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Abstract

Commonsense Reasoning is a research challenge studied from the early days of AI. In
recent years, several natural language QA task have been proposed where commonsense
reasoning is important. Two common approaches to this are (i) Use of well-structured
commonsense present in knowledge graphs, and (ii) Use of progressively larger transformer
language models. While acquiring and representing commonsense in a formal representation
is challenging in approach (i), approach (ii) gets more and more resource-intensive. In
this work, we take a middle ground where we use smaller language models together with a
relatively smaller but targeted natural language text corpora. The advantages of such an
approach is that it is less resource intensive and yet at the same time it can use unstructured
text corpora. We define different unstructured commonsense knowledge sources, explore
three strategies for knowledge incorporation, and propose four methods competitive to
state-of-the-art methods to reason with implicit commonsense.

1. Introduction

For an AI agent to reason about the everyday routine human activities, the agent needs to
possess commonsense. Consequently, commonsense acquisition and reasoning are considered
critical research challenges from the early days of AI [McCarthy, 1959]. The need for
commonsense reasoning is reemphasized recently [Sap et al., 2019a, Marcus and Davis,
2019], particularly in NL understanding and QA. Several commonsense reasoning tasks have
been proposed that study the different aspects of commonsense reasoning, such as abductive
commonsense [Bhagavatula et al., 2019], physical commonsense [Bisk et al., 2019], and social
commonsense [Sap et al., 2019b]. QA systems approach solving tasks using large-pretrained
transformers, such as BERT [Devlin et al., 2019], or use complex knowledge fusion methods
to perform QA [Lin et al., 2019, Lv et al., 2020].

In this paper, focusing on low resource use, we evaluate the use of smaller transformer
language models and a small number of knowledge-rich natural language sentences, where
relevant knowledge may be implicitly expressed. To understand what we mean by implicit
knowledge, consider an example from [Winograd, 1972]: Given the context “The city
councilmen refused the demonstrators a permit because they feared violence.”, and the
question “Who is fearing violence?”, the correct answer is “The city councilmen”. An
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unstructured retrieved (through a web search engine) knowledge [Prakash et al., 2019] for
this context-question pair that can help answer this question correctly is: “He also refused
to give his full name because he feared for his safety.”. We can use this knowledge to reason
that the person who is refusing, is the one who is fearing. From this example, we can
observe that the necessary commonsense knowledge to reason may be present in text in many
cases but in an implicit way. Moreover, this knowledge is unstructured, and hence current
state-of-the-art knowledge fusion methods are unable to utilize this knowledge without a
method to represent it in a knowledge graph triple, as present in ConceptNet.

Using natural language sentences (as a source of knowledge) at first glance appears
similar to the application of evidence retrieval for open-domain question answering [Yang
et al., 2018, Clark et al., 2018, Kwiatkowski et al., 2019], where systems retrieve supporting
evidence to be able to answer an open-ended question. However, there is a big difference
as, unlike in evidence retrieval, the needed commonsense knowledge may not be explicitly
available in unstructured knowledge corpora. Our approach is to reason-with-example, in
contrast to reading comprehension with retrieved supporting paragraphs containing answers
or explicit knowledge that lead to answers. Moreover, a high lexical overlap with a retrieved
knowledge and context-question-answer does not mean it can be used to answer correctly.
For example, another retrieved knowledge for the above question is: “Demonstrators fear the
retaliatory police violence.”. An additional layer of complexity to commonsense reasoning
with natural language is added because of such high lexical overlap but distracting sentences.

We limit our study to two pre-trained transformers, namely BERT and RoBERTa. BERT
and RoBERTa have been trained using 13GB and 160GB data, respectively. RoBERTa has
the same architecture and parameter count but is trained with extensive hyper-parameter
tuning and has a larger vocabulary (25K v/s 50K). These allow us to study the implicit
commonsense reasoning ability with varying pre-training and vocabulary size. Larger pre-
trained transformers have been effectively shown to improve performance on downstream
tasks, but training such models is resource-intensive. Hence we ask the following auxiliary
question: To what extent can we improve a smaller transformer encoder’s performance?
Smaller in the sense of pre-training data, vocabulary size, and parameter tuning space.

For addressing the above questions, we propose the following experimental framework.
We categorize different unstructured knowledge sources and define a knowledge source
preparation and retrieval component. We then propose three strategies of unstructured
knowledge infusion. In the Revision strategy, we fine-tune the transformer on an unstructured
knowledge source. In Openbook strategy, we choose a certain number of knowledge statements
from the unstructured knowledge source that are textually similar to each of the dataset
samples. Then we fine-tune the pre-trained transformer for the question-answering task.
In the final strategy, we combine both the strategies mentioned above. We propose three
strong baseline methods that utilize knowledge, concat, max, simple-sum, and an explainable
reasoning model weighted-sum to combine and reason with multiple commonsense knowledge
sentences. We evaluate our proposed framework on three public commonsense question
answering datasets: AbductiveNLI (aNLI) [Bhagavatula et al., 2019], PIQA [Bisk et al.,
2019] and Social Interaction QA (SIQA) [Sap et al., 2019b].

Our key findings are as follows: (a) Transformers can reason with implicit commonsense
knowledge to some extent. We observe that transformers fail to answer questions through
detailed error analysis even when sufficient knowledge is present with minimal distractors
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Figure 1: Example of all three datasets along with retrieved knowledge.

30-50% of the time. This observation shows the scope of future improvements. (b) Revision
and Openbook Strategy improve commonsense reasoning performance, but the Revision
strategy’s impact depends on how well-formed the unstructured knowledge corpus is. (c)
Our knowledge retrieval and knowledge infusion methods improve accuracy over pre-trained
transformers by 2-9%. They are significantly effective over the smaller transformer encoders
and approach larger pre-trained transformers, surpassing T5-11B [Raffel et al., 2019] by
4.14% in aNLI and reducing the gap to 1.75% in SIQA using RoBERTa. These methods
should act as future baselines.

In summary, our contributions are: (a) a thorough analysis of transformers’ ability to
perform commonsense reasoning with implicit knowledge on three different commonsense QA
tasks using two transformer models. (b) four models representing four ways knowledge can
be infused in transformer encoders. These methods apply to multiple commonsense reasoning
tasks and improve performance over pre-trained transformers by 2-9% in accuracy. (c) a
detailed study to bridge the gap between smaller and larger pre-trained transformers. (d) an
extensive investigation to study the impact of different knowledge sources and pre-training
on such knowledge sources on commonsense QA tasks.

2. MCQ Datasets

To study the extent of transformers’ commonsense reasoning ability, we choose the following
three datasets to evaluate our models, each with a different kind of commonsense knowledge.
Figure 1 shows examples from each of the datasets with our retrieved commonsense knowledge
sentences.

Abductive NLI (aNLI): This dataset [Bhagavatula et al., 2019] is intended to judge the
potential of an AI system to do abductive reasoning to form possible explanations for a
given set of observations. The task is to find which of the hypothesis options H1, and H2

explains O2 where O1 should precede and O2 should succeed the hypothesis, given a pair
of observations O1 and O2. This task needs a commonsense understanding of which order
sequence of events occurs. There are 169,654 train and 1,532 validation samples. The test
set is blind. It has a generation task, but we restrict ourselves to the multiple-choice task.

PIQA (Physical Interaction QA): This dataset is created to evaluate an AI system’s
physics reasoning capability. The dataset requires reasoning about physical objects and how
we use them in our daily lives. The task is to predict the most appropriate choice to the
goal G, given a goal G and a pair of choices C1 and C2. There are 16,113 train and 1,838
validation samples. The test set is blind.
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SIQA: This dataset is a collection of instances about social interaction reasoning and the
social implications of their statements. The task is to choose the correct answer option AOi

out of three choices when given a context C of a social situation and a question Q about the
situation. There are several question types in this dataset derived from Atomic inference
dimensions [Sap et al., 2019a]. A few of the Atomic inference dimensions are actor intention,
actor motivation, effect on the actor,effect on others, etc. In total, there are 33,410 train
and 1,954 validation samples. The test set is blind.

3. Commonsense Knowledge Sources

3.1 Knowledge Categorization for Evaluation

Directly Derived: Here the commonsense QA task is directly derived from the knowledge
source, and hence using the same knowledge may make the task trivial. We test this scenario
on the aNLI task with the following knowledge sources, ROCStories Corpus [Mostafazadeh
et al., 2016] and Story Cloze Test, that were used in creating aNLI. Our motivation is to see
how well the model can answer questions when given the “same” or similar implicit/explicit
commonsense knowledge.

Partially Derived: Here the commonsense QA task is not directly derived from an
external knowledge source, and considerable human knowledge was used to generate the
question-answers. In this case, we use SIQA as the task, which uses the Atomic [Sap et al.,
2019a] knowledge base as the source for social events, but has undergone sufficient human
intervention to make the task non-trivial. During dataset creation, the human annotators
were asked to turn Atomic events into sentences and were asked to create question-answers.

Relevant: Here, the commonsense task is entirely created with human annotators’ help
without using a specific knowledge source. However, we guess knowledge sources that seem
relevant through our QA pairs analysis. We evaluate this using PIQA as the commonsense
task and WikiHow dataset [Koupaee and Wang, 2018] as the “relevant” external knowledge
source.

3.2 Knowledge Source Preparation

aNLI: To test our first category of external knowledge, we use the entire Story Cloze Test
and ROCStories Corpus. We also prepare another source that contains knowledge sentences
retrieved for the train set of aNLI from the first source. This knowledge source is created to
ensure the task is not trivialized with knowledge leakage. We also create a knowledge source
from multiple datasets such as MCTest [Richardson et al., 2013], COPA [Roemmele et al.,
2011] and Atomic, but not Story Cloze Test and ROCStories Corpus. These sources contain
commonsense knowledge, which might be useful for the aNLI task.

SIQA: We synthetically generate a knowledge source from the events and inference dimen-
sions provided by the Atomic dataset [Sap et al., 2019a]. The Atomic dataset contains events
and eight types of if-then inferences ∗. The total number of events is 732,723. Some events
are masked, which we fill by using a BERT and masked language modeling [Devlin et al.,
2019]. We extend the knowledge source, and replace PersonX and PersonY, as present in

∗. More details in Supplemental Materials.
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Figure 2: An end-to-end view of our approach. From query generation, knowledge retrieval,
the different types of knowledge retrieved along with keywords highlighted in blue, the
corresponding learned weights in the Weighted-Sum model and finally to predicted logits.

the original Atomic dataset, using gender-neutral names. These steps may approximate the
steps taken by humans to generate QA pairs.

PIQA: We use the Wikihow dataset for PIQA. It contains paragraphs (214,544) with
detailed steps or actions to complete a task. We extract the title of each paragraph and
split the paragraphs into sentences. The title is concatenated to each of the sentences. This
preprocessing ensures that the task’s goal is present in each of the sentences.

A Combined Commonsense Corpus is created which combines the partially related and
relevant corpuses, for example, combining Wikihow, Atomic, MCTest.

3.3 Knowledge Retrieval

Query Generation: We concatenate the question, answer option, and the context if
present, and remove standard English stopwords for query generation. We use common
nouns, verbs, adjectives, and adverbs from the QA pairs. Explicit bias towards specific
names (John, Jane) is avoided.

Information Retrieval System: We use Elasticsearch to index all knowledge base sen-
tences. We retrieve the top 50 sentences for each QA pair with the default BM-25 ranking
model [Robertson and Walker, 1994]. The retrieved sentences may contain the key search
words in any order.

Re-Ranking: We re-rank the retrieved knowledge sentences to remove redundant sentences
containing the same information. We use sentence similarity and knowledge redundancy
to perform the iterative re-ranking. We use Spacy, to compute cosine similarity between
sentence Glove vector [Pennington et al., 2014] representations; for knowledge redundancy,
we find similarity with the already selected sentences and discard a new sentence if it is
> 0.9 similar to higher-ranked sentences. After re-ranking, we select the top ten sentences.

We keep our Information Retrieval system generic as the tasks require varying kinds of
commonsense knowledge; for example, If-then rules in SIQA, Scripts or Stories in aNLI, and
understanding of Processes and Tools in PIQA.
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BERT RoBERTa

Dataset Strategy Concat Max Sim-Sum Wtd-Sum Concat Max Sim-Sum Wtd-Sum

aNLI
OPENBOOK 73.9± 0.8 73.7± 0.1 73.5± 0.7 73.3± 1.0 83.9± 0.5 80.8± 0.9 81.7± 0.6 84.4± 0.4
REVISION 72.7± 0.3 N/A N/A N/A 82.4 N/A N/A N/A

REVISION & OPENBOOK 74.4± 0.2 74.3± 0.1 74.0± 0.9 75.1±0.4 84.2± 0.7 81.4± 0.8 82.6± 0.6 86.7± 0.6

PIQA
OPENBOOK 67.8± 0.4 72.4± 0.6 72.6± 1.2 72.5± 0.1 74.8± 0.5 75.2± 0.9 75.6± 0.7 77.1± 0.2
REVISION 74.5± 0.3 N/A N/A N/A 75.2± 0.8 N/A N/A N/A

REVISION & OPENBOOK 67.7± 0.1 73.8± 0.8 76.8± 0.5 76.8± 0.3 75.4± 0.7 76.2± 0.8 76.8± 0.4 80.2± 0.6

SIQA
OPENBOOK 70.1± 0.8 67.8± 0.1 70.0± 0.7 70.2± 0.4 76.5± 0.7 77.2± 0.6 77.4± 0.2 78.3± 0.5
REVISION 69.5± 0.9 N/A N/A N/A 76.8± 0.3 N/A N/A N/A

REVISION & OPENBOOK 68.8± 0.4 66.6± 0.4 68.9± 0.1 69.3± 0.6 78.2± 0.3 77.4± 0.9 76.7± 0.5 79.5± 0.9

Table 1: Validation set accuracy (%) of each of the four models (Concat, Max, Simple sum,
Weighted sum). Revision only method has no retrieved passage, so only Q-A is concatenated.

4. Method

After extracting relevant knowledge from the respective KBs, we move onto the task of
Question-Answering. We perform our experiments on BERT encoders, with 340M and 355M
parameters respectively, BERT-Large (Low vocab-size 25K and pretraining data 13GB)
BERT [Devlin et al., 2019] and RoBERTa (high-vocab size 50K and pretraining data 160
GB ) RoBERTa [Liu et al., 2019].
QA-Model: As a baseline, we use these pre-trained transformers for the question answering
task with an extra feed-forward layer for classification as a fine-tuning step.

4.1 Modes of Knowledge Infusion

We experiment with four different models of using knowledge with the transformer architec-
ture for the open-book strategy. The first three, concat, max, and simple-sum act as stronger
baselines that use the same implicit knowledge as our proposed weighted-sum model. Each
of these modules takes as input a problem instance which contains a question Q, n answer
choices a1, ..., an and a list called premises of length n, one for each answer. Each element in
premises contains m number of knowledge passages, which might be useful while answering
the question Q. Let Kij denotes the j th knowledge passage for the i th answer option.
Each model computes a score of score(i) for each of the n answer choices. The final answer
is the answer choice that receives the maximum score. We now describe how the different
models compute the scores differently.
Concat: In this model, all the m knowledge passages for the i-th choice are joined together
to make a single knowledge passage Ki. The sequence of tokens {[CLS] Ki [S] Qai [S]} is
then passed to BERT to pool the [CLS] embedding (z[CLS]) from the last layer. This way
we get n z[CLS] for n answer choices, each of which is projected to a real number (score(i))
using a linear layer.
Parallel-Max: For each answer choice ai, Parallel-Max uses each of the knowledge passage
Kij to create the sequence {[CLS] Kij [S] Qai [S]} which is then passed to the BERT model
to obtain the z[CLS] from the last layer that is then projected to a real number using a linear
layer. score(i) is the max of the m scores obtained using each of the m knowledge passage.
Simple Sum: In simple sum and the next model assumes that the information is scattered
over multiple knowledge passages and try to aggregate that scattered information. To do
this, the simple sum model, for each answer choice ai and each of the knowledge passage
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Models/ Accuracy aNLI PIQA SIQA

Val Test Val Test Val Test

BERT 67.36 66.75 68.08 69.23 64.88 64.50
GPT-2 XL N/A N/A 70.20 69.50 47.50 45.30
RoBERTa 85.05 83.91 76.28 76.80 77.85 76.74
RoBERTa 5 Ensemble N/A 83.22 N/A 79.66 N/A 78.68
L2R2 [2020] N/A 86.81 N/A N/A N/A N/A
KagNet [2019] N/A N/A N/A N/A 65.05 64.59
GBR [2020] N/A N/A N/A N/A 75.64 76.25
UnifiedQA T5 11B [2020] N/A 80.04 N/A 89.50 N/A 79.75

Ours: BERT + WS 74.60 74.96 76.82 72.28 70.21 67.22
Ours: RoBERTa + WS 85.90 84.18 80.20 78.24 79.53 78.00

Table 2: Performance of the Weighted-Sum model with Revision & Openbook strategy,
compared to current best methods. Underlined are methods that we beat statistically
significantly. Partially derived and related sources are used. Unavailable→N/A. Best→Bold.

Kij creates the sequence {[CLS] Kij [S] Qai [S]} which it then passes to the BERT model
to obtain the z[CLS] from the last layer. All of these m vectors are then summed to find the
summary vector, projected to a scalar using a linear layer to obtain the score(i).
Weighted Sum: The weighted sum model computes a weighted sum of the m z[CLS] as
some of the knowledge passage might be more useful than others. It computes the z[CLS] in
a similar way to that of the simple sum model. It computes a scalar weight wij for each
of the m z[CLS] using a linear projection layer which we will call as the weight layer. The
weights are then normalized through a softmax layer and used to compute the weighted sum
of the z[CLS]. It then uses (1) a linear layer or (2) reuses the weight layer (tied version) to
compute the final score score(i) for the option ai. We experiment with both options.

Formally, given m z[CLS], we learn two projections w1 and w2, such that:

score(i) = w2(

n∑
j=1

w1(z[CLS]) ∗ z[CLS]) (1)

This weighted-sum of vectors is similar to the attention weights learned to create contextual
word vectors [Vaswani et al., 2017] but we extend it to multiple sentences. We minimize
the cross-entropy loss between the score and the ground-truth answer. We observe a single
layer network achieves the best accuracy compared to multi-layer feed-forward networks and
highway networks for projection.

5. Experiments

Let D be an MCQ dataset, and T be a pre-trained transformer, KD be a knowledge source
(a set of paragraphs or sentences) which is useful for D and let K be a general knowledge
source where T was pre-trained, and K might or might not contain KD. We consider three
approaches to infuse knowledge.
Revision: In this strategy, T is fine-tuned on KD using Masked LM (both BERT and
RoBERTa) and the next sentence prediction task (BERT) and then fine-tuned on the dataset
D for the QA task.
Openbook: Here a subset of KD is assigned to each of the training samples in the dataset
D as a knowledge passage context, and the model T is fine-tuned on the modified dataset D.
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Model Knowledge Source aNLI PIQA SIQA

BERT
Directly/Partially Derived 75.1± 0.4 N/A 70.2± 0.4
TrainOnly Directly/Partially 74.6± 0.8 N/A 69.8± 0.7
Related Knowledge 73.2± 0.5 76.8± 0.3 68.6± 0.5

RoBERTa
Directly/Partially Derived 86.7± 0.6 N/A 79.5± 0.9
TrainOnly Directly/Partially 85.9± 0.8 N/A 78.9± 1.2
Related Knowledge 85.0± 1.1 80.2± 0.6 77.4± 0.8

Table 3: Effect of different knowledge sources types on the Weighted-Sum knowledge infused
model. Related Knowledge source is the combination of all relevant knowledge sources,
referred to as the Combined Commonsense Corpus. Metric is Accuracy.

(a) ↑ Knowledge sentences. (b) ↑ Revision steps. (c) Wts. v/s Lex. Overlap

Figure 3: For a, b, and c the knowledge infusion model is Weighted-Sum with knowledge
retrieved from a relevant knowledge source. In Fig. a, we observe the effect of increasing
number of implicit knowledge sentences. In Fig. b we observe the effect of increasing number
of Revision pre-training steps. Fig. c shows the weights learned vs. normalized lexical
overlap between knowledge and concatenated QA pair for all samples of PIQA dev set.

Revision with an Openbook: In this strategy, T is fine-tuned on KD using Masked LM
(both BERT and RoBERTa) and the next sentence prediction task (BERT) and also a subset
of KD is assigned to each of the training samples on D. The model is then fine-tuned for
the modified dataset D.

We train the models on 4 Nvidia V100 16GB GPUs with learning rates in the range
[1e-6,5e-5] and batch sizes of [16,32,48,64]. We report the mean accuracy for three random
seed runs. We perform five hyper-parameter trials and param-selection on the validation set.

6. Results and Discussion

Tables 1, 2 and 3 summarize our results on three datasets. BERT and RoBERTa baseline
validation and hidden test scores are present in Table 2. Adding knowledge in natural
language form improves QA accuracy statistically significantly across all datasets over the
baseline BERT with p ≤ 0.05 based on Wilson score intervals [Wilson, 1927]. This includes
retrieving knowledge from related knowledge sources, seen in Tables 2 and 3. The concat
mode of knowledge infusion improves over the baseline BERT by 1-6%, and the Weighted-
Sum model further improves it by 2-4%. In Table 2 we can observe the Weighted-Sum
model is 4.1% better than T5 in aNLI and reduces the gap to 1.75% in SIQA with 30
times less number of parameters (11B v/s 355M). It also surpasses complex graph-based
approaches like GBR and KagNet [Lin et al., 2019, Lv et al., 2020]. Other prior work use
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Strategy Training Src. aNLI SIQA PIQA

OpenBook
aNLI N/A 63.2 65.5 51.2 57.8
SIQA 72.4 84.1 N/A 48.5 54.3
PIQA 62.5 74.2 49.6 54.2 N/A

Revision
aNLI N/A 65.3 66.2 56.2 65.8
SIQA 70.9 83.8 N/A 52.4 57.8
PIQA 66.1 78.0 57.4 67.6 N/A

OpenBook
+ Revision

aNLI N/A 65.8 68.2 55.4 62.8
SIQA 73.1 85.2 N/A 53.2 59.4
PIQA 63.8 75.6 52.8 63.1 N/A

Table 4: Effect of cross-dataset knowledge source accuracy on Weighted-Sum (when a
relevant source for a different task is used). BERT Left, RoBERTa Right.

directly derived knowledge sources and model for specific tasks as in L2R [Zhu et al., 2020].
Moreover, UnifiedQA T5 11B [Khashabi et al., 2020] is trained on many datasets, whereas
we train only on the provided train dataset, making our approach more sample efficient.
This observation validates our hypothesis of using implicit knowledge expressed in natural
language to bridge the gap to super-large transformers. Our generic framework improves on
all three datasets with models trained only using the provided training dataset.

Effect of different strategies: Both the Openbook and the Revision strategies perform
well. Together the performance improves even further. The performance of the Revision
strategy is low for SIQA. The drop in performance may be attributed to the sentences’
synthetic nature and the unavailability of next sentence prediction task data, as the knowledge
in the KB for SIQA is single sentences and not paragraphs. PIQA and aNLI results are
better due to natural and contiguous sentences. For PIQA, the BERT model improves
with knowledge, whereas the RoBERTa model underperforms, indicating RoBERTa gets
distracted by the retrieved knowledge, and the pre-training knowledge is more useful. BERT
with implicit knowledge approaches RoBERTa without knowledge, with the gap reduced by
4% on average. Similarly, RoBERTa approaches T5 with Revision & Openbook strategy.

Effect of different knowledge sources: Table 3 shows the impact of different knowledge
sources on the downstream question answering task. Even a knowledge source with somewhat
related knowledge is impactful for the question answering task, as seen in the case of Related
Knowledge and TrainOnly Partially Derived for aNLI and SIQA. In Directly and Partially
derived knowledge categories, such as RoCStories for aNLI and Atomic for SIQA, the
model accuracy with knowledge is significantly more than the baseline but does not reach
near-human accuracy. However, the model can still not answer all questions because the
model fails to reason well even with sufficient knowledge, and the annotators have modified
the information present in the source knowledge significantly. As a result, the knowledge
does not overlap with the gold answer, cause if it did, the model will use lexical overlap as a
short-cut and perform better. In Table 4, we can observe aNLI and SIQA require similar
commonsense knowledge, as training with the relevant knowledge source of aNLI has a
non-detrimental effect for SIQA and vice-versa. We also observe PIQA performance decreases
if we use a knowledge source of aNLI and PIQA, indicating it introduces a significant amount
of distraction such that even the implicit knowledge in pre-trained transformers is ignored. †

†. More details and the error analysis are in Supplemental Materials.
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Knowledge aNLI SIQA PIQA

Explicitly Present 14% 11% 10%
Implicitly Present 55% 59% 51%
Fully Irrelevant 31% 30% 39%

Types of Error aNLI SIQA PIQA

Annotation 41% 38% 10%
Model Prediction 48% 27% 29%
Distracting Knowledge 11% 35% 61%

Table 5: Left: Percent of correct predictions where the implicit knowledge is categorized as
above, for the RoBERTa Weighted-Sum model. Right: Different types of errors observed in
the QA pairs where the RoBERTa Weighted-Sum model failed to answer correctly.

Comparisons between modes of knowledge fusion: The Weighted-Sum model is
observed to be consistent across datasets. The other strong baseline models also improve over
the no-knowledge models indicating even simple scoring methods over implicit commonsense
knowledge sentences can lead to improvements. The Max, Simple-Sum, and Weighted-Sum
models have an additional advantage of being partially explainable by observing the weights
associated with the knowledge sentences. Weighted-Sum outperforms them as it has the
flexibility to attend in varying degrees to multiple sentences, in contrast to other models.
Figure 2 shows the weight versus overlap between knowledge and QA pair distribution for
PIQA. There is an overall low overlap, but the model learns to give high weights regardless
of the overlap. It indicates that the model captures the implicit knowledge and not just a
simple word overlap. We observe 61% of such low lexical overlap sentences have sufficient
implicit knowledge on manual analysis.

Why the impact of external knowledge is less for RoBERTa? RoBERTa has been
pre-trained using a gigantic corpus of 160 GB text. We assume for these tasks that the
model needs additional knowledge to answer, but we hypothesize that the pre-training corpus
of RoBERTa might contain the knowledge we are trying to infuse, leading to the reduced
impact. This observation calls for further analysis of pre-training corpora to categorize
such commonsense knowledge. The significant improvement over BERT (3-14%) shows
the ability for these methods to utilize implicit knowledge, which is especially useful for
low-resource languages, target domains where we can pre-train using fewer data and use
ad-hoc knowledge to solve a target task and have smaller vocab and params. But, there is
an assumption that atleast sufficient data (∼10GB) to train a BERT model is necessary.
Future work will explore the size v/s knowledge impact for even smaller language models.

Error Analysis: We analyzed 200 correct predictions and error samples from each of our
best models, respectively. In Table 6, we can observe for around two-third of the correct
predictions, we have relevant knowledge present. The model also ignores partial noise
by reducing its weight and the entire knowledge passage if needed. In those cases, we
hypothesize that the knowledge acquired during the revision phase or the original language
model pre-training phase helps answer correctly. We divide the errors into three categories,
as seen in Table 6. Annotation Errors are when more than one answer option is correct,
or an incorrect answer option is labeled correctly. The questions for which information
is insufficient to select a specific answer option also fall into this category. Distracting
knowledge is where the retrieved knowledge is noisy and does not have sufficient relevant
knowledge. Model prediction error is where the relevant knowledge is present, though the
knowledge is not wholly exact. However, a human could have reasoned with the provided
knowledge.
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7. Related Work

Commonsense Reasoning: Several attempts were made to inject external knowledge
into neural networks to improve commonsense QA in recent years. A knowledge selection
algorithm to rank knowledge paths from ConceptNet via PMI and frequency-based scoring
was proposed by Bauer et al. [2018]. Wang and Jiang [2019] improve word representations
by integrating common word vectors between document and question-answer options. A
commonsense-based pre-training was proposed by Zhong et al. [2019] to learn direct and
indirect ConceptNet relations. Lin et al. [2019] proposed a knowledge-augmented graph-based
reasoner and pruning knowledge paths using a function adapted from a graph embedding
algorithm. Lv et al. [2020] is the closest work that utilizes both a structured knowledge base
and explicit unstructured plain text as a source to enhance contextual representations. Our
Revision strategy is similar to task adaptive pre-training, but we focus on commonsense
knowledge infusion, whereas Gururangan et al. [2020] focuses on textual domain adaptation
for text classification.

Transformers Reasoning Abilities: Recently, a few attempts were made to understand
the different reasoning abilities of transformer models. Clark et al. [2020] observe that
transformers can reason with explicit conjunctive implication rules and observe a strong
performance. Talmor et al. [2020] study to what extent transformers can reason over explicit
symbolic facts while retaining implicit pre-training knowledge. Richardson and Sabharwal
[2020] study if the transformer QA models know definitions and taxonomic reasonings and
propose probing datasets. Gontier et al. [2020] study the ability to generate proofs given
knowledge encoded in natural language. In contrast to the above studies, we study the
ability to reason with additional implicit commonsense knowledge ‡.

8. Conclusion

In this work, we comprehensively study transformers’ ability to reason with implicit knowledge
expressed in natural language. We propose an experimental framework with knowledge
infusion methods and observe a considerable improvement of 2-9% over strong baselines. We
observe our methods, trained with fewer samples and parameters, perform competitively
with huge pre-trained language models and surpass complex graph-based methods [Lin et al.,
2019, Lv et al., 2020]. Moreover, the approaches we studied are general enough to apply
to other knowledge-intensive tasks and languages. Our methods reduce the gap between
smaller and large pre-trained transformers. We critically analyze the different components
and identify that transformers are still unable to answer 30-50% of the time, even with
sufficient knowledge, identifying the need for better methods to perform reasoning with
implicit knowledge. We hope our findings will help design models that respond better to
instructions [Mishra et al., 2021] containing knowledge expressed in natural language.

References

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi, Richard Socher, and Caiming Xiong.
Learning to retrieve reasoning paths over wikipedia graph for question answering. arXiv

‡. Detailed related work is in Supplemental Materials.

11



Banerjee, Mishra, Pal, Mitra, & Baral

preprint arXiv:1911.10470, 2019.

Pratyay Banerjee. Asu at textgraphs 2019 shared task: Explanation regeneration using
language models and iterative re-ranking. EMNLP-IJCNLP 2019, page 78, 2019.

Pratyay Banerjee and Chitta Baral. Knowledge fusion and semantic knowledge ranking for
open domain question answering. arXiv preprint arXiv:2004.03101, 2020a.

Pratyay Banerjee and Chitta Baral. Self-supervised knowledge triplet learning for zero-shot
question answering. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 151–162, 2020b.

Pratyay Banerjee, Kuntal Kumar Pal, Arindam Mitra, and Chitta Baral. Careful selection
of knowledge to solve open book question answering. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 6120–6129, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1615.
URL https://www.aclweb.org/anthology/P19-1615.

Lisa Bauer, Yicheng Wang, and Mohit Bansal. Commonsense for generative multi-hop
question answering tasks. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 4220–4230, 2018.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtz-
man, Hannah Rashkin, Doug Downey, Scott Wen-tau Yih, and Yejin Choi. Abductive
commonsense reasoning. arXiv preprint arXiv:1908.05739, 2019.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. arXiv preprint arXiv:1911.11641, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. Transformers as soft reasoners over
language. arXiv preprint arXiv:2002.05867, 2020.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum. Multi-step
retriever-reader interaction for scalable open-domain question answering. arXiv preprint
arXiv:1905.05733, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, 2019.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Christopher Pal. Measuring systematic gen-
eralization in neural proof generation with transformers. arXiv preprint arXiv:2009.14786,
2020.

12

https://www.aclweb.org/anthology/P19-1615


Commonsense Reasoning with Implicit Knowledge in Natural Language

Clinton Gormley and Zachary Tong. Elasticsearch: the definitive guide: a distributed
real-time search and analytics engine. ” O’Reilly Media, Inc.”, 2015.
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9. Supplemental Material

In the first section, we analyze BERT predictions for all three datasets. In the second section
we analyze prediction errors unique to each datasets . The third section is regarding analysis
of our dataset aNLI, where we have attempt to find out why the model is not able to answer
all questions even with the help of directly derived knowledge source. In the third section,
we compare RoBERTa and BERT by analyzing the weighted-sum model. Fourth section
illustrates some examples in these datasets which need external facts beyond common sense
knowledge.

9.1 Detailed Related Work

Question-Answering Datasets: In datasets such as SQuAD [Rajpurkar et al., 2016],
TriviaQA [Joshi et al., 2017], WikiQA [Yang et al., 2015], CoQA [Reddy et al., 2019],
HotpotQA [Yang et al., 2018] the answers are present in either the passage or the context,
or require multi-hop reasoning and retrieval. Another challenging QA task is when the
multiple-choice questions do not have sufficient knowledge to answer correctly given a
passage, context or options, as in ARC [Clark et al., 2018], RACE [Lai et al., 2017], and
OpenBook QA [Mihaylov et al., 2018]. Numerical commonsense reasoning datasets [Mishra
et al., 2020c, Lin et al., 2020] demand models to know various numerical facts and thus
poses challenges. Recently language models trained on a huge corpus have been able to
perform quite well [Devlin et al., 2019, Liu et al., 2019] on them. Our focus in this paper
is on datasets that require external facts and need commonsense knowledge to predict the
correct answer, as in aNLI, PIQA, and SIQA.

Commonsense Reasoning: Several attempts were made to inject external knowledge
into neural networks to improve commonsense QA in recent years. A knowledge selection
algorithm to rank knowledge paths from ConceptNet via PMI and frequency-based scoring
was proposed by Bauer et al. [2018]. Wang and Jiang [2019] improve word representations
by integrating common word vectors between document and question-answer options. A
commonsense-based pre-training was proposed by Zhong et al. [2019] to learn direct and
indirect ConceptNet relations. Lin et al. [2019] proposed a knowledge-augmented graph-based
reasoner and pruning knowledge paths using a function adapted from a graph embedding
algorithm. Lv et al. [2020] is the closest work that utilizes both a structured knowledge
base and explicit unstructured plain text as a source to enhance contextual representations.
Systems that use structured knowledge sources aim to utilize relational knowledge of the
form (a,R, b), where a and b are words, to modify pre-trained word vectors in both passages
and questions to obtain better inter-word alignments. In our case, knowledge is more
involved, with a and b being event descriptions containing variables. We move away from
using knowledge graphs and focus on implicit knowledge sentences.

Transformers Reasoning Abilities: Recently, a few attempts were made to understand
the different reasoning abilities of transformer models. Clark et al. [2020] observe that
transformers can reason with explicit conjunctive implication rules and observe a strong
performance. Talmor et al. [2020] study to what extent transformers can reason over explicit
symbolic facts while retaining implicit pre-training knowledge. Richardson and Sabharwal
[2020] study if the transformer QA models know definitions and taxonomic reasonings and
propose probing datasets. Gontier et al. [2020] study the ability to generate proofs given
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(a) Increasing knowledge sentences. (b) Increasing revision
steps.

(c) Weights v/s Lexical
Overlap

Figure 4: For a, b, and c the knowledge infusion model is Weighted-Sum with knowledge
retrieved from a relevant knowledge source. In Fig. a, we observe the effect of increasing
number of implicit knowledge sentences. In Fig. b we observe the effect of increasing number
of Revision pre-training steps. Fig. c shows the weights learned vs. normalized lexical
overlap between knowledge and concatenated QA pair for all samples of PIQA validation
set.

knowledge encoded in natural language. In contrast to the above studies, we study the
ability to reason with additional implicit commonsense knowledge.

External Knowledge in QA: Systems for evidence retrieval, such as Elasticsearch [Gorm-
ley and Tong, 2015], has been used in prior work of [Pirtoaca et al., 2019, Yadav et al., 2019,
Banerjee et al., 2019, Banerjee and Baral, 2020a] . Other complex systems using supervised
and unsupervised retrieval neural models over structured and unstructured knowledge sources
are proposed for multihop reasoning and open-domain QA [Asai et al., 2019, Das et al., 2019,
Lee et al., 2019, Lewis et al., 2020, Banerjee, 2019] . We use Elasticsearch for retrieval in our
work, and we have an unsupervised re-ranking algorithm using Spacy [Honnibal and Montani,
2017]. Gururangan et al. [2020] has shown the need for task adaptive pre-training to improve
target task performance. Our Revision strategy is similar to task adaptive pre-training, but
we focus on commonsense knowledge infusion, whereas Gururangan et al. [2020] focuses on
textual domain adaptation for text classification. Recent work use knowledge graphs and
unstructured text to perform unsupervised question answering [Banerjee and Baral, 2020b,
Ma et al., 2021].

9.2 Model Response to Variation in Number of Knowledge Sentences:

Effect of number of sentences & revision steps: In Figure 4, we observe a trend of
increasing the number of sentences improving SIQA and PIQA accuracy but not for aNLI.
In contrast, increasing revision steps improve aNLI and PIQA accuracy but not for SIQA
for BERT and has a minor impact on RoBERTa. The negative trend in aNLI for increasing
sentences is due to more distracting sentences. We are limited to 10 sentences as we are
restricted with the maximum token size of 512.

9.3 Error Analysis

We analyzed 200 correct predictions and error samples from each of our best models,
respectively. In Table 6, we can observe for around two-third of the correct predictions,
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Knowledge aNLI SIQA PIQA

Explicitly Present 14% 11% 10%
Implicitly Present 55% 59% 51%
Fully Irrelevant 31% 30% 39%

Table 6: Percent of correct predictions where the implicit knowledge is categorized as above,
for the RoBERTa Weighted-Sum model.

Types of Error aNLI SIQA PIQA

Annotation 41% 38% 10%
Model Prediction 48% 27% 29%
Distracting Knowledge 11% 35% 61%

Table 7: Different types of errors observed in the question-answer pairs where the RoBERTa
Weighted-Sum model failed to answer correctly.

we have relevant knowledge present. The model also ignores partial noise by reducing its
weight and the entire knowledge passage if necessary. In those cases, we hypothesize that the
knowledge acquired during the revision phase or the original language model pre-training
phase helps answer correctly.

We divide the errors into three categories, as seen in Table 7. Annotation Errors are
when more than one answer option is correct, or an incorrect answer option is labeled
correctly. The questions for which information is insufficient to select a specific answer
option also fall into this category. Distracting knowledge is where the retrieved knowledge is
noisy and does not have sufficient relevant knowledge. Model prediction error is where the
relevant knowledge is present, though the knowledge is not wholly exact. However, a human
could have reasoned with the provided knowledge.

Selection of 200 representative samples of each dataset to conduct an error analysis [Mishra
et al., 2020b, Swayamdipta et al., 2020, Mishra and Sachdeva, 2020], and further incorporation
of instance difficulty [Mishra and Arunkumar, 2021, Varshney et al., 2020, Mishra et al.,
2020a] in the analysis, can provide more accurate insights on the intricacies of how models
leverage knowledge provided in natural language.

We also have performed several dataset-specific error analysis which we explain below.

9.3.1 SocialIQA

We measure the performance across the eight different ATOMIC inference dimensions for the
best knowledge infused model. The six of the inferential dimensions are Needs, Attributes,
Reactions, Wants, Motivations, Effects. These are for PersonX. There are two more for
Others, Reaction and Wants.

In figure 5 we can see that, both model with knowledge and model without knowledge
performs nearly equally across all six dimensions without any considerable improvement
across any particular dimension.
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Figure 5: Performance of the model with (MAC model) and without knowledge (Baseline)
across different types of ATOMIC inference dimensions.

In some cases the model fails to predict the correct answer despite of the appropriate
knowledge being provided as shown below.

Question: Kendall took their dog to the new dog park in the neighborhood. . What will
Kendall want to do next?
(A) walk the dog (B) meet other dog owners Knowledge: Jody takes Jody’s dog to
the dog park, as a result Jody wants to socialize with other dog owners.

341 questions were predicted wrongly after addition of external knowledge. We also
identified out of the set of 100 analyzed correct predictions, 29% of the questions had partial
information relevant to the question.

9.3.2 PIQA

Out of the 100 failures in PIQA, we find that for 8 samples the goal matches the knowledge
statements but the answers present in the knowledge is different. This shows that our model
fails for those 8 questions where there can be multiple correct answers. For example,

Goal: How can I soothe my tongue if I burn it?
(A) Put some salt on it. (B) Put some sugar on it.
Knowledge Retrieved: How to Soothe a Burnt Tongue.Chew a menthol chewing gum.

Also, there are 33 samples in the whole train and dev dataset for which, the words in one
options are a subset of second option. In those cases, the knowledge retrieved is same for
both the options and this confuses our models. For examples,

Goal: What can I drink wine out of if I don’t have a wine glass?
(A) Just pour the wine into a regular mug or glass and drink. (B) Just pour the wine
into a regular mug or wine glass and drink.
Knowledge Retrieved: How to Serve Foie Gras. Pour a glass of wine.

With incorporation of knowledge, 359 samples which were initially incorrectly predicted by
our models without knowledge, is now correctly predicted for PIQA dataset. On the other
hand this leads to 166 samples which were correct have now become incorrect.
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9.3.3 aNLI

In this dataset, we also have some examples where negative knowledge is being fed to the
model, and it still produces the correct output. There are 8 such examples among the 100
samples we analyzed. For example:

Obs1: Pablo likes to eat worms.
Obs2: Pablo does not enjoy eating worms.
(Hyp1) Pablo thought that worms were a delicious source of protein. (Hyp2) Pablo
then learned what worms really are.

Knowledge: Pablo likes to eat worms. He read a book in school on how to do this. He
fries them in olive oil. He likes to do this at least once a month. Pablo enjoys worms and
views them as a delicacy.

Similarily, we have examples where knowledge favors incorrect hypothesis, however our
system still produces correct output. We found 12 such examples among the 100 samples we
analyzed. For example:

Obs1: Dotty was being very grumpy.
Obs2: She felt much better afterwards.
(Hyp1) Dotty ate something bad. (Hyp2) Dotty call some close friends to chat.
Knowledge: Allie felt not so good last night. She ate too much. So she had to sleep it
off. Then she woke up. She felt so much better

We have 12 cases among 100 analyzed samples, where both hypothesis are very similar.
So, our system is unable to produce correct output. For example:

Obs1: Bob’s parents grounded him.
Obs2: He came back home but his parents didn’t even know he left.
(Hyp1) Bob got caught sneaking out. (Hyp2) Bob got away with sneaking out.

We have 34 examples where incorrect hypothesis has more word similarity with the
observation and knowledge, whereas correct hypothesis has been paraphrased or has less
raw word similarity. The system predicts the wrong answer in such a situation. One such
example is:

Obs1: Mary’s mom came home with more bananas than they could possibly eat.
Obs2: That was the best way ever to eat a banana!
(Hyp1) Mary and her mom decided to make chocolate covered frozen bananas
to avoid waste. (Hyp2) Mary made pineapple splits for everyone.
Knowledge: Mary s mom came home with more bananas than they could possibly eat.
She wondered why she had bought them all. Then after dinner that night she got a surprise.
Mom made banana splits for the whole family. That was the best way ever to eat a banana

Another area where the system fails, is where the problem seems to be open-ended, and
many hypotheses can explain the pair of observations. It is tough to find exact knowledge
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in such a scenario. For example,

Obs1: Lisa went for her routine bike ride.
Obs2: Some days turn out to be great adventures.
(Hyp1) Lisa spotted a cat and followed it off trail (Hyp2) Lisa saw a lot of great
food.
Knowledge: Lisa went for her routine bike ride.Only this time she noticed an abandoned
house.She stopped to look in the house.It was full of amazing old antiques.Some days turn
out to be great adventures.

9.4 Why Language model is not able to answer all questions even with the
help of directly derived knowledge source?

We experiment by providing directly derived knowledge source in aNLI, and find that the
language model is still not able to answer all questions. We analyze and find following
insights regarding aNLI and direcly derived knowledge source.

1. 41.90 % of the data has either Obs1 or Obs2 or both common with the knowledge.

2. 23.12 % of the data has both Obs1 and Obs2 common with the knowledge.

Among those, Figure 6 illustrates percentage overlap of hypothesis with knowledge.
Overlap has been calculated by taking set of words in hypothsis, and finding if the same
word is there in knowledge or not. You can see that very few examples have high overlap
with knowledge. Actual number will be even lesser, as we have calculated word overlap, not
phrase or sentence overlap.

For each of the bins, Figure 7 illustrates how much of those are correctly classified. It is
interesting to see that, even though knowledge is very much relevant here (obs1, obs2 same
and high hypothesis overlap), BERT has not been able to classify correctly. Bins 0-10 and
10-20 can be ignored here, since percentage of data in those bins are very less as seen from
Figure 6.

9.5 BERT prediction analysis

To understand how knowledge is being utilized by BERT and whether the knowledge is
actually useful or not, we randomly select 100 samples where our best performing model
predicts correctly and 100 samples where it fails.

For those 100 correctly predicted samples, we consider four categories : (1) Exact
appropriate knowledge is present, (2) A related but relevant knowledge is present, (3)
Knowledge is present only in the correct option, and (4) No knowledge is present. Figure 8
shows the counts for the above categories. All the cases do not occur in all the datasets.
This analysis helps us in understanding for how many of the samples, the model is actually
using knowledge.

For those 100 samples where our model fails, (Figure 9), we analyze, (1) Is the knowledge
insufficient, (2) Is the knowledge support the wrong answer, (3) Is the Knowledge is
appropriate but still our model fails, and finally (4) Gold label is questionable.

We also analyze given appropriate knowledge, how the model performs. From Figure 8,
it can be seen that BERT can answer quite a number of question without knowledge. Also
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Figure 6: Measure of performance across differ-
ent knowledge presence in correct predictions

Figure 7: Measure of performance across dif-
ferent knowledge presence in incorrect predic-
tions.

Figure 8: Measure of performance across differ-
ent knowledge presence in correct predictions

Figure 9: Measure of performance across dif-
ferent knowledge presence in incorrect predic-
tions.
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Figure 10: Difference between weights learned by the RoBERTa Weighted-Sum Model vs
BERT-Weighted-Sum Model for the Normalized Overlap between knowledge and concate-
nated question-answer for all samples of PIQA validation set

from Figure 9, it is clear that despite of having appropriate knowledge, in some cases BERT
fails to answer correctly.

9.6 RoBERTa vs BERT

In the Figure 10, both the learned weights and the percentage overlap between the question
and option versus knowledge is binned with an interval of 0.1. The figure shows the difference
between the counts of samples for each weight and overlap bin between BERT-weighted-sum
model and RoBERTa-weighted-sum model. From the figure, it can be seen that, the samples
with percentage overlap between 0.2 to 0.3 which have been assigned lower weight in the
region 0.0 to 0.1 are more in BERT weighted sum model than in RoBERTa weighted sum
model.

On the other hand, the samples with percentage overlap between 0.2 to 0.3 which have
been assigned weight in the region 0.1 to 0.2 and in region 0.2-0.3 are more in RoBERTa
weighted sum model than BERT weighted sum model. This shows the RoBERTa model is
able to assign weights to proper knowledge sentences leading to improved question answering
performance.

9.7 Examples which need external facts beyond commonsense knowledge

There are some questions which need external facts beyond common sense knowledge to
answer. Following are two examples.

Goal: how do you call the fuzz?
(A) dial 911.
(B) dial fuzz under contacts.

Goal: To fight Ivan Drago in Rocky for sega master system.?
(A) Drago isn’t in this game because it was released before Rocky IV.
(B) You have to defeat Apollo Creed and Clubber Lang first.
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