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ABSTRACT

Neural Network Differential Equation (NN DE) solvers have surged in popularity
due to a combination of factors: computational advances making their optimiza-
tion more tractable, their capacity to handle high dimensional problems, easy
interpretability, etc. However, most NN DE solvers suffer from a fundamental
limitation: their loss functions are not explicitly dependent on the errors associated
with the solution estimates. As such, validation and error estimation usually re-
quires knowledge of the true solution. Indeed, when the true solution is unknown,
we are often reduced to simply hoping that a “low enough” loss implies “small
enough” errors, since explicit relationships between the two are not available. In
this work, we describe a general strategy for efficiently constructing error estimates
and corrections for Neural Network Differential Equation solvers. Our methods do
not require a priori knowledge of the true solutions and obtain explicit relationships
between loss functions and the errors. In turn, these explicit relationships allow for
the unsupervised estimation and correction of the model errors.

1 INTRODUCTION

Deep learning has heralded new methods for many scientific disciplines – the field of numerical
methods for differential equations has been no exception (1; 2; 3; 4). Deep neural network based
differential equations (NN DE) solvers have been proposed under a variety of different names (PINNs
(2), DGM (3), etc) – each catering to various classes of problems. However, they all share certain
common features: the use of a known differential equation (DE) as the central component of an
appropriate loss function, the use of existing knowledge (boundary conditions, experimental/synthetic
data, etc) to constrain the search for solutions, randomized optimization methods that sample from
the domain of interest at a requisite resolution, etc.

We investigate another common facet of many NN DE solvers: the lack of unsupervised error
quantification/correction methods to estimate model errors without prior knowledge of the solution.
Most solvers use the equation based loss functions as a surrogate measure for the error. However,
while such a measure is intuitively related to the error in the solution model, an explicit description of
that connection is mandatory, if error quantification is to be done without knowing the solution.

We achieve these goals by explicitly relating the loss terms and the model error. We showcase how
these connections allow results on the model error that don’t rely on prior knowledge of solution. We
propose techniques by which these results can be used to build significantly more efficient NN DE
solvers, with only marginal increases in computational complexity. We formalize our ideas into four
theorems, two inequalities, and two algorithms. We validate our claims with a collection of numerical
experiments on several non-trivial DEs (including nonlinear PDEs).

For the sake of readability and simplicity, all proofs have been rigorously presented in the appendices,
while the main text simply reports the results and discusses their significance.

An associated codebase is also provided, with inbuilt options for the DEs already studied as part
of this work. However, the codebase has been designed so that the users may easily add their own
DEs of interest (the assumptions under which this work is valid should be general enough for a wide
variety of DEs from many different scientific disciplines).
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2 NEURAL NETWORK DIFFERENTIAL EQUATION SOLVERS

For ease of discussion, we let D ⊆ Rd denote some closed, bounded, path connected domain of
interest for some differential equation (DE). Let ∂D ⊆ D be the portion of the domain over which
some constraint conditions on the solution exist (usually obtained as boundary conditions, empirical
data, etc). Assume that our chosen DE, when given unique constraints over ∂D, admits a unique
solution Φ : D → RD.

We wish to consider a (possibly non-linear) equation operator F : G → H , where G and H are some
suitable spaces of functions over D (Φ ∈ G). We decompose F as

F[•] = L[•] +N[•] +C (1)

where L represents the term(s) which depend linearly on Φ, N the represents the term(s) which
depend non-linearly on Φ, and C are the terms independent of Φ. This additive decomposition into
linear, nonlinear, and constant terms is always possible: for linear DEs, N ≡ 0 ≡ C. We have

F[Φ] = L[Φ] +N[Φ] +C = 0 .

Let us assume we wish to construct an NN based approximation N : D → RD. Let us
also assume the NN uses analytic activation functions so that N ∈ C∞. Let W be its width
(neurons per hidden layer) and DN be its depth (number of hidden layers). Finally, let w ≡
{b11, w1

11, w
1
12, . . . , b

2
1, w

2
11, w

2
12, . . . } ∈ M ⊆ RM be the M weights and biases of the NN.

2.1 EXISTENCE AND COMPLEXITY

Feedforward NNs with ReLU activation and W ≥ d + 4 can arbitrarily well approximate any
Lebesgue integrable function Φ : D → RD w.r.t. L1 norm, provided that D is some compact subset
of Rd and enough depth DN is provided to the NN (5). The same holds for NNs with ReLU activation
and DN ≥ log2(d+ 1) provided that they are wide enough (6). Hence, there exist w such that N
can arbitrarily approximate any Φ ∈ Ck over D, given large enough (W,DN ).

These theoretical guarantees may be practically realized by leveraging the minimum regularity
expected from Φ. Recall Wk,∞(D) is the Sobolev space of order k, on compact D ⊆ Rd, w.r.t. the
L∞ norm. Let us assume that Φ ∈ Wk,∞(D). There exists some N with (W,DN ) that can ε -
approximate Φ : D → R, if W = d+ 1, DN = O(diam(D)/ω−1

f (ε))d (7), where

ω−1
f (ε) = sup{δ : ωf (δ) ≤ ε}, δ = |x1 − x2|, x1,x2 ∈ D.

There also exist N that ε - approximate Φ : D → R, if M = O(ln( 1ε )ε
−d/k

), DN = O(ln( 1ε )) (8).

2.2 OPTIMIZATION

The loss function L to train N usually takes the following form (2; 3; 4):

L = Ex1∈D

[
∥F[N (x1)]∥p

]
+ Ex2∈∂D

[
∥Φ(x2)−N (x2)∥p

]
(2)

where ∥ · ∥p is the usual p-norm on RD. Variants of Stochastic Gradient Descent (SGD) are almost
always capable of eventually reaching adequately small loss values for large enough (W,DN ) under
such loss (9). Thus as L → 0 during optimization, the uniqueness of Φ implies N → Φ over D
(formally shown in Theorem 1).

2.3 ALTERNATIVE PARAMETERIZATION OF THE CONSTRAINT CONDITIONS ON ∂D

Sometimes, the constraint conditions (such as initial or boundary conditions) may be enforced by
using the following parametrization as the model N for Φ, at some arbitrary x1 ∈ D:

N (x1) = Φ(x2) + dist(x1, x2)N o (3)

where x2 ∈ ∂D is some appropriate nearest constraint point to x1. Here, N o represents the NN and
dist(x1, x2) is some metric that enforces that the model N is always exact over ∂D, while allowing
the NN flexibility to learn Φ elsewhere (ex: 1− e−∥x1−x2∥, as used in (10)). This parametrization
can eliminate the need for the Ex2∈∂D term in Eq. 2. Our work is applicable in such scenarios too.
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3 ERROR BOUNDS AND CONVERGENCE FOR NN DE SOLVERS

Define Φϵ1 := Φ−N as the error in our solution model. Three simple observations about N ,Φϵ1 ,
the convergence of L to 0, and their inter-plays underpin the entirety of this work:

1. F[N ] is not explicitly dependent on Φϵ1 : there is no explicit relation between L and Φϵ1

over D − ∂D, where Φ is unknown. We don’t know if/how E
[
∥Φϵ1∥

]
→ 0 as L → 0.

2. Thus, Φϵ1 associated with N is not estimable over D − ∂D in standard NN DE solvers.
3. Optimization performance saturates when N settles around a local minima(s) of L.

In its most general form, the first problem can be immensely intractable and is often handled separately
for different kinds of DEs (3; 10; 11; 12; 13). In this section, we present generic results (proofs
in Appendix B) which strongly combat this problem for a large collection of DEs originating in
scientific domains, including many nonlinear PDEs. Our results will be valid for any F[N ], s.t.
F[N ] = 0 =⇒ N = Φ, thus allowing a larger class of loss function designs as well.
Theorem 1. Let G and H be two Banach spaces. Suppose that F : G ⊃ U → H is Fréchet
differentiable in U , that the derivative of F at Φ ∈ U is invertible, and F[Φ] = 0 uniquely. Then,
there exists a neighbourhood V ⊂ H of 0 small enough such that

F[N ] −→ 0 =⇒ N −→ Φ.

Note that the existence of the Frechet derivative of F (denoted DF) is necessary if gradient descent
or related methods are to work. As such, only the assumption that DF−1 exists within some open
neighbourhood of Φ is imposing additional structure. Theorem 1 is a powerful result backing the
wisdom of using NN DE solvers. However, the same assumptions allow us to go much further:
Theorem 2. Under the same assumptions as Theorem 1, we have

∥Φϵ1∥ = O (∥F[N ]∥) .

A common observation made for NN DE solvers is that E
[
∥F[N ]∥

]
∝ E

[
∥Φϵ1∥

]
. We codify that as

a theorem over a relaxed class of assumptions on F as Theorem 2, validating the intuitive wisdom
of using the L as a surrogate for error: especially when the associated constant of proportionality
for the Lipschitz continuous F is of order unity. Some famous examples where Theorems 1 and 2
are valid are non-degenerate Hamiltonian systems, nonlinear Poisson-Boltzmann equation, Heat and
Poisson’s equation with homogeneous boundary conditions, etc. Our assumptions even guarantee an
exponentially convergent optimization phase somewhere at some rate in G (see Lemma 3 in Appendix
B). However, we can go even further and explicitly estimate that rate with one additional assumption:
Theorem 3. Let G,H be Hilbert spaces, U ⊂ G an open subset, and N (t) be the NN model after t
iterations. Assume F ∈ C 2(U ;H), and that DF[Φ] is invertible at Φ. Then for every ϵ > 0, there
exists an R > 0, s.t. for all initial conditions N (0) ∈ BR(Φ) ⊂ U , the gradient descent equation

Ṅ (t) = −∇L(N (t))

has a solution that satisfies

∥N (t)− Φ∥ ≤ e−
(1−ϵ)σmin

2 t∥N (0)− Φ∥
where

σmin := inf
N∈G\{0}

∥DF[Φ]N∥2

∥N∥2
= inf Spec

(
(DF[Φ])

†
DF[Φ]

)
> 0 .

σmin > 0 implies exponential convergence at least at that rate is always possible. However, while we
mitigate the concerns raised in the first two observations, Theorems 1 - 3 still only weakly/globally
describe Φϵ1 over D. We can obtain stronger estimates on ∥Φϵ1∥ by assuming structural information
on the Φ dependent terms L,N and on the interactions they might have with each other.

In particular, assume that DN is a positive (or negative) definite operator (such an assumption is
often taken to avoid degenerate systems). Define Ns = Φ− sΦϵ1 . Further, let:

Hmin := inf
s∈[0,1]

inf
{
|λ|
∣∣λ ∈ Spec (DN[Ns])

}
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Let Fmax be the maximum of ∥F[N ]∥ over D for some model N that has finished optimizing. We
then have the following inequality on ∥Φϵ1∥ (see Appendix C for assumptions and proof):

∥Φϵ1(x)∥ ≤ Fmax

Hmin
x ∈ D (4)

A variation of Inequality 4 in Appendix C showcases how NN DE solver design can encode other
knowledge/guesses on the system’s behavior. Those can be used to fine-tune the assumptions that go
into obtaining the presented inequality and lead us to modifications needed on the bound.

However, even with the stronger inequalities on ∥Φϵ1∥ (which might still give severe overestimates,
if Hmin is not properly controlled for), we don’t yet have information regarding pointwise behavior
of Φϵ1 over D − ∂D. There is a scarcity of work on algorithms that can explicitly estimate Φϵ1 over
D − ∂D, using only the information available to the model N . More often than not, precise error
estimations rely on actual knowledge of Φ over entirety of D. In the next section, we shall provide an
unsupervised algorithm to estimate Φϵ1 over D − ∂D, without knowledge of Φ.

This endeavor, combined with the third observation will directly lead to another useful application.
For any nontrivial DE, it is improbable that N over D will be the exact solution once a stable
minima(s) of optimization is reached (stability is meant here in the sense of a converged model that
is unlikely to find a significantly better minima in a reasonable amount of iterations). Indeed, it is
demonstrably impossible if the DE does not admit closed form solutions, since N is always a closed
form expression. Any further training would not provide any meaningful gains in accuracy.

However, in that regime, even a moderately good estimate Nϵ1 for Φϵ1 would be immediately useful:
we could simply use N +Nϵ1 as a better model (albeit, at additional optimization/model memory
costs). Finally, just like Theorems 1 - 3 remove the ambiguity associated with standard NN DE
solvers, we will find similar results reliably eliminate such ambiguities vis a vis the error model Nϵ1 .

4 ERROR ESTIMATION AND CORRECTION

We begin by noticing the following:

F[N ] = L[N ] +N[N ] +C = −L[Φϵ1 ]−N′[N ,Φϵ1 ] (5)

where N′[N ,Φϵ1 ] := N[N +Φϵ1 ]−N[N ]. Thus, we have a new equation and its operator F1

F1[Φϵ1 ] = F[N ] + L[Φϵ1 ] +N′[N ,Φϵ1 ] = 0 (6)

with Φϵ1 as the only unknown quantity. The uniqueness of Φ implies that if N is fixed, then Φϵ1 is a
unique solution to the DE given by Eq. 6, and we have 1

F1[Φϵ1 ] = F[N +Φϵ1 ] = 0

Note that N′ is obtained such that terms explicitly dependent on Φ don’t appear in Eq. 5: that is
what allows tight bounds on Φϵ1 in (10), without depending upon explicit knowledge of Φ (Inequality
4 is a strong generalization of that result). As a motivating example, consider the cases when the
nonlinearities in F are degree 2 polynomials: N[ ] = [ ] · [ ]. In that case, we have:

F[N ] + L[Φϵ1 ] +N′[N ,Φϵ1 ] = 0 : N′[N ,Φϵ1 ] = (Φϵ1 · Φϵ1 +N · Φϵ1 +Φϵ1 · N )

The transformation technique itself (algebraic manipulations, Taylor expansions, etc) is not important:
we only need it to be such that F[N ],Φϵ1 appear in relation to each other over all of D. Indeed, we
are always able to directly leverage the unsimplified N[N ]−N[N +Φϵ1 ] form of N′ (or even the
F[N +Φϵ1 ] = 0 equation) 2 for optimization purposes in the proposed Algorithm 1.

1Note that F1[Nϵ1 ] = F[N +Nϵ1 ] for any appropriate mapping Nϵ1 , and not just Φϵ1
2However, it is sometimes profitable to obtain an explicit, separable expression for N′[N ,Φϵ1 ]. For example,

whenever Taylor expansions can be used,

N′[N ,Φϵ1 ] ≡ T1(N )Φϵ1 +
Φ†

ϵ1T2(N )Φϵ1

2!
+ ...

where Ti(N ) are the ith order Taylor terms. These can be useful for analysis, since N ,Φϵ1 appear in multi-
plicatively separable terms in the new expressions ((10) used these forms to bound Φϵ1 ). However, we obtained
Inequality 4 in a way that renders such transformations superfluous: our bounds stand under weaker assumptions.

4



Under review as a conference paper at ICLR 2023

Algorithm 1 Unsupervised Estimation and Correction of Φϵ1

1: procedure ERRORCORRECT
2: initialize NN DE solver N : D → R.
3: while N not converged do ▷ Initial model N over D
4: Optimize N for a step using L (Eq. 2)
5: end while
6: Freeze the parameters of N ▷ Fix N to start error analysis
7: initialize Error estimation model Nϵ1 .
8: while Nϵ1 not converged do ▷ Error estimation over D
9: Optimize Nϵ1 for a step using Lϵ (Eq. 8)

10: end while
11: return N +Nϵ1 ▷ Error correction over D
12: end procedure

Eq. 6 immediately hints at a method to estimate Φϵ1 : we use Eq. 6 with another network model, Nϵ1 ,
in the manner we used N with Eq. 2, to obtain an approximation for Φϵ1 . More precisely, once we
have a converged model N that has saturated its capacity to model Φ, we use:

F1[Nϵ1 ] = F[N ] + L[Nϵ1 ] +N′[N ,Nϵ1 ] (7)
to define a new loss function for the error model Nϵ1 :

Lϵ1 = Ex1∈D

[
∥F1[Nϵ1(x1)]∥p

]
+ Ex2∈∂D

[
∥Φϵ1(x2)−Nϵ1(x2)∥p

]
(8)

Alternatively, since the parameters of N are kept unchanged, we can use the equivalent form:

Lϵ1 = Ex1∈D

[
∥F[N (x1) +Nϵ1(x1)]∥p

]
+ Ex2∈∂D

[
∥Φ(x2)− [N (x2) +Nϵ1(x2)]∥p

]
(9)

In problems with homogeneous constraint conditions, Φ(∂D) = 0, we may replace the second term
in Eq. 8 by E

[
∥Nϵ1(x2) +N (x2)∥p

]
, since Φϵ1(∂D) = 0−N (∂D) = −N (∂D).

The same reasoning underlying L = 0 =⇒ N = Φ, allows that Lϵ1 = 0 =⇒ Nϵ1 = Φϵ1 . Indeed,
analogs of Theorems 1 - 3 and Inequality 4 are obtained directly, as stated in a generalized form in
the next subsection. In particular, our knowledge of F[N ] allows us substantial control over how to
estimate Φϵ1 , whereas the knowledge of F1[Nϵ1 ] (or alternatively F[N +Nϵ1 ]) allows us bounds
on ∥Φϵ1 −Nϵ1∥. The ability to internally and reliably estimate Φϵ1 associated with N is not only
useful for error analysis purposes, but also for refining N . Algorithm 1 describes the procedure.

Note that the difficulty of estimating Φ and Φϵ1 should be roughly equivalent since Φϵ1 has at least
the same regularity as Φ. As such, the optimization costs of Nϵ1 per iteration will not be substantially
larger than those of N (see discussion/experiments in the next sections).

Finally, note that Alg. 1 provides relative corrections to some model N . We do not claim that only
error correction can provide improvements in performance to the extent shown in Fig. 2. We only
claim that error analysis and correction are useful and available tools for any model N that might
have been obtained via some technique based on NN DE solvers. It should always be possible to error
correct N using the strategy we are describing, as long as the associated assumptions are satisfied.

N

Nϵ1

N1

Nϵ2

N2

Nϵ3

N3

Nϵ4

· · ·

Lϵ1 Lϵ2 Lϵ3 Lϵ4

Figure 1: Graphical Model of the ith order error correction scheme. Each vertical pair of blue and red
nodes denotes a specific order in the estimation and correction process.
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4.1 HIGHER ORDER ERROR ESTIMATIONS AND CORRECTIONS

Consider some sequence of networks Nϵ1 ,Nϵ2 , ....,Nϵi−1
, each modeling the errors

Φϵ1 ,Φϵ2 , ....,Φϵi , associated with error corrected solution models N ,N1, ...,Ni−1. Here, Nj =
N +Nϵ1 + ...+Nϵj is the jth order corrected model. Assume the i− 1 order error correction model
Nϵi−1

has saturated its capacity to model Φϵi−1
. We can obtain a higher order corrected model Ni by

setting up a new network Nϵi to estimate Φϵi . The new network Nϵi is optimized using:

Fi[Nϵi ] := F[Nϵi +Ni−1] = Fi−1[Ni−1] + L[Nϵi ] +N[Ni−1 +Nϵi ]−N[Ni−1]

Lϵi = Ex1∈D

[
∥Fi[Nϵi(x1)]∥p

]
+ Ex2∈∂D

[
∥Φϵi(x2)−Nϵi(x2)∥p

] (10)

Figure 1 provides a visual representation of the recursive process involved in building ith order
corrected models. Appendix A demonstrates how to arrive at these results.

We have direct analogs of Theorems 1, 2, and 3 for the ith order errors and error models as:
Theorem 4. Under the assumptions above on F, the analogous result holds for Fi for all i ∈ N, i.e.
we can choose a neighbourhood Ui ⊂ G of 0 small enough such that if Nϵi ∈ Ui then

Fi[Nϵi ] −→ 0 =⇒ Nϵi −→ Φϵi .

Furthermore,
∥Φϵi+1

∥ = O (∥Fi[Nϵi ]∥) .
Lastly, under gradient descent, initial condition Nϵi(0) has a solution that satisfies

∥Nϵi(t)− Φϵi∥ ≤ e−
(1−ϵ)σimin

2 t∥Nϵi(0)− Φϵi∥

Inequality 4 becomes (under the same structural assumptions as Inequality 4):

∥Φϵi∥ ≤ Fi−1max

Hmin
(11)

Algorithm 2 in the appendix provides the pseudo-code to setup higher order corrections.

5 WHY ERROR CORRECTION WORKS AND HOW WE CAN MAKE IT BETTER

NN DE solvers transform the problem of estimating Φ into one of finding an appropriate N in some
suitably chosen functional space of NN models. The use of gradient descent type methods turns this
into a stochastic dynamical process in that space.

The probability that a real network N will end up exactly modeling Φ within a finite number of
iterations is 0 (assuming F is even moderately non-trivial). Note this is true without even considering
that N is constrained to be a closed form model, whereas most non-trivial DEs don’t have such
solutions. As such, a real network N is doomed to languish in some inadequate minima(s) of
optimization, no matter how much we optimize it. Its capacity to approximate Φ is necessarily limited
and once that capacity is saturated, further training of N is a waste of computational resources.

Error correction expands that capacity for approximating Φ, by introducing new trainable parameters
(as components of Nϵ1) which exist exclusively for modeling the error Φϵ1 = Φ − N . Since the
parameters of the base network N are frozen, we have locked in the amount of performance already
achieved on the base model. Further, since we assume error correction is being turned on when the
base model’s approximation capacity is effectively saturated (which is certain to happen), the gains
we make with Nϵ1 are truly unachievable without it.

We have put forth a claim that error correction is not significantly more complex or resource hungry
than the standard NN DE solver method: the reason being that Φ and Φ−N are in the same functional
space, have the same regularity, etc. Essentially, we meant that Φϵ1 is no more complicated than Φ.
However, it bears noting that modeling Φϵ1 using Nϵ1 can be a very different kind of problem than
modeling Φ using N . For example, Φϵ1 presumably lies in a different scale of magnitude than Φ and
might present itself as a different kind of structure over D (for example, in one sense, it might be
significantly more or less "oscillatory" than Φ). Its optimization might also require its own set of
hyper-parameters, algorithm choices, activations, etc.

6



Under review as a conference paper at ICLR 2023

This is where our control over the sampling of F (and F1) comes into play. Theorems 1 - 3 and
Inequality 4 allow us to estimate both the scale and complexity of Φϵ1 , relative to N . The correlation
expected between Φϵ1 and F[N ] means even crude analysis of F[N ] is enough to point us in the
correct direction, vis a vis the scale and complexity we expect Nϵ1 to model.

For example, we can bound the expected scale of Φϵ1 by simply analysing the max of ∥F[N ]∥ over
D: the linear correlation result already gives us one way to weakly bound Φϵ1 . The strong inequality
4 may allow for more precise control, when its assumptions are satisfied.

Similarly, over a domain D, we could perform a FFT analysis of F[N ] and gauge how oscillatory
Nϵ1 should be relative to N (since we have control over both N and F[N ] and we expect Φϵ1 to be
linearly correlated to F[N ]). Alternatively, we could also analyse the distribution of ∥F[N ]∥ over D
to understand where the equation is being badly solved, and switch from uniform to targeted sampling
over those subdomains. Other methods of estimating relative complexity of features should also be
possible, since we have complete access to the behavior of F[N ] and F1[Nϵ1 ].

The code we provide allows the user to supply their own estimates for relative scale and complexity
of Nϵ1 wrt N , while keeping our preferred defaults. We note again, that in no way is prior knowledge
of Φ assumed: only the information already known before or computed using the NN DE solver is
being used. Domain knowledge of an expert building an NN DE solver for a system of their interest
is thus rewarded during error analysis and correction.

Finally, note that error correction inherits one major issue prevalent within machine learning: the
ambiguity in determining if a real model N has reached (or nearly reached) its capacity for effectively
modelling Φ. The issue is caused because of lack of work on a priori or in situ convergence guarantees.
It is extremely tough to gauge whether a loss trajectory has flattened due to saturation in modeling
capacity or it is simply in a non-trivial region of dynamics from which it could escape at any time.
If error correction is attempted while the base model itself is fully capable of providing significant
increases in accuracy, the additional resources will simply be wasted (and may even prove to be
counter-productive). Indeed, in our numerical experiments, we found that convergence of the base
model N was a practical pre-requisite for significant gains via error correction.

However, in our proposed approach, the issue is still somewhat mitigated. Error correction can not
cost significantly more than the standard methods (it can at worst be 2X expensive). Since it can lead
to very significant improvements in accuracy when used at the appropriate time, it can always be used
as an unsupervised, post-processing/refinement routine without significant risks.

6 NUMERICAL EXPERIMENTS

Let us exemplify the above discussion with an example DE that contains terms with linear, non-
linear, and no dependence on the solution. In particular, we investigate a variant of the nonlinear
Poisson-Boltzmann equation (nPBE), which serves as an important tool for the study of electro-
static interactions with widespread applications in biology and medicine (14). We will choose
L[ ] = −∆[ ],N[ ] ≡ sinh[ ],C ≡ g, where g is some independent function/term. Thus, we define:

F[ ] ≡ −∆[ ] + sinh[ ] + g (12)

For some solution attempt N : Rd → R and associated error Φϵ1 = Φ−N , we get

F[N ] = ∆[Φϵ1 ] + sinh[N ]− sinh[N +Φϵ1 ] (13)

Thus, replacing Φϵ1 with an error model Nϵ1 , we get the residual equation for the new loss as:

F1[Nϵ1 ] := F[N +Nϵ1 ] = F[N ]−∆[Nϵ1 ] + sinh[N ](cosh[Nϵ1 ]− 1)+ cosh[N ] sinh[Nϵ1 ] (14)

Now, to setup Nϵ1 as the error NN DE solver (after halting the optimization of N ), we can use Eq.
14 to obtain an approximation of Φϵ1 . We not only get an estimate for Φϵ1 , we also get to use Nϵ1 as
a correction term, while retaining the advantages that make N a lucrative option.

6.1 ERROR CORRECTION RESULTS

We choose D = [−π, π]d ⊂ Rd, and randomly sample points from this domain as training data.
The exact form of our chosen DE, considered over D with solution Φ : D → R and homogeneous

7
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boundary conditions Φ(∂D) = 0, is:

F[Φ] = −∆[Φ] + sinh[Φ] + g = 0 (15)

g(x) = −ω2d [sin(ωx1)... sin(ωxd)]− sinh(sin(ωx1)... sin(ωxd)) x ≡ {x1, ..., xd} ∈ D
The solution to this DE, which showcases significant scale and feature variation over D (Fig. 3), is:

Φ(x) = sin(ωx1)...sin(ωxd) x ∈ D (16)

Note that the solvers never see this solution, and only have access to their own parameters and the
operator F during optimization. We only use the exact solution to verify that our claims hold true.

Given a network N to model the true solution Φ, we optimize N using the mean squared loss L:

L(N ) = Ex1∼D

[
∥ −∆(N (x1)) + sinh[N (x1)] + g(x1)∥2

]
+ Ex2∼∂D

[
∥N (x2)∥2

]
(17)

The error correction model Nϵ1 : D → R is effectively optimized using the following loss:

Lϵ1 = Ex1∼D

[
∥F1[Nϵ1(x1)]∥2

]
+ Ex2∼∂D

[
∥N (x2) +Nϵ1(x2)∥2

]
(18)

As discussed before, L → 0 =⇒ F[N (x)] → 0, over x ∈ D, which implies N → Φ. Similarly,
Lϵ1 → 0 =⇒ F1[Nϵ1(x)] → 0, which implies Nϵ1 → Φϵ1 . We use Eq. 16 to benchmark efficacy
of our proposed algorithm for (ω, d) choices of (5, 2) and (1, 4). The goal of the experiments was to
figure out what impact error correction would have, if used in lieu of the standard approach, while
running for an equivalent number of training iterations. As such, choices on width, depth, architecture,
etc were kept the same between N and Nϵ1 . The experiments also demonstrate the effects of invoking
error correction at different stages of training (Fig. 2).

(a) 2 dimensions, ω = 5 (b) 4 dimensions, ω = 1

Figure 2: Relative errors for a single order correction on nPBE. Legend labels indicate duration of
training N , and duration of training Nϵ1 for correction respectively.

To present and analyse our results, we define a computational cost metric, τ : (time per iteration), and
a computational performance metric, Relative Error (RE):

Relative Error :=

(
K∑

k=1

[Φ(xk)−Ni(xk)]
2

/
K∑

k=1

[Φ(xk)]
2

) 1
2

,

where Ni : D → R is the ith order corrected, NN DE based approximation for Φ over D. K
represents the number of sampled points in D for the calculation. In Fig. 2, we plot the relative error
dynamics of the various choices made. Notice the very immediate gains made by error correction.
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Table 1: Performance comparison across different systems and optimization strategies

System (Adapted τ (10−2 s) Rel. Error (10−4) ROI ROI (Size ROI (Time
Codebase) (Std, EC) (Standard, EC) (EC) Ablation) Ablation)
HH (exact IC HNN (10)) (1.37, 1.63) (3.08, 0.18) 14.4 1.38 0.81

nOsc (exact IC HNN (10)) (1.39, 1.68) (1.73, 0.02) 71.6 1.12 0.83

nPBE (5, 2) (PINN (2)) (8.6, 11.8) (436, 0.37) 861 1.65 0.77

nPBE (1, 4) (PINN (2)) (72.1, 89.8) (87.3, 1.87) 37.5 1.23 0.79

We also investigate alternative scenarios, where the slightly higher consumption of resources is used
in other ways, to quantify ablation possibilities. We conduct two sets of examples. For size ablation
experiments, we allow N to be proportionally larger, while training it for the same number of training
iterations (say T ). For time ablation experiments, we allow the standard algorithms a proportionally
higher number of iterations. We define the Return on Investment or ROI of each choice c = (error
correction, size, or time ablation) as:

ROI(c) =
τStd

τ(c)
× RE(c)

REStd
× TStd

T (c)

As Table 1 shows, error correction consistently provides the best ROI.

The associated codebase with this work provides numerical experiments on some other nonlin-
ear/chaotic DEs (it is designed to be compatible with any DE operator with permissible Frechet
derivatives and allow any finite order of correction). The results on those systems are also tabulated
in Table 1 (first order error correction was injected at 50% of the run-time, for all other examples).
All results are in line with our expectations. The additional systems are described in appendix D.

7 CONCLUSIONS

The surging popularity of NN DE solvers presents exciting possibilities in many scientific fields: their
capacity to sidestep the curse of dimensionality (15), general advances in computing/GPU power, and
their easy interpret-ability make for a powerful combo. As such, it is important that these solution
models be capable of validation over domains where true solutions are not available. Our work
proposes theorems/methods that fix this deficiency for many NN DE solvers. Summarily, NN model
errors are unambiguously estimable, and profitably so, if the assumptions of Theorem 1 - 3 hold.

For systems where the assumptions of Theorems 1 - 3 do not hold, existing work still leads us to
expect that NN DE solvers (and thus, error correction) will work. However, for those systems, error
correction converts the ambiguity associated with the models N into the ambiguity associated with
the estimate Nϵ1 . These unreliable estimates of Φϵ1 can lead to more accurate models, but our work
does not rigorously predict when or how this happens. However, since this ambiguity is present
for all NN DE solvers prior to our work, unsupervised error analysis and correction can only be
an improvement upon the existing situation (even when it is unreliable). Future work will focus on
extending our results rigorously to more systems, so that even larger classes of DEs may come within
the remit of reliable error estimation and correction.

Lastly, note that the suggested ideas are not radically different than those that already exist for
classical numerical methods: higher order corrections are about as old as the field itself. By pairing
the many significant advantages of modern NNs with those old ideas, we simply hope to have
presented a blueprint that will be useful for a wide class of scientific problems that are being tackled
using NN DE solvers.
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A SETTING UP HIGHER ORDER CORRECTIONS

Using Eq. equation 7, we are able to define new loss Lϵ1 using F1[Nϵ1 ] (or equivalently, F[N+Nϵ1 ]).
Define Φϵ2 := Φϵ1 −Nϵ1 = Φ− (N +Nϵ1), and use the same trick used to derive Eq. 5 to realize
that,

F1[N +Nϵ1 ] = F[N ] + L[Φϵ1 − Φϵ2 ] +N[N +Nϵ1 ]−N[N ] + (N[N +Φϵ1 ]−N[N +Φϵ1 ])

= −L[Φϵ2 ] +N[N +Nϵ1 ]−N[N +Φϵ1 ]

= −L[Φϵ2 ] +N[N +Nϵ1 ]−N[N +Nϵ1 +Φϵ2 ] (19)
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Let us define the 1st order corrected model as N1 := N +Nϵ1 , and with a slight abuse of notation,
F1[N1] := F[N +Nϵ1 ]. Thus, we may rewrite Eq. 19 as:

F1[N1] + L[Φϵ2 ] +N[N1 +Φϵ2 ]−N[N1] = 0

Note the functional similarity to Eq. 6. Further, to setup a 2nd order correction estimate Nϵ2 for Φϵ2 ,
we need to minimize over the following residual, similar to Eq. 7:

F2[Nϵ2 ] = F1[N1] + L[Nϵ2 ] +N[N1 +Nϵ2 ]−N[N1]

In general, given an (i−1)th order corrected model Ni−1 using Ni−1 = N+Nϵ1+Nϵ2+.....+Nϵi−1 ,
we can define Φϵi := Φ − Ni−1 and Fi−1[Ni−1] as the corresponding residual for the preceding
equations. Then, Φϵi is the unique solution to the following equation

Fi−1[Ni−1] + L[Φϵi ] +N[Ni−1 +Φϵi ]−N[Ni−1] = 0 (20)

The error can be estimated using a differential equation solver (e.g. a NN) with residual:

Fi[Nϵi ] := F[Nϵi +Ni−1] = Fi−1[Ni−1] + L[Nϵi ] +N[Ni−1 +Nϵi ]−N[Ni−1] (21)

Figure 1 depicts the extension of the error estimation and correction framework as a graphical model.
Notice that the initial solver estimator and the error estimators may be pre-fetched before carrying
out the optimization steps. Since Φϵi = Φ−Ni−1 is always known exactly over ∂D for all i, we can
optimize the ith order error model Nϵi using Lϵi :

Lϵi = Ex1∼D

[
∥Fi[Nϵi(x1)]∥p

]
+ Ex2∼∂D

[
∥Φϵi(x2)−Nϵi(x2)∥p

]
(22)

Algorithm 2 demonstrates the procedure for higher order estimation and correction. The uniqueness
of Φ as a solution to F[ ] also implies the uniqueness of Φϵi as a solution to Fi[ ]. Unpacking the
definition of Fi and Ni−1 we find that

Fi[Φϵi +Ni−1] = F[Φ−Ni−1 +Ni−1] = F[Φ] = 0

and therefore the solution to this equation is still unique and convergence of Lϵi → 0 implies Fi → 0,
and thus also Nϵi → Φϵi . Theorem 3 follows naturally from Theorems 1 and 2. Inequality 11 follows
naturally from Inequality 4. Algorithm 2 describes the proposed implementation.

Algorithm 2 Internal Error Estimation and Correction to Order m

1: procedure ERRORCORRECT(m)
2: initialize NN DE solver N : D → R
3: initialize Error estimators {Nϵi}mi=1

4: Train N , and define N̂ := N ▷ N̂ serves as a dummy variable
5: for i = 1, . . . ,m do
6: Train Nϵi until loss converges
7: Save parameter states of Nϵi

8: N̂ := N̂ +Nϵi

9: Freeze parameters of N̂
10: end for
11: return N +

∑m
i=1 Nϵi ▷ Equivalently, return N̂

12: end procedure

B THEOREMS ON THE RELATIONSHIPS BETWEEN Φϵ1 ,F[N ], AND L

This work is centered around three theorems. We begin this section by summarizing and contextualiz-
ing those results.

Theorem 1 verifies the intuitive expectation that F[N ] → 0 implies the fitness of N as an approxima-
tion of Φ. We do this by taking advantage of the uniqueness of Φ as a solution, alongside the fact that
any gradient descent method can only be successful, iff the gradient itself exists in a well defined
sense.

11
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Theorem 2 naturally follows as a consequence of Theorem 1. It adds a strong a priori expectation
we should have from NN DE solvers that satisfy the assumptions of Theorem 1 and tells us that
their errors should be quantifiable in some sense, if information about F[N ] is sampled (which is
always possible up to the desired resolution). Additional structure leads us to stronger quantification
capabilities (surmised in Inequalities 4 and 11 and proved in appendix C).

Finally, assume a mapping F : G ⊃ U → H between two Hilbert spaces, e.g. representing a
non-linear PDE mapping between function spaces. Further, assume it is twice differentiable and at
the solution Φ, satisfying F(Φ) = 0, DF[Φ], is an invertible linear map. Then, the gradient descent
procedure guarantees convergence at a rate

∥N (t)− Φ∥ ≤ e−
(1−ϵ)σmin

2 t∥N (0)− Φ∥

where ϵ > 0 can be chosen sufficiently small if ∥N (0)− Φ∥ ≤ R, where R depends on ϵ. σmin here
is given by the minimum of the spectrum of (DF[Φ])†DF[Φ] which is strictly positive as DF[Φ] is
invertible. Theorem 3 guarantees that exponentially converging NN models for Φ exist somewhere in
G, and that gradient descent will allow us that level of performance. We need only find some initial
model from that region.

Together, the three theorems give us an idealized framework for describing NN DE solvers under
iterative optimization. Real NN DE solvers differ from this idealized framework in two ways: their
optimization is a discrete process and the subspace within which real NN models lie (say GM , where
M is number of parameters in our model), while being capable of coming arbitrarily close to Φ,
seldom contains it. The real optimization is a discrete approximation of the ideal trajectory: further,
the empirical trajectory is actually a projection of that discrete trajectory onto GM .

Note that for finite dimensional approximation of the problem on a subspace GM ⊂ G of dimension
M , the corresponding constant σGM

min is greater or equal to σmin. Furthermore, if GM ⊂ Gm then
σGM

min ≥ σGm

min. Thus, one can expect the error correction procedure to allow for an exponential
improvement at each step, iff σmin > 0, i.e. exactly in the cases when DF[Φ] is invertible.

Finally, Theorem 4 follows trivially from the definitions of Fi, Ni−1,Φϵi , and Theorems 1 - 3. We
now move to rigorously prove Theorems 1 - 3 below.

B.1 INVERSE FUNCTION THEOREM AND THEOREMS 1 AND 2

We quickly summarize the Banach space version of the inverse function theorem that allows us to
establish that F[N ] → 0 implies N → Φ (for further details see for example (16)). We also establish
another lemma we will use to estimate the convergence rate of NN DE solvers.

Let G and H be two Banach spaces, and U ⊂ G an open subset. A continuous map between the two
Banach spaces F : G ⊃ U → H is said to be Fréchet differentiable at a point x ∈ U iff there exists a
linear bounded operator Lx : G → H such that

∥F(y)− F(x)− Lx(y − x)∥H = o(∥y − x∥G).

If the map x 7→ DF[x] = Lx is continuous, then one says that F ∈ C 1(U ;H). Analogously
C 2(U ;H) denote the functions which are twice differentiable, and if H = R we drop H from the
notation.

Lemma 1. Let F : U → H be a C 1-map. Suppose that there exists a point x0 ∈ U such that DF(x0)
is an isomorphism (i.e. it has a continuous inverse). Then there exists a neighbourhood V ⊂ H of
F(x0) and a C 1 function F−1 : V → G that is a local inverse of F.

Proof. See Theorem 5.2 of (16).

Lemma 2. Assume L ∈ C 2(U). L is strongly convex at N ∈ U , if for all N ′ ∈ G

D2L[N ](N ′,N ′) ≥ µ∥N ′∥2 .

Proof. This follows by a simple application of Taylor’s theorem as in the finite dimensional case. For
Taylor’s theorem for functions on Banach spaces, cf. (16).

12
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Theorem 1. Suppose that F ∈ C 1(U ;H), that the derivative of F at Φ ∈ U is invertible, and
F(Φ) = 0. There is a neighbourhood V ⊂ H of 0 small enough such that

F(N ) −→ 0 =⇒ N −→ Φ .

Proof. By Lemma 1, we can choose neighbourhoods Φ ∈ U ′ ⊂ U and 0 ∈ V ⊂ H such that
F : U ′ → V is a diffeomorphism. Then, if N ∈ U ′ the continuity of F−1 implies

F[N ] −→ 0 =⇒ N −→ Φ .

which is the assertion.

Theorem 2. Under the same assumptions as above we

∥N − Φ∥ = O (∥F[N ]∥) .

Proof. Since by Lemma 1, F−1 is differentiable at 0, it follows that it is locally Lipschitz continuous
around 0, implying that

∥N − Φ∥ = O (∥F[N ]∥) .

The constant of proportionality is approximately given by λ−1
min where

λmin := inf
λ∈Spec(DF[Φ])

|λ|

the eigenvalue with minimal absolute value in the spectrum of DF[Φ]. The nPBE example from
section 6 fits nicely into this paradigm as the map

F : W 2,∞(R3) −→ W 0,∞(R3)

f 7−→ −∆f + sinh(f) + g

is continuous and continuously Fréchet differentiable with Fréchet derivative

DF(f) = −∆+ cosh(f)

which is everywhere continuously invertible as a linear map. The constant of proportionality is
approximately 1.

Theorems 1 and 2 guarantee that there exist adequate models for Φ, if the loss is going down
sufficiently enough. However, we still have no clue about how fast or slow this convergence is going
to be and how to convert these existence results into actual estimates on Φϵ1 (and higher order Φϵi).
We develop those results below, with minimal additional assumptions.

B.2 GRADIENT DESCENT IN HILBERT SPACES

We assume that G is a Hilbert space, i.e. in addition to being a Banach space, it is also equipped
with an inner product ⟨·, ·⟩ such that ⟨v, v⟩ = ∥v∥2 for all v ∈ G. Assume that we are given a loss
function L : G ⊃ U → R that is an element of C 1(U). We denote by ∇L(N ) the unique element of
G, s.t. for all Ψ ∈ G

DL[N ](Ψ) = ⟨∇L(N ),Ψ⟩ .

If ∇L is a locally Lipschitz continuous or equivalently if L is a locally L-smooth function, then the
ODE

Ṅ (t) = −∇L(N (t)) (23)
has a unique local solution, cf. (17). By locally L-smooth, we mean that around a minimum Φ, there
exists R > 0 such that for all N ,N ′ ∈ BR(Φ)∥∥∇L(N )−∇L(N ′)

∥∥ ≤ L∥N −N ′∥ .

Furthermore, for µ > 0, we call the function L locally µ-strongly convex around a minimum Φ, if
there exists R > 0 such that for all N ,N ′ ∈ BR(Φ)

L(N ′) ≥ L(N ) + ⟨∇L(N ),N ′ −N⟩+ µ

2
∥N ′ −N∥2 .

We need one more lemma to have all the tools we will use to get Theorem 3.

13
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Lemma 3. Let L ∈ C 1(U) be a locally L-smooth, locally µ-strongly convex function around a
minimum Φ, s.t. L ≥ 0 and L(Φ) = 0 .

Then for any initial condition N ∈ BR(Φ), a ball where L is both L-smooth and µ-strongly convex,
the Gradient Descent equation 23 converges exponentially at rate with rate µ

2 towards Φ, i.e.

∥N (t)− Φ∥ ≤ e−
µ
2 t∥N (0)− Φ∥ .

Proof. From the strong µ-convexity it follows that

1

2

d

dt
∥N (t)− Φ∥2 = −⟨N (t)− Φ,∇L(N (t))⟩ ≤ −L(N (t))︸ ︷︷ ︸

≥0

−µ

2
∥y − x∥2 ≤ −µ

2
∥y − x∥2 .

Solving this differential inequality, we find

∥N (t)− Φ∥ ≤ e−
µ
2 t∥N (0)− Φ∥ .

Lemma 3 guarantees the existence of an exponentially convergent regime of optimization, as long as
we assume that DF exists and L is µ-strongly convex. However, it is a non-constructive statement:
we have no information on what behavior should be expected from µ. We can make it constructive
with an additional assumption on the existence of D2F.

B.3 CONSTRUCTIVELY ESTIMATING THE RATE OF CONVERGENCE

Assume that F is in C 2(U ;H). Furthermore, we require that H is also a Hilbert space. From the
definition of Fréchet differentiability we can write F as

F[N ] = DF[Φ](N − Φ) + D2F[Φ](N − Φ,N − Φ) +R1(N ) ,

where ∥R1(N )∥ = o(∥N − Φ∥2). Then our loss function L(N ) := ⟨F[N ],F[N ]⟩ is strictly convex
in a neighbourhood of Φ as

D2L[Φ](N − Φ,N − Φ) = ⟨DF[Φ](N − Φ),DF[Φ](N − Φ)⟩
=
〈
N − Φ, (DF[Φ])†DF[Φ](N − Φ)

〉
≥ σmin∥N − Φ∥2

where we used that L(Φ) = 0 and defined

σmin := σmin(Φ) := inf
N∈G\{0}

∥DF[Φ]N∥2

∥N∥2
= inf Spec

(
(DF[Φ])

†
DF[Φ]

)
> 0 ,

as DF[Φ] is invertible. Furthermore, our loss function can be written as

L(N ) = ⟨DF[Φ](N − Φ),DF[Φ](N − Φ)⟩+R2(N ) =

=
〈
N − Φ, (DF[Φ])†DF[Φ](N − Φ)

〉
+R2(N )

where |R2(N )| = o(∥N−Φ∥3) and R2 is also a C 2-function, and its second derivative is o(∥N−Φ∥).
Thus, for every ϵ > 0 there exists R > 0 such that for all N in the ball of radius R around Φ

∥D2R2[N ]∥
min{1, ∥N − Φ∥}

≤ ϵσmin.

Then, we have that for all N ∈ BR(Φ)

σmin(N ) ≥ (1− ϵmin{1, ∥N − Φ∥})σmin ≥ (1− ϵ)σmin .

It follows that L is µ-strongly convex in the ball of radius R around Φ with constant µ = (1− ϵ)σmin,
and thus the gradient descent flow N (t) converges exponentially at rate (1−ϵ)σmin

2 .

We have thus proven Theorem 3. Theorem 4 follows immediately from the results in appendix B.
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C STRICT UPPER BOUNDS ON ∥Φϵ1∥

We will begin our attempt to ascertain bounds on ∥Φϵ1∥ with classical Hamiltonian systems, to
exemplify the intuition and the technique involved in the generic bound we wish to develop. Once
that is achieved, we will show how a generalization follows in a straightforward manner.

C.1 HAMILTONIAN SYSTEMS

To start, let us remember Φϵ1 := N −Φ = (N1−ϕ1, . . . , ND−ϕD) for a D-dimensional dynamical
system to be solved on a domain of interest [0, T ]. Note that D is necessarily even for a Hamiltonian
dynamical system. Let us construct a worst case scenario for the norm of Φϵ1 . We write the equation
in terms of the Hamiltonian formulation:

dΦ

dt
= J∇H(Φ) (24)

where H is the appropriate Hamiltonian, and J is the symplectic matrix

J =

(
0 −ID/2

ID/2 0

)
(25)

and ID/2 is the identity matrix. The NN DE solver is trained using F[N ] given by

F[N ] = J∇H(N )− dN
dt

(26)

The equation above represents D separate differential equations in a vector form. Since F[Φ](t) = 0
for all t we can write F[N ] as follows, suppressing the time dependence

F[N ] = −
1∫

0

DF[Ns]Φϵ1ds = Φ̇ϵ1 −

[ 1∫
0

J
(
D2H

)
(Ns)ds

]
· Φϵ1 =: Φ̇ϵ1 −RΦϵ1 (27)

where Ns := Φ− sΦϵ1 , and D2H(Φ) is the Hessian matrix of H with components ∂i∂jH(N ). In
order to be able to extract a meaningful error bound from Eq. equation 27 we need to make some
structural assumption: We assume that at a time tΦϵ1

∈ [0, T ] at which ∥Φϵ1∥ obtains its maximum[
R(tΦϵ1

)Φϵ1(tΦϵ1
)
]
· Φ̇ϵ1(tΦϵ1

) = 0

Note that the assumption of focusing all error in only one component of Φ, as done in (10), already
implies the above, but not vice versa. As such, we are using a much weaker assumption than (10). 3

Then, for time tΦϵ1
∈ [0, T ], we have

∥RΦϵ1∥22 ≤ ∥RΦϵ1∥22 + ∥Φ̇ϵ1∥22 = ∥F[N ]∥22 (28)

We next need an estimate on the matrix norm of the inverse of R for every t ∈ [0, T ]. We can ignore
J as it is an orthogonal matrix and only consider

1∫
0

(
D2H

)
(Ns)ds .

We can do this if we know that D2H(x) is a strictly positive or strictly negative definite matrix for
all x ∈ D ⊂ RD in our domain of interest, which is a standard assumption for the motion to be
non-degenerate. W.l.o.g., assuming that D2H is positive definite, and setting

Hmin := min
x∈D

∥D2H(x)−1∥−1 = min
x∈D

λmin(D
2H(x))

where λmin is the smallest eigenvalue of the matrix D2H(x), we have for all t ∈ [0, T ]

∥R−1∥ ≤ H−1
min .

3Unfortunately, we need this assumption to separate the two terms appearing on the right hand side of
Eq. equation 27.
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Finally, letting
Fmax := max

t∈[0,T ]
∥F[N ](t)∥2

we reach the an estimate on ∥Φϵ1∥ as:

∥Φϵ1∥ ≤ Fmax

Hmin
(29)

Additionally, if we assume that at the time tΦ̇ϵ1
at which |Φ̇ϵ1 | reaches its maxima,[

R(tΦ̇ϵ1
)Φϵ1(tΦ̇ϵ1

)
]
· Φ̇ϵ1(tΦ̇ϵ1

) = 0

we have the following bound on Φ̇ϵ1 as well

∥Φ̇ϵ1∥ ≤ Fmax (30)

C.2 BOUNDS ON ∥Φϵ1∥ IN MORE GENERAL SETTINGS

Eq. 27 generalizes beyond Hamiltonian systems in a straightforward manner for F[ ] ≡ L[ ]+N[ ]+C
as:

F[N ] = −
1∫

0

DF[Ns]Φϵ1ds =

[ 1∫
0

DN[Ns]ds

]
· Φϵ1 − L[Φϵ1 ] =: −RΦϵ1 − L[Φϵ1 ] (31)

The generalized version of the RΦϵ1 · Φ̇ϵ = 0 assumption is that at the xΦϵ1
∈ D that ∥Φϵ1∥ takes its

maxima in, we have:[
R(xΦϵ1

)Φϵ1(xΦϵ1
)
]
· L[Φϵ1 ](xΦϵ1

) = 0 xΦϵ1
∈ D

The next assumption we generalize is the one made to have non-degeneracy in the solutions we were
trying to model. As such, we assume that DN is a positive definite (or negative definitive) operator.
From then on, we define Hmin in a similar manner. More precisely, we say:

Hmin1
:= inf

s∈[0,1]
inf
{
λ
∣∣λ ∈ Spec (|DN[Ns]|)

}
Hmin2

:= inf
s∈[0,1]

inf
{
λ
∣∣λ ∈ Spec (|L[Φϵ1 ]|)

} (32)

where
|DN[Ns]| :=

√
(DN[Ns])†DN[Ns]

Finally, let Hmin = max{Hmin1
, Hmin2

}. With that in place, we obtain the following inequalities
for ∥Φϵ1∥:

∥Φϵ1∥ ≤ Fmax

Hmin
(33)

The generalized version of the assumption on xΦ̇ϵ
where |Φ̇ϵ| attains its maxima similarly gives:

∥Φ̇ϵ∥ ≤ Fmax (34)

The assumption that
[
R(xΦϵ1

)Φϵ1(xΦϵ1
)
]
· L[Φϵ1 ](xΦϵ1

) = 0 is critical in allowing us strong
estimates on ∥Φϵ1∥. Superficially, it might seem like too strong of an assumption (and even somewhat
of a non-sequitur).

However, note that L[ ] in a DE is often the domain derivative term (we denote it as ∇x in this
discussion, where x ∈ D represents an arbitrary element in the domain. As such, ∇x are the spatial
derivatives for spatial DEs, time derivatives for ODEs, a spatio-temporal one for space-time DEs,
etc). When ∥Φϵ1∥ achieves its maxima, Φϵ1 · ∇x(Φϵ1) = 0. When L ≡ ∇x, we indeed have
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Φϵ1 · L(Φϵ1) = 0. As such, what we are really assuming is that the R term effectively has Φϵ1 as
its eigenvector on xΦϵ1

(since that means RΦϵ1 · ∇x(Φϵ1) is 0). For example, such is the case for
Hamiltonian systems without mixed position-momentum terms. What we are really constraining, is
the behavior exhibited by the operator N in a system of interest.

If the problem of interest comes from a scientific domain with which the user has familiarity, they
may supply a different sort of assumption based on those considerations. For example, we might be
able to say:

∥RΦϵ1 · ∇xΦϵ1∥ <
ϵ

2

at the xΦϵ1
where ∥Φϵ1∥ takes its maxima. The generalized bound simply changes to:

∥Φϵ1∥ ≤ Fmax + ϵ

Hmin
(35)

D ADDITIONAL NUMERICAL EXPERIMENTS

As part of validating our claims, we also performed numerical experiments on several scientific ODEs
and PDEs. We chose our experiments such that the set of examples showcases non-trivial spatial and
temporal phenomena amongst the combined examples (chaos, high dimensional domains, etc).

Table 1 presents the median results from the collection of randomized experiments conducted for
each system. All numerical experiments were done using a 2019 MacBook Pro with a 2.6 GHz
6-Core Intel Core i7 processor and 16 GBs of 2667 MHz DDR4 RAM.

We describe the chosen systems below:

D.1 HENON HEILES

Henon Heiles is represented by the following ODE governing the dynamics of Φ ≡ {x, y, px, py}†:

Φ̇ = −J∇H, J =

(
0 I
−I 0

)
, H ≡

x2 + y2 + p2x + p2y
2

+
y(3x2 − y2)

3
(36)

where I is the 2× 2 identity matrix. We picked [0, 6π] as the time domain of interest. All Φ(0) ≡
{x(0), y(0), px(0), py(0)} were picked s.t. H(z(0)) < 1

6 , x(0) ∈ [−
√
3
2 ,

√
3
2 ], and y(0) ∈ [−0.5, 1−√

3|x|], which corresponds to the subset of the phase space that has bounded orbits.

We implement the NN DE solver prescribed in (10). The models each had 2 hidden layers, with 50
sine activation functions per layer. The base models were trained for 50000 iterations using ADAM,
with an error correction made at 25000 iterations. We sampled 200 time points were iteration.

D.2 NONLINEAR POISSON BOLTZMANN EQUATION

We have already given details of the equation in the main paper, alongside the associated choices
of dimensionality and frequency parameter. Below, we plot what the (ω, d) = (5, 2) system should
look like when modeled without (a) and with (b) error correction, alongside the true solution (c). To
quantify the visual, we also quote the mean average value of ∥N∥, ∥N +Nϵ1∥, ∥Φ∥ respectively.
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(a) N (b) N +Nϵ1 (c) Φ

Figure 3: Heatmaps of non-error corrected N & error corrected solver with Nϵ1 at 50% of the total
training iterations (left & middle), and Φ (right) for the (ω, d) = (5, 2) setting.

N and Nϵ1 were fully connected Neural Networks, with 4 hidden layers, each with 50 sine activation
functions. The base model was trained via ADAM for 400000 iterations, while error models were
trained for a varying number of iterations, depending on when the error correction models were
activated (see Fig. 2). We sampled 1024 points per iteration.

The (ω, d) = (1, 4) model was trained for 50000 iterations, with 8192 points sampled per iteration.

Both NN DE solvers are implemented using the methods prescribed in (2)

D.3 NONLINEAR QUARTIC OSCILLATOR

The nonlinear quartic oscillator is represented by the following ODE governing the dynamics of
Φ ≡ {x, px}:

Φ̇ = −J∇H, J =

(
0 1
−1 0

)
, H ≡ x2 + p2x

2
+

x4

4
(37)

We sample Φ(0) such that {x(0), px(0)} ∈ [−1, 1]× [−1, 1] each time.

We implement the NN DE solver prescribed in (10). The models had 2 hidden layers each, with 50
sine activation functions per layer. The base models were trained for 50000 iterations using ADAM,
with an error correction made at 25000 iterations. We sampled 200 time points were iteration.

The associated codebase allows the user to add other systems as per their choice.
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