
values of Y . Under assumptions specifying how “statisti-
cally related” observed and proxy utility objectives are, we
can expect that wider but possibly informative bounds could
still be derived for the AI’s beliefs. To show this in a simple
setting, consider again the medical AI example.
Example 5 (Partial Observability). Imagine that the Medi-
cal AI in Example 2 has internalized its own concept of an
individual’s disease progression Y ˚. It is implicitly opti-
mizing for that internal construction instead of the intended
disease bio-marker Y . We know, or can assume, that the
observed Y is closely correlated with Y ˚: in particular, that
PdpY ˚ “ 1 | Y “ 1, Z “ zq ě α for some high value of α
and all decisions d and situations z. In words, whenever the
bio-marker suggests health pY “ 1q, with high probability
the AI’s interpretation also suggests health pY ˚ “ 1q. This
then constraints the possible values of ∆ (under an interven-
tion Z Ð 1) as PdpY ˚ “ 1 | Z “ zq is no longer arbitrarily
defined. In fact could show that,

min
xMPM

p ∆d1ąd0 q ě αPd1pZ “ z, Y “ 1q ´ 1,

min
xMPM

p ∆d0ąd1 q ě αPd0pZ “ z, Y “ 1q ´ 1.

With α “ 0.9 the bound evaluates to ´0.64 and ´0.82
respectively which is slightly lower than in Example 2. We
could verify also that if with α “ 0, i.e., we don’t know
anything about the relationship between Y and Y ˚, the
bounds become uninformative: evaluating to ´1. ˝

This suggests that behaviour out-of-distribution in (suffi-
ciently constrained) settings of approximate inner align-
ment could be bounded in principle. Importantly, as the
example shows, with the proposed framework we do not
require knowing the relationship between Y and Y ˚ out-
of-distribution: that uncertainty is naturally folded into the
bounds.

5.4. Assumptions on causal structure

The uncertainty in AI decision-making out-of-distribution is
ultimately a consequence of our lack of information about
the AI’s underlying cognition and internal mechanisms that
produce a decision in a given situation, i.e., xM. In the causal
inference literature, a common inductive bias to improve
upon the “data-driven” bounds proposed so far is to assume
qualitative knowledge about the underlying mechanisms in
the form of a causal diagram, see e.g. (Pearl, 2009, Chapter
3). Here we illustrate how mild restrictions on the location
of unobserved confounders in M lead to tighter bounds.

Example 6 (Partial Unconfoundedness). Consider again
our grounded medical AI from Example 2. We might have
reason to believe that the association between the intervened
variable Z and the utility Y is conditionally unconfounded,
meaning that there exists a variable W P tw0, w1u,W P V
such that Pd,zpy | wq “ Pdpy | w, zq. This restriction goes
beyond grounding an asserts an equality between probabili-
ties under different shifts that could be communicated to the
AI for it to update its world model xM. We could then show,
for example, that min

xMPM p ∆d1ąd0 q ě t1 ´ Pd1pZ “

z,W “ w1quPd1pY “ 1 | Z “ z,W “ w0q ´ Pd0pY “

1, Z “ zq`Pd1pY “ 1, Z “ z,W “ w1q´t1´Pd0pZ “

zquPd0pY “ 1 | Z “ z,W “ w1q.

We show in Appendix A that this bound is strictly tighter
than the one given in Example 2. ˝

Systematic bounds with access to a causal diagram have
been shown by e.g., Zhang et al. (2021); Jalaldoust et al.
(2024), and could be explored further for making inference
on AI decision-making.

Fig. 2 illustrates how some of these relaxations can be un-
derstood within our model-based formalism.

6. Conclusion
An important consideration to safely interact with AI sys-
tems is to form expectations as to how they might act
in the future. In this paper, we answer this question un-
der the assumption that AI behaviour can be tracked by a
well-specified collection of causal mechanisms (a structural
causal model) that represents the AI’s world model. This
abstraction implies a consistency in behaviour that can in
principle be exploited to infer the AI’s choice of action in
novel environments, out-of-distribution. Building on the the-
ory of causal identification, we provide general bounds on
AI decision-making that give theoretical limits about what
can be inferred about AI behaviour given our framework.
We believe our results can help justify the claim that the
design and inference of world models is important to ensure
AIs act safely and beneficially.
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believe that an understanding of the limitations of our obser-
vations of what AI’s have done in the past is an important
step towards understanding exactly what we can expect from
complex AI systems. Reasoning instead without acknowl-
edging for the potential complexity of their world models
may lead researchers to operate on a more heuristical and
unsafe basis. For instance, the risks to deployment of AI
systems in situations they where not specifically trained on
might be misrepresented without a deeper analysis. The
present work is mostly theoretical in nature, highlighting
the risks of under-identification of an AI’s inner model and
therefore we believe that it can help researchers and mem-
bers of the public better appreciate the range of possible
behaviours of AI systems, under our assumptions.
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A. Discussion – Examples
In this section, we provide additional details to better appreciate the examples provided in the main body of this work.

In Example 1, we introduce two SCMs that might serve as internal world models for an AI agent but that induce different
optimal decisions if evaluated out-of-distribution. Let M1

d :“ xV : tD,Z, Y u,U : U,F1, P y be given by

F1 :“

$

’

’

’

&

’

’

’

%

D Ð d,

Z Ð 1U“1 or 4,

Y Ð

#

Z ¨ 1U“4 ` p1 ´ Zq ¨ 1U“1,3 or 4 if d “ 0

Z ¨ 1U‰2 ` p1 ´ Zq ¨ 1U“2 or 4 if d “ 1

,

P pU “ uq “ 0.2 for u P t1, 2, 3, 4, 5u.

and M2
d :“ xV : tD,Z, Y u,U : U,F2, P y be given by

F2 :“

$

’

’

’

&

’

’

’

%

D Ð d,

Z Ð 1U“1 or 4,

Y Ð

#

Z ¨ 1U‰1 ` p1 ´ Zq ¨ 1U“3 or 4 if d “ 0

Z ¨ 1U“1 or 4 ` p1 ´ Zq ¨ 1U“1 or 2 if d “ 1

,

P pU “ uq “ 0.2 for u P t1, 2, 3, 4, 5u.

The endogenous variables V : tD,Z, Y u represent, respectively, the medical treatment D, a clinical outcome of interest Y ,
and an auxiliary variable Z. The exogenous variable U is a latent variable that influences the values of Z and Y obtained in
experiments.

Under the definition of an SCM, these specifications induce a mapping of events in the space of P pUq to P pV q. In the
context of M1 and M2, each entry in Tables 1 and 2 corresponds to an event in the space of U and a corresponding
realisation of V according to the functions F1 and F2. A particular probability can be evaluated according to M1 and M2,
for example,

PM1
d“1pZ “ 1, Y “ 1q “

ÿ

Zd“1puq“1,Yd“1puq“1

P puq “ P pU “ 1 or 4q “ 0.4, (12)

which is just the sum of the probabilities of the events in the space of U consistent with the events pZd“1 “ 1, Yd“1 “ 1q.
Since both tables lead to the same realisations of events V “ v, we can conclude that probabilities of the form Pdpz, yq

evaluate to the same values under M1 and M2. That is, both models are valid internal representations of AI models that are
grounded in an environment with data sampled according to Pdpz, yq.

We could similarly evaluate probability expressions under different sub-models of M1 and M2. In particular, consider the
sub-models obtained by fixing Z Ð 1 given by M1

d,z“1 and M2
d,z“1 with the following updated structural functions,

F1,z :“

$

’

’

’

&

’

’

’

%

D Ð d,

Z Ð 1,

Y Ð

#

Z ¨ 1U“4 ` p1 ´ Zq ¨ 1U“1,3 or 4 if d “ 0

Z ¨ 1U‰2 ` p1 ´ Zq ¨ 1U“2 or 4 if d “ 1

,

and,

F2,z :“

$

’

’

’

&

’

’

’

%

D Ð d,

Z Ð 1,

Y Ð

#

Z ¨ 1U‰1 ` p1 ´ Zq ¨ 1U“3 or 4 if d “ 0

Z ¨ 1U“1 or 4 ` p1 ´ Zq ¨ 1U“1 or 2 if d “ 1

.
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U Dd“0 Zd“0 Yd“0 Dd“1 Zd“1 Yd“1 P puq

1 0 1 0 1 1 1 0.2
2 0 0 0 1 0 1 0.2
3 0 0 1 1 0 0 0.2
4 0 1 1 1 1 1 0.2
5 0 0 0 1 0 0 0.2

Table 1. Mapping of events in the space of U to V in the context of M1.

U Dd“0 Zd“0 Yd“0 Dd“1 Zd“1 Yd“1 P puq

1 0 1 0 1 1 1 0.2
2 0 0 0 1 0 1 0.2
3 0 0 1 1 0 0 0.2
4 0 1 1 1 1 1 0.2
5 0 0 0 1 0 0 0.2

Table 2. Mapping of events in the space of U to V in the context of M2.

Probabilities of events under these two models might now take different values. For example,

PM1
d“1,z“1pY “ 1q “

ÿ

Yd“1,z“1puq“1

P puq “ P pU ‰ 2q “ 0.8, (13)

PM2
d“1,z“1pY “ 1q “

ÿ

Yd“1,z“1puq“1

P puq “ P pU “ 1 or 4q “ 0.4, (14)

and similarly,

PM1
d“0,z“1pY “ 1q “

ÿ

Yd“1,z“1puq“1

P puq “ P pU “ 4q “ 0.2, (15)

PM2
d“0,z“1pY “ 1q “

ÿ

Yd“1,z“1puq“1

P puq “ P pU ‰ 1q “ 0.8. (16)

Under an interventions on Z (out-of-distribution) the decision d that leads to maximum utility Y changes under M1 and
M2. Specifically, under M1 decision d “ 1 is favoured (as PM1

d“1,z“1pY “ 1q ą PM1
d“0,z“1pY “ 1q) while under M2

decision d “ 0 is favoured (as PM2
d“1,z“1pY “ 1q ă PM2

d“0,z“1pY “ 1q). This illustrates the possible under-determination
of an AI’s choice of action out-of-distribution given observations of their external behaviour only, as multiple (contradicting)
world models are equally consistent with the observed data.

In more realistic settings, we might wonder about AI behaviour under arbitrary shifts σ, not only atomic interventions. We
follow Correa & Bareinboim (2020a) to define a shift σ on Z Ă V in M : xV ,U ,F , P y as inducing a sub-model Mσ in
which the mechanism for Z, that is tfz : Z P Zqu and exogenous variables UZ , Z P Z, are replaced by those specified by
σ as:

Mσ : xV ,Uσ,Fσ, P y, Uσ “ U
Ť

ď

ZPZ

UZ,σ, Fσ “ F
Ť

tfZ,σ : Z P Zu z tfZ : Z P Zu, (17)

where
Ť

ZPZ UZ,σ and tfZ,σ : Z P Zu define the new assignments for Z (and could be arbitrarily defined as long as they
induce a valid SCM). We have shown in Thm. 3 that unless some knowledge of σ (beyond the variables it affects) or its
consequences are known, the AI is not predictable. Furthermore, the AI’s preference gap ∆ for each context C “ c and
pairs of decisions pd, d˚q is unconstrained.

In practice though, it might be realistic to have access to covariate data in the shifted environment, i.e., Pσ,dpcq, and that
we could communicate this information to the AI for it to update its internal model accordingly. Example 3 illustrates the
inference that could be conducted in that case using the Medical AI defined above. In particular, the exact nature of the
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shift σ is unknown but we do have access to its consequences on the distribution of covariates. This is plausible in many
scenarios. For example, in medicine demographic data is typically available for most regions on earth but the precise effects
of treatments is not because not all populations benefit from the same access to medication. For illustration assume that,
the Medical AI is considered to be deployed in a population that varies in its level of blood pressure Z, potentially due to
a different underlying biological mechanism that in turn also affects other variables in the system. We do know that the
baseline high blood pressure is high, given by PσpZ “ 1q “ 0.9: higher than that observed during training P pZ “ 1q “ 0.4.

By Thm. 4, we can establish that in this setting the preference gap in situations where Z “ 1 is no worse than,

∆d1ąd0 ě 1 ´ t2 ´ Pd1pZ “ 1, Y “ 1q ´ Pd0pZ “ 1, Y “ 0qu { Pσ,d0pZ “ 1q “ ´0.55, (18)
∆d1ąd0 ě 1 ´ t2 ´ Pd0pZ “ 1, Y “ 0q ´ Pd1pZ “ 1, Y “ 1qu { Pσ,d0pZ “ 1q “ ´1, (19)

for the Medical AI. Interestingly, note also that if we were to be in a shifted environment with PσpZ “ 1q “ 1, which is
equivalent to an atomic intervention Z Ð 1, the bounds reduce to the ones given by Thm. 1, evaluating to ´0.4 and ´0.8
respectively, as also shown above.

Continuing with the grounded Medical AI deployed under an atomic intervention, imagine that the Medical AI has
internalized its own concept of an individual’s disease progression Y ˚, as in Example 5. It is implicitly optimizing for that
internal construction of his, instead of the intended disease bio-marker Y to be optimized. We know, or can assume, that
the observed Y is known to be closely correlated with Y ˚: in particular, that PdpY ˚ “ 1 | Y “ 1, Z “ zq ě α for some
high value of α and all decisions d and situations z. In words, whenever the bio-marker suggests health pY “ 1q, with high
probability the AI’s interpretation also suggests health pY ˚ “ 1q. This then constraints the possible values of ∆ (under an
intervention Z Ð 1) as PdpY ˚ “ 1 | Z “ zq is no longer arbitrarily defined. The bounds derived in Example 2 on the AI’s
belief on optimal decisions under an intervention σ :“ tZ Ð zu continue to hold:

∆d1ąd0 ě Pd1pz, y˚q ´ Pd0pz, y˚q ` Pd0pzq ´ 1 (20)
∆d0ąd1 ě Pd0pz, y˚q ´ Pd1pz, y˚q ` Pd1pzq ´ 1, (21)

where we have used the shorthand Pdpz, y˚q “ PdpZ “ z, Y ˚ “ 1q. But the distributions tPdpz, y˚qud can only be
partially inferred from our assumption on the relationship between Y ˚ and Y . For instance, notice that,

PdpZ “ z, Y ˚ “ 1q “ PdpY ˚ “ 1 | Z “ zqPdpZ “ zq (22)
“ tPdpY ˚ “ 1 | Y “ 1, Z “ zqPdpY “ 1 | Z “ zq (23)
` PdpY ˚ “ 1 | Y “ 0, Z “ zqPdpY “ 0 | Z “ zquPdpZ “ zq, (24)

The values of PdpY ˚ “ 1 | Y “ 1, Z “ zq and PdpY ˚ “ 1 | Y “ 0, Z “ zq are partially known: PdpY ˚ “ 1 | Y “

1, Z “ zq ě α while PdpY ˚ “ 1 | Y “ 0, Z “ zq is unconstrained. In particular,

PdpZ “ z, Y ˚ “ 1q ě αPdpY “ 1 | Z “ zqPdpZ “ zq (25)
PdpZ “ z, Y ˚ “ 1q ď PdpZ “ zq. (26)

Putting these terms into Eq. (20) such as to derive correct lower and upper bounds we obtain,

∆d1ąd0 ě αPd1pZ “ z, Y “ 1q ´ 1 (27)
∆d0ąd1 ě αPd0pZ “ z, Y “ 1q ´ 1. (28)

Looking at Tables 1 and 2, we can then conclude that for α “ 0.9 and σ :“ tZ Ð 1u, the bound evaluates to ´0.64 and
´0.82, respectively.

Moving now onto incorporating assumption on structure in the real world M, consider again the grounded medical AI
with observed utility Y . One possible inductive bias we might introduce is the absence of an unobserved common cause
between the variable Z that shifts out-of-distribution and the utility Y . We say that Z and Y is conditionally unconfounded
given W if there exists an observed variable W P tw, w̃u,W P V such that EPd,z

rY | ws “ EPd
ry | w, zs. This restriction

goes beyond grounding an asserts an equality between probabilities under different shifts that could, nevertheless, be
communicated to the AI for it to update its world model xM, that is E

pPd,z
rY | ws “ E

pPd,z
rY | w, zs.
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We could then leverage the following decomposition to obtain tighter bounds,

E
pPd,z

rY s “
ÿ

w

E
pPd,z

rY | ws pPd,zpwq marginalizing over W (29)

“
ÿ

w

E
pPd

rY | w, zsPd,zpwq by assumption (30)

“ tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsu pPd,zpwq ` E
pPd

rY | w̃, zs (31)

We can then proceed to bound pPd,zpwq to obtain,

pPdpw, zq ď pPd,zpwq ď pPdpw, zq ` 1 ´ pPdpzq. (32)

Without loss of generality assume tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsu ě 0. We could then show that,

E
pPd,z

rY s ě tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsu pPdpw, zq ` E
pPd

rY | w̃, zs (33)

E
pPd,z

rY s ď tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsut pPdpw, zq ` 1 ´ pPdpzqu ` E
pPd

rY | w̃, zs. (34)

We could verify that these bounds are superior to what we would have obtained with the assumption of conditional
unconfoundedness by noting that,

E
pPd,z

rY s ě tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsu pPdpw, zq ` E
pPd

rY | w̃, zs (35)

“ E
pPd

rY | w, zs pPdpz, wq ` t1 ´ pPdpw, zquE
pPd

rY | w̃, zs (36)

ě E
pPd

rY | w, zs pPdpz, wq ` pPdpw̃, zqE
pPd

rY | w̃, zs (37)

“ E
pPd

rY | zs pPdpzq, (38)

where the last inequality holds since Pdpw̃, zq ď 1 ´ Pdpw, zq giving the “assumption-free” lower bound. This shows that
the derived lower bound is better. For the upper bound, note that,

E
pPd,z

rY s ď tE
pPd

rY | w, zs ´ E
pPd

rY | w̃, zsut pPdpw, zq ` 1 ´ pPdpzqu ` E
pPd

rY | w̃, zs (39)

“ E
pPd

rY | w, zst pPdpw, zq ` 1 ´ pPdpzqu ´ E
pPd

rY | w̃, zst pPdpw, zq ` 1 ´ 1 ´ pPdpzqu (40)

“ E
pPd

rY | w, zs pPdpz, wq ` E
pPd

rY | w, zst1 ´ pPdpzqu ´ E
pPd

rY | w̃, zst pPdpw, zq ´ pPdpzqu (41)

“ E
pPd

rY | w, zs pPdpz, wq ` E
pPd

rY | w, zst1 ´ pPdpzqu ` pPdpy, z, w̃q (42)

“ E
pPd

rY | zs pPdpzq ` E
pPd

rY | w, zst1 ´ pPdpzqu (43)

ď E
pPd

rY | zs pPdpzq ` 1 ´ pPdpzq, (44)

where the last inequality holds since E
pPd

rY | w, zs ď 1 giving the “assumption-free” upper bound. This shows that the
derived upper bound is better. By combining these results we obtain, together with the assumption of grounding,

∆d1ąd0 ě EPd1
rY | w, zsPdpz, wq `A1EPd1

rY | w̃, zs ´ EPd0
rY | zsPd0pzq ´A2EPd0

rY | w, zs (45)

∆d1ąd0 ď EPd1
rY | zsPd1pzq `A3EPd1

rY | w, zs ´ EPd0
rY | w, zsPdpz, wq ´A4EPd0

rY | w̃, zs, (46)

where A1 :“ 1 ´ Pd1pz, wq, A2 :“ 1 ´ Pd0pzq, A3 :“ 1 ´ Pd1pzq, A4 :“ 1 ´ Pd0pz, wq.
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B. Related work
An important consideration to safely interact with AI systems is to form expectations as to how they might act in the future.
This research program draws on different areas that are related to the results we present in this paper.

B.1. Do current AIs represent the world?

World models are important because they offer a path between pattern recognition and a more genuine form of understanding.
It is plausible that world models will play an increasing role (explicitly or implicitly) to improve reasoning capabilities and
safety. For example, (Dalrymple et al., 2024) lists having a world model as a key component towards designing “guaranteed
safe AI”. In the literature, several works have argued that LLM activations carry information that correlates with meaningful
concepts in the world and that causally influence LLM outputs. Early examples come from AIs trained on board games such
as Othello and logic games. (Li et al., 2022) showed that a model trained on natural language descriptions of Othello moves
developed internal representations of the board state, which it used to predict valid moves in unseen board configurations.
(Vafa et al., 2024; Gurnee & Tegmark, 2023), among others, also build on this approach to study navigation tasks and
logic puzzles, and representations of space and time. The emergence of causal models in LLMs has also been studied by
(Geiger et al., 2021) and more recently in (Geiger et al., 2024). The extent to which this evidence supports genuine folk
psychological concepts – desires, beliefs, intentions – is also debated by (Goldstein & Levinstein, 2024).

B.2. Causal Inference

We might wonder whether the behaviour of AIs, to the extent that they carry a world model representation that guides their
decisions out-of-distribution, can be predicted before deployment. The causal inference literature studies this question in the
context of the prediction of causal effects. (Robins, 1989; Manski, 1990) in the early 1990’s showed that useful inference
about causal effects could be drawn without making identifying assumptions beyond the observed data, and that they could
be refined for studies with imperfect compliance under a set of instrumental variable assumptions. Closed-form expressions
for bounds on causal effects were also derived in discrete systems with more general assumptions represented in causal
diagrams (Zhang, 2020; Bellot, 2024), using both observational and interventional data (Joshi et al., 2024), and to bound the
effect of policies (Bellot & Chiappa, 2024; Zhang & Bareinboim, 2021). A separate body of work instead proposed to use
polynomial optimization to calculate causal bounds from a given causal diagram (Balke & Pearl, 1997; Chickering & Pearl,
1996). This approach involves creating a set of standard models, parameterized by the causal diagram, and then converting
the bounding problem into a sequence of equivalent linear (or polynomial) programs (Finkelstein & Shpitser, 2020; Zhang
et al., 2021; Jalaldoust et al., 2024).

In parallel, a number of works have adopted sensitivity assumptions (as an alternative or in combination with a causal
diagram) that quantify the degree of unobserved confounding through various data statistics, such as odds ratios, propensity
scores, etc. Prominent examples include (Tan, 2006)’s sensitivity model and (Rosenbaum et al., 2010)’s sensitivity model.
Several methods have proposed bounds with favourable statistical properties based on these models, see e.g. (Jesson et al.,
2021; Yadlowsky et al., 2018).

B.3. Reinforcement Learning

The problem of inferring what objective an agent is pursuing based on the actions and data observed by that agent is
studied in Inverse Reinforcement Learning (IRL) (Ng et al., 2000). Several papers have studied the partial identifiability of
various reward learning models (Skalse & Abate, 2023; Kim et al., 2021; Ng et al., 2000; Skalse et al., 2023), and share a
similar objective to that of this work. There are two differences that are worth mentioning. First, our work complements
these approaches by studying the partial identifiability of world models, that capture the assignment of reward but also
the relationship between other auxiliary variables in the environment. This enables us to reason about the effect of shifts
and interventions, and give guarantees in specific out-of-distribution problems. Second, our objective is not necessarily to
characterize compatible world models explicitly, but rather understand their implications on decision-making, i.e., what are
the set of possible actions that an AI might take given our uncertainty about their world model.

Our work is related also to the study of (Bengio et al., 2024) that consider deriving (probabilistic) bounds on the probability
of harm given data. They similarly argue that multiple theories, in their case transition probabilities from one state to another
in a Markov Decision Process (MDP), might explain the dependencies in data to a larger or lesser degree. Each transition
model might then be associated with a posterior probability given the data that implies a corresponding posterior probability
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of harm. Our results, in contrast, are not probabilistic in nature. We provide closed-form bounds that can be interpreted as
capturing all possible behaviours implied by the data, with probability 1 (and is a possible limitation of our work). The class
of world models we consider (i.e., SCMs) is also much more general than transition models in MDPs allowing us to reason
about expected AI behaviour under shifts in the environment, out of distribution.

B.4. Decision Theory

Inverse reinforcement learning is closely related to the study of revealed preferences in psychology and economics, that
similarly aims to infer preferences from behaviour (Rothkopf & Dimitrakakis, 2011). Causal and counterfactual accounts
of decision theory are an active area of research, see e.g., (Joyce, 1999). Recently a representation theorem was shown
that explicitly connects rational behaviour with structural causal models (Halpern & Piermont, 2024). The authors showed
that whenever the set of preferences of an agent over interventions satisfy axioms that relate to the proper interpretation
of counterfactuals and rationality we can model behaviour as emerging from an SCM. The same conclusion can also be
obtained for agents capable of solving tasks in multiple environments (Richens & Everitt, 2024), in essence, robustness over
multiple environments is equivalent (in the limit) to operating according to a causal model of the environment.

B.5. Limitations

The following present the main limitations of our work that will be important to address for developing a more complete
understanding of AI behaviour.

In this work, we start from the assumption that past and future behaviour of an AI system is consistent with an underlying
world model that can be represented as an SCM. In general, this presupposes a certain rationality and consistency in the AI’s
outputs that might not be realistic for all systems. Some relaxations are discussed in Sec. 5.

Structural Causal Models generally suppose the system is acyclic and without feedback, and don’t naturally capture systems
evolving continuously in time (perhaps better described using differential equations). Our bounds similarly rely on this
assumption and may give unreliable inferences if applied to systems in which feedback is important.

We have stated our guarantees in the infinite sample limit, without quantifying the finite-sample estimation uncertainty.
Consequently, we should exercise caution when using the proposed bounds in small sample scenarios where estimators
may be inaccurate. Finite-sample properties could be explored similarly to (Bengio et al., 2024) by parameterizing the AI’s
underlying model and making inference on the corresponding latent variable model to get high-probability bounds. An
example parameterization of SCMs and probabilistic inference for decision-making across environments is given in (Bellot
et al., 2024; Jalaldoust et al., 2024). We expect that similar techniques could be applied in our setting.

We do not exploit the verbal behaviour of AI systems. In the context of LLMs, in principle, we might ask the system about
its future behaviour explicitly, e.g., “Were I to intervene in the environment, what action do you believe is optimal?”. It
might not be obvious, however, that we can trust that what they “say” ultimately matches with what they will “do”.

Decision-making, in practice, involves many considerations that go beyond expected-utility-maximization formalisms. For
example, we might train AI systems to be virtuous, e.g., the AI is trained to never pick actions that can be considered
harmful (defined according to certain natural language specification) no matter its expected utility. These considerations
would change the kind of predictions we could make about the future behaviour of AI systems.
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C. Proofs and additional results
This section provides proofs for the statements made in the main body of this work.

Before we start, we recall a few basic results that will be used in the derivation of our proofs.

Definition 9 (The Axioms of Counterfactuals, Chapter 7.3.1 (Pearl, 2009)). For any three sets of endogenous variables
X,Y ,W in a causal model and x,w in the domains of X and W , the following holds:

• Composition: Wx “ w implies that Yx,w “ Yx.

• Effectiveness: Xw,x “ x.

• Reversibility: Yx,w “ y and Wx,y “ w imply that Yx “ y.

Theorem 7 (Soundness and Completeness of the Axioms Theorems 7.3.3, 7.3.6 (Pearl, 2009)). The Axioms of counterfactu-
als are sound and complete for all causal models.

The following rules to manipulate experimental distributions produced by policies extend the do-calculus and will be used in
the next Lemma. To make sense of these, note that graphically, each SCM M is associated with a causal diagram G over V ,
where V Ñ W if V appears as an argument of fW in M, and V L9999K W if UV X UW ‰ H, i.e. V and W share an
unobserved confounder. For a causal diagram G over V , the X-lower-manipulation of G deletes all those edges that are out
of variables in X , and otherwise keeps G as it is. The resulting graph is denoted as GX . The X-upper-manipulation of G
deletes all those edges that are into variables in X , and otherwise keeps G as it is. The resulting graph is denoted as GX . We
use |ù d to denote d-separation in causal diagrams (Pearl, 2009, Def. 1.2.3).

Theorem 8 (Inference Rules σ-calculus (Correa & Bareinboim, 2020a)). Let G be a causal diagram compatible with an
SCM M, with endogenous variables V . For any disjoint subsets X,Y ,Z Ď V , two disjoint subsets T ,W Ď V zpZ

Ť

Y q

(i.e., possibly including X), the following rules are valid for any intervention strategies πX , πZ , and π1
Z such that GπXπZ

,
GπXπ1

Z
have no cycles:

• Rule 1 (Insertion/Deletion of observations):

PπX
py | w, tq “ PπX

py | wq if pT |ù dY | W q in GπX
.

• Rule 2 (Change of regimes under observation):

PπX ,πZ
py | z,wq “ PπX ,π1

Z
py | z,wq if pY |ù dZ | W q in GπX ,πZ ,Z and GπX ,π1

Z ,Z

• Rule 3 (Change of regimes without observation):

PπX ,πZ
py | wq “ PπX ,π1

Z
py | wq if pY |ù dZ | W q in G

πX ,πZ ,ZpW q
and G

πX ,π1
Z ,ZpW q

where ZpW q is the set of elements in Z that are not ancestors of W in GπX
.

Lemma 1. Let π : suppC ˆ suppD ÞÑ r0, 1s be a (probabilistic) policy mapping contexts c to decisions d. Then PdpV q

may be computed from PπpV q.

Proof. Let V “ C
Ť

D
Ť

Y and G be an arbitrary causal diagram summarizing the SCM of the environment. The following
derivation shows the claim,

Pdpvq “ Pdpy | cqPdpcq by the rules of total probability (47)
“ Pdpy | cqPπpcq by rule 3 of the σ-calculus since D |ù C in GD and Gπ,D (48)

“ Pπpy | d, cqPπpcq by rule 2 of the σ-calculus since D |ù R | C in Gπ,D (49)

That is we have shown Pdpvq can be expressed as a functional of Pπpvq. Here note that the equalities hold in any causal
graph G by definition of π.
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We start by providing proofs for the results on the AI’s choice of action out-of-distribution given in Sec. 4.1.

Thm. 1 restated. An AI grounded in a domain M is weakly predictable under a shift σ :“ dopzq,Z Ă V , in a context
C “ c if and only if there exists a decision d˚ such that,

EPd
r Y | c, z sPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq
´

EPd˚ r Y | c, z sPd˚ pc, zq ` 1 ´ Pd˚ pzq

Pd˚ pc, zq ` 1 ´ Pd˚ pzq
ą 0, for some d ‰ d˚. (50)

Proof. Recall that the AI is weakly predictable in a context C “ c if and only if there exists a decision d˚ such that,

min
xMPM

p ∆dąd˚ q ą 0, ∆dąd˚ :“ E
P yM r Y | dopσ, dq, cs ´ E

P yM r Y | dopσ, d˚q, cs , for some d ‰ d˚. (51)

M denotes the set of compatible SCMs, i.e., that generate the data under our assumptions. ∆ is the AI’s preference gap
between two decisions in some situation C “ c. We will consider the derivation of bounds on each term of the difference in
∆ separately. Firstly, note that,

E
pPσ,d

r Y | C “ c s “ E
pPz,d

r Y 1cpCq s { pPz,dpcq (52)

Analytical Lower Bound A lower bound on this ratio can be obtained by minimizing the numerator and maximizing the
denominator, for example using the following derivation:

E
pPz,d

r Y 1cpCq s “
ÿ

z̃

E
pPd

r Yz1c,z̃pCz,Zq s marginalizing over z (53)

ě E
pPd

r Yz1c,zpCz,Zq s since summands ą 0 (54)

“ E
pPd

r Y 1c,zpC,Zq s by consistency (55)

“ EPd
r Y | c, z sPdpc, zq by grounding (56)

(57)

pPz,dpcq
p1q
“ 1 ´ pPz,dpc1q (58)

“ 1 ´
ÿ

z̃

pPdpc1
z, z̃q marginalizing over z (59)

ď 1 ´ pPdpc1
z, zq since summands ą 0 (60)

“ pPdpc, zq ` 1 ´ pPdpzq by consistency (61)

“ Pdpc, zq ` 1 ´ pPdpzq by grounding. (62)

(1) holds by defining c1 to stand for any combination of variables CzZ other than czz.

This implies then that,

E
pPσ,d

r Y | C “ c s ě
EPd

r Y | c, z sPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq
. (63)

Analytical Upper Bound For the upper bound, we start by noting that,

E
pPσ,d

r Y | C “ c s “ 1 ´ E
pPσ,d

r 1 ´ Y | C “ c s (64)

“ 1 ´ E
pPz,d

r p1 ´ Y q1cpCq s { pPz,dpcq (65)

Leveraging the bounds derived above we obtain,

E
pPσ,d

r Y | C “ c s ď 1 ´
EPd

r p1 ´ Y q1c,zpC,Zq s

Pdpc, zq ` Pdpz1q
(66)

“
EPd

r Y | c, z sPdpc, zq ` 1 ´ Pdpzq

Pdpc, zq ` 1 ´ Pdpzq
(67)
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By setting d “ d1 in the lower bound and d “ d0 in the upper bound of the expected utility, we obtain a lower bound on the
difference of expected utilities:

∆d1ąd0 ě
EPd1

r Y | c, z sPd1pc, zq

Pd1pc, zq ` 1 ´ Pd1pzq
´

EPd0
r Y | c, z sPd0pc, zq ` Pd0pz1q

Pd0pc, zq ` 1 ´ Pd0pzq
. (68)

And similarly, by setting d “ d1 in the upper bound and d “ d0 in the lower bound of the expected utility, we obtain an
upper bound on the difference of expected utilities:

∆d1ąd0 ď
EPd1

r Y | c, z sPd1pc, zq ` 1 ´ Pd1pzq

Pd1pc, zq ` 1 ´ Pd1pzq
´

EPd0
r Y | c, z sPd0pc, zq

Pd0pc, zq ` 1 ´ Pd0pzq
. (69)

We now show that these bounds are tight by constructing SCMs (that is, possible world models of the AI system) that
evaluate to the lower and upper bounds while generating the distribution of agent interactions pPd1 ,

pPd0 .

Tightness Lower Bound for ∆ For the lower bound we will consider the following SCM,

M1
d “:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z Ð fZpuq

C Ð

#

fCpu, zq if fZpuq “ z

1 otherwise.
D Ð d

Y Ð

$

’

&

’

%

fY pd, c, z,uq if fZpuq “ z

1 if fZpuq ‰ z, d “ d0

0 if fZpuq ‰ z, d “ d1

P pUq

(70)

Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such that PM1
dpvq “

P
xMdpvq for all v P suppV . Consider evaluating,

E
P

M1
σ,d

r Y | C “ c s “ E
P

M1
σ,d

r Y 1cpCq s { PM1
σ,dpcq (71)

The numerator (under M1
d1

) evaluates to,

E
P

M1
d1

r Yz1cpCzq s (72)

“
ÿ

u

E
P

M1
d1

r Yz1cpCzq | u sPM1
d1 puq (73)

“
ÿ

u

E
P

M1
d1

r Y 1cpCq | z,u sPM1
d1 puq (74)

“ E
P

M1
d1

r Y 1cpCq | z, tu : fZpuq “ zu sPM1
d1 ptu : fZpuq “ zuq (75)

` E
P

M1
d1

r Y 1cpCq | z, tu : fZpuq ‰ zu sPM1
d1 ptu : fZpuq ‰ zuq (76)

“ E
P

M1
d1

r Y 1cpCq | z sPM1
d1 pzq (77)

“ E
P

M1
d1

r Y | c, z sPM1
d1 pc, zq (78)
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The denominator under M1
d1

evaluates to,

PM1
σ,d1 pcq “

ÿ

u

PM1
d1 pcz | uqPM1

d1 puq (79)

“
ÿ

u

PM1
d1 pc | z,uqPM1

d1 puq (80)

“ PM1
d1 pc | z, tu : fZpuq “ zuqPM1

d1 ptu : fZpuq “ zuq (81)

` PM1
d1 pc | z, tu : fZpuq ‰ zuqPM1

d1 ptu : fZpuq ‰ zuq (82)

“ PM1
d1 pc | zqPM1

d1 pzq ` 1 ´ PM1
d1 pzq (83)

“ PM1
d1 pc, zq ` 1 ´ PM1

d1 pzq (84)

The numerator under M1
d0

evaluates to,

E
P

M1
d0

r Yz1cpCzq s (85)

“
ÿ

u

E
P

M1
d0

r Yz1cpCzq | u sPM1
d0 puq (86)

“
ÿ

u

E
P

M1
d0

r Y 1cpCq | z,u sPM1
d0 puq (87)

“ E
P

M1
d0

r Y 1cpCq | z, tu : fZpuq “ zu sPM1
d0 ptu : fZpuq “ zuq (88)

` E
P

M1
d0

r Y 1cpCq | z, tu : fZpuq ‰ zu sPM1
d0 ptu : fZpuq ‰ zuq (89)

“ E
P

M1
d0

r Y 1cpCq | z sPM1
d0 pzq ` 1 ´ PM1

d0 pzq (90)

“ E
P

M1
d0

r Y | c, z sPM1
d0 pc, zq ` 1 ´ PM1

d0 pzq (91)

The denominator under M1
d0

evaluates to,

PM1
σ,d0 pcq “

ÿ

u

PM1
d0 pcz | uqPM1

d0 puq (92)

“
ÿ

u

PM1
d0 pc | z,uqPM1

d0 puq (93)

“ PM1
d0 pc | z, tu : fZpuq “ zuqPM1

d0 ptu : fZpuq “ zuq (94)

` PM1
d0 pc | z, tu : fZpuq ‰ zuqPM1

d0 ptu : fZpuq ‰ zuq (95)

“ PM1
d0 pc | zqPM1

d0 pzq ` 1 ´ PM1
d0 pzq (96)

“ PM1
d0 pc, zq ` 1 ´ PM1

d0 pzq (97)

Combining these results we get the analytical lower bound:

∆d1ąd0 “
EPd1

r Y | c, z sPd1pc, zq

Pd1pc, zq ` 1 ´ Pd1pzq
´

EPd0
r Y | c, z sPd0pc, zq ` 1 ´ Pd0pzq

Pd0pc, zq ` 1 ´ Pd0pzq
. (98)

This shows that for a given C “ c and pair of decisions pd1, d0q we can always find an SCM that evaluates to the lower
bound that we report. So if, and only if, we can find a decision d˚ such that the lower bound can be evaluated to be greater
than zero for some d ‰ d˚ will the AI be weakly predictable, as claimed.

Corol. 1 restated. Given a discrepancy measure ψ, an AI approximately grounded in a domain M is weakly predictable in
a context C “ c under a shift σ :“ dopzq,Z Ă V , if and only if there exists a decision d˚ such that,

min
pP : ψp pP,P qďδ

$

&

%

E
pPd

r Y | c, z s pPdpc, zq

pPdpc, zq ` 1 ´ pPdpzq
´

E
pPd˚

r Y | c, z s pPd˚ pc, zq ` 1 ´ pPd˚ pzq

pPd˚ pc, zq ` 1 ´ pPd˚ pzq

,

.

-

ą 0, for some d ‰ d˚. (99)
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Proof. For approximately grounded AI systems, we can state the bound from Thm. 1 as,

min
xMPM

p ∆dąd˚ q “
E

pPd
r Y | c, z s pPdpc, zq

pPdpc, zq ` 1 ´ pPdpzq
´

E
pPd˚

r Y | c, z s pPd˚ pc, zq ` 1 ´ pPd˚ pzq

pPd˚ pc, zq ` 1 ´ pPd˚ pzq
. (100)

pPd is constrained to be close to Pd according to distance ψ and threshold δ. We get valid bounds by reporting the worst-case
bounds under this looser constraint:

min
xMPM

p ∆dąd˚ q “ min
pP : ψp pP,P qďδ

$

&

%

E
pPd

r Y | c, z s pPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq
´

E
pPd˚

r Y | c, z s pPd˚ pc, zq ` 1 ´ pPd˚ pzq

pPd˚ pc, zq ` 1 ´ pPd˚ pzq

,

.

-

. (101)

This shows that for a given C “ c, the min
xMPM, p ∆dąd˚ q ą 0 for some d ‰ d˚ if and only if,

min
pP : ψp pP,P qďδ

$

&

%

E
pPd

r Y | c, z s pPdpc, zq

Pdpc, zq ` 1 ´ Pdpzq
´

E
pPd˚

r Y | c, z s pPd˚ pc, zq ` 1 ´ pPd˚ pzq

pPd˚ pc, zq ` 1 ´ pPd˚ pzq

,

.

-

ą 0. (102)

Thm. 2 restated. Let σ :“ dopzq be a shift on a set of variables Z Ă V . For Ri Ă Z Ă V , i “ 1, . . . , k, consider an
AI grounded in multiple domains tMri

: i “ 1, . . . , ku. The AI is weakly predictable in a context C “ c under a shift
σ :“ dopzq if and only if there exists a decision d˚ such that,

max
i,j“1,...,k

Apri, rjq ą 0, for some d ‰ d˚, (103)

where

Apri, rjq :“
EPd,ri

r Y | c, zzri sPd,ri
pc, zzriq

Pd,ri
pc, zzriq ` 1 ´ Pd,ri

pzzriq
´

EPd˚,rj
r Y | c, zzrj sPd˚,rj

pc, zzrjq ` 1 ´ Pd˚,rj
pzzrjq

Pd˚,rj
pc, zzrjq ` 1 ´ Pd˚,rj

pzzrjq
.

Proof. tMri
: i “ 1, . . . , ku describes k domains in which experiments on different subsets of Z have been conducted.

This includes possibly the null experiment Ri “ H that refers to the unaltered domain M.

We can use a similar derivation to that of Thm. 1 to derive bounds on ∆ under a shift σ :“ dopzq in terms of Pd,rpV q,R P V
and obtain,

∆d1ąd0 ě Aprq (104)

where,

Aprq :“
EPd1,r

r Y | c, zzr sPd1,rpc, zzrq

Pd1,rpc, zzrq ` 1 ´ Pd1,rpzzrq
´

EPd0,r
r Y | c, zzr sPd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq

Pd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq
. (105)

These bounds can be shown to be tight by constructing similar SCMs. For example, for the analytical lower bound consider,

M1
d,r “:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

S Ð fSpuq

R Ð r

C Ð

#

fCpu, s, rq if fSpuq “ s

1 otherwise.
D Ð d

Y Ð

$

’

&

’

%

fY pd, c, s, r,uq if fSpuq “ s

1 if fSpuq ‰ s, d “ d0

0 if fSpuq ‰ s, d “ d1

P pUq

(106)
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where S “ ZzR. Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such
that PM1

d,r pvq “ P
xMd,r pvq for all v P suppV . We could verify that this SCM evaluates to the lower bound above.

If we have multiple domains with different set of intervened variables tRi : i “ 1, . . . , ku we could use this construction
to find a lower using samples from tPd,ripV q : i “ 1, . . . , ku. A lower bound that can be constructed for an AI system
grounded in tMri : i “ 1, . . . , ku is,

∆d1ąd0 ě max
i,j“1,...,k

Apri, rjq (107)

where

Apri, rjq :“
EPd1,ri

r Y | c, zzri sPd1,ri
pc, zzriq

Pd1,ripc, zzriq ` 1 ´ Pd1,ripzzriq
´

EPd0,rj
r Y | c, zzrj sPd0,rj

pc, zzrjq ` 1 ´ Pd0,rj
pzzrjq

Pd0,rj pc, zzrjq ` 1 ´ Pd0,rj pzzrjq
. (108)

The intuition here is that we have multiple lower bounds for the preference gap, then the best lower bound can be taken to be
the largest of the multiple lower bounds available.

We can show that this bound is tight in the case where the AI is grounded in two environments tMr1
,Mr2

u under a shift
σ :“ dopzq,Z “ R1

Ť

R2. According to the inequality above, we have simultaneously,

∆d1ąd0 ě Apr1, r1q, Apr1, r2q, Apr2, r1q, Apr2, r2q. (109)

Each of these terms can be evaluated from the available data sampled from tPd,r1
, Pd,r2

u. Note that both Apr1, r1q

and Apr2, r2q can be obtained with the SCM above. Without loss of generality, assume that Apr1, r2q ě

Apr2, r1q, Apr1, r1q, Apr2, r2q. We will show that we can construct an SCM compatible with tPd,r1
, Pd,r2

u that evaluates
to Apr1, r2q demonstrating that the bound is tight.

Consider the following SCM:

Md “:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

R1 Ð fR1
pu1q

R2 Ð fR2
pu2q

C Ð

#

fCpr1, r2,u1,u2q if fR1
pu1q “ r1, fR2

pu2q “ r2

1 otherwise.
D Ð d

Y Ð

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

fY pd, c, r1, r2,u1,u2q if fR1
pu1q “ r1, fR2

pu2q “ r2

fY pd, c, r1, r2,u1,u2q if d “ d1, fR1
pu1q ‰ r1, fR2

pu2q “ r2

fY pd, c, r1, r2,u1,u2q if d “ d0, fR1
pu1q “ r1, fR2

pu2q ‰ r2

0 if d “ d1, fR1
pu1q “ r1, fR2

pu2q ‰ r2

0 if d “ d1, fR1pu1q ‰ r1, fR2pu2q ‰ r2

1 if d “ d0, fR1pu1q ‰ r1, fR2pu2q “ r2

1 if d “ d0, fR1
pu1q ‰ r1, fR2

pu2q ‰ r2

P pUq

(110)

Notice that in Md different choices of functional assignments “f” and P puq can generate any distribution tPd1,r1 , Pd0,r2u.
That is this SCM (or a member of this family of SCMs) is compatible with the observed data.

Consider evaluating Apr1, r2q under this SCM. Note that the derivations for the denominators are equivalent to those shown
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in the proof of Thm. 1 so we will omit them here. The first term in the numerator,

E
P

Md1,r1,r2
r Y 1cpCq s (111)

“
ÿ

u2

E
P

Md1,r1,r2
r Y 1cpCq | u2 sPMd1,r1,r2 pu2q (112)

“
ÿ

u2

E
P

Md1,r1
r Y 1cpCq | r2,u2 sPMd1,r1 pu2q (113)

“ E
P

Md1,r1
r Y 1cpCq | r2, tu : fR2

pu2q “ r2u sPMd1,r1 ptu2 : fR2
pu2q “ r2uq (114)

` E
P

Md1,r1
r Y 1cpCq | r2, tu : fR2pu2q ‰ r2u sPMd1,r1 ptu2 : fR2pu2q ‰ r2uq (115)

“ E
P

Md1,r1
r Y 1cpCq | r2 sPMd1,r1 pr2q (116)

“ E
P

Md1,r1
r Y | c, r2 sPMd1,r1 pc, r2q (117)

The second term in the numerator is,

E
P

Md0,r1,r2
r Y 1cpCq s (118)

“
ÿ

u1

E
P

Md0,r1,r2
r Y 1cpCq | u1 sPMd0,r1,r2 pu1q (119)

“
ÿ

u1

E
P

Md0,r2
r Y 1cpCq | r1,u1 sPMd0,r2 pu1q (120)

“ E
P

Md0,r2
r Y 1cpCq | r1, tu : fR1

pu1q “ r1u sPMd0,r2 ptu1 : fR1
pu1q “ r1uq (121)

` E
P

Md0,r2
r Y 1cpCq | r1, tu : fR1

pu1q ‰ r1u sPMd0,r2 ptu1 : fR1
pu1q ‰ r1uq (122)

“ E
P

Md0,r2
r Y 1cpCq | r1 sPMd0,r2 pr1q ` 1 ´ PMd0,r2 pr1q (123)

“ E
P

Md0,r2
r Y | c, r1 sPMd0,r2 pc, r1q ` 1 ´ PMd0,r2 pr1q (124)

Combining these results we get that under M,

∆d1ąd0 “ Apr1, r2q. (125)

Corollary 3. The bound from multiple domains in Thm. 2 will be at least as informative as the bound from a single domain
in Thm. 1.

Proof. We claim here that for any R Ă Z,

ApHq ď Aprq (126)

This means that the bounds on ∆ that we can obtain from an AI system grounded in Mr are more informative than the
bounds obtained from an AI system grounded in M. A is a difference of two terms written Aprq “ A1prq ´A2prq.

A1prq :“
EPd1,r

r Y | c, zzr sPd1,rpc, zzrq

Pd1,rpc, zzrq ` 1 ´ Pd1,rpzzrq
(127)

A2prq :“
EPd0,r

r Y | c, zzr sPd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq

Pd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq
. (128)
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It holds that A1prq ě A1pHq, A2prq ď A2pHq which then implies Aprq ě ApHq. To see this notice that,

A1prq :“
EPd1,r

r Y | c, zzr sPd1,rpc, zzrq

Pd1,rpc, zzrq ` 1 ´ Pd1,rpzzrq
(129)

ě
EPd1

r Y | c, z sPd1pc, zq

Pd1,ri
pc, zzrq ` 1 ´ Pd1,rpzzrq

(130)

“
EPd1

r Y | c, z sPd1pc, zq

1 ´ Pd1,rpc̃, zzrq
(131)

ě
EPd1

r Y | c, z sPd1pc, zq

1 ´ Pd1pc̃, zq
(132)

“
EPd1

r Y | c, z sPd1pc, zq

Pd1pc, zq ` 1 ´ Pd1pzq
(133)

“ A1pHq, (134)

where c̃ stands for the combination of values of C that are not c. Further,

A2prq :“
EPd0,r

r Y | c, zzr sPd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq

Pd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq
(135)

“ 1 ´
EPd0,r

r 1 ´ Y | c, zzr sPd0,rpc, zzrq

Pd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq
(136)

ď 1 ´
EPd0

r 1 ´ Y | c, z sPd0pc, zq

Pd0,rpc, zzrq ` 1 ´ Pd0,rpzzrq
(137)

ď 1 ´
EPd0

r 1 ´ Y | c, z sPd0pc, zq

Pd0pc, zq ` 1 ´ Pd0pzq
(138)

“
EPd0

r Y | c, z sPd0pc, zq ` 1 ´ Pd0pzq

Pd0pc, zq ` 1 ´ Pd0pzq
(139)

“ A2pHq. (140)

Thm. 3 restated. Consider an AI grounded in a domain M made aware of an (under-specified) shift on non-empty Z Ă V .
Then the AI is provably not weakly (or strongly) predictable in any context C “ c.

Proof. Recall that the preference gap is defined as:

∆d1ąd0 :“ E
pPσ,d1

r Y | C “ c s ´ E
pPσ,d0

r Y | C “ c s (141)

Here we know that σ potentially modifies the mechanisms of the set of variables Z though the nature of the modification is
unknown. In the worst-case, the AI’s interpretation of the possible new assignment of Z could be arbitrary.

We will prove this theorem for the case of binary variables Y, Z P V . In the following, we construct two (canonical) models
that entail any chosen distribution for the observed data Pdpy, z | cq but evaluate to the a priori minimum and maximum
value of the preference gap ∆, i.e. ´1 and 1 respectively. We make use of the canonical model construction from (Jalaldoust
et al., 2024) to define the following general SCM,

Z Ð

#

0 if rz “ 0

1 if rz “ 1
, Y Ð

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if ry “ 0

0 if ry “ 1, z “ 0

1 if ry “ 1, z “ 1

1 if ry “ 2, z “ 0

0 if ry “ 2, z “ 1

1 if ry “ 3

(142)
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U “ tRz, Ryu where Rz and Ry might be correlated and with a probability pP pUq “ pPdpU | cq such that pPdpz, y | cq “

pP pz, y | cq. By (Jalaldoust et al., 2024, Thm. 1) this is always possible since this class of canonical models is sufficiently
expressive to model any observational or interventional distribution. We can visualise the joint probability of exogenous
variables using the following table:

Probabilities xM rz “ 0 rz “ 1
ry “ 0 p00 p10
ry “ 1 p01 p11
ry “ 2 p02 p12
ry “ 3 p03 p13

where we have written Pdprz “ a, ry “ b | cq “ pab. From these we could compute joint probabilities

Pdpz “ 0, y “ 0 | cq “ p00 ` p01, (143)
Pdpz “ 0, y “ 1 | cq “ p02 ` p03, (144)
Pdpz “ 1, y “ 0 | cq “ p12 ` p11, (145)
Pdpz “ 1, y “ 1 | cq “ p11 ` p13 (146)

Here we can see that the parameter space Pdprz, ry | cq is very expressive. For example, without loss of generality we could
set p03 “ p13 “ 0 or p00 “ p10 “ 0 and still be able to generate any observed distribution Pdpz, y | cq.

The given shift in the environment σ can be entirely modelled as a shift in Pσ,dprz | cq while keeping the probability
of ry invariant, i.e., Pσ,dpry | cq “ Pdpry | cq. In other words, given the table above, we can change each of the cells
while maintaining the row sums equal. Recall that we are interested in evaluating bounds on a probability of the form
Pσ,dpy “ 1 | cq and Pσ,dpy “ 1 | z “ 1, cq depending on whether Z is given as an input to the AI or not. Both these
quantities can be written in terms of the probabilities of exogenous variables as follows,

Pσ,dpy “ 1 | cq “ p02 ` p03 ` p11 ` p13 (147)

Pσ,dpy “ 1 | z “ 1, cq “
p11 ` p13

p11 ` p13 ` p12 ` p11
. (148)

For the lower bound on these quantities, without loss of generality assume that p03 “ p13 “ 0. Then the following table:

Probabilities xMσ rz “ 0 rz “ 1
ry “ 0 p00 p10
ry “ 1 p01 ` p11 0
ry “ 2 0 p12 ` p02
ry “ 3 0 0

is a perfectly valid model under a shift σ that respects the constraint on Pσ,dpry | cq “ Pdpry | cq but for which
Pσ,dpy “ 1 | cq “ 0 as it is the sum of the 4 zero entries and Pσ,dpy “ 1 | z “ 1, cq “ 0 as it is the sum of the two 0 entries
in the second column divided by the sum of entries in the second column.

If we are interested in getting an upper bound then without loss of generality assume that p00 “ p10 “ 0. Then the following

Probabilities xMσ rz “ 0 rz “ 1
ry “ 0 0 0
ry “ 1 0 p01 ` p11
ry “ 2 p12 ` p02 0
ry “ 3 p03 p13

is a perfectly valid model under a shift σ that respects the constraint on Pσ,dpry | cq “ Pdpry | cq but for which
Pσ,dpy “ 1 | cq “ 1 as it is the sum of the 4 non-zero entries and Pσ,dpy “ 1 | z “ 1, cq “ 1 as it is the sum of the two
non-zero entries in the second column divided by the sum of entries in the second column.
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By using this construction to define lower and upper bounds for Pσ,dpy “ 1 | cq or Pσ,dpy “ 1 | z, cq for d “ d0, d1 we
obtain a possible internal model for the AI that entails the observed external behaviour but for which the preference gap
evaluates to ´1 and 1. This means that the a priori bound,

´1 ď ∆dąd˚ ď 1, (149)

is tight whenever the shift is undefined (whether we know the variables it applies to or not). Since the preference gap is
unconstrained for any C “ c and any pair of decisions pd, d˚q, the AI is not predictable.

Thm. 4 restated. Consider an AI grounded in a domain M and Pσ,dpCq made aware of a shift σ on Z Ă C. The AI is
weakly predictable under this shift in a context C “ c if there exists a decision d˚ such that,

1 ´
2 ` EPd˚ r Y | c sPd˚ pcq ´ EPd

r Y | c sPdpcq ´ 2Pdpzq ` Pdpcq

Pσ,d˚ pcq
ą 0, for some d ‰ d˚. (150)

Proof. Recall that the preference gap under a shift σ between decisions pd1, d0q in a situation C “ c is defined as:

∆d1ąd0 :“ E
pPσ,d1

r Y | C “ c s ´ E
pPσ,d0

r Y | C “ c s (151)

Here we know that σ potentially modifies the mechanisms of the set of variables Z. The nature of the modification is
unknown but we are told that after modification, the expected probability of C is given by Pσ,dpCq, assumed to be known
and internalised by the A. This means that its internal model, whatever interpretation for the shift it chooses, generates the
assumed probabilities, i.e. pPσ,dpCq “ Pσ,dpCq.

We will consider the derivation of bounds on each term of this difference separately. Firstly, note that,

E
pPσ,d

r Y | C “ c s “ E
pPσ,d

r Y 1cpCq s { pPσ,dpcq (152)

For ease of notation let us write R :“ CzZ. We could then show that,

E
pPσ,d

r Y 1z,rpZ,Rq s “ E
pPσ,d

r Yz1z,rpZ,Rzq s by consistency (153)

ď
ÿ

z1

E
pPσ,d

r Yz1z1,rpZ,Rzq s (154)

“ E
pPσ,d

r Yz1rpRzq s marginalizing over the values z1 of Z (155)

Now once we intervene on z the mechanism that generate its value before hand, whether it was the shift σ or something else
is irrelevant. In essence, we get an equivalence between shifted an un-shifted distributions under intervention:

E
pPσ,d

r Yz1rpRzq s “ E
pPd

r Yz1rpRzq s (156)

We could now take this quantity to show the following,

E
pPd

r Yz1rpRzq s “
ÿ

z1

E
pPd

r Yz1z1,rpZ,Rzq s (157)

“ E
pPd

r Yz1z,rpZ,Rzq s `
ÿ

z1‰z

E
pPd

r Yz1z1,rpZ,Rzq s (158)

“ E
pPd

r Y 1z,rpZ,Rq s `
ÿ

z1‰z

E
pPd

r Yz1z1,rpZ,Rzq s by consistency (159)

ď E
pPd

r Y 1z,rpZ,Rq s `
ÿ

z1‰z

E
pPd

r 1z1 pZq s since Yz and 1rpRzq are ď 1 (160)

“ E
pPd

r Y 1z,rpZ,Rq s ` 1 ´ pPdpzq (161)

“ E
pPd

r Y | c s pPdpcq ` 1 ´ pPdpzq (162)

For the lower bound we could consider the following derivation,

E
pPσ,d

r Y 1z,rpZ,Rq s “ E
pPσ,d

r 1z,rpZ,Rq s ´ E
pPσ,d

r p1 ´ Y q1z,rpZ,Rq s. (163)
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For ease of notation let us define,

E
pPσ,d

r Ỹ 1z,rpZ,Rq s :“ E
pPσ,d

r p1 ´ Y q1z,rpZ,Rq s. (164)

Similar bounds apply on E
pPσ,d

r Ỹ 1z,rpZ,Rq s to get,

E
pPσ,d

r Y 1z,rpZ,Rq s ě E
pPσ,d

r 1z,rpZ,Rq s ´ tE
pPd

r Ỹ 1z,rpZ,Rq s ` 1 ´ pPdpzqu (165)

“ E
pPσ,d

r 1z,rpZ,Rq s ´ E
pPd

r 1z,rpZ,Rq s ` E
pPd

r Y 1z,rpZ,Rq s ´ 1 ` pPdpzq (166)

“ pPσ,dpcq ´ pPdpcq ` E
pPd

r Y | c s pPdpcq ´ 1 ` pPdpzq (167)

Putting the lower and upper bounds together to form bounds on ∆d1ąd0 we get,

∆d1ąd0 ě

pPσ,d1pcq ´ pPd1pcq ` E
pPd1

r Y | c s pPd1pcq ´ 1 ` pPd1pzq ´ tE
pPd0

r Y | c s pPd0pcq ` 1 ´ pPd0pzqu

pPσ,d0pcq
(168)

“ 1 `
´ pPd1pcq ` E

pPd1
r Y | c s pPd1pcq ´ 1 ` pPd1pzq ´ E

pPd0
r Y | c s pPd0pcq ´ 1 ` pPd0pzqu

pPσ,d0pcq
(169)

“ 1 ´
2 ` E

pPd0
r Y | c s pPd0pcq ´ E

pPd1
r Y | c s pPd1pcq ´ 2 pPd1pzq ` pPd1pcq

pPσ,d0pcq
(170)

and by grounding,

∆d1ąd0 ě 1 ´
2 ` EPd0

r Y | c sPd0pcq ´ EPd1
r Y | c sPd1pcq ´ 2Pd1pzq ` Pd1pcq

Pσ,d0pcq
. (171)

This statement holds for any SCM compatible with the grounded AI’s external behaviour and therefore,

min
xMPM

p ∆dąd˚ q ě 1 ´
2 ` EPd˚ r Y | c sPd˚ pcq ´ EPd

r Y | c sPdpcq ´ 2Pdpzq ` Pdpcq

Pσ,d˚ pcq
. (172)

We can establish that the AI is weakly predictable in a context C “ c if there exists a decision d˚ such that,

1 ´
2 ` EPd˚ r Y | c sPd˚ pcq ´ EPd

r Y | c sPdpcq ´ 2Pdpzq ` Pdpcq

Pσ,d˚ pcq
ą 0, (173)

for some d ‰ d˚.

We now continue with our inference of the AI’s perceived fairness and harm of decisions in Sec. 4.3.

Thm. 5 restated. Consider an agent with utility function Y grounded in a domain M. Then,

´EPd
r Y | z, cs ď Υpd, cq ď 1 ´ EPd

r Y | z, cs. (174)

This bound is tight.

Proof. Recall that for a given utility Y , the AI’s counterfactual fairness gap relative to a decision d, in a given context c, is

Υpd, cq :“ E
pP r Yd,z1 | z0, c s ´ E

pP r Yd | z0, c s . (175)

And remember that Z P C.

For ease of notation, write z1 “ z, z0 “ z1 such that,

Υpd, cq :“ E
pP

“

Yd,z | z1, c
‰

´ E
pP

“

Yd | z1, c
‰

. (176)
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We start by considering the following derivation:
pP pyd,z | cq “ pP pyd,z, zd | cq ` pP pyd,z, z

1
d | cq by marginalization (177)

“ pP pyd, zd | cq ` pP pyd,z, z
1
d | cq by consistency (178)

and since d does not affect Z or C, i.e. Zd “ Z,Cd “ C,
pP pyd,z | cq “ pP pyd, zd | cq ` pP pyd,z, z

1 | cq (179)

which implies

pP pyd,z | z1, cq “
pP pyd,z | cq ´ pPdpy, z | cq

pPdpz1 | cq
(180)

Therefore,

E
pP

“

Yd,z | z1, c
‰

“
E

pP rYd,z | cs ´ E
pPd

r Y | z, cs pPdpz | cq

pPdpz1 | cq
. (181)

All quantities on the r.h.s are observable except for E
pP rYd,z | cs which can be tightly bounded.

For the lower bound, consider the following derivation,

E
pP rYd,z | cs “

ÿ

z̃

E
pP r Yd,z1z̃dpZq | c s marginalizing over zd (182)

ě E
pP r Yd,z1zdpZdq | cs since summands ą 0 (183)

“ E
pP r Yd1zdpZdq | cs by consistency (184)

“ EPd
r Y | c, z sPdpz | cq by grounding and Cd “ C (185)

Similarly, we can get an upper bound by noting

E
pP rYd,z | cs “ 1 ´ E

pP rp1 ´ Yd,zq | cs (186)

ď E
pPd

r Y | c, z s pPdpz | cq ` pPdpz1 | cq. (187)

Tightness Lower Bound For the lower bound we will consider the following SCM,

M1
d “:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Z Ð fZpuq

C Ð fCpuq

D Ð d

Y Ð

#

fY pd, c, z,uq if fZpuq “ z

0 otherwise
P pUq

(188)

Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such that PM1
dpvq “

P
xMdpvq for all v P suppV .

Then, under M1
d,

EPM1 r Yd,z | c s (189)

“
ÿ

u

EPM1 r Yd,z | u, c sPM1

pu | cq (190)

“
ÿ

u

EPM1 r Yd | z,u, c sPM1

pu | cq (191)

“ E
PM1

d
r Y | z, c, tu : fZpuq “ zu sPM1

ptu : fZpuq “ zu | cq (192)

` E
PM1

d
r Y | z, c, tu : fZpuq ‰ zu sPM1

ptu : fZpuq ‰ zu | cq (193)

“ E
PM1

d
r Y | z, c sPM1

dpz | cq. (194)

This expression is the same one as the analytical bound showing that it is tight.
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Tightness Upper Bound For the upper bound we will consider the following SCM,

M2
d “:

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Z Ð fZpuq

C Ð fCpuq

D Ð d

Y Ð

#

fY pd, c, z,uq if fZpuq “ z

1 otherwise
P pUq

(195)

Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such that PM2
dpvq “

P
xMdpvq for all v P suppV .

Then, under M2
d,

EPM2 r Yd,z | c s (196)

“
ÿ

u

EPM2 r Yd,z | u, c sPM2

pu | cq (197)

“
ÿ

u

EPM2 r Yd | z,u, c sPM2

pu | cq (198)

“ E
PM2

d
r Y | z, c, tu : fZpuq “ zu sPM2

ptu : fZpuq “ zu | cq (199)

` E
PM2

d
r Y | z, c, tu : fZpuq ‰ zu sPM2

ptu : fZpuq ‰ zu | cq (200)

“ E
PM2

d
r Y | z, c sPM2

dpz | cq ` 1 ´ PM2
dpz | cq. (201)

We therefore find that,

0 ď E
pP

“

Yd,z | z1, c
‰

ď 1, (202)

and ultimately,

´EPd
r Y | z, cs ď Υpd, cq ď 1 ´ EPd

r Y | z, cs, (203)

as claimed.

Thm. 6 restated. Consider an agent with utility function Y grounded in a domain M. Then,

maxt0,EPd
r Y | c s ` EPd0

r Y | c s ´ 1u ď Ωpd, d0q ď mintEPd
r Y | c s ,EPd0

r Y | c su (204)

and this bound is tight.

Proof. Consider an agent with internal model xM and utility function Y . Recall that the agent’s expected harm of a decision
d with respect to a baseline d0, in context c, is

Ωpd, d0q :“ E
pP r maxt0, Yd0 ´ Ydu | c s . (205)

We can re-write this quantity as follows

Ωpd, d0q “ E
pP r maxt0, Yd0 ´ Ydu | c s (206)

“

ż

maxt0, yd0 ´ ydu pP pyd, yd0 | cqdyddyd0 (207)

Since Yd is binary, the only time that the maximum evaluates to something greater than zero is when Yd0 “ 1 and Yd “ 0.
Then,

Ωpd, d0q “ pP pYd0 “ 1, Yd “ 0q (208)

31



The Limits of Predicting Agents from Behaviour

This quantity can be tightly bounded using the results of (Tian & Pearl, 2000, Sec. 4.2.2) giving

maxt0,E
pPd

r Y | c s ` E
pPd0

r Y | c s ´ 1u ď Ωpd, d0q ď mintE
pPd

r Y | c s ,E
pPd0

r Y | c su. (209)

And by grounding,

maxt0,EPd
r Y | c s ` EPd0

r Y | c s ´ 1u ď Ωpd, d0q ď mintEPd
r Y | c s ,EPd0

r Y | c su. (210)
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D. Other accounts of fairness and harm
To ground definitions of fairness, several authors appeal to counterfactual thinking but some accounts, instead, are
interventional in nature.

Within legal systems, counterfactual fairness (Def. 7) operationalizes a doctrine known as disparate impact doctrine focuses
on outcome fairness, namely, the equality of outcomes among protected groups. On the other hand, the doctrine of disparate
treatment seeks to enforce the equality of treatment in different groups, prohibiting the use of a protected attribute in the
decision process, and has been formalized using interventional accounts (Barocas & Selbst, 2016).

A popular notion in the disparate treatment literature is known as direct discrimination (Barocas & Selbst, 2016; Zhang
& Bareinboim, 2018). An agent is said to engage in direct discrimination if the causal influence of a sensitive attribute Z
that is not mediated by other variables C is non-zero. This is a contrast between interventional expectations. We adapt this
notion to define an AI’s perceived direct fairness gap as the difference in expected utilities obtained for different values of a
protected attribute while holding all other variables fixed.
Definition 10 (Direct Discrimination Gap). Let Z P tz0, z1u be a protected attribute. For a given utility Y , define an agent’s
direct discrimination gap relative to a baseline value z0 in a given context c as

Ψpd, cq :“ E
pP r Yd,z1,c s ´ E

pP r Yd,z0,c s . (211)

We say that an AI “intends” to avoid direct discrimination if under any context C “ c and decision D “ d the direct
discrimination gap Ψ evaluates to 0. Here, we consider this notion of fairness to illustrate the kind of inference that is
possible to obtain from an AI’s external behaviour with one alternative account. The following theorem shows that, contrary
to the counterfactual fairness gap, Ψ can be bounded given the AI’s external behaviour.
Theorem 9. Consider an agent with utility Y grounded in a domain M. Then,

Ψpd, cq ě EPd
r Y | z1, c sPdpz1, cq ´ EPd

r Y | z0, c sPdpz0, cq ` Pdpz0, cq ´ 1, (212)
Ψpd, cq ď EPd

r Y | z1, c sPdpz1, cq ´ EPd
r Y | z0, c sPdpz0, cq ` 1 ´ Pdpz1, cq. (213)

This bound is tight.

Proof. Let Z P t0, 1u be a protected attribute and z0 a baseline value of Z. For a given utility variable Y , recall that the
AI’s direct fairness gap relative to a baseline z0 in a given context c is defined as

Ψpd, cq :“ E
pP r Yd,z1,c s ´ E

pP r Yd,z0,c s . (214)

Using a similar proof strategy to that in Thm. 1, we can derive tight bounds on Ψ.

Analytical Lower Bound A lower bound on the interventional expectation can be obtained using the following derivation:

E
pP r Yz,c,d s “

ÿ

c̃,z̃

E
pP r Yz,c,d1c̃,z̃pCd, Zc,dq s marginalizing over cd, zc,d (215)

ě E
pP r Yz,c,d1c,zpCd, Zc,dq s since summands ą 0 (216)

“ E
pP r Yc,d1c,zpCd, Zc,dq s by consistency (217)

“ E
pP r Yd1c,zpCd, Zdq s by consistency (218)

“ EPd
r Y 1c,zpC, Zq s by grounding (219)

“ EPd
r Y | c, zsPdpc, zq. (220)

Analytical Upper Bound For deriving an upper bound on the interventional expectation, we start by noting that,

E
pP r Yz,c,d s “ 1 ´ E

pP r 1 ´ Yz,c,d s (221)

Leveraging the bounds derived above we obtain,

E
pP r Yz,c,d s ď 1 ´ EPd

r p1 ´ Y q | c, zsPdpc, zq (222)
“ EPd

r Y | c, zsPdpc, zq ` 1 ´ Pdpc, zq. (223)
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By setting z “ z1 in the lower bound and z “ z0 in the upper bound of the expected utility, we obtain a lower bound on the
difference of expected utilities:

Ψpd, cq ě EPd
r Y | z1, c sPdpz1, cq ´ EPd

r Y | z0, c sPdpz0, cq ` Pdpz0, cq ´ 1. (224)

And similarly, by setting z “ z1 in the upper bound and z “ z0 in the lower bound of the expected utility, we obtain an
upper bound on the difference of expected utilities:

Ψpd, cq ď EPd
r Y | z1, c sPdpz1, cq ´ EPd

r Y | z0, c sPdpz0, cq ` 1 ´ Pdpz1, cq. (225)

We now show that these bounds are tight by constructing SCMs (that is, possible world models of the AI system) that
evaluate to the lower and upper bounds while generating the distribution of agent interactions Pd.

Tightness Lower Bound For the lower bound we will consider the following SCM,

M1
d “:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z Ð fZpuq

C Ð fCpuq

D Ð d

Y Ð

$

’

’

’

&

’

’

’

%

fY pd, c, z1,uq if fZpuq “ z1, fCpuq “ c

0 if fZpuq ‰ z1 or fCpuq ‰ c, and Z “ z1

fY pd, c, z0,uq if fZpuq “ z0, fCpuq “ c

1 if fZpuq ‰ z0 or fCpuq ‰ c, and Z “ z0

P pUq

(226)

Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such that PM1
dpvq “

P
xMdpvq for all v P suppV .

Then, under M1
d,

Ψpd, cq “ EPM1 r Yd,z1,c s ´ EPM1 r Yd,z0,c s (227)

“
ÿ

u

EPM1 r Yd,z1,c | u sPM1

puq (228)

´
ÿ

u

EPM1 r Yd,z0,c | u sPM1

puq (229)

“
ÿ

u

EPM1 r Yd | z,u, c sPM1

puq (230)

´
ÿ

u

EPM1 r Yd | z,u, c sPM1

puq (231)

“ E
PM1

d
r Y | z1, c, tu : fZpuq “ z1, fCpuq “ cu sPM1

ptu : fZpuq “ z1, fCpuq “ cuq (232)

` E
PM1

d
r Y | z1, c, tu : fZpuq ‰ z1 or fCpuq ‰ cu sPM1

ptu : fZpuq ‰ z1 or fCpuq ‰ cuq (233)

´ E
PM1

d
r Y | z0, c, tu : fZpuq “ z0, fCpuq “ cu sPM1

ptu : fZpuq “ z0, fCpuq “ cuq (234)

´ E
PM1

d
r Y | z0, c, tu : fZpuq ‰ z0 or fCpuq ‰ cu sPM1

ptu : fZpuq ‰ z0 or fCpuq ‰ cuq (235)

“ E
PM1

d
r Y | z1, c sPM1

dpz1, cq ´ E
PM1

d
r Y | z0, c sPM1

dpz0, cq ´ 1 ` PM1
dpz0, cq. (236)

This expression is the same one as the analytical bound showing that it is tight.
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Tightness Upper Bound For the upper bound we will consider the following SCM,

M2
d “:

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z Ð fZpuq

C Ð fCpuq

D Ð d

Y Ð

$

’

’

’

&

’

’

’

%

fY pd, c, z1,uq if fZpuq “ z1, fCpuq “ c

1 if fZpuq ‰ z1 or fCpuq ‰ c, and Z “ z1

fY pd, c, z0,uq if fZpuq “ z0, fCpuq “ c

0 if fZpuq ‰ z0 or fCpuq ‰ c, and Z “ z0

P pUq

(237)

Here tfZ , fC , fY ,U , P pUqu are chosen to match the observed trajectory of agent interactions, i.e., such that PM2
dpvq “

P
xMdpvq for all v P suppV .

Then, under M2
d,

Ψpd, cq “ EPM2 r Yd,z1,c s ´ EPM2 r Yd,z0,c s (238)

“
ÿ

u

EPM2 r Yd,z1,c | u sPM2

puq (239)

´
ÿ

u

EPM2 r Yd,z0,c | u sPM2

puq (240)

“
ÿ

u

EPM2 r Yd | z,u, c sPM2

puq (241)

´
ÿ

u

EPM2 r Yd | z,u, c sPM2

puq (242)

“ E
PM2

d
r Y | z1, c, tu : fZpuq “ z1, fCpuq “ cu sPM2

ptu : fZpuq “ z1, fCpuq “ cuq (243)

` E
PM2

d
r Y | z1, c, tu : fZpuq ‰ z1 or fCpuq ‰ cu sPM2

ptu : fZpuq ‰ z1 or fCpuq ‰ cuq (244)

´ E
PM2

d
r Y | z0, c, tu : fZpuq “ z0, fCpuq “ cu sPM2

ptu : fZpuq “ z0, fCpuq “ cuq (245)

´ E
PM2

d
r Y | z0, c, tu : fZpuq ‰ z0 or fCpuq ‰ cu sPM2

ptu : fZpuq ‰ z0 or fCpuq ‰ cuq (246)

“ E
PM2

d
r Y | z1, c sPM2

dpz1, cq ` 1 ´ PM2
dpz1, cq ´ E

PM2
d

r Y | z0, c sPM2
dpz0, cq. (247)

This expression is the same one as the analytical bound showing that it is tight.

Definitions of harm (defined with respect to a causal model) can also be split in two groups: causal and counterfactual
accounts. (Beckers et al., 2022) exemplify the causal account as defining a decision d to harm a person if and only d is a
cause of harm. Recall that the counterfactual account has the same structure but differs in the second clause, instead defining
a decision d to harm a person if and only if she would have been better off if d had not been taken. Here, we quantify
how “good” or “beneficial” a particular situation V “ v is with a binary utility Y P ty0, y1u that we assume is tracked in
experiments (it might capture, for example, the value of sensitive environmental variables). A formalisation of this causal
account of harm, with respect to an AI’s internal model, is given in the following definition.

Definition 11 (Causal Harm Gap). Consider an agent with internal model xM and utility Y P ty0, y1u. The agent’s expected
causal harm of a decision d with respect to a baseline d0 that obtained the non-harmful outcome y0 in context c, is

Ωpd1, d0, cq :“ E
pP r Yd1 | y0, d0, c s . (248)

This probability expresses the capacity of d1 to produce a harmful event Y “ y1 that implies a transition from the absence
to the presence of d1 and y1, we condition the probability on situations where d1 and y1 are absent, i.e. D “ d0, Y “ y0.
Theorem 10. Consider an agent with utility Y grounded in a domain M. Then,

Pd1py1 | cq ´ P py1,d1 | cq

Pd0py0 | cqP pd0 | cq
ď Ωpd1, d0, cq ď

Pd1py1 | cq ´ Pd1py1 | cqP pd1 | cq

Pd0py0 | cqP pd0 | cq
. (249)
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Proof. Note that the causal harm gap may be equivalently written,

Ωpd1, d0, cq :“ pP py1,d1 | y0, d0, cq. (250)

The lower and upper bounds may be derived considering the following,

pP py1,d1 | cq “ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , y1, d0 | cq ` pP py1,d1 , y0, d1 | cq ` pP py1,d1 , y1, d1 | cq (251)

“ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , y1, d0 | cq ` pP py1,d1 , y1, d1 | cq (252)

“ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , y1 | cq (253)

ď pP py1,d1 , y0, d0 | cq ` pP py1,d1 | cq (254)
pP py1,d1 | cq “ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , y1 | cq (255)

ě pP py1,d1 , y0, d0 | cq ` pP py1,d1 , y1, d1 | cq (256)

“ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , d1 | cq by consistency
(257)

“ pP py1,d1 , y0, d0 | cq ` pP py1,d1 , d1 | cq pP pd1 | cq. (258)

pP pd1 | cq stands for the AI’s policy in the source environment, i.e., the probability it uses for choosing decision d1 in
situation c. Re-arranging these equations this implies,

pP py1,d1 | cq ´ pP py1,d1 | cq

pP py0,d0 | cq pP pd0 | cq
ď Ωpd1, d0, cq ď

pP py1,d1 | cq ´ pP py1,d1 | cq pP pd1 | cq

pP py0,d0 | cq pP pd0 | cq
. (259)

And by grounding,

Pd1py1 | cq ´ P py1,d1 | cq

Pd0py0 | cqP pd0 | cq
ď Ωpd1, d0, cq ď

Pd1py1 | cq ´ Pd1py1 | cqP pd1 | cq

Pd0py0 | cqP pd0 | cq
. (260)
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