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Abstract

Large Language Models (LLMs) can acquire
emergent reasoning via online fine-tuning with
simple rule-based rewards, when tasks are al-
ready latent-solvable by the base model. We
study chemical reasoning and identify two pre-
requisites for RL-based training: (1) symbolic
competence and (2) latent domain knowledge. We
introduce MiST, a mid-stage training protocol us-
ing SMILES-aware data mix and continued pre-
training on 2.9 B tokens, and supervised finetun-
ing on chain-of-thoughts reasoning data. MiST
doubles the latent-solvability score of [IUPAC-to-
SMILES translation and increases the precision
of reaction prediction from 4.1% to 25.2%, while
producing faithful reasoning traces. Our work
defines clear prerequisites for chemical reason-
ing and underscores the value of mid-stage pre-
training.

1. Introduction

Reasoning tasks in chemistry are fundamental yet notori-
ously challenging, requiring models to integrate chemical
knowledge and logical deduction (Coley et al., [2019; | Alam-
para et al., [2024). Traditional cheminformatics methods
rely heavily on supervised architectures optimized for spe-
cific tasks, lacking generalization and human-like reasoning
(Schwaller et al., 2019; Mirza et al., [2024a). Recent rein-
forcement learning (RL) frameworks (Guo et al., 2025b))
have shown emergent reasoning capabilities in domains
like math and coding. However, independent studies indi-
cate these capabilities arise from amplified patterns already
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present, albeit with low likelihood, in the base model (Guo
et al., 2023} |[Flam-Shepherd & Aspuru-Guzik, 2023)), sug-
gesting RL’s effectiveness depends critically on latent task
solvability within the model.

Chemistry presents a stringent test for this hypothesis due
to specialized symbol systems (e.g., SMILES, TUPAC) and
domain-specific constraints (Weininger, |1988)). Standard
LLM:s often fail at generating syntactically valid chemical
strings, limiting RL success (Bran et al.,[2025). Empirically,
direct RL application fails as correct outputs rarely appear
in candidate distributions.

This raises a fundamental question: What pre-training pre-
requisites must an LLM satisfy for RL to reliably enhance
chemical reasoning? We address this by: 1) proposing
quantitative diagnostics to measure latent solvability, 2) in-
troducing and ablating two domain-specific prerequisites,
and 3) demonstrating RL improvements when diagnostics
surpass defined thresholds.

We propose symbolic competence and latent chemical
knowledge as essential prerequisites. Symbolic compe-
tence requires the model to handle valid chemical strings
(SMILES, IUPAC, CIF). Latent chemical knowledge en-
sures correct answers exist in the model’s prior distribution,
enabling RL exploitation. We develop a diagnostic bench-
mark for latent solvability, confirming that enhancing these
prerequisites boosts RL performance by up to 20

Additionally, we propose representative chemistry reasoning
tasks solvable by expert humans (Section|C)). Ablation and
generalization tests validate that removing any prerequisite
collapses RL gains, confirming their necessity. We release
our diagnostic benchmark and pre-training corpus, offering
a foundation for developing robust chemical reasoning Al.

2. Related Work

Post-training methods for reasoning Standard alignment
methods combine supervised fine-tuning (SFT) with re-
inforcement learning from human or synthetic feedback
(RLHF/RLAIF), which improves helpfulness but often strug-
gles with multi-step reasoning. Recent strategies include



MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models

chain-of-thought distillation (Wei et al.| [2022; |Li et al.|
2023), step-aware reward models (Weng et al.,|2025)), and
tree search with self-consistency (Xie et al., 2024b). Cru-
cially, |Guo et al.|(2025b)) demonstrated that rule-based re-
wards enhance mathematical and coding capabilities if the
base model already places non-negligible probability on
correct solutions. Independent studies confirm RL amplifies
latent solutions in the base model (Yue et al.l 2025)), and
weaker bases benefit more from SFT using larger-model-
generated traces (Guo et al.,[2025b). Our work adopts this
“RL as amplifier” perspective to explore pre-training condi-
tions enabling latent chemical problem-solving.

Chemical language modeling Language models adapted
to chemistry tasks often use linear molecular strings
(SMILES (Weininger, |[1988)), SELFIES (Krenn et al., 2020),
IUPAC). Masked pre-training approaches like ChemBERTa
(Chithrananda et al., [2020) and MolBERT (Fabian et al.|
2020) enhance QSAR performance, while Molecular Trans-
formers target synthesis prediction (Schwaller et al.| [2019;
2020). Recent works extend general LLMs to molecule
generation, property prediction, and Q&A (Frey et al.| 2023
Zhang et al.,|2024; Jablonka et al.| 2024; |Xie et al., 2023b)),
as well as integrating robotic labs and hypothesis generation
(Bran et al., 2023; Boiko et al.| [2023} |Yang et al., 2025).
New workflows address molecular design and synthesis
planning (Wang et al., 2024a; Bran et al., |2025).

Mid-stage domain adaptation Domain-adaptive pre-
training (DAPT) or continued pre-training (CPT) effec-
tively specializes general LLMs. Early successes include
BioMegatron (Shin et al., 2020), Legal-BERT (Chalkidis
et al.l 2020), and Code-Llama (Roziere et al., [2023). Re-
cent scientific domain studies confirm substantial gains:
AdaptLLM in finance (Cheng et al.| 2023)), Tag-LLM and
Efficient-CPT with adapters (Shen et al.| [2024; [Xie et al.|
20244), SciLitLLM in scientific literature (Li et al., [2024al),
and adaptations in materials science, radiation oncology,
finance, and cybersecurity (Lu et al., [2025; [Holmes et al.,
2023 |Hirano & Imajo, 2024; Bayer et al.|[2024). Caveats in-
clude potential degradation of zero-shot prompting (Cheng
et al.,[2023)) and limited capability gains for models {$2B
parameters (Lu et al.| 20255 |Hsieh, 2025)). Crucially, prior
studies did not evaluate whether CPT induces latent solv-
ability exploitable by RL. Chemical domain CPT studies
like ChemBERTa-2 (Maziarka et all [2023), ChemLLM
(Brand et al.| 2023)), DARWIN-Chem (Xie et al., [2023a)),
and SciDFM (Sun et al.,[2024)) remain limited to single-shot
recognition tasks.

LLM capability diagnostics Traditional benchmarks like
accuracy and perplexity omit detailed insights from condi-
tional probability distributions. Holistic evaluations (HELM
(Liang et al.} 2022)), LiveBench (White et al., 2024)) still ag-

gregate probabilities into singular metrics. Intrinsic probes
provide deeper insights: minimal pairs measure grammati-
cal preference gaps (Meister & Cotterelll |2021)), brittleness
of in-context learning (Zhao et al.l|2024), and out-of-domain
intent detection (Wang et al., [2024b)). Calibration studies re-
veal token-level probabilities reflect model certainty (Jiang
et al.| 2021; Kadavath et al., [2022), now underpinning OOD
detection, self-correction, and medical reasoning (Liu et al.|
2024a3b; L1 et al., 2024b). Diagnostics increasingly use
distribution-matching (KL divergence, Wasserstein distance
(Pezeshkpour, 20235 Wang et al., 2024c)) and dispersion
metrics linked to robustness (Ye et al.,[2024).

3. MiST: Mid-stage Scientific Training

The purpose of this mid-stage training is to enhance the
model’s ability to generate valid SMILES, accurately follow
chemistry-focused instructions, and strengthen its general
chemical knowledge. We do this by continuing pretraining
(next token prediction objective) on chemical and SMILES-
related data, and then by performing SFT to better follow
instructions and increase the thinking context window.

3.1. Datasets

The FineWeb chemistry dataset was filtered from FineWeb-
Edu ((Penedo et al.,|2024)) using a custom non-ML classifier
built using word frequency. The entire FineWeb-Edu dataset
was fetched, and about 10,000 texts were manually labeled
as chemistry and 50,000 as non-chemistry (based on the text
source). These texts were lemmatized before building word
frequency vectors for the two classes. The frequencies of
the lemma k in chemistry texts and non-chemistry texts are
denoted f§ and f}’, respectively. The text chemistry score
(TCS) is computed using the following formula:

iR > 1
— 1 2: _ ny n
TCS(text) := Niemmas k€lemmas in text Wk» Wk = /¥ /¥ .
0, otherwise

ey

This labeling strategy was applied to the entire FineWeb-
Edu corpus, and the texts with TC'S > 4 were retained,
yielding a pretraining set of 1.4 billion tokens of high-quality
chemistry-labeled texts.

The first three million compounds from the PubChem
database ((Kim et al., 2025)) were dumped and filtered
using the following pipeline: the compounds with ambigu-
ous SMILES (different RDKit canonical SMILES from the
IUPAC, InChlI (Heller et al.,|2015)), or PubChem SMILES)
were discarded, and the duplicates (for SMILES and TUPAC)
were filtered out. Four SMILES variants (non-canonical
SMILES) were generated from the canonical SMILES for
each valid compound. Based on this strategy, the first mil-
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lion compounds from PubChem were filtered to around
600,000 compounds. The same approach was applied to
the rest of the compounds, and the dataset was split in the
following manner: the first million compounds (CID from
1 to 1,000,000) were used for pretraining, the second mil-
lion compounds (CID from 1,000,001 to 2,000,000) were
used for GRPO training, and the third million compounds
(CID from 2,000,001 to 3,000,000) were used as the test
split. Multiple derived datasets were also generated for the
different chemical tasks used with GRPO training.

To construct the pretraining data, we used the data mix-
ture as described in Table [[I All the data underwent the
same preprocessing pipeline to interleave SMILES with text
whenever a molecule name appeared (e.g. [UPAC, common
name, short form, etc), this type of interleaved data was
also used in (Taylor et al., [2022)). We additionally generated
a synthetic dataset using RDkit (RDKit, online)) extracted
properties of molecules (like QED, TPSA, etc) and filled it
in a template. Furthermore, we include a “’replay” dataset
aiming to preserve the model’s natural language abilities
while furthering it’s learning about chemical knowledge.
We chose the Qwen2.5-3B base model to perform the pre-
training for 3 epochs.

Table 1. Dataset composition and token distribution used for the
pretraining step.

Dataset Source Tokens | Percentage
ChemRxiv + S20RC 1.2B 41.38%
FineWeb chemistry filtered data 1.4B 48.28%
PubChem synthetic data (600k compounds) 220M 7.59%
CommonCrawl Replay dataset 8OM 2.75%
Total 2.9B 100 %

For SFT, we utilized question-answering (QA) training ex-
amples derived from Smollnstruct (Yu et al., [2024a), specif-
ically employing only the SMILES<++IUPAC and molecule
captioning subsets. We also collect examples from MPtrj
dataset(Deng et al.| [2023)). Additionally, we incorporated
MMLU and chain-of-thought (CoT) reasoning traces from
DeepSeek-R1, which were preprocessed to maintain coher-
ence with our pretraining data. In this phase, we also ex-
panded the model’s context window from 4,096 to 8,192 to-
kens to accommodate longer reasoning sequences. The pre-
trained model underwent SFT for approximately 8 epochs,
continuing until the previously observed loss spikes were
fully mitigated. During fine-tuning, two distinct question
types were used:

* Questions requiring explicit reasoning traces, with solu-
tions prefixed by the tag ”<think>".

* Questions directly presenting the final answers, prefixed
by the tag ”<answer>".

The model, despite using about 3B tokens for continued
pretraining and 1B tokens for SFT, performs better on

Table 2. Instruction tuning dataset composition used for the SFT
step.

Dataset Source Notes / Sample Count
DeepSeek reaction traces ~7K samples
DeepSeek relaxation traces | ~2K samples

MPtrj dataset ~20K samples

Smollnstruct dataset 128, S2I, Molecule captioning and generation tasks
MMLU Train: ~350 samples, Chemistry: ~300 samples
CoT Chain ~27K samples

Total Tokens 1B

some tasks in comparison with models like NatureLM (Xia
et al., [2025)), which has used hundreds of billions of tokens
for pretraining and SFT. This was made possible by the
high-quality interleaved text produced by our preprocessing
pipeline.

More details about our SMILES-text preprocessing pipeline
can be found in Appendix [B]

4. Post-training Experiments

This section quantifies how much of the potential unlocked
by Mid-stage Scientific Training (MiST) can actually be
surfaced with standard post-training recipes. We therefore
keep the mid-training configuration fixed (Section [3) and
vary the post-training stack:

1. BASE: original Qwen2.5-3B

2. +M1ST: after MiST continued pre-training (checkpoint
v6-1)

3. +MIST+SFT: MiST backbone after SFT on 120k
DeepSeek-R1 traces (see Section[A.3).

4. +MI1ST+SFT+RL(TASK ¢): previous model further
optimized with RLVR (see Section [A.3). (TASK i)
specifies the single task the model is trained on with
RLVR.

As an initial downstream test of our pipeline’s performance,
we use ChemBench (Mirza et al., 2024b) to evaluate the gen-
eral chemistry knowledge of LLMs; the results are shown
in Table

The results shown in Table 3| indicate that the proposed
MiST combined with reasoning supervised fine-tuning
(SFT) significantly enhances downstream performance on
general chemistry knowledge across most chemistry sub-
domains. Particularly notable improvements (up to 6-7%)
were observed in Organic, Inorganic, and General Chemistry
compared to the Qwen+SFT baseline, and improvements
exceeding 11% over the instruction-tuned base model, high-
lighting the efficacy of both post-training stages. These
results serve as diagnostic indicators for assessing the suc-
cess of mid-training methods and inform model selection for
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Table 3. ChemBench sub-domain Accuracy (%)

Models
Sub-domain Qwen-2.5-3B Instruct  Qwen+SFT  MiST+SFT (ours)
Organic Chem 44.99 46.15 50.12
Inorganic Chem 46.70 51.08 57.60
Toxicity/Safety 21.33 26.52 26.37
Material Sci 35.84 42.50 48.75
General Chem 33.56 38.25 44.30
Chem Preference 45.40 50.00 52.10
Analytical Chem 25.00 34.20 40.70
Technical Chem 42.11 44.74 50.00
Physical Chem 20.60 35.10 38.78
Total 35.06 40.95 4541

Table 4. Effect of MiST and each post-training stage on down-
stream reasoning tasks. SCS = symbolic-competence score, CCS
= chemical-competence score; both are unitless effect-size mea-
sures ranging from O (no separation) to 2 (near-perfect separation);
higher is better. 12S = [UPAC—SMILES translation, RxP = for-
ward reaction prediction, RxN = reaction-naming, CMG = con-
ditional material generation. For the three downstream tasks we
report top-1 accuracy; values in parentheses are with CoT prompt-

ng.
Model scst  ccst 128t RxPt RxNT  CMG?
Qwen-2.5 3B 0.95 0.352 0.03 0.6 10.33 (10.87) 58.6
+MiST 1.639 0.443 49.12 4.1 12.8 (11.30) 12
+SFT 1.906  0.771 68.2(34.5) 820(21.2) 11.9 (11.0) 34.8
OrgChem Tasks
+RL(12S) 1.825 0.759  68.39 (67.5) — — —
+RL(RxP) 1.880  0.782 —  8.80(25.2) — —
+RL(RxN) 1.906  0.789 — —  22.87(35.17) —
MatSci Tasks
+RL(CMG) 0.893 0.777 — — — 738
Ablations
no MiST + SFT ~ 1.853 0.788 22.00 5.10 2.6 (4.80) —

subsequent RLVR training aimed at strengthening reasoning
and problem-solving skills.

Subsequently, the model’s capability to learn online through
Reinforcement Learning with Verifiable Rewards (RLVR)
is evaluated. As detailed in Section [C] various chemistry
tasks amenable to reasoning and reward verification were
implemented. Several models trained in this RLVR frame-
work were evaluated based on their base model origin. Two
distinct inference strategies—System-1 (direct answer) and
System-2 (reasoning-based), as characterized by (McGlynn|
2014)—were tested by appending ”<answer>" or jreason-
ing;” tags, respectively, to guide model responses. Table
22l summarizes the outcomes on the defined chemical tasks
(Section [C) and the diagnostic metrics described in Section

The results highlight the significant impact of the MiST
proposed here on symbolic competence, as evidenced by
the SCS column. Pretrained models like Qwen2.5-3B
clearly lack symbolic capabilities essential for tasks involv-
ing SMILES comprehension and generation; however, this
limitation is effectively overcome through MiST. Addition-
ally, results demonstrate that reinforcement learning (RL)

generally enhances the performance of LLMs on chemical
tasks, especially those involving SMILES synthesis, such
as Reaction Prediction and IUPAC2SMILES.

An important observation is that activating reasoning usu-
ally yields better performance in RL-trained LLMs; yet, this
trend reverses in specific cases, notably the [UPAC2SMILES
task. In this scenario, better results are achieved without acti-
vating reasoning, although the performance gap is narrower
for RL-trained models. This phenomenon is attributed to the
symbolic ability already being strongly developed during su-
pervised fine-tuning (SFT), potentially hindering RL-driven
learning of alternative strategies. Further research in this
direction is recommended.

5. Discussion

This paper aims to answer the practical question of what
conditions a general-purpose large language model (LLM)
must fulfill to reliably perform chemical reasoning through
lightweight, rule-based post-training methods (Supervised
Fine-Tuning (SFT) + Reinforcement Learning via Rewards
(RLVR)). Experiments were conducted using the Qwen2.5-
3B model, demonstrating that the proposed Mid-stage Sci-
entific Training (MiST) is necessary to unlock chemical
reasoning capabilities in LLMs.

Results indicate that MiST significantly enhances both sym-
bolic competence and latent chemical knowledge, leading
to substantial improvements in downstream tasks involving
SFT and RLVR. Reinforcement Learning (RL), consistent
with prior findings, acts primarily as an amplifier of existing
knowledge and behaviors in LLMs rather than introducing
entirely new capabilities.

Critically, symbolic competence emerges as the main bottle-
neck for small-scale LLMs, particularly evident in tasks
heavily reliant on symbolic systems like SMILES nota-
tion. For example, performance on Reaction Prediction
and IUPAC to SMILES tasks is near 0% accuracy in base
models. While SFT marginally improves Reaction Predic-
tion accuracy to 5.10%, incorporating MiST significantly
boosts accuracy to 25.2% when reasoning processes are
activated. Moreover, improvements in untrained materials
science tasks (e.g., the CMG task) underline the broader
utility of MiST for scientific tasks.

6. Limitations

While MiST shows targeted mid-stage pre-training can un-
lock chemical reasoning in a 3B-parameter model, several
caveats remain. First, we only probed one backbone size;
other sizes might differ in symbolic—competence thresh-
olds, limiting extrapolation. Second, RLVR rewards em-
phasize syntactic agreement (e.g. exact SMILES or high
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Tanimoto similarity), potentially allowing chemically im-
plausible or unsafe outputs via reward hacking. Third, our
evaluation suite—reaction prediction, [UPAC to SMILES,
and conditional material generation—is narrow, omitting
tasks involving stereochemistry, kinetics, spectroscopy, or
3D conformations. Finally, our pre-training corpus, domi-
nated by small-molecule organic literature and patents, may
bias the model against inorganic, macromolecular, or bio-
chemical domains. Resolving these scale, reward, coverage,
and data-bias issues is essential for MiST-style models to
serve as reliable scientific assistants.
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A. Preliminaries

The notions and the metrics used throughout the paper that
constitute our diagnostic suite is as follows:

A.1. Prerequisite 1: Symbolic Competence

To assess the symbolic competence of models, we compute
the likelihood of generating a given sequence, in our case, a
set of SMILES strings. We use a dataset of 10,000 molecules
obtained from PubChem (Kim et al.l [2025), and use the
following definitions to compute a symbolic competence
score.

Token log-likelihood extraction Given a model py and a
SMILES string s = (t1, ..., tL).

At position ¢ we compute the log-likelihood 7; ,,(s) of
ground-truth token s; within py’s next-token distribution
Tipe(8) := po(ti|t1...t;—1). The mean of the whole string
is taken as:

1 L
Tpe(8) = i3 Z Tipe (S) 2
i=1

Symbolic competence score We define the symbolic com-
petence score (SCS) on the assumption that a symbolically
competent model should assign better likelihoods to chemi-
cally correct strings than to corrupted or invalid ones. We
therefore measure the separation in the distributions of mean
ranks between valid (canonical) SMILES and corrupted
ones:

7(corrupt(m)) — 7(canon(m))

SCS = ) (3)
Opool
(n1 —1)o? + (ng — 1)02
ool — 4
Up 1 \/ ny + Ny — 2 ( )

where o1 and o5 are each set’s standard deviations, and
Opool 18 the pooled standard deviation of the two sets. SCS
is the Cohen’s d effect size, where higher values indicate
a cleaner separation and therefore stronger symbolic com-
petence. A score of 0 means the model cannot distinguish
canonical from corrupted strings, while SCS ~ 2 corre-
sponds to ; 95 % separation. corrupt is a SMILES corrup-
tion operator that randomly deletes grammar characters with
a probability of 0.2, effectively yielding invalid but similar
SMILES. For the material science (MatSci) task, instead of
corrupting and calculating the SCS on SMILES, the calcu-
lations are performed on compositions, which specify their
elements and space group in the format: A B A B jsgX{,
where A and B are elements, and X represents the space
group number.
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A.2. Prerequisite 2: Latent Chemical Knowledge

As has recently been shown, the role of RL in training
reasoning LLMs seems to be that of an amplifier, i.e., correct
answers already exist in the base model’s prior distribution
with non-negligible probability.

With this in mind, we aim to assess the latent chemical
knowledge of a given base model. As a proxy to this,
we adopt the same strategy as that we use with the sym-
bolic data, by measuring the Chemical-Competence Score
(CCS), defined as the difference in the distributions of mean
ranks between factually correct chemical statements and
wrong ones. Given a list of chemical statements, such as
the SMollnstruct Molecule Description subset (Yu et al.|
2024b), we generate corrupted data by randomly swapping
one sentence from each original statement with that from
another randomly chosen statement in the pool.

A.3. Post-training methods

Large-scale pre-training furnishes the prerequisites dis-
cussed in Sections [A.THA2l We now describe the two
post-training methods that we use throughout this work to
surface and amplify these capabilities.

Supervised fine-tuning on reasoning traces Recent re-
search (Guo et al.| 2025a)) has revealed that small base mod-
els can be trained with SFT on reasoning traces, resulting
in small reasoning models that mimic the behavior demon-
strated in the SFT training data, even if such data does
not directly target the specific downstream task the mod-
els are evaluated on. The reason is that SFT transfers the
response style and not only the task-specific capabilities,
thus serving as an amplifier of latent knowledge. Following
this, some reasoning traces were distilled from DeepSeek-
R1 and used to perform SFT on our pretrained models.
We generated ~ 600,000 solutions for two canonical tasks:
TUPAC — SMILES and SMILES — IUPAC, based on Pub-
Chem compounds.

Reinforcement learning with verifiable rewards Fol-
lowing recent works (Wang et al.| [2025), we adopt Rein-
forcement Learning with Verifiable Rewards (RLVR) as a
post-training method for our models. In this context, models
are trained online with rule-based rewards that depend en-
tirely on the final outcome. The goal of this type of training,
as exemplified in previous works (Wang et al.}2025) is to
encourage the model to achieve good results on the training
tasks, while developing intermediate strategies to achieve
this, that might involve reasoning.

We designed and used different types of reward functions for
our GRPO experiments: (1) formatting rewards to ensure
separation between the model reasoning and answer, (2)
accuracy rewards to verify the correctness of the model
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answer, (3) helper rewards to penalize the model if the
completions are ill-formed (such as very short completions,
repetitive behaviors etc.). For the accuracy rewards, we
employed different approaches to compare the answer and
the solution, such as exact matches, Tanimoto similarity
between SMILES, or Levenshtein distance.

Downstream reasoning tasks To train and evaluate the
reasoning capabilities of our models, we implemented a
suite of challenging tasks relevant to chemistry. The tasks
have been selected with the following criteria in mind: (1)
Difficulty: the task must be challenging enough to be unsolv-
able by base models alone, (2) Reasoning-suitable: tasks
must be suitable for reasoning, i.e. solving an instance
of the task would require more System-2 thinking from
human experts than System-1 (see , and (3) Dataset avail-
ability: Datasets must be readily available such that, upon
adaptation, an input-outcome dataset can be built that is
representative of the task. The final list of tasks is listed in
Table and implementation details are provided in the

Appendix

B. preprocessing pipeline

An overview of our preprocessing pipeline is depicted as
follows. Initially, we leveraged Nougat (Blecher et al.|
2023)) and GROBID (Meuschke et al.| 2023)) libraries for
converting PDF documents into textual formats. Nougat
demonstrated superior performance in accurately trans-
forming complex structures such as tables, formulae, bib-
liographic references, and figure captions into LaTeX-
formatted text. Conversely, GROBID excelled at ex-
tracting plain textual content from PDFs. The output of
the authors were merged with explicit tags assigned to
each structural element: tables were encapsulated with
[START_TABLE] and [END_TABLE)], formulas marked
by [START_FORMULA] and [END_FORMULA], bibli-
ographic references enclosed within [START_BIBREF]
and [END_BIBREF], and figure descriptions bracketed by
[START_FIGURE] and [END_FIGURE]. Subsequently, this
structured text was processed through the Chemical Data
Extractor 2 (Swain & Cole, 2016), identifying candidate
molecule entities along with their positional context within
the text. To ensure high precision in entity identification,
candidates were further validated using a custom-trained
sentence transformer model, designed specifically to dis-
cern genuine molecular entities from contextual information.
Validated molecular entities were then translated from their
IUPAC nomenclature to SMILES notation using py2opsin,
a Python interface for OPSIN (Lowe et al.,[2011). In cases
where OPSIN failed to yield a definitive conversion, enti-
ties were cross-referenced against PubChem (Kim et al.|
2025). Ultimately, during the pretraining phase alone, our
model encountered approximately 800,000 unique chem-
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Figure 1. Overview of the preprocessing pipeline

ical compounds along with their corresponding SMILES
representations.

C. Chemical Tasks

This section compiles all of the chemical tasks we have
implemented for training models with RLVR, including
details of the dataset compilation, rewards used, along
with additional experimental results not shown in the main
manuscript. The details for each task are specified with a
table containing a summary of the rewards used, short ex-
planations of what the input and expected outputs are, and
finally, some sample outputs from the trained models. Fol-
lowing the table, we report additional experimental results,
implementation details, and other task-specific details.

C.1. Reaction Prediction (RxP)

Table 5. Example of reaction prediction task.

Task: Reaction prediction

Dataset Source  USPTO-480K (Coley et al.|[2019)

Input Reason and predict the correct product in SMILES nota-
tion from the following reaction: CCN (CC) CC.COclc
cc(0)ccl.ClC(C1l)Cl.CI1CCl.0.0=C(Cl)clc

cceccl.
Target Molecule COclccc (OC (=0) c2ccccc2) ccl

Output <think>The reaction involves the acylation of a
phenolic hydroxyl group using benzoyl chloride
0=C (Cl) clccccecl in the presence of triethylamine
CCN (CC) CC as a base. Here’s the step-by-step mecha-
nism: ...

1. Reactants Identification: ...

2. Mechanism: ...

3. Product: ...
Final Answer: The product SMILES
COclccc (OC (=0) c2cccec?) ccl. </think>
<answer>COclccc (OC (=0) c2ccccc?) cecl </an-

is

Answer COclcce (OC (=0) c2ccecec?) cecl v

The reaction prediction task requires the model to reason
and predict the correct product molecule given a list of
reactants and reagents (Table[5)). Solving this task usually
requires expert chemists to think about the reactivity of
the reactants involved, and propose and evaluate different
reaction mechanism hypotheses. These serve as arguments
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and causal explanations that support the decisions.

The dataset for the RLVR training of this task was derived
from the USPTO-480K (Coley et al.l 2019)) after removing
the samples used in the SFT phase. 50K reactions were
randomly chosen for the training set, and 500 reactions for
the test set.

Given a model output o, from which a final answer a can be
extracted, the reward function is the sum of format correct-
ness (Rormat : 0 — [—1, 1], see Appendix E]) and accuracy
of the predicted product (R, : a — {—1,—0.5,1}). The
accuracy reward is determined by an exact match check
against the ground truth:

-1 a is invalid/ not SMILES
Race (a) = { —0.5 a # true molecule

+1 a = true molecule

-0.1
—02 WWWMW
-0.3
B
o
=
2 _ 04
>
1)
g Valid output SMILES
9 -0.5
<T
-0.6
—— Qwen2.5-3B
—— Qwen2.5-3B+SFT
-0.7 —— Qwen2.5-3B+MiST+SFT
0 10 20 30 40

Number of samples (x1000)

Figure 2. Accuracy reward evolution.

Figure [2] illustrates the evolution of the accuracy reward
throughout training. The base Qwen2.5-3B model plateaus
early at a reward below the -0.5 threshold, indicating that
while it frequently generates syntactically valid SMILES
strings, it fails to predict the correct product molecules. In
contrast, both fine-tuned variants (Qwen2.5-3B+SFT and
Qwen2.5-3B+MiST+SFT) maintain accuracy rewards above
-0.5 in the majority of the training process. The SFT-only
model shows a sharp increase in reward during the first
8,000 training samples, reflecting rapid format alignment.
This is followed by a more gradual rise, suggesting im-
proved chemical reasoning over time. Notably, the model
pretrained with MiST before SFT follows a similar trajec-
tory but consistently achieves a higher reward ceiling. This
highlights the effectiveness of MiST and SFT in enhancing
the model’s learning capability during RLVF.
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C.2. IUPAC to SMILES (12S)

Table 6. Example of IUPAC—SMILES conversion.
Task: IUPAC to SMILES Conversion

Dataset Source PubChem (CID 2,000,001 to 3,000,000)

(Kim et al.|[2025)

Question: You are an

expert in Cheminformatics,
who is very familiar with
Simplified Molecular Input
Line Entry System (SMILES)
notation, and here’s a task
for you: Given a molecule
with the IUPAC name as

below, please provide the
corresponding SMILES notation.
Here is the IUPAC name:

"4- (azepan-l-ylsulfonyl) -N-
(pyridin-3-ylmethylideneamino)
benzamide".

0=C (NN=CC1=CC=CN=C1)
Cl=CC=C (S (=0) (=0)N2CCCcCCC2)C=C1

<think>The SMILES
representation of
4-(azepan—-l-ylsulfonyl) -N-
(pyridin-3-ylmethylideneamino)
benzamide is

0O=C (NN=CC1=CC=CN=C1l) C1l=CC=C (
S(=0) (=0)N2CCccccz)c=C1
...</think>

Answer <answer=C (NN=CC1l=CC=CN=C1l)
C1=CC=C (S (=0)
(=0) N2CCCCCC2)C=Cl</answer> v

Input

Target Molecule

The TUPAC-to-SMILES conversion task presented requires
the model to translate a systematic chemical name into
its corresponding SMILES string notation. We source our
examples from the USPTO-480K dataset and prompt the
model with a clear generative instruction “Given this IU-
PAC name, please provide the corresponding SMILES no-
tation.” The ground truth is established by the Tanimoto
similarity score. The model’s chain-of-thought reasoning
is captured inside <think>... </think>tags and the final
SMILES inside <answer>. .. </answer>. This setup tests
the model’s ability to parse complex nomenclature and gen-
erate SMILES structural representations.

For GRPO reward pipeline, we use accuracy reward func-
tion that only considers the final ‘<answer>*‘ SMILES s,5.
After converting both the reference s* and prediction s,y
to Morgan fingerprints, it computes the raw Tanimoto simi-
larity 7 and then applies a piecewise linear scaling:
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+1.0, T = 1.0,
ree(7) =<¢7-0.3, 03<7<10,
-0.5, 7<0.3.

A perfect match yields ry; = 1.0, moderate similarity is
rewarded proportionally above —0.5, and very poor matches
incur a negative penalty.
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C.3. Reaction Naming

Table 7. Reaction Naming experiment description.

Task: Reaction Naming (RxN)

Dataset Source USPTO Reaction 1M; (Coley et al.!

2017)

What is the name of
this chemical reaction?
The reagents are

CC(C) (C) [si] (C) (C)Cl
and

Nclccc (—c2cccc (0)c2)c2cl
C(=0)NC2 and

the product

CC(C) (C) [Si] (C) (C)Oclcc
cc (—c2ccc (N) c3c2CNC3=0)cl.
Choose ONLY from the
following options

and write your

response choice inside
<answer>...</answer>:
"Acylation", "Aromatic
Heterocycle Formation",
"C-C Coupling",
"Deprotection",
"Functional Group
Addition", "Functional
Group Interconversion",
"Heteroatom Alkylation
and Arylation",
"Miscellaneous",
"Protection",
"Reduction”". Do not
provide a final answer
different than what is
provided in this list.

Input

Target Reaction Name Protection

<think>First, let’s break down
the reagents. The first reagent is
CC(C) (C) [si] (C) (C)Cl
which is
tert-butyldimethylsilyl
chloride...

Answer <answer>Protection </answer>

The reaction naming task is a classic example of a struc-
tured classification problem in cheminformatics, where the
goal is to categories the nature of a reaction given reac-
tants, conditions and products. This approach aim to test the
ability of the LLM to conduct chemical reasoning and in-
struction following for discrete level answering. In addition
to that, this setup also tests the model’s ability to inter-
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pret chemical structures from linear notation and enables
us to reveal how chain-of-thought guidance and prompt
design impact classification accuracy. To stimulate reason-
ing, the model is tasked to output his thinking process inside
<think>. .. </think>tags before emitting the final choice in
<answer>. .. </answer>tags. The ground-truth class labels
are evenly drawn from ten commonly found reaction type in
chemistry: ”Acylation”, ” Aromatic Heterocycle Formation”,
”C-C”, ”Coupling”, "Deprotection”, “Functional Group Ad-
dition”, ”Functional Group Interconversion”, ”Heteroatom”.
”Alkylation and Arylation”, "Miscellaneous”, ”Protection”
and “Reduction” derived from curated USPTO reactions
dataset.

Reward Functions:

¢ Continuous Format Reward:

— This reward is described in Section in the
Algorithm 3]

¢ Accuracy Reward:

0 if no answer is given

0.1 if a single answer is given (but wrong)

1 if the answer is entirely correct

-0.2 penalty if the model always output the same
wrong class

¢ Accuracy Percentage Reward: discrete reward to
foster perfect answers

— 0if the answer is wrong
— 1 if the answer is entirely correct
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C.4. Reaction Replacement

Table 8. Reaction Replacement experiment description.

Task: Reaction Replacement (RxR)

Dataset Source USPTO Reaction 1M; (Coley et al.|

2017)

Question: Which chemical reaction
is correct? Choose from the follow-
ing options:

A. the following
action, the reagents
Cclncc (C=0)nlCl1CC1,
CC (C)O0C=C (Br) C=0, Cl,
O=C (clcc (N2CCNC2=0) ccclF
)NICCCN (c2ncecs?2) CCl
and the product
0=Cclcnc2nlCCCC2.

B. the following
action, the reagents
Cclncc (C=0)nlCl1CC1,
CC (C)O0C=C (Br) C=0, Cl,
N=C1CCCCN1 and the product is:
CNC (=0) CC1 (0O) CCCN (C (=0)
c2cncc (F)c2)Cl.

C. the following
action, the reagents
Cclncc (C=0)nlCl1CC1,
CC (C)O0C=C (Br) C=0, Cl,
N=C1CCCCN1 and the product is:
0=Cclcnc2nlCCCC2.

D. the following re-
action, the reagents are:
CclcccceclOCCC (=0)N1ccce
(c2ccn[nH]2)C1,

CC (C)O0C=C (Br) C=0, Cl,
N=C1CCCCN1 and the product is:
0=Cclcnc2nlCCCC2.

Input

In re-

are:

is:
In re-
are:

In re-

are:

In

Make sure to give your choice
A, B, C, or D inside the <an-
swer>. .. </answer>tags.

Target Molecular Reaction (Choice)

<think>Let’s evaluate each option
step by step to determine which one
is correct. Option A: The reagent:
Cclncc (C=0)nlClCCl
matches  with the molecule
Cclncc (C=0)nlCICCI....

Answer <answer>C </answer>

The reaction replacement tasks challenges the model to
understand chemical reaction concepts, validity and abil-
ity to detect subtle structural inconsistencies. By provid-
ing the model with four nearly identical choices, chemi-
cal reaction notation coherence understanding is required.
Each dummy reaction has one reagent randomly swapped,
where starting from a correct USPTO reaction, we generate
three “corrupted” variants by replacing a single reactant or
product with the most Tanimoto-similar molecule drawn
from a random batch of 50 Enamine50k compounds. In
the prompt we provide the lists options A—D, each speci-
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fying reagent SMILES, conditions SMILES, and product
SMILES, and the model is then instructed to answer one
of the four choices as the correct one. The model is also
instructed to think through each option step by step inside
<think>. .. </think>and the answer is emitted inside <an-
swer>. .. </answer>tags.

Reward Functions:

¢ Continuous Format Reward:

— This reward is described in Section [E.2.1]in the
Algorithm 3]

¢ Accuracy Reward:

— 0if the answer is wrong
— 1 if the answer is entirely correct

C.5. Reaction Inversion

Table 9. Reaction Inversion experiment description.

Task: Reaction Inversion (RxI)

Dataset Source

Input

Target Molecular Reaction (Choice)

Answer

USPTO Reaction 1M; (Coley
et al.|2017)

Question: Which chemical reac-

tion is correct? Choose from the
following options:

A. In the following
reaction, the reagents
are: BrCclcccccel,
[K+], [OH-T,
0O=C (0O) clccc (OCc2ccccec?)
ccl and the product is:
CCOC (=0) clccc (0) ccl.

B. In the following re-
action, the reagents are:
C=0, O=Cclcccccel,
[B-]1C#N, [Na+],

CN[CR@H]1[CQQH] (C)CI[Ce®
@H] (c2ccncc2NC (=0) OC (C)
(C)C)C[CRH]1INC (=0)
OC(C) (C)C, the conditions
are: CO, [OH-], [OH-],
[Pd+2], and the product is:
C[C@H]1C[CRQH] (c2ccncc
2NC (=0)0C (C) (C)C)C
[C@QRH] (NC (=0)O0C (C) (C)C)
[CQH] IN.

C. In the following
reaction, the reagents
are: CCOC (=0) C#N,
CCOC (=0) C1,
CclccoclC=Nclcccccel,
the condition is:
Cl(C)C(C)=Cc=CC=1,
and the product is:
CCOC (=0) clcc2ccoczenl.

D. In the following re-

action, the reagents are:
CC1l(C)OB(c2cn[nH]c2)0C
1(Cc)c,
Nclnc (-c2cc3c (s
cn[nH]c4)cc20CC3)c(-c2
ccccec2Cl) sl

and the product is:
Nclnc (-c2cc3c(s2)-c2
ccc (Br) cc20CC3)c (-

c2ccccc2Cl) sl.

Make sure to give your choice
A, B, C, or D inside the <an-
swer>. .. </answer>tags.

<think>Starting with option A:
The reaction uses benzyl bro-
mide BrCclcccecel ...

<answer>C </answer>

The reaction inversion task challenges the model to un-

15

2)-c2ccc(-c
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derstand chemical reaction concepts, validity and ability
to detect subtle structural inconsistencies. By providing
the model with four completely different choices, strong
chemical reaction notation coherence understanding is re-
quired. Each dummy reaction has one reagent randomly
swapped with the longest string SMILES among the prod-
ucts, enabling us to obtain 4 different reaction choices. In
the prompt we provide the lists options A-D, each speci-
fying reagent SMILES, conditions SMILES, and product
SMILES, and the model is then instructed to answer one
of the four choices as the correct one. The model is also
instructed to think through each option step by step inside
<think>. .. </think>and the answer is emitted inside <an-
swer>. .. </answer>tags.

Reward Functions:

¢ Continuous Format Reward:

— This reward is described in Section [E.2.1]in the
Algorithm 3]

¢ Accuracy Reward:

— 0 if the answer is wrong
— 1 if the answer is entirely correct
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C.6. Reaction True/False

Table 10. Reaction True/False experiment description.
Task: Reaction True/False (RxTF)

Dataset Source USPTO Reaction 1M; (Coley et al.!

2017)
Input Question: Is this chemical
reaction correct? In the fol-

lowing reaction, the reagent is:
COC (=0) clccc (OC)c
(OCCc2cccc (C#N)c2)cl,

the conditions are: C1COCCO1,
[Li+], [OH-], and the product is:
COclccc (C (=0)
0)cclOCCclcccc (C#N)cl.

Target Molecular Reaction Validity

Output <think>First, I remember that
LiOH, [Li+] [OH-] is a strong
base, so it’s likely an acid-base reac-
tion. The ester group in the starting
material . ..

Answer <answer>True </answer>

The Reaction True/False task is a binary derivative of the
Reaction Replacement task. In this case, the model is
asked to analyze and judge based on one single reaction,
whether the reaction is correct or wrong. Each prompt
presents one reaction—listing the reagent SMILES, the re-
action conditions SMILES, and the product SMILES—and
then asks “Is this chemical reaction correct?”. The ex-
amples are drawn from the Reaction Replacement set,
where some of the reactions have been corrupted by swap-
ping one random molecule in the reaction string by a
new candidate. The model is instructed to reason step by
step inside <think>...</think>, then has to emit <an-
swer</answer>or <answer</answer>accordingly. This
format was designed to simplify the reaction replacement
task by providing only a binary label choice, allowing us to
not only reduce the task complexity but also diminish the
hallucination effects emanating from providing many exam-
ples in the prompt. In this scenario, the model only ever
sees one reaction, and its ability to detect subtle mismatches
in chemical transformations and to follow a true/false classi-
fication protocol with transparent chain-of-thought is tested.

Reward Functions:

¢ Continuous Format Reward:

— This reward is described in Section [E.2.1]in the
Algorithm[3]

¢ Accuracy Reward:

— 0if the answer is wrong
— 1 if the answer is entirely correct
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C.7. Chemical Formula Balancing Task (CeB) equations, specifically leveraging a reward mechanism to
enhance the accuracy of chemical formula generation. The
GRPO reinforcement learning data set was derived from a

Table 11. Template for reporting RL experiments. data set of chemical formulas focusing on perovskite com-
Task: Chemical Formula Balancing Task (CeB) pounds. The dataset was prepared by selectively masking
certain products or their stoichiometric coefficients within
Dataset Source The Perovskite Dataset (Jacobsson balanced chemical equations.
et al.|[2022)
: . . Reward Function Design: The reward function combines
Input You are now acting as a skilled .. .
chemistry expert.  Your goal two distinct components: format correctness and prediction
is to identify and complete the accuracy.
missing compound(s) represented
by [MASK] in the given chemical « Format Reward:
reaction. Reaction: 6 BaCO3 + 1
Na2CO3 + 4 Si02 == [MASK] — Initial reward is set to O if the generated chemical
Na2Ba[MASK] equation does not follow the correct format.
(SIIMASK]O[MASK])(SIO[MASK])2 — An additional reward of 0.3 is given if the left-

+ 7 CO2. Analyze the equation
carefully, considering the law of
conservation of mass and stoichiom-
etry. Ensure the total number of
atoms of each element on both sides
of the equation remains balanced.

Target Molecule (Material) 6 BaCO3 + 1 Na2CO3 + 4 SiO2 =
1 Na2Ba6(Si209)(Si03)2 + 7 CO2

Output jthinking; 1. Element Count Anal- reward = format_reward + sim(yLpm, Yor)
ysis: - Reactants: - Ba: 6 (from 6

BaCO3) - Na: 2 (from Na2CO3) -
Si: 4 (from 4 Si02) - C: 7 (6 from
BaCO3 + 1 from Na2CO3) - O:
6x3 (BaCO3) + 1x3 (Na2CO3) +
4x2 (Si02) =29 - Products: - CO2:
7 CO2 (7 C, 14 O) - Missing com-
pound must account for remaining
elements: 6 Ba, 2 Na, 4 Si, and 15
O (29 total O - 14 from CO2). 2.
Structure of Missing Compound:
- The formula template [MASK]
Na2Ba[MASK](Si[MASK]O[MASK])
(SiO[MASK])2 suggests: - 2 Na, 6
Ba (to balance Ba from reactants), 4
Si (from Si02), and 15 O. - Silicate
groups: (Si209) and (SiO3)2 (to
total 4 Si and 15 O). 3. Charge
Balance: - Cations: Na2 (2+) +
Ba6 (12+) = +14 charge. - Anion:
Si4015 (4 Si x +4 + 15 0 x -2
= +16 -30 = -14) balances the
+14 charge. 4. Final Formula: -
Na2Ba6(Si209)(Si03)2  consol-
idates all elements and charges
correctly.j/thinking;,

Answer <answer>6 BaCO3 + 1 Na2CO3 +
4 Si02 = 1 Na2Ba6(Si209)(Si03)2
+ 7 CO2</answer>

hand side (reactants) of the generated equation
matches exactly with the ground truth.

* Accuracy Reward: This reward component assesses
the similarity between the generated right-hand side
(products) (yrrm) and the ground truth (ygr) using a
predefined similarity metric, formulated as:

The goal of this task is to evaluate the performance of large
language models (LLM) in predicting balanced chemical
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C.8. Conditional Material Generation (CMG)

Table 12. Conditional Material Generation experiment description.

Task: Conditional Material Generation (CMG)

Dataset Source Materials Project (Jain et al.|2013)

Build a material that has O, Te, Tm. Please
keep your reasoning as concise as pos-
sible. For example jmaterial;, A A B
B B jsgl2;j/material; where A, B refer
to elements and jsgl2; denotes the space
group; for example: jmaterial; Pa In Tc Tc
isg225; i/material;,.

Input

Target Material Composition ~ Any valid composition made up of the ele-

ments O, Te, and Tm with a valid space group

number, e.g.: jmaterial; O O Te Tm Tm Te

isgl127;/material,.

Output To combine O, Te, and Tm, a space group
like sg127 (for a 1:1:1 ratio) could work. A
possible structure could be: jmaterial; O O
Te Tm Tm Te jsgl27;i/material;. This fits
the space group 127, which is common for
space-filling structures. (Note: space groups
can vary, but this is a reasonable choice for a
simple ternary compound.)

imaterial, O O Te
isg127;/material;,

Answer Tm Tm Te

This task aims to leverage the scientific knowledge embed-
ded in MiST-trained LLMs to generate novel materials from
a specified set of elements. The experiment focuses on
the model’s ability to understand three-dimensional atomic
relationships within crystal structures and, based on that un-
derstanding, produce valid compositions. If the model can
perform this task with high accuracy, it could significantly
enhance the efficiency and cost-effectiveness of the material
generation phase in the materials discovery process.

Reward Function Design: The quality of the generated
composition is measured by the metrics: validity, precision
and novelty. Validity is assessed using SMACT (Davies
et al., 2016)) validity, which checks whether the generated
composition adheres to fundamental chemical rules, such
as charge neutrality. Precision measures the model’s ability
to follow instructions and correctly include the specified
elements. It is computed using the following equation:

|Epi N Ey;l

Precision = 5 ,
pt

where E,; is the set of elements specified in the i-th prompt
and FE; is the corresponding generated element (Xia et al.,
2025). The novelty of the generated composition was deter-
mined based on whether the composition was present within
the materials project dataset or was previously generated
by the model. Furthermore, to ensure the model provided
its generated solution in a valid format, the reward function
also checked that the generated composition was enclosed
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within the jmaterial; ...j/material; tags and that the assigned
space group number lies within the valid range of 1 to 230.

Therefore, the reward function used to train the LLM for
the conditional material generation task was:

R = a4 Validity 4+ asPrecision + asNovelty + a4 Format,

where the parameters «; for i = 1, ..., 5 are scaling factors
for each portion of the reward.
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C.9. Binary Compound Structure Relaxation Task

(CrR)

Table 13. Template for reporting RL experiments.

Task: Binary Compound Structure Relaxation Task (CrR)

Dataset Source

Input

Target Material

Answer

Materials Project Trajectory (MPtrj) Dataset
(Deng||2023), Materials Project (Jain et al.|
2013)

Given a perturbed binary compound: for-
mula Ti 1_int Ni 1_int, space_group_symbol
’P1’  lattice_parameters a 2.74603000
b 2.94419691 ¢ 2.94419691 alpha
119.99997545 beta 90.00000000 gamma
90.00000000 Zr 1.nt  0.00000000
0.00000000 0.00000000 N 1_int 0.50000000
0.66670000 0.33330000 perform multiple
steps Structural Relaxation on the given per-
turbed binary compound and reduce the in-
ternal energy. Please document your thought
process within <think>... </think>tags,
and provide the final corrected structure in
<answer>... </answer>tags.

A more stable structure of the same material
with lower inner energy.

ithinking; The input structure describes ZrN
in a hexagonal P-6m2 space group with sig-
nificant initial distortions. The relaxation
process improves stability through three
key mechanisms: 1. Symmetry Restora-
tion:. . . j/thinking;,

<answerZr 1.int N 1_int
space_group_symbol 'P1’ lattice_parameters
a 3.15089295 b 3.15093266 ¢ 2.93526192
alpha  90.00000000 beta 90.00000000
gamma 119.99958321 Zr 1_int 0.99999066
0.99998132 0.00000000 N 1_int 0.33330934
0.66661868 0.50000000</answer>

This task aims to utilize LLMs to perform preliminary relax-
ation (pre-relaxation) of unstable crystal structures, aiming
to yield more stable structural configurations. This prelimi-
nary step is intended to substantially decrease computational
costs and improve efficiency in subsequent high-accuracy
Density Functional Theory (DFT) calculations. DFT calcu-
lations, while accurate, are computationally intensive. By
leveraging LLM-generated pre-relaxation adjustments, the
experiment seeks to effectively reduce the quantity of com-
putationally unfavorable structures, thereby streamlining
and accelerating the DFT computational pipeline.
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Format Reward:

Rformat(sgena Si ) =

_5’

~10,

if Sgen is valid
Mat2Seq format and
has lower inner energy
than S;,

if Sgen is valid
Mat2Seq format
otherwise
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D. Benchmarking procedure

In this section we elaborate on the methods used to evaluate
the models in the multiple ways displayed in Table 22} Here
we give details of how diagnostic metrics have been com-
puted (SCS, CCS), which evaluate the capabilities in LLMs
that are necessary for success on chemical tasks in an RL
setting. Additionally, performances on downstream tasks
have been computed using benchmarks derived from each
task (see Appendix above), along with different prompting
techniques, that mark the difference between direct answer,
or reasoning answer.

D.1. Latent Symbolic and Chemical Knowledge
D.1.1. SYMBOLIC COMPETENCE SCORE BENCHMARK

The Symbolic Competence Score benchmark measures the
model’s latent capability to read and write correct chemi-
cal symbols. In this benchmark we focus particularly on
SMILES, as organic chemistry spans a majority of our tasks.
For this we collected 10000 valid SMILES from PubChem
(?), such that no overlap exists with the MiST data. A sec-
ond dataset is created with corrupted smiles based on these
smiles, where corruptions are minimal, however render the
smiles unvalid. The corruption procedure is specified in
Algorithm [T} The algorithm removes a random subset of
key structural grammar elements (ring/branch brackets and
digits) from the SMILES string, producing broken or am-
biguous strings. Corruption rate p controls the proportion of
removed elements, which for all our experiments has been
set to 0.2.

Algorithm 1 SMILES Grammar Element Corruption
SMILES  string s, rate  p

rupted SMILES  string  Scorrupt Let G

{(,),0,1,0,1,2,3,4,5,6,7,8,9} (grammar elements)
L + length of s I < indices of s wheres; € G |[I| =0 s
Niemove < max(1, |p- |I|]) Randomly select R C I with
|R| = Nremove Scorrupt <— empty string i <— 1to L i ¢ R
Append 5; t0 Scorrupt

Cor-

corruption

Scorrupt

Finally, evaluation happens in two stages. First, the log-
likelihoods are computed using the model for the following
string, that provides context for the string to look more
natural:

The molecule represented with
the SMILES [BEGIN_SMILES] smiles
[END_SMILES]

Where smiles is replaced by both the correct, and the in-
correct SMILES string. The log-likelihoods corresponding
to the smiles tokens are isolated by dropping the computed
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likelihoods associated with the context shown above. The
two corresponding strings are thus

Original SMILES:

The molecule represented with
the SMILES [BEGIN_SMILES] O=C (0O)
C[CQH] (O)C[CRH] (O)CCn2c (c(c(c2cl
ccc (F)cecl)c3cececec3)C(=0)Ncdccececce
4)C(C)C [END_SMILES]

Corrupted SMILES:

The molecule represented with

the SMILES [BEGIN_SMILES]

O=C (0O)C[C@H] (O)C[CE@H] (O)CCn2c (c(c(c2
clccc (F)cecl)c3cececeeld)
C(=0)Ncdccccc4)C(C)C

[END_SMILES]

Average loglikelihoods are computed for the whole sam-
ple of 10000 SMILES in this manner, and SCS score is
computed as the Cohen’s d effect size between the distribu-
tions of loglikelihoods of correct smiles, vs that of corrupted
smiles.

Note that although the structure of material compositions
is different from that of SMILES, the corruption method is
similar, as key structural elements such as the space group
number tag (<sgl2>) and elemental symbols are replaced
with special characters.

D.1.2. CHEMICAL COMPETENCE SCORE BENCHMARK

The Chemical Competence Score (CCS) evaluates a model’s
latent ability to distinguish between chemically accurate and
inaccurate factual statements. To construct this benchmark,
we selected 1,000 samples from the test split of the SMolln-
struct Molecule Description dataset (Yu et al.,[2024b), which
was never used in all post-training stages. Each sample in
the dataset consists of a brief description of an organic
molecule. For example, one entry describes an acetamide
as:

N-[4-(1,3-thiazol-2-ylsulfamoyl)
phenyl] acetamide is

a sulfonamide that is
benzenesulfonamide substituted
by an acetylamino group

at position 4 and a
1,3-thiazol-2-yl group at

the nitrogen atom. It is a
metabolite of sulfathiazole.

It has a role as a marine

xenobiotic metabolite. It is
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a sulfonamide, a member of
acetamides, and a member of
1,3-thiazoles.

For material data, we utilized Robocrystallographer
(Ganose & Jain, [2019) to generate 600 natural text descrip-
tions for crystal structures from the Material Project (Jain
et al.| 2013). Here is an example entry:

AIN is Wurtzite structured and
crystallizes in the hexagonal
P6.3mc space group. Al(l) is
bonded to four equivalent N (1)
atoms to form corner-sharing
AIN4 tetrahedra. There are

three shorter (1.90 A) and one
longer (1.91 A) A1(1)-N(1) bond
length. N(1) is bonded to four

equivalent Al (1) atoms to form
corner-sharing NAl4 tetrahedra.

To create a contrastive benchmark, we generated an incor-
rect version for each entry by replacing one sentence in the
original description with a sentence from a different one,
while keeping the target molecule/crystal unchanged. Here
is an example of an incorrect version of the above acetamide
example with the edited section highlighted:

N-[4-(1,3-thiazol-2-ylsulfamoyl)
phenyl]lacetamide is a

tricyclic triterpenoid of the
isomalabaricane group. It is

a metabolite of sulfathiazole.
It has a role as a marine
xenobiotic metabolite. It

is a sulfonamide, a member

of acetamides and a member of
1,3-thiazoles.

D.2. Task Benchmarks

The benchmarks have been obtained by selecting a subset
of the datasets defined in Appendix C} for each of the tasks.

D.3. Inference techniques

We observed that models’ full text generation often over-
flows the available context window, without providing any
final answer within <answer>tags, thus preventing its cor-
rect evaluation. To overcome this, upon failure to generate
an <answer>tag, we directly append the <answer>tag and
retry the generation, biasing the model towards generating
an answer at that point. Pseudo-code for this is provided in
Algorithm 2]
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Table 14. Template for reporting RL experiments.

Task: Binary Compound Structure Relaxation Task (CrR)

Dataset Source ~ Materials Project Trajectory (MPtrj) Dataset
(Deng! [2023), Materials Project (Jain et al..

2013)

Given a perturbed binary compound: for-
mula Ti 1_int Ni 1_int, space_group_symbol
’P1’  lattice_parameters a 2.74603000
b 294419691 c¢ 2.94419691 alpha
119.99997545 beta 90.00000000 gamma
90.00000000 Zr 1l.int  0.00000000
0.00000000 0.00000000 N 1_int 0.50000000
0.66670000 0.33330000 perform multiple
steps Structural Relaxation on the given per-
turbed binary compound and reduce the in-
ternal energy. Please document your thought
process within <think>... </think>tags,
and provide the final corrected structure in
<answer>... </answer>tags.

Input

A more stable structure of the same material
with lower inner energy.

jthinking; The input structure describes ZrN
in a hexagonal P-6m2 space group with sig-
nificant initial distortions. The relaxation
process improves stability through three
key mechanisms: 1. Symmetry Restora-
tion:. .. j/thinking;,

Target Material

<answerZr 1.int N 1_int
space_group_symbol 'P1’ lattice_parameters
a 3.15089295 b 3.15093266 c 2.93526192
alpha  90.00000000 beta 90.00000000
gamma 119.99958321 Zr 1_int 0.99999066
0.99998132 0.00000000 N 1_int 0.33330934
0.66661868 0.50000000</answer>

Answer

An extension of such an injection technique is that models
can be biased from the beginning of the completion towards
directly providing an answer, thereby allowing us to evaluate
the effect of the intermediate text inside <think>tags. In
Table[22|in the main manuscript, direct answer results are
reported outside of the parentheses, while reasoning results
are in parentheses.

E. Experimental settings
E.1. MiST: Mid-stage Scientific Training

Our MiST model is based on the Qwen-2.5-3B model. We
continue the pre-training and perform SFT thereafter on a
chemically enriched corpus spanning a diversity of sources,
targeting the two prerequisites we proposed in the main
manuscript.
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Algorithm 2 Answer tag injection <answer> - Think and
answer procedure

InputInput OutputOutput

prompt, model_sampling_params, model, nbr_max_retries A
completion containing <answer>...</answer>
result <— llm.generate(prompt, sampling_params) comple-
tion <— result.outputs[0].text

1 <— 1 max_retries Append the ‘<answer>‘ token to coax
a proper tag new_prompt <— prompt ++ competition ++
"<answer>" result < llm.generate(new_prompt,
sampling_params) complete_completion <  re-
sult.outputs[0].text HasAnswer(complete_completion )
complete_completion complete_completion *fallback if
still no tag

The following configuration of hyperparameters was used
for training:

Table 15. MiST Pretraining Hyperparameters

Parameter Value

Model Architecture Qwen-2.5-3B
Epochs 4 (~90,000 steps)
Batch Size 32

Max/Min Learning Rate 1 x 107°/1 x 1076
LR Warmup Steps 1,000

LR Decay Steps 1,000

Optimizer AdamW

Loss Function Cross-Entropy
Hardware 32 x H100 GPUs
Total GPU Hours 640

After this stage, the model is further trained with SFT on
instruction and Q&A data, as well as reasoning traces ob-
tained from a stronger reasoning LLM, on more chemistry-
relevant tasks; see the following section for more details.
The following configuration was used:

Table 16. MiST SFT Hyperparameters

Parameter Value

Model Architecture Qwen-3B

Epochs 3 (~32,000 steps)
Batch Size 32

Learning Rate 1x10°
Optimizer AdamW

Loss Function Cross-Entropy
Hardware 32 x H100 GPUs
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E.2. Reinforcement Learning experiments

The Open-R1 repository from Hugging Face (https://
github.com/huggingface/open—-rl) was forked
and modified with additional features/optimizations for the
GRPO experiments. Each training was run for 12 hours
on four nodes (with four NVIDIA GH200 120GB GPUs),
summing to 16 GPUs and 192 GPU-hours per training. The
best hyperparameters are summarized in Table[T7] A com-
pletion length of 8192 was used to let the model output long
reasoning thoughts. The best hyperparameters and rewards
were optimized using a total of 30k GPU-hours with varia-

tions in the experimental setups. The list of used rewards is
described in Section

parameter value
per_device_train_batch_size 1
gradient_accumulation_steps | 8
learning_rate 2e-6
Ir_scheduler_type cosine
warmup_ratio 0.03
beta 0.04
max_prompt_length 384
max_completion_length 8192
num-generations 8
use_vllm true
vllm_max_model_len 8192

Table 17. Optimized hyperparameters used for the GRPO training
experiments.

E.2.1. REWARDS

The rewards designed for our GRPO experiments are
grouped into two main categories:

* Format reward: the goal is to ensure that the trained
model uses the appropriate format with reasoning
(between <think>tags) and answer (between <an-
swer>tags).

* Accuracy reward: the goal is to verify the answer of
the model for the given task.

Accuracy reward: For the different tasks, different accu-
racy rewards are implemented in a continuous manner if
possible. For SMILES-based tasks, the Tanimoto similarity
score is generally used. However, for MCQA-based tasks,
the rewards are usually discrete since the answers are cor-
rect or wrong. These rewards typically range from O to 1
(perfect answer).

Accuracy percentage reward: For each task, we also im-
plement a discrete accuracy percentage reward to foster
perfect answers and to log the training accuracy of the mod-
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els. This reward is O if the answer is wrong and 1 if the
answer is entirely correct.

Continuous format reward: A continuous format reward
has been implemented with the structure described in Al-
gorithm 3] The idea behind this reward is to output a score
between -1 (very bad format) and 1 (perfect format) with
continuous incremental small steps to guide the model to
the expected format.

Algorithm 3 Continuous Formatting Reward Calculation
InputInput OutputOutput Raw model output o € String
Formatting reward r € [—1, 1]

r — 0.0  *[r]Initialize ~reward T —
{<think>,</think>, <answer>, </answer>}
Check each tag appears exactly once tag € T
COUNT(o,tag) =17« r+0.05 r <+ r—0.05

Check correct start and end tags
STARTS WITH(o,<think>) r <+ r + 0.05
<1 —0.05

ENDS_WITH(o, </answer>)r < r+0.05 7+ r —
0.05

Check think-answer boundary
COUNT(o, </think>\n<answer>) = 1
r<r+01 r<r—-0.1

Check  answer  block  extraction  my —
REGEX_MATCH(<answer>(.x)</answer>,  0)
my = None r + r — 0.2 NUM_GROUPS(m;) # 1

r<r—0.05 r<~r+02

Check whole think \n answer pattern mg <
REGEX_MATCH(<think>(*)</think>\n
<answer>(.*)</answer>, o) mg = None

r < r— 0.4 NUM_GROUPS(ms) # 27r «< r — 0.1
r<1r+04
r

F. Data
F.1. Data sources and processing
F.1.1. FINEWEB-EDU

The FineWeb-Edu can be found on Hugging Face
(https://huggingface.co/datasets/

HuggingFaceFW/fineweb—edu) (Penedo et all
2024). The subsets "CC-MAIN-2013-20" to "CC-MAIN-
2024-10” were downloaded for a total of ~6 TB, which
represents roughly 1.3T tokens and 1.26B individual texts.
Based on the representative subset ’sample-10BT” (also
downloaded), the text sources were computed by taking
the base URL (from the dataset column url”), then these
sources were sorted from the most prevalent to the least. We
manually labeled the most prevalent sources as ”chemistry”,
“non-chemistry”, or “undetermined”. The goal was to
label a source as “chemistry” only if nearly all the texts
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from that source are about chemistry. On the other hand,
a source is classified as “non-chemistry” only if there is
no mention of chemistry in all the texts from that source.
When a source contains a mix, like a school website with
chemistry texts and texts for other fields, the label used
is “undetermined”, and the source is not used. After this
manual labeling, the texts from “sample-10BT” were
classified based on the labeled sources. It led to a ground
truth of approximately 10,000 “chemistry” texts and 50,000
“non-chemistry” texts (out of the ~10M texts found in
”sample-10BT”). Based on this ground truth, a custom
non-ML classifier was built using the word frequencies in
”chemistry” and “non-chemistry” texts. The texts were
lemmatized before building word frequency vectors for the
two classes using a simple processing script that replaces
any non-standard character with a space, before splitting
the strings by the spaces. A custom vocabulary was also
built to store these lemmatized texts in a tokenized manner.
Other lemmatization methods (such as Spacy or NLTK)
were also tried, but did not lead to better results and were
extremely expensive to use on the full FineWeb dataset (>6
TB). After building the vocabulary and the word frequency
vectors for the two classes, the formula below was applied
to each FineWeb text to create an associated ~’chemistry
score” (ranging from O to “infinity”). The frequencies of
the lemma £ in chemistry texts and non-chemistry texts are
denoted ff and f}’, respectively. The text chemistry score
(TCS) is computed using the following equation:

Kok,
. ) r )

TCS(teXt) = ™M ! Ek_:lemma wy  with wg = I;L lg
o i texe 0 otherwise

&)
This labeling strategy was applied to the entire FineWeb-Edu
corpus, and the texts with 7’C'S > 4 were retained, yield-
ing a pretraining set of 1.4 billion tokens of high-quality
chemistry-labeled texts. The threshold T’C'S > 4 was de-
cided based on the PR curve plot shown in Figure 3] This
threshold allows for high precision, and the quantity of texts
retrieved was sufficient for our pretraining pipeline. Addi-
tional plots with the percentage of chemistry texts by thresh-
old and the cumulative number of chemistry token counts by
threshold can be observed in Figures 4] and [5] respectively.
Some chemistry text examples (with their associated TCS
scores) are shown in Figure [6]

F.1.2. PUBCHEM

The first three million compounds from the PubChem
database (Kim et al., 2025) (CID from 1 to 3,000,000)
were dumped using the PUG REST API with batched re-
quests in October 2024. Each record contains these columns
(among others): CanonicalSMILES, IsomericSMILES, IU-
PACName, and InChl. Since the molecule canonicaliza-
tion algorithm used in the PubChem database is not the


https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

MiST: Understanding the Role of Mid-Stage Scientific Training in Developing Chemical Reasoning Models

PR curve (on benchmark, containing 15.01% of chemistry texts)

PRAUC: 0.9480

00
0.0 02 04 06 08 1.0

Figure 3. Precision-recall curve of the estimated retrieved chem-
istry texts based on the manually labeled ground truth. The differ-
ent T'C'S thresholds are shown in red dots on the PR curve.

Figure 4. Estimated percentage of chemistry texts by TCS thresh-
old.

same as the one used by RDK:it, all the compounds were re-
canonicalized. The canonical SMILES consistency was also
ensured for each compound by computing four canonical
SMILES for each molecule:

¢ CanonicalSMILES — canonicalized using RDKit.

¢ IsomericSMILES — canonicalized using RDKit.

IUPACName — SMILES using py2opsin and then
canonicalized using RDKit.

¢ InChl — canonical SMILES using RDK:it.

Then the four newly generated canonical SMILES were
compared, and if a mismatch is found, the compound is
discarded. This method filtered out approximately 40%
of the compounds, and the duplicated canonical SMILES
were also discarded. For the remaining compounds, four
”SMILES variants” were computed using RDKit based on
the canonical SMILES to have four non-canonical SMILES
in each record. At the end of this processing script, an ap-
proximate of 1,800,000 compounds were kept and ready to
be used. The dataset was then split in the following manner:
the first million compounds (CID from 1 to 1,000,000) were
used for pretraining, the second million compounds (CID

Figure 5. Estimated cumulative chemistry token count by TCS
threshold.

from 1,000,001 to 2,000,000) were used for GRPO training,
and the third million compounds (CID from 2,000,001 to
3,000,000) were used as the test split for benchmarking.
Each split contains ~600,000 valid compounds. Multiple
derived datasets were also generated for the different chemi-
cal tasks used with GRPO training (explained in Section[F2]
below).

F.2. Chemical Tasks Data sources

All MCQA-derived tasks for GRPO training are built on the
USPTO Reaction 1M dataset, and the 12S dataset was built
using the PubChem dataset from Section [F.1.2}

Reaction Prediction (RxP)

* The USPTO-480K dataset (Coley et al., [2019)
consists of approximately 480K organic reactions,
divided into training and test splits.

* We retained only reactions with a single product,
resulting in roughly 400K training samples and
38K test samples.

 The first 10K reactions from the training set are
used to generate reasoning traces.

* An additional 50K reactions, randomly selected
from the remaining training data, are used for
RLVFE.

* A set of 500 reactions, randomly sampled from
the test set, is used for benchmarking.

IUPAC to SMILES (12S)

* The processed PubChem compounds (CID from
1,000,001 to 2,000,000) from the Section [F.1.2]
are used as the base data.

* The canonical SMILES and the IUPAC were di-
rectly used from the dataset.

Reaction Naming (RxN)

e Start from the full USPTO 1M reaction set.
* Use Rxn-Insight’s class generation to detect the
reaction name.

* Filter to 600000 samples, evenly distributing
across the 10 classes.
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Figure 6. Examples of labeled chemistry texts with the associated TCS scores.

Reaction Replacement (RxR)

* Duplicate each USPTO 1M reaction four times.

* For three copies, randomly select one molecule
(reactant or reagent) to replace.

* Draw a batch of 50 candidate molecules from
Enamine50k and compute Tanimoto similarity.

* Swap in the most similar molecule as the replace-
ment.

Reaction Inversion (RxI)

¢ Take four instances of reactions in USPTO 1M,
and invert one reagent with a product for 3 of
them.

* The LLM is required to predict which one of the
four reactions is still correct.
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Reaction True/False (RxTF)

* Derived from the Reaction Replacement dataset.

* Present a single reaction (original or corrupted)
and ask the model to judge its chemical correct-
ness.

F.3. Material Tasks Data sources
Chemical Formula Balancing Task (CeB)

A total of 1500 chemical formulas were selected
from the Perovskite Dataset (Jacobsson et al.,
2022) to form the data set, and the data set was
then enhanced by randomly masking individual
stoichiometric coefficients within products or en-
tire product compounds using [MASK].
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Conditional Material Generation (CMG)

* We selected 1000 samples from Materials Project
(Jain et al.l [2013)) and extracted the constituent
elements from each sample to create our dataset.
For example, the compound TeOy was decom-
posed into its constituent elements Te and O to
form our training set.,

Binary Compound Structure Relaxation Task (CrR)

* We selected 2,000 binary compound crystal struc-
tures from the Materials Project (Jain et al.,[2013)
across the following categories: Intermetallics,
Semiconductors, Oxides, Sulfides, Nitrides, Car-
bides, Hydrides, Halides, Borides, Silicides, Phos-
phides, Arsenides, Tellurides, and Selenides. And
we applied perturbations to alter the positions of
certain atoms and modify the cell parameters of
these structures to form our training dataset.
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F.4. Resulting data mixture

The pretraining dataset was post-processed using an annota-
tion pipeline to detect each molecule in the texts. For each
molecule, the tags ”[START_MOL]” and "[END_MOL]”
were added to enclose it.  Similarly, the SMILES
were computed for each molecule and added between
”[START_SMILES]” and ”[END_SMILES]” tags after the
molecule.

Table 18. MiST Pretraining Dataset Composition

Data Source Tokens Proportion
ChemRxiv + S20RC 1.2B 41.37%
FineWeb (Q4-6) 1.4B 48.27%
PubChem Synthetic 120M 4.14%
Synthetic Reactions 100M 3.44%
CommonCrawl Replay 80M 2.75%
Total 2.9B 100%

Supervised fine-tuning was performed on the MiST - Qwen-
3B model, primarily using chemistry-specific reasoning and
instruction datasets, as follows:

Table 19. MiST SFT Dataset Composition

Data Source Contents/Size

DeepSeek Rxn Traces ~7,000 samples

Smollnstruct 125, S2I, captioning, gen.

MMLU 350 general + 300 chemistry samples

Chain-of-Thought (CoT)  ~27,000 samples

G. Compute resources

As described in Section[E.2]for the GRPO experiments, each
training was run for 12 hours on four nodes (with 4 NVIDIA
GH200 120GB GPUs or 8 AMD MI250x 128GB GPUs),
summing to 16 GPUs and 192 GPU-hours per training. The
best hyperparameters and rewards were optimized using a
total of 30k GPU-hours with variations in the experimental
setups. An additional 10k GPU-hours were used for the
final runs, summing to a total of 40k GPU-hours.
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H. Additional experimental results
H.1. MiST

We conducted other experiments to evaluate our MiST
model’s performance on other tasks and in comparison with
strong baselines from the literature. In particular, we com-
pare against NatureLM (Xia et al.| 2025) and other general-
purpose LLMS, on the task of SMILES to IUPAC and IU-
PAC to SMILES conversion. The results shown below put
our MiST model (3B) on par with NatureLM 8B, while
approaching the 8x7B MoE variant on [IUPAC-to-SMILES
conversion.

Table 20. Accuracy for IUPAC-to-SMILES and SMILES-to-
IUPAC on benchmark datasets. The best value in each column is
shown in bold.

However, the low novelty score indicates limited generaliza-
tion, implying that the model is overfitting to training data
and struggles to produce truly new compositions.

In comparison, SFT applied directly to the base Qwen-2.5
3B model results in high validity and precision but retains
a poor SCS score. This contrast highlights that symbolic
competence is primarily achieved through MiST, not SFT.
Additionally, the low novelty score again suggests overfit-
ting, as the model continues to rely on memorized examples
rather than generating original compositions.

When combining MiST, SFT, and RL, there is a substan-
tial improvement in novelty, indicating that the model is
better able to utilize its symbolic understanding and do-
main knowledge to generate rather than recall compositions.
This suggests that while base models have weak symbolic

competence, MiST significantly enhances this capability.

Model IUPAC-to-SMILES  SMILES-to-IUPAC DR . ) . .
Though MiST initially reduces instruction-following ability
gl};’Or[iT 8(7)33 888(5) due to longer and more complex outputs, SFT helps regain
Claude 3 Opus 0177 0.000 this ability for spemﬁc tasks. Ult.lmately, RL ﬁne?—tumng
LlaSMol_Mistral 0.701 0.290 balances symbolic competence with domain-specific gen-
NatureLM (1B) 0.476 0.284 eration, enabling the model to produce valid, precise, and
NatureLM (&B) 0.679 0517 novel compositions using the specified elements.
Owen+MiST+SFT 0.682 0.445
Table 21. CMG = Conditional Material Generation.
H.2.RL Model SCS1T CCS?T Validity T PrecisionT Novelty
Qwen-2.5 3B 0122 0.828 58.6 68.0 74.8
: +MiST 0989  0.795 12 0.67 84.6
From Table it can be observed that the.: base model, YorT T omss e s 0
Qwen-2.5 3B, possesses a degree of domain knowledge +RL 0.893  0.777 73.8 97.1 913
in materials science sufficient to generate some valid com- Ablations
no MiST+SFT ~ 0.199  0.824 87.4 93.9 60.2

positions. However, the relatively low scores suggest that
the model is primarily retrieving compositions seen during
training or generating valid combinations through rough
heuristics. This is further supported by its low SCS, which
indicates a limited understanding of compositions at the
symbolic level.

The introduction of MiST leads to a significant improvement
in SCS, as MiST specifically targets symbolic competence
during training. However, since the model was not trained
directly on materials science data and has a relatively small
parameter size, it likely replaced some of its prior knowledge
with representations more aligned with SMILES syntax.
This shift contributes to the lower validity and precision
scores, reflecting a reduced ability to follow instructions in
non-SMILES-based tasks. As a result, the model often fails
to generate outputs in the required format, especially when
it encounters ambiguous prompts or reaches its maximum
output length.

Fine-tuning the MiST model using SFT yields improve-
ments in both SCS and instruction-following ability, as evi-
denced by higher validity and precision scores. These gains
suggest that the model is able to recover some materials sci-
ence knowledge while refining its symbolic understanding.

27

Table 22. CrR = Binary crystal stucture relaxation, CeB = Chemi-
cal formula balancing.

Metrics Reasoning tasks
Model SCST CCST CrRT CeB1t
Qwen-2.5 3B 0.346  0.834 0 1.2
+MiST 0.355  0.795 0 26
+SFT 0.528  2.361 16.2 29.2
MatSci Tasks
+RL(CrR) 0.447  2.599 65 —
+RL(CeB) 1.653  0.666 — 47
Ablations
no MiST + SFT(CrR)  0.573  2.652 12.6 -
no MiST + SFT(CeB) 1.494  0.849 — 45

In contrast to the findings observed in the Conditional Ma-
terial Generation task, we did not detect any notable im-
provement in CCS after introducing MiST to the Binary
Crystal Structure Relaxation task. This discrepancy arises
because the Binary Crystal Structure Relaxation task specifi-
cally emphasizes structural relaxation, a domain not directly
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targeted by MiST training. Consequently, MiST did not en-
hance the model’s chemical competence related to structural
relaxation.

However, subsequent fine-tuning via SFT successfully incor-
porated relevant domain knowledge into the model, resulting
in substantial performance improvements on the task. This
step notably increased the model’s capability to accurately
execute structural relaxations, which was previously lim-
ited. Moreover, further refinement through reinforcement
learning (RL) effectively enhanced the model’s success rate,
demonstrating that the integration of RL optimally balances
domain-specific expertise with task-oriented performance
improvements.

We further conducted an additional analysis across all 200
test set datapoints, and observed that the model performed
comparably across the five crystal systems included in the
test set.

Table 23. Summary of Crystal Systems for the MiST + SFT + RL
(CrR) Model. This table presents a detailed breakdown of the
performance (accuracy) of the MiST + SFT + RL (CrR) task, as
shown in the Table, evaluated separately across different crystal
systems.

I. Model analysis

Here, we provide some analysis of the models’ behavior.
For the following example reaction:

Cl

Cl
N,
Cl
l//
Cl

Cl

Cl.
O N,
2,
COtBU + g~ ™\ —— >

cl l

NH,

Question

Reason and predict the correct
product in SMILES notation

from the following reaction

CC(C) (C)C(=0)cloc2nc
(-c3ccc(Cl)cec3Cl)c (—c3cecc (Cl) cel)
cc2clN.CCBr

Correct answer

CCNclc (C(=0)C(C) (C)C)oc2nc (-c3ccc (Cl)
cc3Cl)c(-c3ccc(Cl)ce3)ccl2

After RL training, although the output format is correct, the
base model Qwen2.5-3B (+RL) fails to predict the correct

Crystal System

Average Accuracy  Total Samples,roduct of this reaction, with simple reasoning and incorrect

Tetragonal system 0.6383 47
Orthorhombic system 0.6897 29
Hexagonal system 0.6250 72
Trigonal system 0.6572 35
Monoclinic system 0.7143 7
Cubic system N/A N/A
Triclinic system N/A N/A

reaction type (esterification reaction). On the other hand,
the variant with SFT exhibits a more detailed reasoning that
delves into the functional groups of the precursors. How-
ever, it hallucinates the presence of sodium hydride and the
hydroxyl group, which are not present in the input reagents,
leading to an incorrect result. This could be attributed to the
lack of SMILES symbolic understanding. Lastly, the model

We illustrate the capability of our Mist + SFT + RL model
to reduce the inner energy of a perturbed, unstable ZnSe-
P4_nmm crystal structure within 10 steps, where the stable
state of the ZnSe-P4_nmm crystal has an inner energy of
-2.94069766998291.

Crystal Structure Energy Decrease Process

-2.902

-2.904 3
«
S

R

-2.906

Inner Energy

-2.908

-2.910

-2.912

Step

Figure 7. Graph demonstrating the relaxation of the ZnSe-P4_nmm
crystal structure with the Mist + SFT + RL model
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that underwent the full pipeline (MiST + SFT + RL) success-
fully reasons the correct product with reasonable description
of the reactants’ structure and mechanism, showing better
symbolic understanding and Chemical knowledge.

The full responses of these models along with the depiction
of the predicted product molecules are given below:
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Table 24. Qwen2.5-3B + RL [Wrong].

Qwen2.5-3B + RL [Wrong]

OH o]

/O\H\H\O/\O
<think>The given reactants are a
carboxylic acid and a bromoalkane.
The reaction between these two
compounds is an esterification
reaction, where the carboxylic acid
reacts with the alkyl halide to
form an ester and a halide. The
product of this reaction is an
ester with the general formula
R-COOR’ . In this case, the product
is a carboxylic acid ester with the
general formula R-COOR’, where R is
the alkyl group and R’ is the alkyl
group from the bromoalkane.
</think>

<answer>COC (C)C(0)C
(C)C(=0)0CClCCCCCl</answer>
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Table 25. Qwen2.5-3B + SFT + RL [Wrong].

Qwen2.5-3B + SFT + RL [Wrong]

Cl
oL O
Cl
O NH

‘ 2

-0

<think>The reaction involves the
alkylation of a phenolic oxygen in
the first compound using ethyl
bromide CCBr under basic
conditions. Here’s the
step-by-step mechanism:

1. Deprotonation: Sodium hydride
[H-].[Nat] deprotonates the
hydroxyl group (-OH) on the benzene
generating a phenoxide [0O-]
ion, a strong nucleophile.

2. SN2 Attack: The phenoxide [0O-]
attacks the electrophilic carbon in
ethyl bromide CCBr, displacing Br-
and forming an ether C{O{C bond.

3. Product Formation: The final
product retains the fused aromatic
core, with the hydroxyl replaced by
an ether-linked ethyl group. Other
functional groups remain unchanged.
Product SMILES:
CCOCclccc (—c2cc (-c3cc(Cl)cc(Cl)
c3)c (N)c(=0)cz20C)ccl

This is a Williamson ether
synthesis: a phenoxide displacing
a halide to form an ether.
</think>

<answerlccc (-c2cc

(-c3cc (Cl)cc(Cl)c3)c

(N) c (=0) c20C) ccl</answer>

ring,
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Table 26. Qwen2.5-3B + MiST + SFT + RL [Correct].
Qwen2.5-3B + MiST + SFT + RL [Correct]

<think>The reaction involves the
alkylation of a primary amine group
in the first molecule by
bromoethane CCBr. Here’s the
step-by-step mechanism:

1. Reactant Analysis: - First
molecule: a bicyclic compound with
a tert-butyl group (CC(C) (C)C(=0)),
a furan-like ring, and two
chlorobenzene substituents. -
Second molecule: bromoethane CCBr,
where Br is a good leaving group.
2. Mechanism: - The lone pair on
the primary amine nitrogen acts as
a nucleophile. - An SN2 reaction
with bromoethane displaces Br-—,
forming a secondary amine bonded to
an ethyl group (CC).

3. Product Structure: - The amine
nitrogen in the bicyclic core is
now NCC. - All other substituents
remain unchanged.

Final SMILES:

CC(C) (C)C(=0)cloc2nc (—c3ccc (Cl)cec3Cl)c
(-c3ccc (Cl)ce3)cc2¢clINCC This 1is a
selective alkylation of the amine
via Williamson-like conditions.
</think>

<answer>CC(C) (C)C(=0)cloc2nc
(-c3ccc (Cl)ce3Cl)

c(—-c3ccc (Cl)cc3)cec2clNCC </answer>
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J. Reproducibility

All the code used to produce the results presented in this
work can be found under https://figshare.com/
account/articles/29132657. The continued pre-
training and supervised fine-tuning, as described in Section
[3land Appendix [E] have been conducted using the megatron
library (see |https://github.com/huggingface/
megatron). The configuration files and datasets used
are released at https://figshare.com/account/
articles/29132657.

Table of Released Assets

Table 27. List of digital assets released with this work, including
usage instructions and licensing/citation information. Note: All as-

sets are hosted anonymously on Figshare for double-blind review.
Asset Usage Instructions License/Citation | Location/URL
Info
Source code Download and unzip. | MIT License. | https:
See README .md | Please cite this ||//figshare.
for installation and | paper. com/
experiment scripts account/
(run_train.py). articles/
29132657
Model check- | Download the archive. | MIT License. | https:
points Full instructions in | Please cite this ||//figshare.
README . md. paper. com/
account/
articles/
29132657
Datasets Download files; load as | For research use | lhttps:
(pretraining/fine- | a HuggingFace Dataset. | only.  Cite the | |//figshare.
tuning splits) original dataset | [com/
and this paper. account/
articles/
29132657
Training configs | Config YAML files for | MIT License. https:
megatron available as //figshare.
.yaml; pass as argu- com/
ment to megatron CLI. account/
articles/
29132657
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