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Abstract

Reinforcement learning (RL) has become pop-
ular in enhancing the reasoning capabilities of
large language models (LLMs), with Group Rela-
tive Policy Optimization (GRPO) emerging as a
widely used algorithm in recent systems. Despite
GRPO’s widespread adoption, we identify a pre-
viously unrecognized phenomenon we term Lazy
Likelihood Displacement (LLD), wherein the like-
lihood of correct responses marginally increases
or even decreases during training. This behav-
ior mirrors a recently discovered misalignment
issue in Direct Preference Optimization (DPO), at-
tributed to the influence of negative gradients. We
provide a theoretical analysis of GRPO’s learn-
ing dynamic, identifying the source of LLD as
the naive penalization of all tokens in incorrect
responses with the same strength. To address
this, we develop a method called NTHR, which
downweights penalties on tokens contributing to
the LLD. Unlike prior DPO-based approaches,
NTHR takes advantage of GRPO’s group-based
structure, using correct responses as anchors to
identify influential tokens. Experiments on math
reasoning benchmarks demonstrate that NTHR
effectively mitigates LLD, yielding consistent per-
formance gains across models ranging from 0.5B
to 3B parameters.

1. Introduction

Reinforcement learning (RL) has become increasingly pop-
ular for improving reasoning capabilities of large language
models (LLMs) (Guo et al., 2025; Jaech et al., 2024; Team
et al., 2023). In particular, Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) has emerged as a widely
adopted algorithm in RL training pipelines for reasoning
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tasks. Models such as DeepSeek-R1 (Guo et al., 2025),
DeepSeek-Math (Shao et al., 2024), Med-R1 (Lai et al.,
2025), and Search-R1 (Jin et al., 2025) have successfully em-
ployed GRPO to achieve notable performance gains in code
generation, mathematical problem solving, medical reason-
ing, and retrieval-augmented generation. These successes
highlight GRPO’s growing importance as a tool for align-
ing models to task-specific behaviors through rule-based or
heuristic rewards.

Despite its empirical success, the optimization behavior of
GRPO remains insufficiently studied, in part due to its re-
cency. In this work, we focus on the impact of negative
gradients in GRPO, which arise when the advantage func-
tion is negative—indicating that the selected action is worse
than the average action at a given state (e.g., an incorrect
or suboptimal response). In such cases, the learning algo-
rithm decreases the probability of selecting this action. We
draw a conceptual connection to Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023), which introduces
negative gradients when penalizing dis-preferred responses.
Recent studies (Razin et al., 2024; Pal et al., 2024; Yuan
et al., 2024; Ren & Sutherland, 2024) have revealed that
negative gradients can lead to an arguably counterintuitive
behavior: a simultaneous decrease in the probabilities of
preferred responses (y*). Motivated by this insight, we
examine whether similar gradient dynamics in GRPO might
cause analogous issues and investigate their impact on policy
learning. This effect, termed misalignment (Ren & Suther-
land, 2024) or likelihood displacement (Razin et al., 2024),
is undesirable as it often degrades model performance by
diverting probability mass away from optimal responses. In
this work, we empirically observe (see Fig. 1) that GRPO
can suffer from what we call Lazy Likelihood Displacement
(LLD): a failure to sufficiently increase, or even a decrease
in, the likelihood of correct answers during training. To ex-
plain this phenomenon, we provide an analysis of GRPO’s
update dynamics and identify that LLD stems from penaliz-
ing certain tokens in dispreferred responses. These updates
inadvertently reduce the likelihood of correct answers due
to shared structural or semantic features between positive
and negative responses.

While several approaches have been proposed to mitigate
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the reduced probabilities of preferred responses (y™) in
DPO (Razin et al., 2024; Ren & Sutherland, 2024), they
either compromise data efficiency or rely on training proce-
dures that are not directly compatible with GRPO’s online
learning paradigm. For instance, Razin et al. (2024) recom-
mend discarding training examples where the likelihood of
positive responses Yy decreases, thereby avoiding harmful
updates—but this strategy reduces data utilization and does
not address cases where the increase in the likelihood of y™
is insufficient. Similarly, Ren & Sutherland (2024) propose
modifying DPO into a more online-compatible setup by
training on both ¥ and y~, which effectively mitigates the
“squeezing effect” imposed by off-policy negative gradient.
However, GRPO already employs online response sampling,
and our empirical analysis reveals that it still suffers from
the LLD effect in a subset of training examples (see Fig. 1).

To effectively address LLD in GRPO, we introduce a neg-
ative token hidden reward (NTHR) for selective token pe-
nalization, which reduces the penalty on tokens in incorrect
responses that most strongly contribute to lowering the like-
lihood of correct ones. Interestingly, we find that these in-
fluential tokens often align closely with key reasoning steps
in the correct responses (see Fig. 3). Our approach NTHR
provides a fine-grained and targeted mitigation strategy that
mitigates LLD during training. We evaluate GRPO+NTHR
through per-sample training and compare it against base-
line methods such as random token dropping and standard
GRPO across multiple model sizes. We demonstrate that
GRPO+NTHR successfully mitigates LLD and leads to im-
proved generalization on held-out mathematical reasoning
problems. In summary, our contributions are as follows:

e GRPO exhibits LLD for correct responses. We em-
pirically show that GRPO suffers from Lazy Likelihood
Displacement (LLD), an extended form of the misalignment
phenomenon previously observed only in DPO.

o Identifying the source of LLD. We provide a theoret-
ical explanation for LLD in GRPO, identifying its cause
as a penalization of shared reasoning or correct tokens in
dispreferred responses.

o NTHR selective token penalization. We introduce Neg-
ative Token Hidden Reward (NTHR) for selective foken
penalization that effectively mitigates LLD without sacrific-
ing data efficiency.

o Empirical validation on math reasoning tasks. We
demonstrate that GRPO+NTHR consistently outperforms
GRPO on math benchmarks across model sizes ranging
from 0.5B to 3B.

2. Preliminaries and Related Work
2.1. GRPO

GRPO loss, introduced in DeepSeek-Math (Guo et al.,
2025) and DeepSeek-R1 (Shao et al., 2024), enhances fine-
tuning by refining how reward and loss are calculated. Con-
cretely, unlike traditional Proximal Policy Optimization
(PPO) (Schulman et al., 2017), GRPO eliminates the need
for value function estimation, employing group-relative re-
wards for a more nuanced optimization process.

For a query-answer pair (x, a), the policy 7y samples G
responses {y; }&,. Each y; consists of a sequence of |y;|
tokens, and we denote y; < the subsequence of the first
k tokens. Let r; denote the reward for response y;. The
advantage of the ¢-th response is computed by normalizing
the group-level rewards {r;}$ , and is the same for each
token k = 1,...,|y;|. Concretely, /Lk = Dl with g =

IE[{n}ZG:I] and 0 = \/@r[{ri}le] being the empirical

average and standard deviation of the rewards. The GRPO
objective Jgrpo(#) is then defined as:
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2.2. Positive and Negative Gradient

The GRPO loss includes several regularization mechanisms
designed to stabilize training, such as the KL term and
the clipping operation. However, it is common to treat
the log-likelihood component of the generated responses
as responsible for “gathering knowledge,” while viewing
the regularization components as responsible for “stabiliz-
ing the training procedure.” Without loss of generality, we
focus on the online training setting for GRPO, in which
~it ~ 1 and min(-, clip(-)) can be safely neglected. This
simplification is justified by two observations. First, GRPO
inherently operates in a near-online fashion, as it generates
new samples on-the-fly and typically uses mini-batches that
are comparable in scale to the full batch. Second, prior
work (Chu et al., 2025) has shown that omitting the clip-
ping operation does not degrade performance. Addition-
ally, related studies (Chu et al., 2025; Hu et al., 2025) have
demonstrated that the KL term can be omitted when other
hyperparameters are carefully tuned. With this simplifi-
cation, we can better understand the interactions between
positive and negative responses in one roll-out. The subtle
differences between GRPO and its variants, e.g., DAPO (Yu
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Figure 1: We show that negative gradients can lead to small or reduced likelihood change of positive samples in GRPO.

The log-likelihood gains achieved by Pos Only training (

) are significantly higher than those from GRPO (blue)

for Qwen-0.5B-Ins (a) and Deepseek-1.5B (b). In Qwen-Math-1.5B (c), samples with small or reduced A(x) (left) are
primarily influenced by negative gradients, as evidenced by their larger A(x) in the Pos Only setup. However, some
samples on the right show smaller A(x) than in GRPO, indicating that negative gradients are not always harmful.

et al., 2025), Dr.GRPO (Liu et al., 2025), GPG (Chu et al.,
2025), etc., could also be well interpreted.

Specifically, the  GRPO’s  objective  gradient
VoJerro(#) with respect to 6 can be approximated

as VQE[EG TADBRD D AR m,k(e)} which using
=1
Veme = mgV g log my further simplifies to

Gyl

|:Zz 1 A

i=1 k=1 constant

This expression allows us to interpret GRPO using a similar
framework as proposed by Ren & Sutherland (2024), i.e.,
imposing a positive or a negative pressure on y; ;. Since
i,k 1s a ratio of two probabilities (and hence it must be
positive), the sign of the equivalent learning rate on y; 1, is
determined by Ai7k. Then, following a common practice
that the reward is 1 for correct responses and O for incorrect
ones, it is safe to conclude that all the tokens in the correct
responses impose positive gradients while tokens in the
Wrong responses impose negative ones.

3. The Effect of Negative Gradients

We begin by empirically analyzing the impact of negative
gradients in GRPO (Guo et al., 2025) on the likelihood
of generating correct responses. Let each question x be
associated with G generated samples, of which N* :=
N (x) give the correct answer so we call them positive and
denote by y;",i € [N*],and therest N"L = G — N are
incorrect we call them negative and denote by v, j € [N~].
Positive/negative samples are given rewards r; = 1 and
r; = 0 respectively.

We conduct experiments using math-reasoning tasks to as-
sess how negative gradient in GRPO training influences
the log-likelihood of correct responses. Specifically, we
examine a range of model-dataset combinations that differ

>3 Aiwyin(0) Vologmo(yik | mayi,<k)} :
—_———

in terms of dataset difficulty and model scale: Qwen-2.5-
0.5B (Yang et al., 2024a), Qwen-2.5Math-1.5B (Yang et al.,
2024b) with the MATH dataset (Hendrycks et al., 2021), and
Deepseek-1.5B (Guo et al., 2025) with the AIME dataset.
For each question, we generate 8 response rollouts, filtering
out samples where all responses are either entirely correct
or incorrect. We retain only those examples containing a
mix of both.

Our analysis focuses on the GRPO baseline (illustrated by
the blue bars in Fig. 4). To precisely characterize the learn-
ing dynamics of the algorithm, we reinitialize the model
parameters 6 for each individual sample, perform a single
GRPO update to obtain the updated parameters #’, and eval-
uate the average change in the log-likelihood of the correct

responses:
Ax) = N+Z Inmy(y; | z)],
@
for an input question & with N correct responses y;r 1€
[NT]. As illustrated in Fig. 1, some correct responses ex-
perience either a decline or only a marginal improvement
in log-likelihood after training. For example, in Deepseek-
1.5B (Fig. 1b), a significant portion of samples exhibit re-
duced likelihoods (negative values in the plot). Similarly,
in Qwen-Math-1.5B and Qwen-0.5B, many samples show
only minor changes in likelihood. A closer analysis shows
the following.

1117T9/ |CC)*

Negative gradients lead to small or reduced likelihood
change. In order to isolate the effect of negative gradients,
we introduce a variant which we call Pos Only, where
negative advantages are masked (i.e., values of Ai,k <0
are set to 0), effectively removing the influence of negative
gradients during training. Fig. 1 shows the Pos Only vari-
ant in bars. The log-likelihood gains under Pos
Only training are substantially higher than those from
GRPO—particularly on the left side of the plots, where
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Almost Correct

Math Question: Find the greatest integer value of b for
92° + 4z’ + 11z + 7
z2+ bz +8

which the expression has a domain of all real numbers.

Ground-truth Answer: S Sample: [Math dataset], Model: [Qwen-0.5B-Ins]

To solve this problem, we need to determine the values of b for which the given
expression has a domain of all real numbers. Let's analyze the expression step by

step:

3) Set up the inequality for the discriminant to be less than zero: For the quadratic
equation =* + bz + 8 = 0 to have no real roots, we need »*—32<0

4) Solve the inequality for b : Solving for b, we get: b* <32 Taking the square
root of both sides, we get: —b< V32 Since b is a coefficient in a polynomial, it
must be non-negative. Therefore, we can multiply the entire inequality by -1

(which reverses the inequality): > —v/32

Now, we find the approximate value of V32 : V32 ~5.656 So, we have: b> 5.656

5) Identify the greatest integer value of b: The greatest integer greater than

5.656 is 6. Therefore, the greatest integer value of $b$ for which the expression
92° +4a® + 11z + 7

v has a domain of all real numbers is 6.

Final answer: 6.

Format Issue

Math Question: What is the greatest integer n such that

n?—11n+24<0

Ground-truth Answer: 8 Sample: [Math dataset], Model: [Qwen-0.5B-Ins]

To solve the inequality = —11n+24 <0 , we need to find the values of $n$ that
satisfy the inequality. Since the inequality is an inequality, we should first find the
roots of the corresponding equation n*—11n+24=0 . Let's solve the equation
n’—1ln+24=0:

1. Factor the quadratic equation: n* —1ln+24=(n—3)(n-8) =0,

2. Set each factor equal to zero and solve for n: n—3=00r n—-8=0.

3. Solve for n: mn=3o0r n=8. Therefore, the roots of the equation

122—11n+24:()arc n=30or n=8,

2

1. For ne (~,3),let'stest n=0: 0%°—11(0) +24=24>0 ,

2.For ne(3,8) ,let'stest n=5: 52 —11(5) +24 =25 -55+24 = -4 <0 ,

3.For ne(8,00),let'stest n=9: 9> —11(9) +24=81-99+24=6>0 .
Therefore, the inequality n” —11n + 24 <0 holds true for $3 3 <= <8 . Hence, the
greatest integer n that satisfies the inequality is »=8 . In boxed format, the

answer is 8.

Figure 2: Inspecting negative (incorrect) samples of questions with small average likelihood change A(x) (Eq. (2)) reveals
that they are either nearly correct (Left) or get the correct response in a wrong answer format (Right). Thus, penalizing
entire negative sample responses might be suboptimal. Red dashed lines denote omitted reasoning steps.

many samples show several-fold improvements.

Negative gradients are not always harmful. It is important
to note that negative gradients are not inherently harmful. In
terms of the likelihood change A(x), it is possible, as shown
in Fig. lc, that under Pos Only training, some samples
exhibit even smaller A () than GRPO, which uses both pos-
itive and negative gradients. This decrease may result either
from negative gradients ”squeezing” the likelihood mass
toward confident y* (Ren & Sutherland, 2024), or from
certain negative gradients increasing A(x), as suggested
by our Theorem 4.4 below. Moreover, in terms of perfor-
mance, we demonstrate that Pos Only actually yields a
1.3% drop in average performance compared to GRPO. The
result is shown in Tab. 2 for finetuning Qwen-Math-1.5B on
the math dataset using GRPO and Pos Only respectively.

What do negative gradients of questions with small likeli-
hood change penalize? We find that the minimal likelihood
change occurs in correct responses of those questions in the
dataset that have partially correct (but eventually incorrect)
responses or have correct responses. In Fig. 2, we present
two representative examples from Qwen-0.5B, where the
incorrect responses are partially correct and the correspond-
ing correct responses show the smallest likelihood change.
The left example, highlighted in red, shows an answer that
is nearly correct and corresponds to the red-boxed sample
in Fig. la. The right example provides a correct answer
but does not follow the expected output format (highlighted

in red); it corresponds to the blue-boxed sample in Fig. 1a.
Additional examples are provided in Appendix. This sug-
gests that penalizing entire partially correct responses is
suboptimal.

Controlling negative gradients at the token level can
improve performance. While negative gradients do not
necessarily hurt performance and penalizing entire incorrect
responses is suboptimal, we show in Sec. 5 that carefully
reducing negative gradients at a token level can mitigate
small likelihood change and lead to improvement boosts.
Our approach specifically leverages the previous observation
that partial responses might be partly correct by filtering out
and selectively penalizing their consistuent tokens.

4. Lazy Likelihood Displacement

We have shown that negative gradient in GRPO can cause
a marginal or even reduced likelihood of correct responses
yT. Here, we formalize this observation by introducing
the concept of Lazy Likelihood Displacement (LLD)—a
phenomenon in which the probability of correct answers
decreases or increases only marginally after training. Our
experiments reveal that LLD frequently emerges in group-
based policy optimization settings, indicating that GRPO
and its variants are also subject to the same limitations
observed in preference optimization frameworks such as
DPO (Ren & Sutherland, 2024; Razin et al., 2024).
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Definition 4.1 Let 7q,,, and mg,, denote the initial and final
language models, before and after optimizing a preference
learning objective J (e.g., Eq. (1)) over a dataset D, such
that J (84n) < T (Oinir). We say that LLD occurs for a tuple
(x,y") € D if, for small nonnegative constant € > 0,

In g, (yT|x) <Inmp,, (yT|x) +e. 3)

init

4.1. Understanding LLD

We begin by showing that GRPO effectively performs a
weighted group preference optimization between two groups
of responses: correct and incorrect ones (detailed proof in
the appendix).

Lemma 4.2 When reward is binary, GRPO performs pref-
erence optimization between two distinct groups: the group
of correct responses (r; = 1) and the group of incorrect
responses (r; = 0). Specifically, the optimization objective
reduces to the following:

+E:mm< me%l+s>—

7T901d(yz I.’B

7r x
Zmax 0yJ| ),1—5 ) 4)

7r90td(yj | )
A A

where p = p(x) = G licq Llri(z) = 1] denotes
the correctness rate for a given input, N = pG and
N~ = (1 — p)G are the sizes of the correct and incor-
rect response groups respectively, and the group-specific
ioht d daspt = 2= andp— = —L2 .
weights are defined as p g and p Toin

Next, we introduce an assumption of unconstrained features,
which allows us to focus our analysis on the final-layer
hidden embedding hy € R? and the token unembedding
matrix W € RIVI*¥4 where V is the vocabulary of tokens.

Assumption 4.3 (Unconstrained Features) Expressive

(enough) neural networks can produce unconstrained
embeddings hy, € R? independent of the architecture’s
specific complexities (Yang et al., 2017; Mixon et al.,
2022; Zhao et al., 2024; Razin et al., 2024). These
embeddings are subsequently transformed into logits by
a token unembedding matrix W € RIVIX4. The resulting
logits are passed through a softmax function to yield a
probability distribution over possible next tokens. To
assign probabilities to sequences 'y € V*, the language
model Ty operates in an autoregressive manner, i.e.,

m(y | x) = L}ll Softmax(Why y_, )y, -

Here, h, ,_, is the embedding of sequence (x, y<) and
Softmax(-)y, is the yi-th entry of the VV-dimensional soft-
max map. We focus on the online training setting for

Top-K | Qwen-1.5B-deepseek | Qwen-1.5B-math
GWHES Random | GWHES Random

10 50% 17.5% 60% 21.3%

15 75% 26.3% 75% 31.9%

Table 1: Ranking questions by GWHES results in a signif-
icantly higher Top-K overlap with the likelihood-change
ranking compared to ranking randomly. This demonstrates
the effectiveness of GWHES in identifying LLD samples.
GRPO, as state in Sec. 2.2, the effect of the clipping oper-
ation is effectively removed. We assume that the objective
is optimized via gradient flow and theoretically analyze
the dynamics of the log-likelihood of a positive response,
4 Inmy(y; | x), yielding the following characterization'
(see the appendix for a proof).

Theorem 4.4 For any question x, at any time t > 0 of
training, and any correct response y;‘, i € [NT], in addi-
tion to the dependence on token unembeddings, the likeli-
hood change - In g, (y;F|x) exhibits increased laziness
(that is, has smaller magnitude) as the following quantity
increases:

ly | v— ;|

pZZZ%m

k=1j=1k'=1

>_

+
Yl YL

Negative Token Hidden Reward

N
luf| N+ Y]

er Z Z Z ag’k// . <hm’yz<k7hm’y:,<k”>. )

k=1i'=1k""=1

Here, o ., and a',; v are token-level prediction error simi-
larity weights, which quantify the similarity of token-level
prediction error across responses (see Appendix for formal
definitions. ). We refer to the quantity in Eq. (5) as Group
Weighted Hidden Embedding Score (GWHES).

The first term in Eq. (5) captures the influence of negative

gradients on the likelihood of the correct response. Specif-

ically, this shows that a negative token with a large value

of oy - (hy + h - ) is more likely to cause the
: Y XY

LLD of the correct responses. This motivates the following
corollary.

Corollary 4.5 For any question X, the negative gradient
associated with the hidden embedding of a token k' in any
incorrect response y; , j € [N~], will exert a greater

adverse effect on the likelihood change & Inm0(t)(y; |x)

"Theorem 4.4 can be seen as an extension of Thm.3 (Razin
et al., 2024) for DPO to the more challenging GRPO setting with
group-based structure. Unlike DPO, we will exploit this group-
structure to selectively penalize tokens rather than responses.
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as the following quantity getslarger:

(©)

+ .
X,yi,<k’ ’y <!

lyit|
E g (h
k=1

This can occur when the negative and positive tokens have
high embedding similarity, theoretically supporting the ob-
servation in Fig. 2 that LLD samples are often nearly correct.

4.2. Identifying LLD Samples

Theorem 4.4 suggests using Agwygs as a metric to identify
samples that cause LLD. Here, we verify the validity of this
metric experimentally. For Qwen-1.5B-deepseek, we gen-
erate responses for the first 100 questions from the AIME
dataset (1983-2023) and compute the GWHES scores for
those questions with non-extreme predicted probabilities
(0 < p < 1), resulting in 57 valid questions. For Qwen-
2.5Math-1.5B, we use questions from the Math dataset and
retain 47 valid questions. We then calculate the Top-K
overlap accuracy between two rankings of questions: one
based on the ascending order of likelihood changes A(x)
as defined in Eq. (2) (denoted Qf(), and the other based
on the descending order of GWHES scores as defined in
Eq. (5) (denoted Q%). The overlap accuracy is computed

as % The results in Tab. 1 indicate that the over-
lap achieved using GWHES is significantly greater than
that of the random ranking baseline, highlighting a strong
alignment between high GWHES scores and LLD samples.

5. Selective Token Penalization in Incorrect
Responses

Theorem 4.4 identifies samples prone to causing LLLD and
Corollary 4.5 quantifies the influence of individual tokens’
negative gradients on the likelihood of correct responses.
The goal of this section is to explore whether appropriately
controlling negative gradients can mitigate LLD and further
lead to performance improvements over vanilla GRPO. One
approach could be using Agwngs to identify negative sam-
ples y, that cause LLD and entirely discard them during
training. However, this compromises data efficiency and
fails to address cases where samples only marginally im-
prove y ™. Instead, we propose a more targeted approach:
identify tokens that negatively impact A(x) and reduce the
penalty applied to them.

5.1. Negative Token Hidden Reward (NTHR)

Motivated by Corollary 4.5, we define the impact that an
individual token &’ of incorrect response y;, j € [N~ has

on the likelihood of a group of correct responses as follows:

Nt Iy

P +
>3 e (gt

i=1 k=1

which defines a relative influence from imposing a nega-
tive gradient on y;~ to all tokens in all positive responses.
Specifically, a token from an incorrect response can nega-
tively affect the likelihood of a group of a group of correct
responses when s, _,, > 0, with the magnitude of s, _;,
indicating the severlty of this effect. We refer to this value
as the negative token hidden reward (NTHR): it quan-
tifies a token’s detrimental impact on correct responses’
likelihood. In Fig. 3, we visualize tokens with high s _;,
values—highlighted in red. We find that many of these
influential tokens are logically or stepwise correct terms
(such as “odd,” “prime,” and “intersection” in the specific
example). These terms exhibit strong semantic alignment
with the correct responses.

j <k’ =

5.2. NTHR selective token penalization.

Algorithm 1 NTHR selective token penalization

1: Input: Responses’ hidden embeddings {h+}z 1>
{h; }5_\7:1’ coefficient , scale factor 7 and .
fori/ =1to N* do
55 «+ Eq.(7)
end for
T+ - minl-ze[Nﬂ 5?/_
Select negative tokens:

for each negative response j do
\23 <—{yjk/|s />T}

end for

Apply selective penalization:

. for each retained token Yk € V; do

J,<k

R A A T

—_
—_ O

»

A &0 A
: end for

—_
w

As shown in Corollary 4.5, tokens with high positive NTHR
values tend to cause significant reductions in the likelihood
of generated correct responses. To mitigate this adverse ef-
fect, we introduce a selective penalization strategy (detailed
in Algorithm 1 and complexity discussion in Appendix) that
attenuates the penalty on tokens from negative responses
whose NTHR scores exceed a threshold 7. Concretely, we
define the resulting set of selected tokens as:

Vj_ = {yj_’k/

To determine the threshold 7, an effective pratical strategy
is computing the minimum average token-level influence ex-
erted by each correct response on all other correct responses.

Sew > T ®)
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Math Question: How many elements are in the intersection of the set of all the prime numbers less than 30 and

the set of all the odd numbers greater than zero?
Ground-truth Answer: 9
Correct Response

To determine ... Step 1: Identify the set of all prime
numbers less than 30. The prime numbers less than 30
are: 2, 3,5, 7, 11, 13, 17, 19, 23, 29. So, the set of all
prime numbers less than 30 is {2, 3, 5, 7, 11, 13, 17, 19,
23, 29}.

Step 2: Identify the set of all odd numbers greater than
zero. The set of all odd numbers greater than zero is: {1,
3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, ...}. So,
the set of all odd numbers greater than zero is {1, 3, 5, 7,
9,11,13,15, 17, 19, 21, 23, 25, 27, 29, ...}.

Step 3: Find the intersection of the two sets ... From the
two sets, we see that the common elements are 3, 5, 7,
11, 13, 17, 19, 23, and 29. So, the intersection is {3, 5, 7,
11, 13, 17, 19, 23, 29}.

Step 4: Count the number of elements in the intersection.
The number of elements in the intersection is 9.
Therefore, the number of elements in the intersection of
the set of all the prime numbers less than 30 and the set
of all the odd numbers greater than zero is \boxed {9}.

Sample from [Math dataset]

Incorrect Response Contain Correct Steps

To determine ... First, let 's list the prime numbers less
than30:2,3,5,7,11,13,17,19,23,29 So, the
set of all prime numbers less than3 0is: {2,3,5,7,11
,13,17,19,23,29 }
Next, let 's list the set of all odd numbers greater than
zero . The set of all odd numbers greater than zerois: { 1,
3,5,7,9,11,13,15,17,19,21,23,25,27}
Now, we find the intersection of these two sets .
The intersection consists of numbers that are both
in the set of prime numbers less than 3 0 and in the set of
all odd numbers greater than zero . From the lists above
, we can see that the only numbers that are both prime and
odd are the odd prime numbers .
Therefore, the intersectionis: {3,5,7,11,13,17,1
9 , 2 3 } To find the number of elements
in the intersection , we count the elements in the list : { 3,
7,11,13,17,19,23 } There are 8 elements
in the intersection . Thus , the number of elements in the
intersection is \boxed{ 8 }.

Figure 3: Key insight: Tokens of negative samples (incorrect responses) can be logically or step-correct. Tokens with high
NTHR tend to strongly correlate with these types of tokens (highlighted in red). The bold dots represent omitted reasoning.

Formally, we set 7 = 8- ming ¢y +] Ej , where [ is a scale
factor and Ej,' measures the average impact of the 4'-th cor-
rect response’s tokens on the likelihoods of other correct
responses:

|y /| N+ |y

Z ZZO‘M”

k”—l i=1 k=1
<hx’yi<k (), hx’yj’,<k," (t)> '

A larger §i+, indicates a stronger mutual influence among
positive responses, which could be interpreted as an estima-
tion of the “local elasticity” of a deep neural network (He
& Su, 2020). Finally, to apply selective penalization, we
define the advantage of each retained token using a scale
factor n < 1, resulting in fl;k,m =n- A;k,. The scale
factor will reduce the penalty on selected negative tokens.

5.3. NTHR Selective Token Penalization Mitigates LLD

©))

To evaluate the effectiveness of our NTHR selective token
penalization in mitigating LLD, we conduct experiments
using the same setup described in Sec. 4. Specifically, we
identify the selected token set V~ in incorrect responses
using a scale parameter 8 = 1, and apply no penalization
to these tokens by setting = 0. We refer to this vari-
ant as GRPO+NTHR (green bars). We then compare the
following two baselines: (1) Standard GRPO (blue bars),
and (2) GRPO+Random (orange bars), where we randomly
select |V;\ tokens and set their advantage to 0 (thus avoid
penalizing them in optimization).

The results in Fig. 4 show that GRPO+NTHR consistently
improves likelihood change across all samples, as evidenced
by the green bars surpassing the blue bars. Notably, while re-
moving negative gradients entirely—as inthe Pos Only in
Fig. 1c—can sometimes reduce the likelihood change com-
pared to GRPO in Qwen-Math-1.5B, our GRPO+NTHR
approach (Fig. 4c) maintains consistent improvements. Fur-
thermore, unlike GRPO-+Random that provides only mod-
est gains across all models, GRPO+NTHR delivers consis-
tent and substantial improvements, highlighting the effec-
tiveness of our proposed NTHR in identifying LLD tokens.

5.4. Performance of NTHR Selective Token Penalization

Having demonstrated the impact of negative gradients on
likelihood change and the effectiveness of our method in
mitigating the LLD issue in Sec. 5.3, we now study the
effect of negative gradient on model performance. For this,
we finetune models with different sizes using MATH dataset
(Ievels 3-5) (Hendrycks et al., 2021) and use greedy decod-
ing to evaluate finetuned models on five math benchmarks:
AIME24, AMC, MATHS500, Minerva, and Olympiad (de-
tailed implementation details in Appendix).

We find that NTHR consistently boosts model performance
across various sizes, with detailed results presented in Tab. 2.
Notably, even for Qwen2.5-Math which shows a substantial
improvement of over 20% after RL fine-tuning—outpacing
gains seen in other models—NTHR still provides an av-
erage improvement of 0.8%. For Qwen2.5-0.5B-Ins and
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Impact of NTHR on y * Likelihood Changes (Qwen-0.5B-Ins, Math)

Impact of NTHR on y * Likelihood Changes (Qwen-3B, Math)

Impact of NTHR on y * Likelihood Changes (Qwen-Math-1.5B, Math)
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Figure 4: GRPO+NTHR consistently improves likelihood change of correct responses, as indicated by the green bars
exceeding the blue bars. While GRPO+Random offers only modest improvements, GRPO+NTHR consistently outperforms
it, highlighting the effectiveness of NTHR in identifying LLD tokens.

Model Method AIME24 AMC MATH500 Minerva Olympiad Avg.
Base 33 20.0 39.6 77 24.9 19.10
GRPO 13.3 57.5 71.8 29.0 34.1 41.14
Qwen2.>-Math-1.5B - ooy 100 575 70.6 30.1 310 39.84
NTHR 16.7 57.5 70.8 30.5 342 4194
Base 0.0 2.5 33.4 4.4 7.0 9.46
Qwen2.5-0.5B-Ins  GRPO 0.0 75 33.8 9.2 8.1 11.72
NTHR 0.0 10.0 36.6 8.1 8.6 12.66
Base 0.0 225 53.0 19.1 20.7 23.06
Qwen2.5-1.5B-Ins  GRPO 33 32.5 572 18.8 230 2696
NTHR 6.7 35.0 58.8 21.0 209 2848
Base 33 20.0 39.6 7.7 24.9 19.10
Qwen2.5>-Math-1.5B  5ppg 100 425 72.4 324 319 37.80
(deepscaler) NTHR 16.7 47.5 73.2 294 314 39.60
Base 10.0 375 58.6 26.1 246 3136
Qwen2.5-3B GRPO 6.7 35.0 66.6 312 299 3388
NTHR 100 475 65.6 31.6 268 3630

Table 2: Results across selected math benchmarks for different Qwen2.5 models and methods. NTHR consistently provides

average performance gains on various models.

Qwen2.5-1.5B-Ins, NTHR consistently outperforms GRPO
by 1.1% and 1.5% on average respectively. Similar im-
provements are observed with a larger model Qwen2.5-3B,
where NTHR reaches 36.30 % compared to GRPO’s 33.88
% and the base model’s 31.36 %. We further fine-tune
Qwen?2.5-Math on the more challenging DeepScaler (Luo
et al., 2025) dataset and observe that NTHR outperforms
GRPO by 1.8%.

6. Conclusion

In this work, we study how negative gradients affect the
likelihood of correct responses in GRPO. We identify a phe-
nomenon we term Lazy Likelihood Displacement (LLD),
where penalization of incorrect responses inadvertently re-
duces or lead to small likelihood change of correct ones. To

address this, we propose the negative token hidden reward
(NTHR) along with a selective token-level penalization
strategy. NTHR reduces the penalty on tokens in incor-
rect responses that contribute most to lowering the likeli-
hood of correct responses, thus successfully mitigating the
LLD issue. Through experiments on math reasoning tasks
across models ranging from 0.5B to 3B, we demonstrate that
NTHR improves GRPO, validating the effectiveness of our
approach in addressing LLD and enhancing performance.
Limitation: Due to limited resources, we were unable to
run experiments on DeepSeek-1.5B using a sufficiently large
context window (Luo et al., 2025). As a result, we trained
the model with a 4k context window, leading to significant
length constraints—causing the response length to progres-
sively decrease. The corresponding results are reported in
the Appendix.
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A. Appendix

Notation. For any time ¢t > 0, we use W (t), w,(t), and h.(t) to denote the token unembedding matrix, unembedding of a
token z € V, and hidden embedding of z € V*, respectively. We let z;, be the k-th token in z and z, be the first k — 1
tokens in z. For a question z, the old policy 7y, generates a group of G samples and resulting (z, {y;" } -+, {y; tn-)s

where Nt 4 N~ = G. Lastly, we denote by e, € R!VI the standard basis vector corresponding to z € V.

A.1. Proof of Lemma 4.2: GRPO as Group Preference Optimization

In this section, we demonstrate that training with GRPO constitutes preference optimization. We adopt a binary reward
system, assigning = 1 to correct responses and r» = 0 to incorrect ones, consistent with recent works (Liu et al., 2025; Yu
et al., 2025). It is notable that this also applies to its variants, e.g., DAPO (Yu et al., 2025), Dr.GRPO (Liu et al., 2025),
GPG (Chu et al., 2025), etc.

For a single question x, we simplify the expected loss £ (i }E oy, () [J=] in Eq. (1) by omitting the token normalization

term ZG N yielding:
G yil R .
E(yye  ~mo, (la) Z Z min (’yiﬁk(O)Ai_’k, Ajg-clip (vir(0),1 —e, 1+ 5)) . (10)
i=1 k=1

The success probability for question @ is p = ]f”i(rm = 1) = P(r, = 1) where we use a population approximation for
large enough G. In this case, we take yu = p and 0 = /p(1 — p). Consequently, the advantage /11-, , becomes:

Lp if r; =1
121‘ _ \/p(l_P) Hri ’ (11)
) o iy =0

\Vp(1-p)

Since R R
min (7i4(0) ik, i - clip (3i4(0), 1— ¢, 1+2))

is equivalent tos

Ai’k -min (v, 5(0), 1+¢), iffl@k >0 r=1,
/li,k -max (y;,5(0), 1 —¢), ifflm <0 r=0,

the expected loss then becomes:

1-p . mo(yi|x)
x| = —LE,,, ~ . m — 14+ 1, —
By & iy (o) [Ta] Vp(l—p) {wi} L ~mog (@) { " <7T901d(yim) )

p W@(yi\w) ) }
———FE 10 r (e |MaX | —— 1~ ) 1,0 - (12)
pi—p) =Tl { <waﬂ,d<yi|w> 0

When generating G sampled responses, the loss becomes:

pt Zmln ( 0y, ! |z) ) Zmax ( yj ) 1-— E) , (13)
T o1

ﬂ-eold(yz |£L‘) (y] |$)

where Nt =pG, N~ = (1 —p)G, pt = 1P andp = P . This represents group preference optimization,
p (1-p)G.p Ty P = = p group p p
i.e., increasing the likelihood of correct responses while penalizing incorrect ones.

A.2. Proof of Theorem 4.4

Assume that all responses are sequences whose first tokens are distinct from each other. Then we analyze the likelihood
change for a correct response y;L by measuring % In 7y (y:r |x). According to the chain rule, using the loss in Eq. (13)
and denoting mj, = mo(y; X, ¥; ) and Toua, <& = o, (¥7 1%, y; - ) for brevity , we can obtain:

11
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d do(t
pr In o) (y; &) = <V1n779(t)(y;r|m), dsf)> (14)
= (Vinmg (y+|w)
Nt lyf
pt Tk Vinm x, Yl
Z:l ; Told, <k < Told <k) o0 (Wi 1|29 <)

- ly; |
T<k! T<k! _ _
_p ZZ < ( < _1+6>vln/]r@(t)(ijk/|w’yj,<k/)> (15)

i3 e Told <k Told, <k’

1 ifz>0
0 ifz<0
online due to sampling new responses at each iteration. Thus we obtain:

where 0(z) = is the gradient of the clip function. We assume 7y ;) = o1 since GRPO is online or nearly

Nt N~
d
@lnﬂe(t)(yﬂm) = <V1H7T0(t)(yz ), p * /Zlvmﬂe t)(yz/ ) — jzlvmﬂe(t)(y] |w)>

As per the unconstrained features Assumption 4.3, the model’s trainable parameters are

0= (W’hm7 {hw’yf«,@}z’/e[N+]7ke{27~-»\ym}’ {hw’yj_,<k’ }J'E[N’]»k/E{Qv--v\yﬂ}) '

Here, we also used the (mild) assumption that all responses differ in their first token. Unfolding the gradients with respect to
these parameters yields:

Nt N~
d
alnm(t)(yﬂa:) = <VW Inmo( (y; ), p +;Vw Inmo( (y;h ) — ;Vw In 7o) (y; a:)>
Nt N~
<Vh In 7y () (yz W), ™ Z Vi, Inmg(4) (yz’ 1) — th In 7o) (y;, 1|5")>
=1 Jj=1
2 M1V, . m @le o)l (16)

For softmax model output the gradients can be easily computed as follows:

2]

Vw Inmy (z]x) = Z (€2, — To) (|@, 2<k)) h;k(t)
k=1

In addition, the gradient with respect to the hidden representation at each position k is:

vhm,z<k 1117T9 ( |w) - wzk ) - ZWQ(t)(Z|Xﬂz<k) ~’w2(t), ke {la ) |z|}

z€V

Putting this back in (16) together with a few algebra steps, yields

d
= o) () [2) = (O — () + (D + (1) (17)

12
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where:
lyf | Nt Lyl
O=pt3 3 3 af®- (beye (Ohyye () s)
k=1i'=1k"=1
|yl | N~ |y7
M =p~ >33 o (b, (Ob,, (©) (19)
k=1 j=1k'=1 ' P
(IH):< )= Y mo (2l@) - w(t Zp w,, Zp w, - > (20)
z€Y /=1
ly*| 2
avy=>Y_|lw = mo (2l yit ) - wa () Q1)
k=2 z€eY
where a;k”(t) = <ey+ — o) (|, y; <k) vl 7T0(t)('|-’”>yi+/,<k~)> and oy (1) =

<ey;k — o) (1%, ¥ o) ey — 7r9(t)(~|:c,yj,<k,,)>.

ik’

Specifically, (I) and (I) capture how token embeddings influence changes in likelihood, while (IIT) and (IV) reflect how the
geometry of token unembeddings governs such changes. Our focus is on (I) and (II) because:

» Token embeddings encapsulate the contribution of all network parameters excluding the token unembedding layer.

» Token embeddings are influenced by the words in the sample, which span a broader space than token unembeddings.

Our results in Tab. 1 further validate the effectiveness of these terms. Thus we arrive at Theorem 4.4: as (II) — (I) increases,
the likelihood change decreases.

A.3. Implementation Details

Dataset. For training, we use the MATH dataset (levels 3-5) to train the model. Additionally, we include a subset of the
DeepScaler dataset (Luo et al., 2025), which contains more challenging problems. For evaluation, we assess the reasoning
capabilities of the fine-tuned models on five standard math benchmarks: AIME 2024 (Veeraboina, 2023), AMC, MATHS500,
Minerva Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024).

Models. We we select models range from 0.5B-3B (Yang et al., 2024a). We use 0.5B-ins and 1.5B-ins models as (Zeng
et al., 2025) found small base model may not follow the format prompt well. We also use Qwen2.5-Math-1.5B (Yang et al.,
2024b) to show the influence of math knowledge. For 3B model, we use Qwen-2.5-3B (Yang et al., 2024a) base model. For
all models, we conduct reinforcement fine-tuning using GRPO and NTHR using the same hyperparameters.

Hyperparamters. For the 0.5B model, we use two A6000 GPUs with a batch size of 32, maximum rollout length of 2500
tokens, learning rate 5e~7 and a mini-batch size of 16, resulting in two iteration updates per training step. We use math
dataset to train the model for 105 steps.

For the larger models, we utilize four A100 GPUs with a batch size of 256, learning rate 1e — 6 and a mini-batch size of 64,
leading to four iteration updates per step, for the math dataset, we train for 40 steps, which approximates one epoch. For the
DeepScaler dataset, which contains more data, we train for 45 steps.

Across all models, we generate 8 rollouts per prompt. We use a default sampling temperature of 1.0, a clipping ratio of 0.2,
and set the KL loss coefficient to 1 x 10~%. The Qwen-math model (Yang et al., 2024b) uses its full context length of 3072
tokens for rollouts, while all other models use a maximum rollout length of 4000 tokens. To accelerate training, we employ
dynamic sampling (Yu et al., 2025), which filters out samples with zero advantage.

Lastly, we use § = 1 and define the weighting factor as n = 2 x |0.5 — p|, where p is the success rate. This formulation
penalizes questions with success rates near 0.5 less, avoiding excessive reward for easy samples while not over-relying on
difficult questions, whose scarce correct responses may not yield effective token selection. Finally, we set the temperature to
0 to perform greedy decoding, following standard practice in math evaluation tasks (Yu et al., 2023; Deng et al., 2024; Liu
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et al., 2025). This enables the assessment of the model’s most confident output, which is essential for math tasks requiring
exact correctness and providing users with consistent answers to repeated queries.

A.4. Complexity Discussion

In this section, we introduce several techniques to enhance the computational efficiency of NTHR, which is essential for
practical implementation.

Output last-layer embeddings with old policy probabilities. Since GRPO relies on the old policy 7,14 to compute old
probabilities for the clip(+)) operation, we only need to output the last-layer embeddings during the old policy’s forward
pass. This does not require any extra forward passes, thereby keeping the computational overhead minimal.

Calculate summations first. We more conveniently rewrite (7) as a matrix inner product.

Nt Iy
+ T - T
<Z Z (eyrk - We(t)(.|X’ y77<k)) hx,y;f<k’ (ey;k/ - 7('9(15)("(3, yj7<k/)) hX,yL<k/>

i=1 k=1

Importantly, our reformulation involves calculating the summations over ¢, k first before taking the inner product. This
reduction reduces the overall complexity for compute (7) by 3.

Focus on vocabulary of the responses. As the formulation involves computing the outer product between the prediction
error vector (e.g., ) (]x, y;f <)) and the hidden embedding, which incurs a computational complexity of O(|V|d).
Since the probability mass is primarily concentrated on the output words, for each question =, we restrict the computation to
the vocabulary V} associated with its generated responses. Since |V}| < |V|, this significantly lowers the overall cost to

O(|Vzld).

Running time of each module. We also track the average time cost of each module during training, as reported in Tab. 3.
Notably, the data generation (Data Gen) module that using dynamic sampling accounts for the majority of the total training
time. In contrast, the overhead introduced by NTHR is minimal, contributing only a small fraction to the overall cost.
Notably, although deepseek-1.5B has a longer average output length of approximately 3,400 tokens, our NTHR still
maintains a low time overhead.

Model+dataset Data Gen | Model Upd | NTHR | Ref | Old Prob | Total (Sec)
Qwen2.5-Math-1.5B (Math) 250 140 22 55 55 522
Qwen2.5-Math-1.5B (Deepscaler) 262 144 25 60 60 551
deepseek-1.5B (Deepscaler) 700 260 44 86 86 1176

Table 3: Average running time (per step, in seconds) of each module for different models and tasks.
As a result, our method does not introduce additional inference overhead, and the overall complexity remains small.

A.5. Performance across training iterations

In this section, we present the performance of various models across training iterations. As illustrated in Fig. 5, although
performance fluctuates throughout training, NTHR consistently outperforms GRPO. Notably, for the Qwen-2.5-1.5B-Ins
model, we report results at update step 100 (corresponding to 25 training steps), as performance begins to decline beyond
this point.

A.6. Ablation study

In this section, we conduct ablation studies to shed more light on the role played by different modules.

Ablation on 5. We conduct ablation study on £, i.e., the scaling factor for the threshold 7 in Eq. (8), which is then used to
control how bad the negative tokens should be masked out. We set § with {—00,0,0.1, 1, } and train with Qwen2.5-Math-
1.5B using Math dataset. Choosing 3 = —oo corresponds to apply 7 to all incorrect tokens. As shown in Tab. 4, this removal
results in worse performance compared to GRPO. As further shown in Tab. 4, incorporating NTHR consistently improves
performance over GRPO. While different 3 values result in varying degrees of improvement, all settings outperform GRPO,
indicating that reducing the influence of identified negative gradients is beneficial.
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Figure 5: Performance across training iterations for various models, NTHR consistently outperforms GRPO for most of the
training process.

Base model + Method AIME24 AMC MATHS00 Minerva Olympiad Avg.

GRPO 13.3 57.5 71.8 29.0 34.1 41.14
NTHR (8 = —00) 13.3 50.0 71.8 30.5 34.4 40.00
NTHR (3 = 0) 20.0 55.0 70.0 29.8 32.9 41.54
NTHR (3 = 0.1) 13.3 57.5 71.4 30.9 34.4 41.50
NTHR (8 = 1.0) 16.7 57.5 70.8 30.5 34.2 41.94

Table 4: Ablation study on . Although changes in S (except co) lead to variations in performance, they consistently
improve GRPO, indicating that reduce influence of identified negative gradients is beneficial.

Ablation on 7. We conduct an ablation study on 7 using three variants: = 1 — p, 7 = p,and n = 2 - |0.5 — p|. As shown
in Tab. 5, while the optimal choice of n) varies across different models, the variant n = 2 - |0.5 — p| consistently yields strong
performance across all models. Therefore, we adopt = 2 - |0.5 — p| in our training.

Base model + Method AIME24 AMC MATHS00 Minerva Olympiad Avg.
Qwen2.5Math-1.5B
GRPO 13.3 57.5 71.8 29.0 34.1 41.14
NTHR (n =p) 13.3 55.0 72.4 29.0 33.3 40.60
NTHR (n=1—-p) 13.3 62.5 72.8 30.5 34.2 42.66
NTHR (n =2-|0.5—p|) 16.7 57.5 70.8 30.5 34.2 41.94
Qwen2.5-3B
GRPO 6.7 35.0 66.6 31.2 29.9 33.88
NTHR (n = p) 10.0 47.5 64.6 33.8 26.8 36.54
NTHR (n=1—-p) 6.7 42.5 63.8 324 28.0 34.68
NTHR (n=2-|0.5—p|) 10.0 47.5 65.6 31.6 26.8 36.30

Table 5: Ablation study on 7.

A.7. Results on Deepseek-1.5B

We utilize four A100 GPUs with a batch size of 256 and a mini-batch size of 64, resulting in four update iterations per
training step. Each prompt generates 8 rollouts. We adopt a default sampling temperature of 0.6, set the clipping ratio to 0.2,
and use a KL loss coefficient of 1 x 10~4. The maximum rollout length is capped at 4000 tokens. We set 3 = 0 and define
the weighting factor as n = 2 - [0.5 — p|. We limit training to 35 steps, as we observed a consistent decline in response
length with continued training.

Since the context window length is limited, the results are very unstable, as a results, we calculate the last two checkpoints’
average performance and report the results in the table below. In this setting, we observed that our NTHR outperforms
GRPO on average.
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Base model + Method AIME24 AMC MATHS00 Minerva Olympiad Avg.
Deepseek-1.5B

Base 20.0 50.0 68.8 20.6 29.6 37.8
GRPO 25.0 65.0 81.10 34.6 40.0 49.1
NTHR 25.0 70.0 80.60 33.7 40.7 50.0

Table 6: Results across selected math benchmarks for deepseek-1.5B.
A.8. Examples of LLD Incorrect Responses

We present the top-ranked incorrect response based on LLD for Qwen-2.5Math-1.5B in Fig. 1c. As shown in Tab. 7, the
answer is nearly correct, with the only issue occurring in the final step.

Similarly, Fig. 1b shows the top-ranked incorrect response by LLD for Deepseek-1.5B. As detailed in Tab. 8, the response
includes the correct answer multiple times; however, due to continued self-reflection, it becomes truncated by the context
window limit, resulting in a final answer that is wrong.

A.9. Words with high NTHR

We present additional examples of words with high NTHR scores. As shown in Tab. 9, using the same response from Tab. 7,
we observe that the correct parts are associated with high NTHR values, while the incorrect portion in step 5 receives
low NTHR values (in black). We also show response with incorrect output format in Tab. 10, using the same response
from Fig. 2, we observe that core steps and correct answer 8 are with high NTHR.
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Model & Data Problem & Answer Incorrect Response
Qwen2.5math- Question: A portion of the | To solve the problem, we need to analyze the given functions
1.5B graph of a quadratic function | f(x), g(x), and h(z) and determine the points of intersection

Math (order 1)

f(z) is shown.

Let g(z) = —f(x), h(z) =
f(—=z). If a is the number of
points where the graphs of y =
f(z) and y = g(x) intersect,
and b is the number of points
where the graphs of y = f(x)
and y = h(x) intersect, what is
10a + b?

Answer: 21

between the graphs of these functions.

Graph of f(z):

The graph of f(x) is a quadratic function. From the given
graph, we can observe the following:

* The roots of f(z) areatx = 1 and x = 3.
* The vertex of the parabola is at z = 2.

Graph of g(z) = — f(z):
The graph of g(z) is the reflection of the graph of f(x) across
the x-axis. Therefore:

* The roots of g(x) are also at x = 1 and = = 3.
* The vertex of the parabola for g(z) is at x = 2.

Graph of h(z) = f(—z):
The graph of h(x) is the reflection of the graph of f(x) across
the y-axis. Therefore:

* The roots of h(x) are at z = —1 and z = —3.
* The vertex of the parabola for h(x) is at z = —2.

Next, we determine the points of intersection:

Intersection of f(z) and g(x):

Since g(x) = — f(x), the graphs of f(x) and g(x) intersect
at the points where f(z) = — f(«). This simplifies to:

flz) =0

The roots of f(x) are at z = 1 and z = 3. Therefore, the
graphs of f(z) and g(z) intersect at two points:

a=2

Intersection of f(z) and h(x):

Since h(z) = f(—=x), the graphs of f(z) and h(z) intersect
at the points where f(z) = f(—x). This implies that f(x) is
an even function, and its graph is symmetric about the y-axis.
The roots of f(x) are at x = 1 and = = 3, but these are not
symmetric about the y-axis. Therefore, the graphs of f(x)
and h(x) do not intersect. Thus: b = 0

Finally, we calculate 10a 4+ b: 10a +b =10-2+ 0 = 20

Thus, the final answer is:

Table 7: Incorrect response example from qwen?2 .

S5math-1.5B. The incorrect response is almost correct.
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Model & Data

Problem & Answer

Incorrect Response

Deepseek-1.5B
AIME (order 1)

Question: One commercially
available ten-button lock may be
opened by pressing — in any or-
der — the correct five buttons.
The sample shown below has
{1,2,3,6,9} as its combination.
Suppose that these locks are re-
designed so that sets of as many
as nine buttons or as few as
one button could serve as com-
binations. How many additional
combinations would this allow?
Answer: 770

To solve the problem, explain your reasoning step by step,
and put your final answer within boxed. Alright, so I have this
problem about ten-button locks and figuring out how many
additional combinations a redesign would allow. Let me try
to break it down step by step. First, the original lock. It seems
like a ten-button lock where you need to press five buttons
in any order to open it. The combination given is 1,2,3,6,9,
which is a set of five buttons. So, the question is asking about
how many additional combinations would be possible if we
redesign the locks to allow sets of as many as nine buttons
or as few as one button. I think I need to figure out the total
number of possible combinations before and after the redesign
and then find the difference. That should give me the number
of additional combinations. Starting with the original lock

Therefore, the number of additional combinations is 1022 —
252 = 770.Wait, that$ the same answer as before. So, perhaps
770 is the correct answer. But wait, let me make sure. Is the
original number of combinations one, or 2527

Then, the redesigned lock allows for any number of buttons
from one to nine, so 2'0 — 2 = 1022 possible combinations,
but the original combination was just one. So, the number
of additional combinations would be 1022 — 1 = 1021. But
that seems like a lot more. Wait, which is it? Is the original
combination one specific combination, or is it 252 unique
combinations? In the problem, it says, “one commercially
available ten-button lock may be opened by pressing — in any
order — the correct five buttons.”

After redesign, the number of possible combinations is 1022.
So, the number of additional combinations is 1022—1 = 1021.
But wait, the redesign allows for any combination from one to
nine buttons. So, the number of possible combinations is 1022,
which includes the original 252 combinations. Therefore, the
number of additional combinations is 1022 — 252 = 770.

The redesigned allows for more combinations, but if you
consider that each combination is a set of buttons, then the
number of additional combinations is 1022 — 252 = 770. But
the problem says, “’the sample shown below has 1,2,3,6,9 as
its combination.” So, the sample is a specific combination, so
that§ one combination. So, originally, the number of possible
combinations was 252, including the correct one. So, if you
redesign it, the number of possible combinations is 1022,
which includes all the original 252 combinations plus 1022 —
252 = 770 additional combinations. Therefore, the number
of additional combinations is 770. But to make sure, let me
think of another approach. If the original lock had only one
combination, the number of possible combinations is 252,
each being a unique set of five buttons. Then, if you redesign
it so that you can have any number of buttons from one to
nine, the number of possible combinations is

Stgp due to limited context window length.

Table 8: Incorrect response example from deepseek~-1. 5B on AIME: Although the response includes the correct answers,
excessive self-reflection causes the output to exceed the context window, preventing it from being formatted correctly.
dashes means omitted reasoning.



Submission and Formatting Instructions for ICML 2025

Model & Data Problem & Answer Incorrect Response

Qwen2.5math- Question: A portion of the | To solve the problem, we need to analyze the given functions
1.5B graph of a quadratic function | f(z), g(x), and h(x) and determine the points of intersection
Math f(z) is shown. between the graphs of these functions.

Let g(z) = —f(x), h(z) =
f(—=z). If a is the number of
points where the graphs of y =
f(z) and y = g(x) intersect,
and b is the number of points
where the graphs of y = f(x)
and y = h(x) intersect, what is
10a + b?

Answer: 21

1. Graph of f(x): The graph of f(x) is a quadratic function.
From the given graph, we can observe the following: - The
roots of f(x) are at x = 1 and x = 3. - The vertex of the
parabola is at x = 2.

2. Graph of g(x) = — f(z):The graph of g(x) is the reflection
of the graph of f(z) across the x-axis. Therefore: - The roots
of g(z) are also at # = 1 and x = 3. - The vertex of the
parabola for g(z) is at x = 2.

3.Graph of h(z) = f(—a):** The graph of h(z) is the reflec-
tion of the graph of f(x) across the y-axis. Therefore: - The
roots of h(x) are at © = —1 and = —3. - The vertex of the
parabola for h(x) is at z = —2.

Next, we determine the points of intersection:

4. TIntersection of f(z) and g(z): Since g(z) = —f(z),
the graphs of f(x) and g(z) intersect at the points where
f(z) = — f(x). This simplifies to:

flz)=0

The roots of f(x) are at z = 1 and # = 3. Therefore, the
graphs of f(z) and g(z) intersect at two points:

a=2

5. Intersection of f(x) and h(z): Since h(z) = f(—z),
the graphs of f(x) and h(x) intersect at the points where
f(z) = f(—z). This implies that f(z) is an even function,
and its graph is symmetric about the y-axis. The roots of f(z)
are at x = 1 and = = 3, but these are not symmetric about
the y-axis. Therefore, the graphs of f(z) and h(x) do not
intersect.

Thus:

b=0

Finally, we calculate 10a + b:
10a+b=10-2+0=20

Thus, the final answer is:

Table 9: High NTHR (highlight in red) example from qwen2 . 5math-1.5B. Core steps in correct parts are with high
NTHR. The erroneous words of step 5 are with low NTHR values.
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Model & Data Problem & Answer Incorrect Response

Qwen2.5-0.5B- Question: What is the greatest | To solve the inequality n? — 11n + 24 < 0, we need to

Ins integer n such that n? — 11n + | find the values of n that satisfy the inequality. Since the

Math 24 <0? inequality is an inequality, we should first find the roots of the
Answer: 8 corresponding equation n? — 11n 4 24 = 0. Let ’s solve the

equation n? —11n+24 = 0: 1. Factor the quadratic equation:
n?—11n+24 = (n—3)(n—8) = 0. 2. Set each factor equal
to zero and solve forn: n —3 = 0 orn — 8 = 0. 3. Solve
for n: n = 3 or n = 8. Therefore, the roots of the equation
n?—11n+24 = 0are n = 3and n = 8. Now, we need to find
the values of n that satisfy the inequality n? — 11n + 24 < 0.
Since the inequality is an inequality, we should check the
intervals between the roots. The roots n = 3 and n = 8
divide the number line into three intervals: (—oo, 3], [3, 8],
and [8,00). Let ’s test a point in each interval to determine
where the inequality holds true. 1. For nin (—oo, 3), let ’s test
n =0:0%-11(0)+24 = 24 > 0. 2. Fornin (3, 8), let ’s test
n=>552-11(5)+24 =25-55+24 = —4 < 0. 3. Forn
in (8,00), let s testn = 9: 92 —11(9)+24 = 81 —-99+24 =
6 > 0. Therefore, the inequality n? — 11n + 24 < 0 holds
true for 3 < n < 8.Hence, the greatest integer n that satisfies
the inequality is n = 8. In boxed format, the answer is 8.

Table 10: High NTHR (highlight in red) example from qwen2.5-0.5B-Ins. This example have correct answer but in
wrong format. Core steps and correct answer 8 are with high NTHR.
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