
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

On the Effect of Negative Gradient in Group Relative Deep Reinforcement
Optimization

Anonymous Authors1

Abstract
Reinforcement learning (RL) has become pop-
ular in enhancing the reasoning capabilities of
large language models (LLMs), with Group Rela-
tive Policy Optimization (GRPO) emerging as a
widely used algorithm in recent systems. Despite
GRPO’s widespread adoption, we identify a pre-
viously unrecognized phenomenon we term Lazy
Likelihood Displacement (LLD), wherein the like-
lihood of correct responses marginally increases
or even decreases during training. This behav-
ior mirrors a recently discovered misalignment
issue in Direct Preference Optimization (DPO), at-
tributed to the influence of negative gradients. We
provide a theoretical analysis of GRPO’s learn-
ing dynamic, identifying the source of LLD as
the naive penalization of all tokens in incorrect
responses with the same strength. To address
this, we develop a method called NTHR, which
downweights penalties on tokens contributing to
the LLD. Unlike prior DPO-based approaches,
NTHR takes advantage of GRPO’s group-based
structure, using correct responses as anchors to
identify influential tokens. Experiments on math
reasoning benchmarks demonstrate that NTHR
effectively mitigates LLD, yielding consistent per-
formance gains across models ranging from 0.5B
to 3B parameters.

1. Introduction
Reinforcement learning (RL) has become increasingly pop-
ular for improving reasoning capabilities of large language
models (LLMs) (Guo et al., 2025; Jaech et al., 2024; Team
et al., 2023). In particular, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) has emerged as a widely
adopted algorithm in RL training pipelines for reasoning

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tasks. Models such as DeepSeek-R1 (Guo et al., 2025),
DeepSeek-Math (Shao et al., 2024), Med-R1 (Lai et al.,
2025), and Search-R1 (Jin et al., 2025) have successfully em-
ployed GRPO to achieve notable performance gains in code
generation, mathematical problem solving, medical reason-
ing, and retrieval-augmented generation. These successes
highlight GRPO’s growing importance as a tool for align-
ing models to task-specific behaviors through rule-based or
heuristic rewards.

Despite its empirical success, the optimization behavior of
GRPO remains insufficiently studied, in part due to its re-
cency. In this work, we focus on the impact of negative
gradients in GRPO, which arise when the advantage func-
tion is negative—indicating that the selected action is worse
than the average action at a given state (e.g., an incorrect
or suboptimal response). In such cases, the learning algo-
rithm decreases the probability of selecting this action. We
draw a conceptual connection to Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), which introduces
negative gradients when penalizing dis-preferred responses.
Recent studies (Razin et al., 2024; Pal et al., 2024; Yuan
et al., 2024; Ren & Sutherland, 2024) have revealed that
negative gradients can lead to an arguably counterintuitive
behavior: a simultaneous decrease in the probabilities of
preferred responses (y+). Motivated by this insight, we
examine whether similar gradient dynamics in GRPO might
cause analogous issues and investigate their impact on policy
learning. This effect, termed misalignment (Ren & Suther-
land, 2024) or likelihood displacement (Razin et al., 2024),
is undesirable as it often degrades model performance by
diverting probability mass away from optimal responses. In
this work, we empirically observe (see Fig. 1) that GRPO
can suffer from what we call Lazy Likelihood Displacement
(LLD): a failure to sufficiently increase, or even a decrease
in, the likelihood of correct answers during training. To ex-
plain this phenomenon, we provide an analysis of GRPO’s
update dynamics and identify that LLD stems from penaliz-
ing certain tokens in dispreferred responses. These updates
inadvertently reduce the likelihood of correct answers due
to shared structural or semantic features between positive
and negative responses.

While several approaches have been proposed to mitigate

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

the reduced probabilities of preferred responses (y+) in
DPO (Razin et al., 2024; Ren & Sutherland, 2024), they
either compromise data efficiency or rely on training proce-
dures that are not directly compatible with GRPO’s online
learning paradigm. For instance, Razin et al. (2024) recom-
mend discarding training examples where the likelihood of
positive responses y+ decreases, thereby avoiding harmful
updates—but this strategy reduces data utilization and does
not address cases where the increase in the likelihood of y+

is insufficient. Similarly, Ren & Sutherland (2024) propose
modifying DPO into a more online-compatible setup by
training on both y+ and y−, which effectively mitigates the
“squeezing effect” imposed by off-policy negative gradient.
However, GRPO already employs online response sampling,
and our empirical analysis reveals that it still suffers from
the LLD effect in a subset of training examples (see Fig. 1).

To effectively address LLD in GRPO, we introduce a neg-
ative token hidden reward (NTHR) for selective token pe-
nalization, which reduces the penalty on tokens in incorrect
responses that most strongly contribute to lowering the like-
lihood of correct ones. Interestingly, we find that these in-
fluential tokens often align closely with key reasoning steps
in the correct responses (see Fig. 3). Our approach NTHR
provides a fine-grained and targeted mitigation strategy that
mitigates LLD during training. We evaluate GRPO+NTHR
through per-sample training and compare it against base-
line methods such as random token dropping and standard
GRPO across multiple model sizes. We demonstrate that
GRPO+NTHR successfully mitigates LLD and leads to im-
proved generalization on held-out mathematical reasoning
problems. In summary, our contributions are as follows:

• GRPO exhibits LLD for correct responses. We em-
pirically show that GRPO suffers from Lazy Likelihood
Displacement (LLD), an extended form of the misalignment
phenomenon previously observed only in DPO.

• Identifying the source of LLD. We provide a theoret-
ical explanation for LLD in GRPO, identifying its cause
as a penalization of shared reasoning or correct tokens in
dispreferred responses.

• NTHR selective token penalization. We introduce Neg-
ative Token Hidden Reward (NTHR) for selective token
penalization that effectively mitigates LLD without sacrific-
ing data efficiency.

• Empirical validation on math reasoning tasks. We
demonstrate that GRPO+NTHR consistently outperforms
GRPO on math benchmarks across model sizes ranging
from 0.5B to 3B.

2. Preliminaries and Related Work
2.1. GRPO

GRPO loss, introduced in DeepSeek-Math (Guo et al.,
2025) and DeepSeek-R1 (Shao et al., 2024), enhances fine-
tuning by refining how reward and loss are calculated. Con-
cretely, unlike traditional Proximal Policy Optimization
(PPO) (Schulman et al., 2017), GRPO eliminates the need
for value function estimation, employing group-relative re-
wards for a more nuanced optimization process.

For a query-answer pair (x,a), the policy πθ samples G
responses {yi}Gi=1. Each yi consists of a sequence of |yi|
tokens, and we denote yi,<k the subsequence of the first
k tokens. Let ri denote the reward for response yi. The
advantage of the i-th response is computed by normalizing
the group-level rewards {ri}Gi=1 and is the same for each
token k = 1, . . . , |yi|. Concretely, Âi,k := ri−µ

σ , with µ =

Ê[{ri}Gi=1] and σ =

√
V̂ar[{ri}Gi=1] being the empirical

average and standard deviation of the rewards. The GRPO
objective JGRPO(θ) is then defined as:

E
(x,a)∼D

{yi}G
i=1∼πθold (·|x)

[1∑G
i=1 |yi|

G∑
i=1

|yi|∑
k=1

min
(
γi,k(θ)Âi,k,

Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)
)]

(1)

where ε is a clipping hyperparameter, clip(·) is the clipping
operation, and γi,k(θ) =

πθ(yi,k|x,yi,<k)
πθold (yi,k|x,yi,<k)

is the likelihood
ratio between the current policy πθ and the old policy πθold .

2.2. Positive and Negative Gradient

The GRPO loss includes several regularization mechanisms
designed to stabilize training, such as the KL term and
the clipping operation. However, it is common to treat
the log-likelihood component of the generated responses
as responsible for “gathering knowledge,” while viewing
the regularization components as responsible for “stabiliz-
ing the training procedure.” Without loss of generality, we
focus on the online training setting for GRPO, in which
γi,t ≈ 1 and min(·, clip(·)) can be safely neglected. This
simplification is justified by two observations. First, GRPO
inherently operates in a near-online fashion, as it generates
new samples on-the-fly and typically uses mini-batches that
are comparable in scale to the full batch. Second, prior
work (Chu et al., 2025) has shown that omitting the clip-
ping operation does not degrade performance. Addition-
ally, related studies (Chu et al., 2025; Hu et al., 2025) have
demonstrated that the KL term can be omitted when other
hyperparameters are carefully tuned. With this simplifi-
cation, we can better understand the interactions between
positive and negative responses in one roll-out. The subtle
differences between GRPO and its variants, e.g., DAPO (Yu

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

(a) Qwen-0.5B-Instruct (b) Deepseek-1.5B (c) Qwen-Math-1.5B

Figure 1: We show that negative gradients can lead to small or reduced likelihood change of positive samples in GRPO.
The log-likelihood gains achieved by Pos Only training (orange) are significantly higher than those from GRPO (blue)
for Qwen-0.5B-Ins (a) and Deepseek-1.5B (b). In Qwen-Math-1.5B (c), samples with small or reduced ∆(x) (left) are
primarily influenced by negative gradients, as evidenced by their larger ∆(x) in the Pos Only setup. However, some
samples on the right show smaller ∆(x) than in GRPO, indicating that negative gradients are not always harmful.

et al., 2025), Dr.GRPO (Liu et al., 2025), GPG (Chu et al.,
2025), etc., could also be well interpreted.

Specifically, the GRPO’s objective gradient
∇θJGRPO(θ) with respect to θ can be approximated
as ∇θE

[
1∑G

i=1 |yi|
∑G

i=1

∑|yi|
k=1 Âi,kγi,k(θ)

]
which using

∇θπθ = πθ∇θ log πθ further simplifies to

E
[1∑G

i=1 |yi|

G∑
i=1

|yi|∑
k=1

Âi,kγi,k(θ)︸ ︷︷ ︸
constant

∇θ log πθ(yi,k | x,yi,<k)
]
.

This expression allows us to interpret GRPO using a similar
framework as proposed by Ren & Sutherland (2024), i.e.,
imposing a positive or a negative pressure on yi,k. Since
γi,k is a ratio of two probabilities (and hence it must be
positive), the sign of the equivalent learning rate on yi,k is
determined by Âi,k. Then, following a common practice
that the reward is 1 for correct responses and 0 for incorrect
ones, it is safe to conclude that all the tokens in the correct
responses impose positive gradients while tokens in the
wrong responses impose negative ones.

3. The Effect of Negative Gradients
We begin by empirically analyzing the impact of negative
gradients in GRPO (Guo et al., 2025) on the likelihood
of generating correct responses. Let each question x be
associated with G generated samples, of which N+ :=
N+(x) give the correct answer so we call them positive and
denote by y+

i , i ∈ [N+], and the rest N−L = G−N+ are
incorrect we call them negative and denote by y−

j , j ∈ [N−].
Positive/negative samples are given rewards ri = 1 and
rj = 0 respectively.

We conduct experiments using math-reasoning tasks to as-
sess how negative gradient in GRPO training influences
the log-likelihood of correct responses. Specifically, we
examine a range of model-dataset combinations that differ

in terms of dataset difficulty and model scale: Qwen-2.5-
0.5B (Yang et al., 2024a), Qwen-2.5Math-1.5B (Yang et al.,
2024b) with the MATH dataset (Hendrycks et al., 2021), and
Deepseek-1.5B (Guo et al., 2025) with the AIME dataset.
For each question, we generate 8 response rollouts, filtering
out samples where all responses are either entirely correct
or incorrect. We retain only those examples containing a
mix of both.

Our analysis focuses on the GRPO baseline (illustrated by
the blue bars in Fig. 4). To precisely characterize the learn-
ing dynamics of the algorithm, we reinitialize the model
parameters θ for each individual sample, perform a single
GRPO update to obtain the updated parameters θ′, and eval-
uate the average change in the log-likelihood of the correct
responses:

∆(x) :=
1

N+

∑N+

i=1

[
lnπθ′(y+

i | x)− lnπθ(y
+
i | x)

]
,

(2)
for an input question x with N+ correct responses y+

i , i ∈
[N+]. As illustrated in Fig. 1, some correct responses ex-
perience either a decline or only a marginal improvement
in log-likelihood after training. For example, in Deepseek-
1.5B (Fig. 1b), a significant portion of samples exhibit re-
duced likelihoods (negative values in the plot). Similarly,
in Qwen-Math-1.5B and Qwen-0.5B, many samples show
only minor changes in likelihood. A closer analysis shows
the following.

Negative gradients lead to small or reduced likelihood
change. In order to isolate the effect of negative gradients,
we introduce a variant which we call Pos Only, where
negative advantages are masked (i.e., values of Âi,k < 0
are set to 0), effectively removing the influence of negative
gradients during training. Fig. 1 shows the Pos Only vari-
ant in orange bars. The log-likelihood gains under Pos
Only training are substantially higher than those from
GRPO—particularly on the left side of the plots, where

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

Figure 2: Inspecting negative (incorrect) samples of questions with small average likelihood change ∆(x) (Eq. (2)) reveals
that they are either nearly correct (Left) or get the correct response in a wrong answer format (Right). Thus, penalizing
entire negative sample responses might be suboptimal. Red dashed lines denote omitted reasoning steps.

many samples show several-fold improvements.

Negative gradients are not always harmful. It is important
to note that negative gradients are not inherently harmful. In
terms of the likelihood change ∆(x), it is possible, as shown
in Fig. 1c, that under Pos Only training, some samples
exhibit even smaller ∆(x) than GRPO, which uses both pos-
itive and negative gradients. This decrease may result either
from negative gradients ”squeezing” the likelihood mass
toward confident y+ (Ren & Sutherland, 2024), or from
certain negative gradients increasing ∆(x), as suggested
by our Theorem 4.4 below. Moreover, in terms of perfor-
mance, we demonstrate that Pos Only actually yields a
1.3% drop in average performance compared to GRPO. The
result is shown in Tab. 2 for finetuning Qwen-Math-1.5B on
the math dataset using GRPO and Pos Only respectively.

What do negative gradients of questions with small likeli-
hood change penalize? We find that the minimal likelihood
change occurs in correct responses of those questions in the
dataset that have partially correct (but eventually incorrect)
responses or have correct responses. In Fig. 2, we present
two representative examples from Qwen-0.5B, where the
incorrect responses are partially correct and the correspond-
ing correct responses show the smallest likelihood change.
The left example, highlighted in red, shows an answer that
is nearly correct and corresponds to the red-boxed sample
in Fig. 1a. The right example provides a correct answer
but does not follow the expected output format (highlighted

in red); it corresponds to the blue-boxed sample in Fig. 1a.
Additional examples are provided in Appendix. This sug-
gests that penalizing entire partially correct responses is
suboptimal.

Controlling negative gradients at the token level can
improve performance. While negative gradients do not
necessarily hurt performance and penalizing entire incorrect
responses is suboptimal, we show in Sec. 5 that carefully
reducing negative gradients at a token level can mitigate
small likelihood change and lead to improvement boosts.
Our approach specifically leverages the previous observation
that partial responses might be partly correct by filtering out
and selectively penalizing their consistuent tokens.

4. Lazy Likelihood Displacement
We have shown that negative gradient in GRPO can cause
a marginal or even reduced likelihood of correct responses
y+. Here, we formalize this observation by introducing
the concept of Lazy Likelihood Displacement (LLD)—a
phenomenon in which the probability of correct answers
decreases or increases only marginally after training. Our
experiments reveal that LLD frequently emerges in group-
based policy optimization settings, indicating that GRPO
and its variants are also subject to the same limitations
observed in preference optimization frameworks such as
DPO (Ren & Sutherland, 2024; Razin et al., 2024).

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Definition 4.1 Let πθinit and πθfin denote the initial and final
language models, before and after optimizing a preference
learning objective J (e.g., Eq. (1)) over a dataset D, such
that J (θfin) < J (θinit). We say that LLD occurs for a tuple
(x,y+) ∈ D if, for small nonnegative constant ϵ ≥ 0,

lnπθfin(y
+|x) < lnπθinit(y

+|x) + ϵ . (3)

4.1. Understanding LLD

We begin by showing that GRPO effectively performs a
weighted group preference optimization between two groups
of responses: correct and incorrect ones (detailed proof in
the appendix).

Lemma 4.2 When reward is binary, GRPO performs pref-
erence optimization between two distinct groups: the group
of correct responses (ri = 1) and the group of incorrect
responses (ri = 0). Specifically, the optimization objective
reduces to the following:

p+
N+∑
i=1

min

(
πθ(y

+
i |x)

πθold(y
+
i |x)

, 1 + ε

)
−

p−
N−∑
j=1

max

(
πθ(y

−
j |x)

πθold(y
−
j |x)

, 1− ε

)
, (4)

where p
∆
= p(x)

∆
= 1

G

∑
i∈[G] 1[ri(x) = 1] denotes

the correctness rate for a given input, N+ = pG and
N− = (1 − p)G are the sizes of the correct and incor-
rect response groups respectively, and the group-specific
weights are defined as p+ = 1−p√

p(1−p)
and p− = p√

p(1−p)
.

Next, we introduce an assumption of unconstrained features,
which allows us to focus our analysis on the final-layer
hidden embedding hx ∈ Rd and the token unembedding
matrix W ∈ R|V|×d, where V is the vocabulary of tokens.

Assumption 4.3 (Unconstrained Features) Expressive
(enough) neural networks can produce unconstrained
embeddings hx ∈ Rd independent of the architecture’s
specific complexities (Yang et al., 2017; Mixon et al.,
2022; Zhao et al., 2024; Razin et al., 2024). These
embeddings are subsequently transformed into logits by
a token unembedding matrix W ∈ R|V|×d. The resulting
logits are passed through a softmax function to yield a
probability distribution over possible next tokens. To
assign probabilities to sequences y ∈ V∗, the language
model πθ operates in an autoregressive manner, i.e.,
πθ(y | x) =

∏|y|
k=1 Softmax(Whx,y<k

)yk
.

Here, hx,y<k
is the embedding of sequence (x,y<k) and

Softmax(·)yk
is the yk-th entry of the V -dimensional soft-

max map. We focus on the online training setting for

Top-K Qwen-1.5B-deepseek Qwen-1.5B-math
GWHES Random GWHES Random

10 50% 17.5% 60% 21.3%
15 75% 26.3% 75% 31.9%

Table 1: Ranking questions by GWHES results in a signif-
icantly higher Top-K overlap with the likelihood-change
ranking compared to ranking randomly. This demonstrates
the effectiveness of GWHES in identifying LLD samples.
GRPO, as state in Sec. 2.2, the effect of the clipping oper-
ation is effectively removed. We assume that the objective
is optimized via gradient flow and theoretically analyze
the dynamics of the log-likelihood of a positive response,
d
dt lnπθ(t)(y

+
i | x), yielding the following characterization1

(see the appendix for a proof).

Theorem 4.4 For any question x, at any time t ≥ 0 of
training, and any correct response y+

i , i ∈ [N+] , in addi-
tion to the dependence on token unembeddings, the likeli-
hood change d

dt lnπθ(t)(y
+
i |x) exhibits increased laziness

(that is, has smaller magnitude) as the following quantity
increases:

p−
|y+

i |∑
k=1

N−∑
j=1

|y−
j |∑

k′=1

α−
k,k′ · ⟨hx,y+

i,<k
,hx,y−

j,<k′
⟩︸ ︷︷ ︸

Negative Token Hidden Reward

−

p+
|y+

i |∑
k=1

N+∑
i′=1

|y+

i′ |∑
k′′=1

α+
k,k′′ · ⟨hx,y+

i,<k
,hx,y+

i′,<k′′
⟩. (5)

Here, α−
k,k′ and α+

k,k′′ are token-level prediction error simi-
larity weights, which quantify the similarity of token-level
prediction error across responses (see Appendix for formal
definitions.). We refer to the quantity in Eq. (5) as Group
Weighted Hidden Embedding Score (GWHES).

The first term in Eq. (5) captures the influence of negative
gradients on the likelihood of the correct response. Specif-
ically, this shows that a negative token with a large value
of α−

k,k′ · ⟨hx,y+
i,<k

,hx,y−
j,<k′
⟩ is more likely to cause the

LLD of the correct responses. This motivates the following
corollary.

Corollary 4.5 For any question x, the negative gradient
associated with the hidden embedding of a token k′ in any
incorrect response y−

j , j ∈ [N−], will exert a greater
adverse effect on the likelihood change d

dt lnπθ(t)(y
+
i |x)

1Theorem 4.4 can be seen as an extension of Thm.3 (Razin
et al., 2024) for DPO to the more challenging GRPO setting with
group-based structure. Unlike DPO, we will exploit this group-
structure to selectively penalize tokens rather than responses.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

as the following quantity getslarger:

|y+
i |∑

k=1

α−
k,k′ · ⟨hx,y+

i,<k
,hx,y−

j,<k′
⟩. (6)

This can occur when the negative and positive tokens have
high embedding similarity, theoretically supporting the ob-
servation in Fig. 2 that LLD samples are often nearly correct.

4.2. Identifying LLD Samples

Theorem 4.4 suggests using ∆GWHES as a metric to identify
samples that cause LLD. Here, we verify the validity of this
metric experimentally. For Qwen-1.5B-deepseek, we gen-
erate responses for the first 100 questions from the AIME
dataset (1983–2023) and compute the GWHES scores for
those questions with non-extreme predicted probabilities
(0 < p < 1), resulting in 57 valid questions. For Qwen-
2.5Math-1.5B, we use questions from the Math dataset and
retain 47 valid questions. We then calculate the Top-K
overlap accuracy between two rankings of questions: one
based on the ascending order of likelihood changes ∆(x)
as defined in Eq. (2) (denoted QL

K), and the other based
on the descending order of GWHES scores as defined in
Eq. (5) (denoted QS

K). The overlap accuracy is computed

as |QL
K∩QS

K |
K . The results in Tab. 1 indicate that the over-

lap achieved using GWHES is significantly greater than
that of the random ranking baseline, highlighting a strong
alignment between high GWHES scores and LLD samples.

5. Selective Token Penalization in Incorrect
Responses

Theorem 4.4 identifies samples prone to causing LLD and
Corollary 4.5 quantifies the influence of individual tokens’
negative gradients on the likelihood of correct responses.
The goal of this section is to explore whether appropriately
controlling negative gradients can mitigate LLD and further
lead to performance improvements over vanilla GRPO. One
approach could be using ∆GWHES to identify negative sam-
ples y−

i that cause LLD and entirely discard them during
training. However, this compromises data efficiency and
fails to address cases where samples only marginally im-
prove y+. Instead, we propose a more targeted approach:
identify tokens that negatively impact ∆(x) and reduce the
penalty applied to them.

5.1. Negative Token Hidden Reward (NTHR)

Motivated by Corollary 4.5, we define the impact that an
individual token k′ of incorrect response y−

j , j ∈ [N−] has

on the likelihood of a group of correct responses as follows:

s−j,<k′ :=

N+∑
i=1

|y+
i |∑

k=1

α−
k,k′ ·

〈
hx,y+

i,<k
,hx,y−

j,<k′

〉
, (7)

which defines a relative influence from imposing a nega-
tive gradient on y−

j to all tokens in all positive responses.
Specifically, a token from an incorrect response can nega-
tively affect the likelihood of a group of a group of correct
responses when s−j,<k′ ≥ 0, with the magnitude of s−j,<k′

indicating the severity of this effect. We refer to this value
as the negative token hidden reward (NTHR): it quan-
tifies a token’s detrimental impact on correct responses’
likelihood. In Fig. 3, we visualize tokens with high s−j,<k′

values—highlighted in red. We find that many of these
influential tokens are logically or stepwise correct terms
(such as “odd,” “prime,” and “intersection” in the specific
example). These terms exhibit strong semantic alignment
with the correct responses.

5.2. NTHR selective token penalization.

Algorithm 1 NTHR selective token penalization

1: Input: Responses’ hidden embeddings {h+
i }N

+

i=1,
{h−

j }N
−

j=1, coefficient α, scale factor η and β.
2: for i′ = 1 to N+ do
3: s̄+i′ ← Eq. (7)
4: end for
5: τ ← β ·mini′∈[N+] s̄

+
i′

6: Select negative tokens:
7: for each negative response j do
8: V−

j ←
{
y−
j,k′ | s−j,<k′ > τ

}
9: end for

10: Apply selective penalization:
11: for each retained token y−

j,k′ ∈ V−
j do

12: Â−
j,k′,η ← η · Â−

j,k′

13: end for

As shown in Corollary 4.5, tokens with high positive NTHR
values tend to cause significant reductions in the likelihood
of generated correct responses. To mitigate this adverse ef-
fect, we introduce a selective penalization strategy (detailed
in Algorithm 1 and complexity discussion in Appendix) that
attenuates the penalty on tokens from negative responses
whose NTHR scores exceed a threshold τ . Concretely, we
define the resulting set of selected tokens as:

V−
j =

{
y−
j,k′

∣∣∣ s−j,<k′ > τ
}

. (8)

To determine the threshold τ , an effective pratical strategy
is computing the minimum average token-level influence ex-
erted by each correct response on all other correct responses.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

Figure 3: Key insight: Tokens of negative samples (incorrect responses) can be logically or step-correct. Tokens with high
NTHR tend to strongly correlate with these types of tokens (highlighted in red). The bold dots represent omitted reasoning.

Formally, we set τ = β ·mini′∈[N+] s̄
+
i′ , where β is a scale

factor and s̄+i′ measures the average impact of the i′-th cor-
rect response’s tokens on the likelihoods of other correct
responses:

s̄+i′ :=
1

|y+
i′ |

|y+

i′ |∑
k′′=1

N+∑
i=1

|y+
i |∑

k=1

α+
k,k′′(t)·〈

hx,y+
i,<k

(t),hx,y+

i′,<k′′
(t)
〉
. (9)

A larger s̄+i′ indicates a stronger mutual influence among
positive responses, which could be interpreted as an estima-
tion of the “local elasticity” of a deep neural network (He
& Su, 2020). Finally, to apply selective penalization, we
define the advantage of each retained token using a scale
factor η < 1, resulting in Â−

j,k′,η := η · Â−
j,k′ . The scale

factor will reduce the penalty on selected negative tokens.

5.3. NTHR Selective Token Penalization Mitigates LLD

To evaluate the effectiveness of our NTHR selective token
penalization in mitigating LLD, we conduct experiments
using the same setup described in Sec. 4. Specifically, we
identify the selected token set V−

j in incorrect responses
using a scale parameter β = 1, and apply no penalization
to these tokens by setting η = 0. We refer to this vari-
ant as GRPO+NTHR (green bars). We then compare the
following two baselines: (1) Standard GRPO (blue bars),
and (2) GRPO+Random (orange bars), where we randomly
select |V−

j | tokens and set their advantage to 0 (thus avoid
penalizing them in optimization).

The results in Fig. 4 show that GRPO+NTHR consistently
improves likelihood change across all samples, as evidenced
by the green bars surpassing the blue bars. Notably, while re-
moving negative gradients entirely—as in the Pos Only in
Fig. 1c—can sometimes reduce the likelihood change com-
pared to GRPO in Qwen-Math-1.5B, our GRPO+NTHR
approach (Fig. 4c) maintains consistent improvements. Fur-
thermore, unlike GRPO+Random that provides only mod-
est gains across all models, GRPO+NTHR delivers consis-
tent and substantial improvements, highlighting the effec-
tiveness of our proposed NTHR in identifying LLD tokens.

5.4. Performance of NTHR Selective Token Penalization

Having demonstrated the impact of negative gradients on
likelihood change and the effectiveness of our method in
mitigating the LLD issue in Sec. 5.3, we now study the
effect of negative gradient on model performance. For this,
we finetune models with different sizes using MATH dataset
(levels 3–5) (Hendrycks et al., 2021) and use greedy decod-
ing to evaluate finetuned models on five math benchmarks:
AIME24, AMC, MATH500, Minerva, and Olympiad (de-
tailed implementation details in Appendix).

We find that NTHR consistently boosts model performance
across various sizes, with detailed results presented in Tab. 2.
Notably, even for Qwen2.5-Math which shows a substantial
improvement of over 20% after RL fine-tuning—outpacing
gains seen in other models—NTHR still provides an av-
erage improvement of 0.8%. For Qwen2.5-0.5B-Ins and

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

(a) Qwen-0.5B-Instruct (b) Qwen-3B (c) Qwen-1.5B-Math

Figure 4: GRPO+NTHR consistently improves likelihood change of correct responses, as indicated by the green bars
exceeding the blue bars. While GRPO+Random offers only modest improvements, GRPO+NTHR consistently outperforms
it, highlighting the effectiveness of NTHR in identifying LLD tokens.

Model Method AIME24 AMC MATH500 Minerva Olympiad Avg.

Qwen2.5-Math-1.5B

Base 3.3 20.0 39.6 7.7 24.9 19.10
GRPO 13.3 57.5 71.8 29.0 34.1 41.14
Pos Only 10.0 57.5 70.6 30.1 31.0 39.84
NTHR 16.7 57.5 70.8 30.5 34.2 41.94

Qwen2.5-0.5B-Ins
Base 0.0 2.5 33.4 4.4 7.0 9.46
GRPO 0.0 7.5 33.8 9.2 8.1 11.72
NTHR 0.0 10.0 36.6 8.1 8.6 12.66

Qwen2.5-1.5B-Ins
Base 0.0 22.5 53.0 19.1 20.7 23.06
GRPO 3.3 32.5 57.2 18.8 23.0 26.96
NTHR 6.7 35.0 58.8 21.0 20.9 28.48

Qwen2.5-Math-1.5B Base 3.3 20.0 39.6 7.7 24.9 19.10
GRPO 10.0 42.5 72.4 32.4 31.9 37.80

(deepscaler) NTHR 16.7 47.5 73.2 29.4 31.4 39.60

Qwen2.5-3B
Base 10.0 37.5 58.6 26.1 24.6 31.36
GRPO 6.7 35.0 66.6 31.2 29.9 33.88
NTHR 10.0 47.5 65.6 31.6 26.8 36.30

Table 2: Results across selected math benchmarks for different Qwen2.5 models and methods. NTHR consistently provides
average performance gains on various models.

Qwen2.5-1.5B-Ins, NTHR consistently outperforms GRPO
by 1.1% and 1.5% on average respectively. Similar im-
provements are observed with a larger model Qwen2.5-3B,
where NTHR reaches 36.30 % compared to GRPO’s 33.88
% and the base model’s 31.36 %. We further fine-tune
Qwen2.5-Math on the more challenging DeepScaler (Luo
et al., 2025) dataset and observe that NTHR outperforms
GRPO by 1.8%.

6. Conclusion
In this work, we study how negative gradients affect the
likelihood of correct responses in GRPO. We identify a phe-
nomenon we term Lazy Likelihood Displacement (LLD),
where penalization of incorrect responses inadvertently re-
duces or lead to small likelihood change of correct ones. To

address this, we propose the negative token hidden reward
(NTHR) along with a selective token-level penalization
strategy. NTHR reduces the penalty on tokens in incor-
rect responses that contribute most to lowering the likeli-
hood of correct responses, thus successfully mitigating the
LLD issue. Through experiments on math reasoning tasks
across models ranging from 0.5B to 3B, we demonstrate that
NTHR improves GRPO, validating the effectiveness of our
approach in addressing LLD and enhancing performance.
Limitation: Due to limited resources, we were unable to
run experiments on DeepSeek-1.5B using a sufficiently large
context window (Luo et al., 2025). As a result, we trained
the model with a 4k context window, leading to significant
length constraints—causing the response length to progres-
sively decrease. The corresponding results are reported in
the Appendix.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

References
Chu, X., Huang, H., Zhang, X., Wei, F., and Wang, Y. Gpg:

A simple and strong reinforcement learning baseline for
model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Deng, W., Zhao, Y., Vakilian, V., Chen, M., Li, X., and
Thrampoulidis, C. Dare the extreme: Revisiting delta-
parameter pruning for fine-tuned models. arXiv preprint
arXiv:2410.09344, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-
level bilingual multimodal scientific problems. arXiv
preprint arXiv:2402.14008, 2024.

He, H. and Su, W. The local elasticity of neural networks. In
International Conference on Learning Representations,
2020.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021.

Hu, J., Zhang, Y., Han, Q., Jiang, D., Zhang, X., and Shum,
H.-Y. Open-reasoner-zero: An open source approach
to scaling up reinforcement learning on the base model.
arXiv preprint arXiv:2503.24290, 2025.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jin, B., Zeng, H., Yue, Z., Yoon, J., Arik, S., Wang, D.,
Zamani, H., and Han, J. Search-r1: Training llms to
reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Lai, Y., Zhong, J., Li, M., Zhao, S., and Yang, X. Med-
r1: Reinforcement learning for generalizable medical
reasoning in vision-language models. arXiv preprint
arXiv:2503.13939, 2025.

Lewkowycz, A., Andreassen, A., Dohan, D., Dyer, E.,
Michalewski, H., Ramasesh, V., Slone, A., Anil, C.,
Schlag, I., Gutman-Solo, T., et al. Solving quantitative
reasoning problems with language models. Advances in
Neural Information Processing Systems, 35:3843–3857,
2022.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Luo, M., Tan, S., Wong, J., Shi, X., Tang, W., Roongta, M.,
Cai, C., Luo, J., Zhang, T., Li, E., Popa, R. A., and Stoica,
I. Deepscaler: Surpassing o1-preview with a 1.5b model
by scaling rl, 2025. Notion Blog.

Mixon, D. G., Parshall, H., and Pi, J. Neural collapse
with unconstrained features. Sampling Theory, Signal
Processing, and Data Analysis, 20(2):11, 2022.

Pal, A., Karkhanis, D., Dooley, S., Roberts, M., Naidu, S.,
and White, C. Smaug: Fixing failure modes of pref-
erence optimisation with dpo-positive. arXiv preprint
arXiv:2402.13228, 2024.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36:
53728–53741, 2023.

Razin, N., Malladi, S., Bhaskar, A., Chen, D., Arora, S.,
and Hanin, B. Unintentional unalignment: Likelihood
displacement in direct preference optimization. arXiv
preprint arXiv:2410.08847, 2024.

Ren, Y. and Sutherland, D. J. Learning dynamics of llm
finetuning. arXiv preprint arXiv:2407.10490, 2024.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Sori-
cut, R., Schalkwyk, J., Dai, A. M., Hauth, A., Millican,
K., et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Veeraboina, H. Aime problem set 1983-
2024, 2023. URL https://www.kaggle.
com/datasets/hemishveeraboina/
aime-problem-set-1983-2024.

Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li,
C., Liu, D., Huang, F., Wei, H., et al. Qwen2. 5 technical
report. arXiv preprint arXiv:2412.15115, 2024a.

Yang, A., Zhang, B., Hui, B., Gao, B., Yu, B., Li, C., Liu, D.,
Tu, J., Zhou, J., Lin, J., Lu, K., Xue, M., Lin, R., Liu, T.,

9

https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

Ren, X., and Zhang, Z. Qwen2.5-math technical report:
Toward mathematical expert model via self-improvement.
arXiv preprint arXiv:2409.12122, 2024b.

Yang, Z., Dai, Z., Salakhutdinov, R., and Cohen, W. W.
Breaking the softmax bottleneck: A high-rank rnn lan-
guage model. arXiv preprint arXiv:1711.03953, 2017.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., et al. Dapo: An open-source
llm reinforcement learning system at scale. arXiv preprint
arXiv:2503.14476, 2025.

Yuan, L., Cui, G., Wang, H., Ding, N., Wang, X., Deng, J.,
Shan, B., Chen, H., Xie, R., Lin, Y., et al. Advancing
llm reasoning generalists with preference trees. arXiv
preprint arXiv:2404.02078, 2024.

Zeng, W., Huang, Y., Liu, Q., Liu, W., He, K., Ma, Z.,
and He, J. Simplerl-zoo: Investigating and taming zero
reinforcement learning for open base models in the wild.
arXiv preprint arXiv:2503.18892, 2025.

Zhao, Y., Behnia, T., Vakilian, V., and Thrampoulidis, C.
Implicit geometry of next-token prediction: From lan-
guage sparsity patterns to model representations. arXiv
preprint arXiv:2408.15417, 2024.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

A. Appendix
Notation. For any time t ≥ 0, we use W (t), wz(t), and hz(t) to denote the token unembedding matrix, unembedding of a
token z ∈ V , and hidden embedding of z ∈ V∗, respectively. We let zk be the k-th token in z and z<k be the first k − 1
tokens in z. For a question x, the old policy πθold generates a group of G samples and resulting (x, {y+

i }N+ , {y−
j }N−),

where N+ +N− = G. Lastly, we denote by ez ∈ R|V| the standard basis vector corresponding to z ∈ V .

A.1. Proof of Lemma 4.2: GRPO as Group Preference Optimization

In this section, we demonstrate that training with GRPO constitutes preference optimization. We adopt a binary reward
system, assigning r = 1 to correct responses and r = 0 to incorrect ones, consistent with recent works (Liu et al., 2025; Yu
et al., 2025). It is notable that this also applies to its variants, e.g., DAPO (Yu et al., 2025), Dr.GRPO (Liu et al., 2025),
GPG (Chu et al., 2025), etc.

For a single question x, we simplify the expected loss E{yi}G
i=1∼πθold (·|x)

[Jx] in Eq. (1) by omitting the token normalization
term 1∑G

i=1 |yi|
, yielding:

E{yi}G
i=1∼πθold (·|x)

 G∑
i=1

|yi|∑
k=1

min
(
γi,k(θ)Âi,k, Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)

) . (10)

The success probability for question x is p = P̂i(ri,x = 1) ≈ P(rx = 1) where we use a population approximation for
large enough G. In this case, we take µ = p and σ =

√
p(1− p). Consequently, the advantage Âi,k becomes:

Âi,k =


1−p√
p(1−p)

if ri = 1,

− p√
p(1−p)

if ri = 0.
(11)

Since
min

(
γi,k(θ)Âi,k, Âi,k · clip (γi,k(θ), 1− ε, 1 + ε)

)
is equivalent tos {

Âi,k ·min (γi,k(θ), 1 + ε) , if Âi,k > 0 ⇔ ri = 1,

Âi,k ·max (γi,k(θ), 1− ε) , if Âi,k < 0 ⇔ ri = 0 ,

the expected loss then becomes:

E{yi}G
i=1∼πθold (·|x)

[Jx] =
1− p√
p(1− p)

E{yi}G
i=1∼πθold (·|x)

[
min

(
πθ(yi|x)
πθold(yi|x)

, 1 + ε

)
1ri=1

]
− p√

p(1− p)
E{yi}G

i=1∼πθold (·|x)

[
max

(
πθ(yi|x)
πθold(yi|x)

, 1− ε

)
1ri=0

]
. (12)

When generating G sampled responses, the loss becomes:

p+
N+∑
i=1

min

(
πθ(y

+
i |x)

πθold(y
+
i |x)

, 1 + ε

)
− p−

N−∑
j=1

max

(
πθ(y

−
j |x)

πθold(y
−
j |x)

, 1− ε

)
, (13)

where N+ = pG, N− = (1 − p)G, p+ = 1−p√
p(1−p)

and p− = p√
p(1−p)

. This represents group preference optimization,

i.e., increasing the likelihood of correct responses while penalizing incorrect ones.

A.2. Proof of Theorem 4.4

Assume that all responses are sequences whose first tokens are distinct from each other. Then we analyze the likelihood
change for a correct response y+

i by measuring d
dt lnπθ(t)(y

+
i |x). According to the chain rule, using the loss in Eq. (13)

and denoting π<k = πθ(y
+
i,k|x,y

+
i,<k) and πold,<k = πθold(y

+
i,k|x,y

+
i,<k) for brevity , we can obtain:

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

d

dt
lnπθ(t)(y

+
i |x) =

〈
∇ lnπθ(t)(y

+
i |x),

dθ(t)

dt

〉
(14)

=
〈
∇ lnπθ(t)(y

+
i |x),

p+
N+∑
i′=1

|y+

i′ |∑
k=1

π<k

πold,<k
δ

(
1 + ϵ− π<k

πold,<k

)
∇ lnπθ(t)(y

+
i′,k|x,y

+
i′,<k)

− p−
N−∑
j=1

|y−
j |∑

k′=1

π<k′

πold,<k′
δ

(
π<k′

πold,<k′
− 1 + ϵ

)
∇ lnπθ(t)(y

−
j,k′ |x,y−

j,<k′)

〉
(15)

where δ(x) =

{
1 if x ≥ 0

0 if x < 0
is the gradient of the clip function. We assume πθ(t) = πold since GRPO is online or nearly

online due to sampling new responses at each iteration. Thus we obtain:

d

dt
lnπθ(t)(y

+
i |x) =

〈
∇ lnπθ(t)(y

+
i |x), p

+
N+∑
i′=1

∇ lnπθ(t)(y
+
i′ |x)− p−

N−∑
j=1

∇ lnπθ(t)(y
−
j |x)

〉
.

As per the unconstrained features Assumption 4.3, the model’s trainable parameters are

θ =
(
W ,hx ,

{
hx,y+

i′,<k

}
i′∈[N+],k∈{2,...,|y+

i′ |}
,
{
hx,y−

j,<k′

}
j∈[N−],k′∈{2,...,|y−

j |}

)
.

Here, we also used the (mild) assumption that all responses differ in their first token. Unfolding the gradients with respect to
these parameters yields:

d

dt
lnπθ(t)(y

+
i |x) =

〈
∇W lnπθ(t)(y

+
i |x), p

+
N+∑
i′=1

∇W lnπθ(t)(y
+
i′ |x)− p−

N−∑
j

∇W lnπθ(t)(y
−
j |x)

〉

+

〈
∇hx lnπθ(t)(y

+
i,1|x), p

+
N+∑
i′=1

∇hx lnπθ(t)(y
+
i′,1|x)− p−

N−∑
j=1

∇hx lnπθ(t)(y
−
j,1|x)

〉

+

|y+
i |∑

k=2

||∇h
x,y

+
i,<k

lnπθ(t)(y
+
i,k|x,y

+
i,<k)||

2 . (16)

For softmax model output the gradients can be easily computed as follows:

∇W lnπθ(t)(z|x) =
|z|∑
k=1

(
ezk
− πθ(t)(·|x, z<k)

)
h⊤
z<k

(t)

In addition, the gradient with respect to the hidden representation at each position k is:

∇hx,z<k
lnπθ(t)(z|x) = wzk

(t)−
∑
z∈V

πθ(t)(z|x, z<k) ·wz(t), k ∈ {1, . . . , |z|}

Putting this back in (16) together with a few algebra steps, yields

d

dt
lnπθ(t)(y

+
i |x) = (I)− (II) + (III) + (IV) (17)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

where:

(I) = p+
|y+

i |∑
k=1

N+∑
i′=1

|y+

i′ |∑
k′′=1

α+
k,k′′(t) ·

〈
hx,y+

i,<k
(t),hx,y+

i′,<k′′
(t)
〉

(18)

(II) = p−
|y+

i |∑
k=1

N−∑
j=1

|y−
j |∑

k′=1

α−
k,k′(t) ·

〈
hx,y+

i,<k
(t),hx,y−

j,<k′
(t)
〉

(19)

(III) =

〈
wy+

i,1
(t)−

∑
z∈V

πθ(t)(z|x) ·wz(t),

N+∑
i′=1

p+wy+

i′,1
−

N−∑
j=1

p−wy−
j,1

〉
(20)

(IV) =
|y+|∑
k=2

∥∥∥∥∥wy+
i,k
(t)−

∑
z∈V

πθ(t)(z|x,y+
i,<k) ·wz(t)

∥∥∥∥∥
2

(21)

where α+
k,k′′(t) =

〈
ey+

i,k
− πθ(t)(·|x,y+

i,<k), ey+

i′,k′′
− πθ(t)(·|x,y+

i′,<k′′)
〉

and α−
k,k′(t) =〈

ey+
i,k
− πθ(t)(·|x,y+

i,<k), ey−
j,k′
− πθ(t)(·|x,y−

j,<k′)
〉

.

Specifically, (I) and (II) capture how token embeddings influence changes in likelihood, while (III) and (IV) reflect how the
geometry of token unembeddings governs such changes. Our focus is on (I) and (II) because:

• Token embeddings encapsulate the contribution of all network parameters excluding the token unembedding layer.

• Token embeddings are influenced by the words in the sample, which span a broader space than token unembeddings.

Our results in Tab. 1 further validate the effectiveness of these terms. Thus we arrive at Theorem 4.4: as (II)− (I) increases,
the likelihood change decreases.

A.3. Implementation Details

Dataset. For training, we use the MATH dataset (levels 3–5) to train the model. Additionally, we include a subset of the
DeepScaler dataset (Luo et al., 2025), which contains more challenging problems. For evaluation, we assess the reasoning
capabilities of the fine-tuned models on five standard math benchmarks: AIME 2024 (Veeraboina, 2023), AMC, MATH500,
Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024).

Models. We we select models range from 0.5B-3B (Yang et al., 2024a). We use 0.5B-ins and 1.5B-ins models as (Zeng
et al., 2025) found small base model may not follow the format prompt well. We also use Qwen2.5-Math-1.5B (Yang et al.,
2024b) to show the influence of math knowledge. For 3B model, we use Qwen-2.5-3B (Yang et al., 2024a) base model. For
all models, we conduct reinforcement fine-tuning using GRPO and NTHR using the same hyperparameters.

Hyperparamters. For the 0.5B model, we use two A6000 GPUs with a batch size of 32, maximum rollout length of 2500
tokens, learning rate 5e−7 and a mini-batch size of 16, resulting in two iteration updates per training step. We use math
dataset to train the model for 105 steps.
For the larger models, we utilize four A100 GPUs with a batch size of 256, learning rate 1e− 6 and a mini-batch size of 64,
leading to four iteration updates per step, for the math dataset, we train for 40 steps, which approximates one epoch. For the
DeepScaler dataset, which contains more data, we train for 45 steps.
Across all models, we generate 8 rollouts per prompt. We use a default sampling temperature of 1.0, a clipping ratio of 0.2,
and set the KL loss coefficient to 1× 10−4. The Qwen-math model (Yang et al., 2024b) uses its full context length of 3072
tokens for rollouts, while all other models use a maximum rollout length of 4000 tokens. To accelerate training, we employ
dynamic sampling (Yu et al., 2025), which filters out samples with zero advantage.
Lastly, we use β = 1 and define the weighting factor as η = 2× |0.5− p|, where p is the success rate. This formulation
penalizes questions with success rates near 0.5 less, avoiding excessive reward for easy samples while not over-relying on
difficult questions, whose scarce correct responses may not yield effective token selection. Finally, we set the temperature to
0 to perform greedy decoding, following standard practice in math evaluation tasks (Yu et al., 2023; Deng et al., 2024; Liu

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

et al., 2025). This enables the assessment of the model’s most confident output, which is essential for math tasks requiring
exact correctness and providing users with consistent answers to repeated queries.

A.4. Complexity Discussion

In this section, we introduce several techniques to enhance the computational efficiency of NTHR, which is essential for
practical implementation.

Output last-layer embeddings with old policy probabilities. Since GRPO relies on the old policy πold to compute old
probabilities for the clip(·)) operation, we only need to output the last-layer embeddings during the old policy’s forward
pass. This does not require any extra forward passes, thereby keeping the computational overhead minimal.

Calculate summations first. We more conveniently rewrite (7) as a matrix inner product.

〈
N+∑
i=1

|y+
i |∑

k=1

(
ey+

i,k
− πθ(t)(·|x,y+

i,<k)
)
hT
x,y+

i,<k

,
(
ey−

j,k′
− πθ(t)(·|x,y−

j,<k′)
)
hT
x,y−

j,<k′

〉

Importantly, our reformulation involves calculating the summations over i, k first before taking the inner product. This
reduction reduces the overall complexity for compute (7) by 3.

Focus on vocabulary of the responses. As the formulation involves computing the outer product between the prediction
error vector (e.g., ey+

i,k
−πθ(t)(·|x,y+

i,<k)) and the hidden embedding, which incurs a computational complexity of O(|V|d).
Since the probability mass is primarily concentrated on the output words, for each question x, we restrict the computation to
the vocabulary V⋆

x associated with its generated responses. Since |V⋆
x| ≪ |V|, this significantly lowers the overall cost to

O(|V⋆
x|d).

Running time of each module. We also track the average time cost of each module during training, as reported in Tab. 3.
Notably, the data generation (Data Gen) module that using dynamic sampling accounts for the majority of the total training
time. In contrast, the overhead introduced by NTHR is minimal, contributing only a small fraction to the overall cost.
Notably, although deepseek-1.5B has a longer average output length of approximately 3,400 tokens, our NTHR still
maintains a low time overhead.

Model+dataset Data Gen Model Upd NTHR Ref Old Prob Total (Sec)
Qwen2.5-Math-1.5B (Math) 250 140 22 55 55 522
Qwen2.5-Math-1.5B (Deepscaler) 262 144 25 60 60 551
deepseek-1.5B (Deepscaler) 700 260 44 86 86 1176

Table 3: Average running time (per step, in seconds) of each module for different models and tasks.
As a result, our method does not introduce additional inference overhead, and the overall complexity remains small.

A.5. Performance across training iterations

In this section, we present the performance of various models across training iterations. As illustrated in Fig. 5, although
performance fluctuates throughout training, NTHR consistently outperforms GRPO. Notably, for the Qwen-2.5-1.5B-Ins
model, we report results at update step 100 (corresponding to 25 training steps), as performance begins to decline beyond
this point.

A.6. Ablation study

In this section, we conduct ablation studies to shed more light on the role played by different modules.
Ablation on β. We conduct ablation study on β, i.e., the scaling factor for the threshold τ in Eq. (8), which is then used to
control how bad the negative tokens should be masked out. We set β with {−∞, 0, 0.1, 1, } and train with Qwen2.5-Math-
1.5B using Math dataset. Choosing β = −∞ corresponds to apply η to all incorrect tokens. As shown in Tab. 4, this removal
results in worse performance compared to GRPO. As further shown in Tab. 4, incorporating NTHR consistently improves
performance over GRPO. While different β values result in varying degrees of improvement, all settings outperform GRPO,
indicating that reducing the influence of identified negative gradients is beneficial.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

Figure 5: Performance across training iterations for various models, NTHR consistently outperforms GRPO for most of the
training process.

Base model + Method AIME24 AMC MATH500 Minerva Olympiad Avg.

GRPO 13.3 57.5 71.8 29.0 34.1 41.14
NTHR (β = −∞) 13.3 50.0 71.8 30.5 34.4 40.00
NTHR (β = 0) 20.0 55.0 70.0 29.8 32.9 41.54
NTHR (β = 0.1) 13.3 57.5 71.4 30.9 34.4 41.50
NTHR (β = 1.0) 16.7 57.5 70.8 30.5 34.2 41.94

Table 4: Ablation study on β. Although changes in β (except ∞) lead to variations in performance, they consistently
improve GRPO, indicating that reduce influence of identified negative gradients is beneficial.

Ablation on η. We conduct an ablation study on η using three variants: η = 1− p, η = p, and η = 2 · |0.5− p|. As shown
in Tab. 5, while the optimal choice of η varies across different models, the variant η = 2 · |0.5− p| consistently yields strong
performance across all models. Therefore, we adopt η = 2 · |0.5− p| in our training.

Base model + Method AIME24 AMC MATH500 Minerva Olympiad Avg.

Qwen2.5Math-1.5B
GRPO 13.3 57.5 71.8 29.0 34.1 41.14
NTHR (η = p) 13.3 55.0 72.4 29.0 33.3 40.60
NTHR (η = 1− p) 13.3 62.5 72.8 30.5 34.2 42.66
NTHR (η = 2 · |0.5− p|) 16.7 57.5 70.8 30.5 34.2 41.94

Qwen2.5-3B
GRPO 6.7 35.0 66.6 31.2 29.9 33.88
NTHR (η = p) 10.0 47.5 64.6 33.8 26.8 36.54
NTHR (η = 1− p) 6.7 42.5 63.8 32.4 28.0 34.68
NTHR (η = 2 · |0.5− p|) 10.0 47.5 65.6 31.6 26.8 36.30

Table 5: Ablation study on η.

A.7. Results on Deepseek-1.5B

We utilize four A100 GPUs with a batch size of 256 and a mini-batch size of 64, resulting in four update iterations per
training step. Each prompt generates 8 rollouts. We adopt a default sampling temperature of 0.6, set the clipping ratio to 0.2,
and use a KL loss coefficient of 1× 10−4. The maximum rollout length is capped at 4000 tokens. We set β = 0 and define
the weighting factor as η = 2 · |0.5 − p|. We limit training to 35 steps, as we observed a consistent decline in response
length with continued training.

Since the context window length is limited, the results are very unstable, as a results, we calculate the last two checkpoints’
average performance and report the results in the table below. In this setting, we observed that our NTHR outperforms
GRPO on average.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

Base model + Method AIME24 AMC MATH500 Minerva Olympiad Avg.

Deepseek-1.5B
Base 20.0 50.0 68.8 20.6 29.6 37.8
GRPO 25.0 65.0 81.10 34.6 40.0 49.1
NTHR 25.0 70.0 80.60 33.7 40.7 50.0

Table 6: Results across selected math benchmarks for deepseek-1.5B.

A.8. Examples of LLD Incorrect Responses

We present the top-ranked incorrect response based on LLD for Qwen-2.5Math-1.5B in Fig. 1c. As shown in Tab. 7, the
answer is nearly correct, with the only issue occurring in the final step.

Similarly, Fig. 1b shows the top-ranked incorrect response by LLD for Deepseek-1.5B. As detailed in Tab. 8, the response
includes the correct answer multiple times; however, due to continued self-reflection, it becomes truncated by the context
window limit, resulting in a final answer that is wrong.

A.9. Words with high NTHR

We present additional examples of words with high NTHR scores. As shown in Tab. 9, using the same response from Tab. 7,
we observe that the correct parts are associated with high NTHR values, while the incorrect portion in step 5 receives
low NTHR values (in black). We also show response with incorrect output format in Tab. 10, using the same response
from Fig. 2, we observe that core steps and correct answer 8 are with high NTHR.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

Model & Data Problem & Answer Incorrect Response
Qwen2.5math-
1.5B
Math (order 1)

Question: A portion of the
graph of a quadratic function
f(x) is shown.

Let g(x) = −f(x), h(x) =
f(−x). If a is the number of
points where the graphs of y =
f(x) and y = g(x) intersect,
and b is the number of points
where the graphs of y = f(x)
and y = h(x) intersect, what is
10a+ b?
Answer: 21

To solve the problem, we need to analyze the given functions
f(x), g(x), and h(x) and determine the points of intersection
between the graphs of these functions.
Graph of f(x):
The graph of f(x) is a quadratic function. From the given
graph, we can observe the following:

• The roots of f(x) are at x = 1 and x = 3.

• The vertex of the parabola is at x = 2.

Graph of g(x) = −f(x):
The graph of g(x) is the reflection of the graph of f(x) across
the x-axis. Therefore:

• The roots of g(x) are also at x = 1 and x = 3.

• The vertex of the parabola for g(x) is at x = 2.

Graph of h(x) = f(−x):
The graph of h(x) is the reflection of the graph of f(x) across
the y-axis. Therefore:

• The roots of h(x) are at x = −1 and x = −3.

• The vertex of the parabola for h(x) is at x = −2.

Next, we determine the points of intersection:
Intersection of f(x) and g(x):
Since g(x) = −f(x), the graphs of f(x) and g(x) intersect
at the points where f(x) = −f(x). This simplifies to:

f(x) = 0

The roots of f(x) are at x = 1 and x = 3. Therefore, the
graphs of f(x) and g(x) intersect at two points:

a = 2

Intersection of f(x) and h(x):
Since h(x) = f(−x), the graphs of f(x) and h(x) intersect
at the points where f(x) = f(−x). This implies that f(x) is
an even function, and its graph is symmetric about the y-axis.
The roots of f(x) are at x = 1 and x = 3, but these are not
symmetric about the y-axis. Therefore, the graphs of f(x)
and h(x) do not intersect. Thus: b = 0
Finally, we calculate 10a + b: 10a + b = 10 · 2 + 0 = 20
Thus, the final answer is:

20

Table 7: Incorrect response example from qwen2.5math-1.5B. The incorrect response is almost correct.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2025

Model & Data Problem & Answer Incorrect Response
Deepseek-1.5B
AIME (order 1)

Question: One commercially
available ten-button lock may be
opened by pressing – in any or-
der – the correct five buttons.
The sample shown below has
{1, 2, 3, 6, 9} as its combination.
Suppose that these locks are re-
designed so that sets of as many
as nine buttons or as few as
one button could serve as com-
binations. How many additional
combinations would this allow?
Answer: 770

To solve the problem, explain your reasoning step by step,
and put your final answer within boxed. Alright, so I have this
problem about ten-button locks and figuring out how many
additional combinations a redesign would allow. Let me try
to break it down step by step. First, the original lock. It seems
like a ten-button lock where you need to press five buttons
in any order to open it. The combination given is 1,2,3,6,9,
which is a set of five buttons. So, the question is asking about
how many additional combinations would be possible if we
redesign the locks to allow sets of as many as nine buttons
or as few as one button. I think I need to figure out the total
number of possible combinations before and after the redesign
and then find the difference. That should give me the number
of additional combinations. Starting with the original lock
...
Therefore, the number of additional combinations is 1022−
252 = 770.Wait, thatś the same answer as before. So, perhaps
770 is the correct answer. But wait, let me make sure. Is the
original number of combinations one, or 252?
...
Then, the redesigned lock allows for any number of buttons
from one to nine, so 210− 2 = 1022 possible combinations,
but the original combination was just one. So, the number
of additional combinations would be 1022− 1 = 1021. But
that seems like a lot more. Wait, which is it? Is the original
combination one specific combination, or is it 252 unique
combinations? In the problem, it says, ”one commercially
available ten-button lock may be opened by pressing – in any
order – the correct five buttons.”
...
After redesign, the number of possible combinations is 1022.
So, the number of additional combinations is 1022−1 = 1021.
But wait, the redesign allows for any combination from one to
nine buttons. So, the number of possible combinations is 1022,
which includes the original 252 combinations. Therefore, the
number of additional combinations is 1022− 252 = 770.
...
The redesigned allows for more combinations, but if you
consider that each combination is a set of buttons, then the
number of additional combinations is 1022−252 = 770. But
the problem says, ”the sample shown below has 1,2,3,6,9 as
its combination.” So, the sample is a specific combination, so
thatś one combination. So, originally, the number of possible
combinations was 252, including the correct one. So, if you
redesign it, the number of possible combinations is 1022,
which includes all the original 252 combinations plus 1022−
252 = 770 additional combinations. Therefore, the number
of additional combinations is 770. But to make sure, let me
think of another approach. If the original lock had only one
combination, the number of possible combinations is 252,
each being a unique set of five buttons. Then, if you redesign
it so that you can have any number of buttons from one to
nine, the number of possible combinations is
Stop due to limited context window length.

Table 8: Incorrect response example from deepseek-1.5B on AIME: Although the response includes the correct answers,
excessive self-reflection causes the output to exceed the context window, preventing it from being formatted correctly. Green
dashes means omitted reasoning.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Submission and Formatting Instructions for ICML 2025

Model & Data Problem & Answer Incorrect Response
Qwen2.5math-
1.5B
Math

Question: A portion of the
graph of a quadratic function
f(x) is shown.

Let g(x) = −f(x), h(x) =
f(−x). If a is the number of
points where the graphs of y =
f(x) and y = g(x) intersect,
and b is the number of points
where the graphs of y = f(x)
and y = h(x) intersect, what is
10a+ b?
Answer: 21

To solve the problem, we need to analyze the given functions
f(x), g(x), and h(x) and determine the points of intersection
between the graphs of these functions.
1. Graph of f(x): The graph of f(x) is a quadratic function.
From the given graph, we can observe the following: - The
roots of f(x) are at x = 1 and x = 3. - The vertex of the
parabola is at x = 2.
2. Graph of g(x) = −f(x):The graph of g(x) is the reflection
of the graph of f(x) across the x-axis. Therefore: - The roots
of g(x) are also at x = 1 and x = 3. - The vertex of the
parabola for g(x) is at x = 2.
3.Graph of h(x) = f(−x):** The graph of h(x) is the reflec-
tion of the graph of f(x) across the y-axis. Therefore: - The
roots of h(x) are at x = −1 and x = −3. - The vertex of the
parabola for h(x) is at x = −2.
Next, we determine the points of intersection:
4. Intersection of f(x) and g(x): Since g(x) = −f(x),
the graphs of f(x) and g(x) intersect at the points where
f(x) = −f(x). This simplifies to:

f(x) = 0

The roots of f(x) are at x = 1 and x = 3. Therefore, the
graphs of f(x) and g(x) intersect at two points:

a = 2

5. Intersection of f(x) and h(x): Since h(x) = f(−x),
the graphs of f(x) and h(x) intersect at the points where
f(x) = f(−x). This implies that f(x) is an even function,
and its graph is symmetric about the y-axis. The roots of f(x)
are at x = 1 and x = 3, but these are not symmetric about
the y-axis. Therefore, the graphs of f(x) and h(x) do not
intersect.
Thus:

b = 0

Finally, we calculate 10a+ b:

10a+ b = 10 · 2 + 0 = 20

Thus, the final answer is:

20

Table 9: High NTHR (highlight in red) example from qwen2.5math-1.5B. Core steps in correct parts are with high
NTHR. The erroneous words of step 5 are with low NTHR values.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Submission and Formatting Instructions for ICML 2025

Model & Data Problem & Answer Incorrect Response
Qwen2.5-0.5B-
Ins
Math

Question: What is the greatest
integer n such that n2 − 11n +
24 ≤ 0?
Answer: 8

To solve the inequality n2 − 11n + 24 ≤ 0, we need to
find the values of n that satisfy the inequality. Since the
inequality is an inequality, we should first find the roots of the
corresponding equation n2 − 11n+ 24 = 0. Let ’s solve the
equation n2−11n+24 = 0: 1. Factor the quadratic equation:
n2−11n+24 = (n−3)(n−8) = 0. 2. Set each factor equal
to zero and solve for n: n − 3 = 0 or n − 8 = 0. 3. Solve
for n: n = 3 or n = 8. Therefore, the roots of the equation
n2−11n+24 = 0 are n = 3 and n = 8. Now, we need to find
the values of n that satisfy the inequality n2 − 11n+ 24 ≤ 0.
Since the inequality is an inequality, we should check the
intervals between the roots. The roots n = 3 and n = 8
divide the number line into three intervals: (−∞, 3], [3, 8],
and [8,∞). Let ’s test a point in each interval to determine
where the inequality holds true. 1. For n in (−∞, 3), let ’s test
n = 0: 02−11(0)+24 = 24 > 0. 2. For n in (3, 8), let ’s test
n = 5: 52− 11(5)+ 24 = 25− 55+ 24 = −4 < 0. 3. For n
in (8,∞), let ’s test n = 9: 92−11(9)+24 = 81−99+24 =
6 > 0. Therefore, the inequality n2 − 11n + 24 ≤ 0 holds
true for 3 ≤ n ≤ 8.Hence, the greatest integer n that satisfies
the inequality is n = 8. In boxed format, the answer is 8.

Table 10: High NTHR (highlight in red) example from qwen2.5-0.5B-Ins. This example have correct answer but in
wrong format. Core steps and correct answer 8 are with high NTHR.

20

