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ABSTRACT

Estimation of (differential) entropy and the related mutual information has been
pursued with significant efforts by the machine learning community. To address
shortcomings in previously proposed estimators for differential entropy, here we
introduce KNIFE, a fully parameterized, differentiable kernel-based estimator of
differential entropy. The flexibility of our approach also allows us to construct
KNIFE-based estimators for conditional (on either discrete or continuous variables)
differential entropy, as well as mutual information. We empirically validate our
method on high-dimensional synthetic data and further apply it to guide the training
of neural networks for real-world tasks. Our experiments on a large variety of
tasks, including visual domain adaptation, textual fair classification, and textual
fine-tuning demonstrate the effectiveness of KNIFE-based estimation.

1 INTRODUCTION

Learning tasks requires information (Principe et al., 2006) in the form of training data. Thus,
information measures (Shannon, 1948) (e.g. entropy, conditional entropy and mutual information)
have been a source of inspiration for the design of learning objectives in modern machine learning
(ML) models (Linsker, 1989; Torkkola, 2006). Over the years, a plethora of estimators have been
introduced to estimate the value of the aforementioned measures of information and they have been
applied to many different problems, including information and coding theory, limiting distributions,
model selection, design of experiment and optimal prior distribution, data disclosure, and relative
importance of predictors (Ebrahimi et al., 2010). In these applications, traditional research focused
on both developing new estimators and obtaining provable guarantees on the asymptotic behavior of
these estimators (Liu et al., 2012; Verdu, 2019).

However, when used for training deep neural networks, additional requirements need to be satisfied.
In particular, the estimator needs to be differentiable w.r.t. the data distribution (R1), computationally
tractable (R2), and rapidly adapt to changes in the underlying distribution (R3). For instance,
Mutual Information (MI), a fundamental measure of dependence between variables, only became
a popular (standalone or regularizing) learning objective for DNNs once estimators satisfying the
above requirements were proposed (Poole et al., 2019; Barber & Agakov, 2003). Although MI
is notoriously difficult to estimate in high dimensions (Kraskov et al., 2004; Pichler et al., 2020;
McAllester & Stratos, 2020), these estimators have demonstrated promising empirical results in
unsupervised representation learning (Krause et al., 2010; Bridle et al., 1992; Hjelm et al., 2019;
Tschannen et al., 2020), discrete/invariant representations (Hu et al., 2017; Ji et al., 2019), generative
modelling (Chen et al., 2016; Zhao et al., 2017), textual disentangling (Cheng et al., 2020b; Colombo
et al., 2021), and applications of the Information Bottleneck (IB) method (Mahabadi et al., 2021;
Devlin et al., 2018; Alemi et al., 2016) among others. Compared to MI, Differential Entropy (DE)
has received less attention from the ML community while also having interesting applications.

In this paper, we focus on the problem of DE estimation as this quantity naturally appears in many
applications (e.g. reinforcement learning (Shyam et al., 2019; Hazan et al., 2019; Ahmed et al.,
2019; Kim et al., 2019), IB (Alemi et al., 2016), mode collapse (Belghazi et al., 2018)). Traditional
estimators of DE often violate at least one of the requirements (R1) — (R3) listed above (e.g. k-
nearest neighbor based estimators violate (R1)). As a consequence, the absence of DE estimator for
arbitrary data distributions forces deep learning researchers to either restrict themselves to special
cases where closed-form expressions for DE are available (Shyam et al., 2019) or use MI as a proxy
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(Belghazi et al., 2018). In this work, we introduce a Kernelized Neural d[Fferential Entropy (KNIFE)
estimator, that satisfies the aforementioned requirements and addresses limitations of existing DE
estimators (Schraudolph, 2004; McAllester & Stratos, 2020). Stemming from recent theoretical
insights (McAllester & Stratos, 2020) that justify the use of DE estimators as building blocks to better
estimate MI, we further apply KNIFE to MI estimation. In the context of deep neural networks with
high dimensional data (e.g. image, text), KNIFE achieves competitive empirical results in applications
where DE or MI is required.

1.1 CONTRIBUTIONS

Our work advances methods in DE and MI estimation in several ways.

1. We showcase limitation of the existing DE estimators proposed in Schraudolph (2004); McAllester
& Stratos (2020) with respect to desirable properties required for training deep neural networks. To
address these shortcomings, we introduce KNIFE, a fully learnable kernel-based estimator of DE. The
flexibility of KNTFE allows us to construct KNTFE-based estimators for conditional DE, conditioning
on either a discrete or continuous random variable.

2. We prove learnability under natural conditions on the underlying probability distribution. By
requiring a fixed Lipschitz condition and bounded support we are not only able to provide an
asymptotic result, but also a confidence bound in the case of a finite training set. This extends the
consistency result by Ahmad & Lin (1976).

3. We validate on synthetic datasets (including multi-modal, non-Gaussian distributions), that KNIFE
addresses the identified limitations and outperforms existing methods on both DE and MI estimation.
In particular, KNIFE more rapidly adapts to changes in the underlying data distribution.

4. We conduct extensive experiments on natural datasets (including text and images) to compare
KNIFE-based MI estimators to most recent MI estimators. First, we apply KNIFE in the IB principle
to fine-tune a pretrained language model. Using KNIFE, we leverage a closed-form expression of a
part of the training objective and achieve the best scores among competing MI estimators. Second,
on fair textual classification, the KNIFE-based MI estimator achieves near perfect disentanglement
(with respect to the private, discrete label) at virtually no degradation of accuracy in the main task.
Lastly, in the challenging scenario of visual domain adaptation, where both variables are continuous,
KNIFE-based MI estimation also achieves superior results.

1.2 EXISTENT METHODS AND RELATED WORKS

DE estimation. Existing methods for estimating DE fit into one of three categories (Beirlant
et al., 1997; Hlavackova-Schindler et al., 2007; Verdu, 2019): plug-in estimates (Ahmad & Lin,
1976; Gyorfi & Van der Meulen, 1987), estimates based on sample-spacings (Tarasenko, 1968),
and estimates based on nearest neighbor distances (Kozachenko & Leonenko, 1987; Tsybakov &
Van der Meulen, 1996); (Berrett et al., 2019). Our proposed estimator falls into the first category
and we will thus focus here on previous work using that methodology. Excellent summaries of all
the available methods can be found in the works (Beirlant et al., 1997; Hlavackova-Schindler et al.,
2007; Wang et al., 2009; Verdu, 2019). In Ahmad & Lin (1976), a first nonparametric estimator of
DE was suggested and theoretically analyzed. It builds on the idea of kernel density estimation using
Parzen-Rosenblatt windowing (Rosenblatt, 1956; Parzen, 1962). More detailed analysis followed
(Joe, 1989; Hall & Morton, 1993) but the estimator remained essentially unchanged. Unfortunately,
this classical literature is mostly concerned with appropriate regularity conditions that guarantee
asymptotic properties of estimators, such as (asymptotic) unbiasedness and consistency. Machine
learning applications, however, usually deal with a fixed—often very limited—number of samples.

Differentiable DE estimation. A first estimator that employed a differential learning rule was
introduced in Viola et al. (1996). Indeed, the estimator proposed therein is optimized using stochastic
optimization, it only used a single kernel with a low number of parameters. An extension that
uses a heteroscedastic kernel density estimate, i.e., using different kernels at different positions,
has been proposed in Schraudolph (2004). Still the number of parameters was quite low and vary-
ing means in the kernels or variable weights were not considered. Although the estimation of
DE remained a topic of major interest as illustrated by recent works focusing on special classes
of distributions (Kolchinsky & Tracey, 2017; Chaubey & Vu, 2021) and nonparametric estima-
tors (Sricharan et al., 2013; Kandasamy et al., 2015; Moon et al., 2021), the estimator introduced in
Schraudolph (2004) was not further refined and hardly explored in recent works.
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Differentiable MI estimation. In contrast, there has been a recent surge on new methods for the
estimation of the closely related MI between two random variables. The most prominent examples
include unnormalized energy-based variational lower bounds (Poole et al., 2019), the lower bounds
developed in Nguyen et al. (2010) using variational characterization of f-divergence, the MINE-
estimator developed in Belghazi et al. (2018) from the Donsker-Varadhan representation of MI
which can be also interpreted as an improvement of the plug-in estimator of Suzuki et al. (2008), the
noise-contrastive based bound developed in van den Oord et al. (2018) and finally a contrastive upper
bound (Cheng et al., 2020a). McAllester & Stratos (2020) point out shortcomings in other estimation
strategies and introduce their own Differences of Entropies (DOE) method.

2 KNIFE

In this section we identify limitations of existing entropy estimators introduced in Schraudolph (2004);
McAllester & Stratos (2020). Subsequently, we present KNIFE, which addresses these shortcomings.

2.1 LIMITATIONS OF EXISTING DIFFERENTIAL ENTROPY ESTIMATORS

Consider a continuous random vector X ~ p in R%. Our goal is to estimate the DE h(X) :=
— [ p(z)log p(x) dz. Given the intractability of this integral, we will rely on a Monte-Carlo estimate
of h(X), using N i.i.d. samples Dy = {x,,}N_; to obtain

hORACLE = Z Ing CL'n (D

Unfortunately, assuming access to the true density p is often unrealistic, and we will thus construct
an estimate p that can then be plugged into (1) instead of p. If p is smooth, the resulting plug-in
estimator of DE is differentiable (R1).

Assuming access to an additional—ideally independent—set of M i.i.d. samples £ = {z/, }M_,, we
build upon the Parzen-Rosenblatt estimator (Rosenblutt 1956; Parzen, 1962)

pz;w, &) u/dM Z (x$ >, 2)

where w > 0 denotes the bandwidth and « is a kernel density. The resulting entropy estimator when
replacing p in (1) by (2) was analyzed in Ahmad & Lin (1976). In Schraudolph (2004), this approach
was extended using the kernel estimator
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where A := (A, ..., Apr) are (distinct, diagonal) covariance matrices and k4 (z) = N (z;0, A) is
a centered Gaussian density with covariance matrix A.

The DOE method of McAllester & Stratos (2020) is a MI estimator that separately estimates a DE
and a conditional DE. For DE, a simple Gaussian density estimate ppog(x; 0) = k4 (x — 1) is used,
where @ = (A, u1) are the training parameters, the diagonal covariance matrix A and the mean p.

While both SCHRAU. and DOE yield differentiable plug-in estimators for DE, they each have a major
disadvantage. The strategy of Schraudolph (2004) fixes the kernel mean values at £, which implies
that the method cannot adapt to a shifting input distribution (R3). On the other hand, DOE allows for
rapid adaptation, but its simple structure makes it inadequate for the DE estimation of multi-modal
densities. We illustrate these limitations in Section 3.1.

2.2 KNIFE ESTIMATOR

In KNIFE, the kernel density estimate is given by

pKNIFE €3 0 Z Um"@Am ) “4)



Under review as a conference paper at ICLR 2022

where 6 := (A, a, u) and the additional parameters 0 < u = (uy, u2,...,up) withl-u=1and
a = (a1,...,ap) are introduced. Note that pxyee(; 0) is a smooth function of 0, and so is our
proposed plug-in estimator

~ 1

hgwire (Dx§ 0) = _N nzl log ﬁKNIFE(xn; 0)- (5)

KNIFE combines the ideas of Schraudolph (2004); McAllester & Stratos (2020). It is differentiable
and able to adapt to shifting input distributions, while capable of matching multi-modal distributions.
Thus, as we will see in synthetic experiments, incorporating u,,, and shifts a,, in the optimization
enables the use of KNIFE in non-stationary settings, where the distribution of X evolves over time.

Learning step:  Stemming from the observation that, by the Law of Large Numbers (LLN),
~ LLN . .
hKNIFE(DXa 0) ~ —E [longNIFE(X§ 0)} = h(X) + DkL (P||pKN1FE( ) 0)) > h(X)7 (6)

we propose to learn the parameters @ by minimizing EKN,FE, where £ may be used to initialize a.
Although not strictly equivalent due to the Monte-Carlo approximation, minimizing EKNIFE can be
understood as minimizing the Kullback-Leibler (KL) divergence in (6), effectively minimizing the gap
between EKMFE and h(X). In fact, EKMFE can also be interpreted as the standard maximum likelihood
objective, widely used in modern machine learning. It is worth to mention that the KNIFE estimator

is fully differentiable with respect to 8 and the optimization can be tackled by any gradient-based
method (e.g., Adam (Kingma & Ba, 2014) or AdamW (Loshchilov & Hutter, 2017)).

2.3 CONVERGENCE ANALYSIS

Note that the classical Parzen-Rosenblatt estimator h(Dy; w), where (2) is plugged into (1), is a
special case of KNIFE. Thus, the convergence analysis provided in (Ahmad & Lin, 1976, Theorem 1)
also applies and yields sufficient conditions for hgyes(Dx, ) — h(X). In Appendix C, we extend
this result and, assuming that the underlying distribution p is compactly supported on X' = [0, 1]¢
and L-Lipschitz continuous, the following theorem is proved.

Theorem 1. For any 6 > 0, there exists a function (N, M, w) such that, with probability at least
1—0, |h(Dy;w) —h(X)| < e(N, M, w). Additionally, e(N, M,w) — 0 as M,N — oo and w — 0
provided that

NZ%log N
w2 M
where M and N denote the number of samples in € and Dy, respectively.

Nw =0 and — 0, @)

The precise assumptions for Theorem | and an explicit formula for (N, M, w) are given in Theorem 2
in Appendix C. For instance, Theorem | provides a bound on the speed of convergence for the
consistency analysis in (Ahmad & Lin, 1976, Theorem 1).

2.4 ESTIMATING CONDITIONAL DIFFERENTIAL ENTROPY AND MUTUAL INFORMATION

Similar to (McAllester & Stratos, 2020), the proposed DE estimator can be used to estimate other
information measures. In particular, we can use KNIFE to construct estimators of conditional DE and
MI. When estimating the conditional DE and MI for a pair of random variables (X,Y") ~ p, we not
only use Dy = {z,, }1_,, but also the according i.i.d. samples Dy = {y,}_,, where (z,,y,) are
drawn according to p.

Conditional Differential Entropy. We estimate conditional DE h(X|Y") by considering 6 to be a
parameterized function ©(y) of y. Then all relations previously established naturally generalize and
N
. A ~ 1 "
pKNIFE($|y§ @> = pKNIFE(37§ G)(y))a hKNIFE(Dx|Dy§ @)) = N Z IngKNIFE(xnwn? @>- (®)
n=1

Naturally, minimization of (6) is now performed over the parameters of ®. If Y is a continuous
random variable, we use an artificial neural network @ (y), taking y as its input. On the other hand, if
Y € Y is a discrete random variable, we have one parameter 6 for eachy € Y, i.e., ® = {6,},cy
and ﬁKNIFE(x|y; @) = ﬁKNIFE(x; @(y)) = ﬁKNIFE(x; Oy).
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Mutual Information. To estimate the MI between random variables X and Y (either discrete or
continuous), recall that MI can be written as I(X;Y) = h(X) — h(X|Y). Therefore, we use the
marginal and conditional DE estimators (5) and (8) to build a KNIFE-based MI estimator

TKNIFE (Dm Dy? 0, 9) = KKNIFE (Dx§ 0) - ﬂKNIFE (Dx|Dy§ 9) )

3 EXPERIMENTS USING SYNTHETIC DATA

3.1 DIFFERENTIAL ENTROPY ESTIMATION

In this section we apply KNIFE for DE estimation, comparing it to (3), the method introduced
in Schraudolph (2004), subsequently labeled “SCHRAU.”. It is worth to mention that we did not
perform the Expectation Maximization algorithm, as suggested in (Schraudolph, 2004), but instead
opted to use the same optimization technique as for KNIFE to facilitate a fair comparison.

3.1.1 GAUSSIAN DISTRIBUTION

As a sanity check, we test KNIFE on multivariate normal data in moderately high dimensions,
comparing it to SCHRAU. and DOE, which we trained with the exact same parameters. We performed
these experiments with d = 10 and d = 64 dimensional data. KNIFE yielded the lowest bias and
variance in both cases, despite DOE being perfectly adapted to matching a multivariate Gaussian
distribution. Additional details can be found in Appendix A.1.

In order to use a DE estimation primitive in a machine learning system, it must be able to adapt to
a changing input distribution during training (R3). As already pointed out in Section 2.1, this is a
severe limitation of SCHRAU., as re-drawing the kernel support £ can be either impractical or at
the very least requires a complete re-training of the entropy estimator. Whereas in (4), the kernel
support a is trainable and it can thus adapt to a change of the input distribution. In order to showcase
this ability, we utilize the approach of Cheng et al. (2020a) and successively decrease the entropy,
observing how the estimator adapts. We perform this experiment with data of dimension d = 64 and
repeatedly multiply the covariance matrix of the training vectors with a factor of a = % The resulting
entropy estimation is depicted in Figure 1. It is apparent that SCHRAU. suffers from a varying bias.
The bias increases with decreasing variance, as the kernel support is fixed and cannot adapt as the
variance of Dy shrinks. DOE is perfectly adapted to a single Gaussian distribution and performs
similar to KNIFE.
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Figure 2: Left: PDF when estimating DE of a triangle mixture
in 1 dimension. Right: Training run when estimating DE of a
2-component triangle mixture in 8 dimensions.

Figure 1: Estimating DE of
Gaussian data with decreasing
variance.

3.1.2 TRIANGLE MIXTURE

KNIFE is able to cope with distributions that have multiple modes. While (3) is also capable of
matching multi-modal distributions, DOE is unable to do so, as it approximates any distribution
with a multivariate Gaussian. We illustrate this by matching a mixture of randomly drawn triangle
distributions. The resulting estimated PDFs as well as the ground truth when estimating the entropy
of a 1-dimensional mixture of triangles with 10 components can be observed in Figure 2 (left). With
increasing dimension the difficulty of this estimation rises quickly as in d dimensions, the resulting
PDF of independent c-component triangle mixtures has c¢? modes. To showcase the performance of
KNIFE in this challenging task, we ran 10 training runs for DE estimation of 2-component triangle
mixtures in 8 dimensions. An example training run is depicted in Figure 2 (right).
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Figure 3: Top: Estimation of I[(X%; Y'¢), where (X, Y) are multivariate Gaussian with correlation
coefficient p; in the i-th epoch and d = 20. Middle: Estimation of I( X %; (Y'3)?). Bottom: Estimation

of I(X4; Y9) for uniform (X, E) and Y = p; X + /1 — p?F in the i-th epoch.

3.2 MUTUAL INFORMATION ESTIMATION

Multivariate Gauss We repeat the experiments in (Cheng et al., 2020a), stepping up the MI
I(X?;Y?) between d i.i.d. copies of joint normal random variables (X,Y’) by increasing their
correlation coefficient, i.e., (X, Y’) are multivariate Gaussian with correlation coefficient p; in the
i-th epoch. A training run is depicted in the top of Figure 3. As in (Cheng et al., 2020a), we also
repeat the experiment, applying a cubic transformation to Y. The estimation of MI between d i.i.d.
copies of X and Y® can be observed in the middle row of Figure 3. The MI is unaffected by this
bijective transformation. In Appendix A.3, the bias and variance are depicted separately.

Sum of Uniformly Distributed Variables In order to test the ability of KNIFE to adapt to distribu-
tions substantially different from the Gaussian kernel shape, we apply it in MI estimation of I( X ?; Y'?)
with uniformly distributed data. To this end, let X and E be centered, uniformly distributed random
variables with E[X?] = E[E?] = 1 and define Y = p; X + /1 — p? E in the i-th epoch. One training
run with d = 20 is shown in Figure 3 (bottom). Details about the source distribution as well as details
of the experiments can be found in Appendix A.3.

4 EXPERIMENTS ON NATURAL DATA

In this section, we benchmark our proposed KNIFE-based MI estimator on three practical applications,
spanning textual and visual data. We reproduce and compare our method to the most recent MI
estimators including MINE (Belghazi et al., 2018), NWJ (Nguyen et al., 2010), InfoNCE (van den
Oord et al., 2018), CLUB (Cheng et al., 2020a), and DOE (McAllester & Stratos, 2020). We do not
explicitly include the SMILE estimator Song & Ermon (2019) in our comparison as it has the same
gradient as NW1J.

Common notation: In all following applications, we will use ®,,: X — Z to denote an encoder,
where X is the raw input space (i.e., texts or images), and Z denotes a lower dimensional continuous
feature space. Additionally, we will use Cy,: Z — ) to denote a shallow classifier from the latent
space Z to a discrete or continuous target space ) for classification or regression, respectively. We
will use 1) to denote the parameters of both models, ®,, and C,. CE denotes the cross entropy loss.
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Table 1: Fine-tuning on GLUE. Following (Lee et al., 2019; Dodge et al., 2020), mean and variance
are computed for 10 seeds.

MRPC STS-B RTE
F1 Accuracy  Pearson  Spearman Accuracy
BERT (Devlin et al., 2018) 83.4 +09 882-+:07 892404 888104 694 +04
CLUB (Cheng et al., 2020a) 85.0 to.4  89.0 0.7 89.7+02 894 o1 70.7 +o.
InfoNCE (van den Oord et al., 2018) 849 +t0s 889 t06 894 +04 89.7 +t06  70.6 +0.1
MINE (Belghazi et al., 2018) 80.0 +25 85.0+09 88.0+07 88.0+06 69.0+09
NWIJ (Nguyen et al., 2010) 84.6 toc 88.1 +07 898 +01 89.6+02 69.6 +0.7
VUB/VIBERT (Alemi et al., 2016)  85.1 +0.5  89.1 +0.3 90.0 02 89.5+03 709 +0.1
DOE (McAllester & Stratos, 2020)  84.1 +02 883 <02 89.6 +to.2 895 +t02 69.6 +0.2
KNIFE 853 +01 901 01 903 00 901 +00 723402

4.1 INFORMATION BOTTLENECK FOR LANGUAGE MODEL FINETUNING

IB has recently been applied to fine-tune large-scale pretrained models (Mahabadi et al., 2021) such as
BERT (Devlin et al., 2018) and aims at suppressing irrelevant features in order to reduce overfitting.

Problem statement. Given a textual input X € X and a target label Y € )/, the goal is to learn
the encoder ®,;, and classifier C'y, such that ®,,(X) retains little information about X, while still
producing discriminative features, allowing the prediction of Y. Thus, the loss of interest is:

L=X1(Dy(X); X) — LPy(X);Y), (10)

compression term downstream term

where A controls the trade-off between the downstream and the compression terms.

Setup. Following Mahabadi et al. (2021) (relying on VUB), we work with the VIBERT model,
which uses a Gaussian distribution as prior. ®,, is implemented as a stochastic encoder ®,(X) =
Z ~ N (pyp(X), Zyp(X)). Details on the architecture of i, and X, can be found in Appendix B.
The classifier C'y, is composed of dense layers. To minimize £, the second part of the objective (10)
is bounded using the variational bound from Barber & Agakov (2003). Since we use a Gaussian prior,
h(Z|X) can be expressed in closed form." Thus, when using KNIFE, I(X; Z) = h(Z) — h(Z|X)
can be estimated by using hg e to estimate h(Z). We compare this KNIFE-based MI estimator with
aforementioned MI estimators and the variational upper bound (VUB). For completeness, we also
compare against a BERT model trained by direct minimization of a CE loss.

We closely follow the protocol of (Mahabadi et al., 2021) and work on the GLUE benchmark (Wang
et al., 2018) originally composed of 5 datasets. However, following (Mahabadi et al., 2021), we
choose to finetune neither on WNLI (Morgenstern & Ortiz, 2015) nor on CoLA (Warstadt et al.,
2019) due to reported flaws in these datasets. The evaluation is carried out on the standard validation
splits as the test splits are not available. Following standard practice (Liu et al., 2019; Yang et al.,
2019), we report the accuracy and the F1 for MRPC, the accuracy for RTE and the Pearson and
Spearman correlation coefficient for STS-B.

Results. Table | reports our results on the GLUE benchmark. We observe that KNIFE obtains
the best results on all three datasets and the lowest variance on MRPC and STS-B. The use of a
Gaussian prior in the stochastic encoder ®.;, could explain the observed improvement of KNIFE-based
estimation over MI-estimators such as CLUB, InfoNCE, MINE, DOE, or NW]J.

4.2 FAIR TEXTUAL CLASSIFICATION

In fair classification, we would like the model to take its decision without utilizing private information
such as gender, age, or race. For this task, MI can be minimized to disentangle the output of the
encoder Z and a private label S' € S (e.g., gender, age, or race).

'h(Z|X) = 3 1In|E¢(X)| + £ In(27e), where d is the dimension of X and | - | denotes the determinant.
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Figure 4: Results on the fair classification task for both main (Figures 4a and 4c) and private task
(Figures 4b and 4d) for both mention and sentiment labels. Results of MINE are not reported because
of instabilities that prevent the network from converging. Figures 4b and 4d are obtained by training
an offline classifier to recover the protected attribute .S from @, (X).
Problem Statement. Given an input text X, a discrete target label Y and a private label .S, the loss
is given by

£ = CE(Y; (X)) +A- 1@ (X); 5), (n

downstream task disentangled

where A controls the trade-off between minimizing MI and CE loss. In this framework, a classifier
is said to be fair or to achieve perfect privacy if no statistical information about S can be extracted
from ®,,(X) by an adversarial classifier. Overall, a good model should achieve high accuracy on the
main task (i.e., prediction of Y') while removing information about the protected attribute S. This
information is measured by training an offline classifier to recover the protected attribute S from
Dy (X).

Setup. We compute the second term of (11) with competing MI estimators, as well as the model
from Elazar & Goldberg (2018), which will be referred to as “Adv”, as it utilizes an adversary to
recover the private label from the latent representation Z. For KNIFE-based MI estimation, we use
two DE estimators (as S is a binary label), following the approach outlined in Section 2.4. All
derivations are detailed in Appendix B.

We follow the experimental setting from Elazar & Goldberg (2018); Barrett et al. (2019) and use two
datasets from the DIAL corpus (Blodgett et al., 2016) (over 50 million tweets) where the protected
attribute S is the race and the main labels are sentiment or mention labels. The mention label indicates
whether a tweet is conversational or not. We follow the official split using 160 000 tweets for training
and two additional sets composed of 10 000 tweets each for development and testing. In all cases, the
labels S and Y are binary and balanced, thus a random guess corresponds to 50% accuracy.

Results. Figure 4 gathers results on the fair classification task. The upper dashed lines represent
the (private and main) task accuracies when training a model with only the CE loss (case A = 0
in (11)). This shows that the learned encoding ®.,(X) contains information about the protected
attribute, when training is only performed for the main task. On both the sentiment and mention task,
we observe that a KNIFE-based estimator can achieve perfect privacy (see Figures 4b and 4d) with
nearly no accuracy loss in the main task (see Figures 4a and 4c). The other MI estimators exhibit
different behavior. For sentiment labels, most MI estimators fail to reach perfect privacy (CLUB,
NWIJ, DOE, and Adv) while others (InfoNCE) achieve perfect privacy while degrading the main task
accuracy (10% loss on main accuracy). For mention labels, CLUB can also reach perfect privacy with
almost no degradation of the accuracy of the main task. Overall, it is worth noting that KNIFE-based
MI estimation enables better control of the degree of disentanglement than the reported baselines.

4.3 UNSUPERVISED DOMAIN ADAPTATION

In unsupervised domain adaptation, the goal is to transfer knowledge from the source domain (.5)
with a potentially large number of labeled examples to a target domain (7"), where only unlabeled
examples are available.

Problem Statement. The learner is given access to labeled images from a source domain (x4, y) ~
(Xs,Y) € Xg x Y and unlabeled images from a target domain x; ~ X1 € Xp. The goal is to
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Table 2: Domain adaptation results: M (MNIST), MM (MNIST M), U (USPS), SV (SVHN), C
(CIFAR10) and S (STL10). Results are averaged over 3 seeds.

M — MM S—C U—M M—->U C—S SV—->M Mean

Source only 519 08 583 +t02 91.1 +07 935406 723 +05 547 +28 703 +0.9
CLUB 79.1 +22 599 +19 96.0+02 968 +05 T1.6+1.3 83.8+34 81.2+1.7
DOE 822 26 589 +08 972403 942409 688 +14 864 +54 81.3+19
INFONCE 773 05 61.0+01 974 +02 97.0+03 70.6 +0s 89.2+11 82.1 +10
MINE 76.7 +0.4 612 +03 977 401 973 +01 708 +10 91.8 t0s 82.6 +0.4
NWwWIJ 77.1 06 612 +03 97.6 01 973 +0os5 721 +07 914108 828 +tos
KNIFE 78.7 07 61.8 +05 977 +03 974 +04 T12+18 932+02 834 +0s6

learn a classification model {®.;, Cy } that generalizes well to the target domain. Training models
on the supervised source data only results in domain-specific latent representations ®,;,(X) leading
to poor generalization (when X is chosen randomly from {Xg, X7}). In order to make the latent
representations as domain-agnostic as possible, we follow the information-theoretic method proposed
by Gholami et al. (2020), and used in Cheng et al. (2020a). The idea is to learn an additional binary
model {®%, C4}, whose goal it is to guess the domain D € {0, 1} of X. The latent representation
learned by ®¢ will therefore contain all the domain-specific information that we would like the
main encoder ®,, to discard. In other words, we would like ®.;(X) and ®%(X) to be completely
disentangled, which naturally corresponds to the minimization of I(®,,(X); ®2(X)). Concretely,
the domain classifier is trained to minimize the CE between domain labels D and its own predictions,
whereas the main classifier is trained to properly classify support samples while minimizing the MI
between ®,,(X) and @2 (X). Using f2 := CZ o ®2 and fy, := Cy, 0 Dy, the objectives are

min CE(D; f5(X))  and  min CE(Y; fy(Xs)) + A 1@y (X): (X)) (12)

Setup. The different MI estimators are compared based on their ability to guide training by
estimating I(®,,(X); ®2(X)) in (12). We follow the setup of Cheng et al. (2020a) as closely as
possible, and consider a total of 6 source/target scenarios formed with MNIST (L.eCun & Cortes,
2010), MNIST-M (Ganin et al., 2016), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al.,
2009), and STL-10 (Coates et al., 201 1) datasets. We reproduce all methods and allocate the same
budget for hyper-parameter tuning to every method. The exhaustive list of hyper-parameters can be
found in Appendix B.

Results. Results are presented in Table 2. The KNIFE-based estimator is able to outperform MI
estimators in this challenging scenario where both ®,;,(X) and ®Z(X) are continuous.

5 CONCLUDING REMARKS

We introduced KNIFE, a fully learnable, differentiable kernel-based estimator of differential entropy,
designed for deep learning applications. We constructed a mutual information estimator based on
KNIFE and showcased several applications. KNIFE is a general purpose estimator and does not
require any special properties of the learning problem. It can thus be incorporated as part of any
training objective, where differential entropy or mutual information estimation is desired. In the case
of mutual information, one random variable may even be discrete.

Despite the fundamental challenges in the problem of differential entropy estimation, beyond limita-
tions arising from the use of a finite number of samples, KNIFE has demonstrated promising empirical
results in various representation learning tasks.

Future work will focus on improving the confidence bounds given in Theorem 1. In particular,
tailoring them towards KNIFE using tools from (Birge & Massart, 1995; Singh & Poczos, 2014).
Another potential extension is direct estimation of the gradient of entropy, when px e (; @) has
been learned (Mohamed et al., 2020; Song et al., 2020). This could be applied after the learning
phase of KNIFE and is left for future work.
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APPENDIX

A EXPERIMENTAL DETAILS OF EXPERIMENTS WITH SYNTHETIC DATA

Implementation of KNIFE in PyTorch (Paszke et al., 2019) is rather straightforward. The constraint
on the weights u can be satisfied by applying a softmax transformation. The covariance matrices
were parameterized by the lower-triangular factor in the Cholesky decomposition of the precision
matrices, guaranteeing the definiteness constraint to be satisfied.

A.1 DIFFERENTIAL ENTROPY ESTIMATION OF GAUSSIAN DATA

In Section 3.1.1, the estimation of the entropy h(X) = 4 log 2re for X ~ N(0, I,) was performed
with the hyperparameters given in Table 3. The mean error and its empirical standard deviation are
reported in Table 5 over 20 runs, where an independently drawn evaluation set with the same size as
the training set is used. At d = 10 we have the entropy h = % log 2me = 14.19, while for the higher
dimension, d = 64 we find h = 90.81.

In the experiment depicted in Figure I, entropy is decreased after every epoch by letting X; ~
N(0,a'l,), where i = 0,...,4 is the epoch index. That is, X; = VaiG4, where G is a standard
normal random variable, resulting in an decrease of the DE by A = —% loga ~ 22.18 fora = 1

2
with every epoch. We start at h(X() = £ log 2me ~ 90.81 and successively decrease until h(X4) =
h(Xp) + 4A = 2.1. Additional parameters can be found in Table 4.

Computational Resources. Training was performed on an NVidia V100 GPU. Taken together,
training for the first experiments of entropy estimation in dimensions d = 10, 64, as well as the
experiment depicted in Figure | used GPU time of less than 5 minutes.

A.2 DIFFERENTIAL ENTROPY ESTIMATION OF TRIANGLE MIXTURES

In Section 3.1.2, we perform an estimation of the entropy of c-component triangle mixture distribu-
tions. The PDF of such a c-component triangle-mixture, is given by

pla) =Y wil,, (m —i— ;) (13)
=1

where Ay(z) := L max{0,2 — 4s|z|} is a centered triangle PDF with width s > 0. The scales
s = (s1,...,8c) and weights w = (w1, ..., w.) satisfy 0 < s;,w; < land > ;_, w; = 1. Before

the experiment, we choose w uniformly at random from the c-probability simplex and the scales are
chosen uniformly at random in [0.1, 1.0]. An example for ¢ = 10 is the true PDF depicted in Figure 2

Table 4: Experimental details of the experiment
Table 3: Experimental details of first experi- depicted in Figure 1.
ment in Section 3.1.1.

Parameter Value
Parameter Value Source Distribution X X ~ A/(0,a'1,)
Source Distribution X X ~ N(0, I) fori =0,...,4
Dimension d 10 and 64 Dimension d 64
Optimizer Adam Factor a %
Learning Rate 0.01 Optimizer Adam
Batch Size N 128 Learning Rate 0.01
Kernel Size M 128 Batch Size N 128
Iterations per epoch 200 Kernel Size M 128
Epochs 1 Iterations per epoch 1000
Runs 20 Epochs 5
Runs 1
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Table 5: Results of first experiment in Section 3.1.1 with Gaussian data. We provide the average
distance |h — h| and the empirical standard deviation. Experimental details are given in Table 3.

|h — d=10 d =64

DoE  0.8388 +1.0045 3.3170 £ 1.8281
SCHRAU.  0.7301 £ 0.0428 9.8919 £ 0.1604
KNIFE 0.0461 +£0.0139 2.8045 + 0.0796

Table 7: Experimental details of the experiment

Table 6: Experimental details of the experiment resulting in the training depicted in Figure 2

resulting in the PDF in Figure 2 (left).

(right).
Parameter Value
Parameter Value
Source Distribution X c-component Source Distribution X c-component
triangle mixtures . .
triangle mixtures
Components ¢ 10
. . Components ¢ 2
Dimension d 1 . .
. Dimension d 8
Optimizer Adam .
. Optimizer Adam
Learning Rate 0.1 .
> Learning Rate 0.001
Batch Size N 128 -
. Batch Size N 128
Kernel Size M 128 .
. Kernel Size M 128
Iterations per epoch 100 .
Iterations per epoch 1000
Epochs 10
Runs 1 Epochs 20
Runs 10

(left). For d > 1, we perform the estimation on d i.i.d. copies. Note that the triangle mixture with ¢
components in d-dimensional space has c¢? modes, i.e., the support can be partitioned into ¢? disjoint
components.

The parameters of the experiment yielding Figure 2 (left) are given in Table 6, while the details of the
experiment depicted in Figure 2 (right) can be found in Table 7. In the latter experiment, over ten runs,
entropy was estimated to an accuracy of 1.6563 £ 0.8528 by KNIFE, accurate to 2.4445 + 0.5439
using (3) and with an accuracy of 7.1070 &£ 2.7984 by DOE. This is the mean absolute error and its
empirical standard deviation over all 10 runs, where the evaluation set was drawn independently from
the training set and has the same size as the training set.

Computational Resources. Training was performed on an NVidia V100 GPU. Training ind = 1
dimension, that resulted in Figure 2 (left) can be performed in seconds, while all training required for
producing Figure 2 (right) used approximately 1.5 hours of GPU time.

A.3 MUTUAL INFORMATION ESTIMATION

In Section 3.2, we estimate I(X%; Y'¢) and I(X¢; (Y3)4) where (X, Y") are multivariate correlated
Gaussian distributions with correlation coefficient p; in the i-th epoch. Subsequently, we estimate
I(X%Y?) where X, E ~ U[—+/3,/3] are independent and Y is given by Y = p; X + /1 — p2E.
In both cases, p; is chosen such that I(X?; Y'?) = 2i in the i-th epoch.

All neural networks are randomly initialized. The bias, variance, and MSE during training as a
function of the MI, can be observed in Figure 5.

The estimation is performed in 10 runs, randomly choosing the training meta-parameters as proposed
by McAllester & Stratos (2020). In Figure 3 (bottom), we present the best run for each method,
selected by distance from the true MI at the end of training. The bias, variance, and MSE during
training, as a function of the MI, can be observed in Figure 6. Details about the source distribution as
well as details of the experiments can be found in Table 8. During experimentation it turned out to be
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Figure 5: Left: Estimation of I(X; Y); Right: Estimation of I(X; Y3) (cubic transformation).
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Table 8: Experimental details of the training depicted in Figure 3 (bottom).

Parameter Value
Dimension d 20
Optimizer Adam
Learning Rates 0.01, 0.003, 0.001, 0.0003
Batch Size N 128
Kernel Size M 128
Iterations per epoch 20000
Epochs 1
Runs 10

beneficial to train the parameters ® and 6 in (9) separately and substantially increase the learning
rate for the training of 8. Thus, we increase the learning rate for the training of @ by a factor of 105,

Model Architecture for ®. We utilize the feed-forward architecture, also used in McAllester
& Stratos (2020). It is a simple architecture with two linear layers, one hidden layer using tanh
activation, immediately followed by an output layer. The number of neurons in the hidden layer is a
meta-parameter selected randomly from {64, 128, 256} for each training run. Three models with this
architecture are used for the three parameters (A, a, u), as described by (4), where only the output
dimension is changed to fit the parameter dimension.

Computational Resources. Training was performed, using about 6 hours of GPU time on an
NVidia V100 GPU to carry out the experiment depicted in Figure 3 (bottom).

B EXPERIMENTAL DETAILS OF EXPERIMENTS ON NATURAL DATA

B.1 ON THE PARAMETER UPDATE

In Section 4, we rely on two different types of models: pretrained (e.g., fine tuning with VIBERT)
and randomly initialized (e.g., in fair classification and domain adaptation). When working with
randomly initialized networks the parameters are updated. However, it is worth noting that in the
literature the pretrained model parameters (i.e. ©) are not always updated (see Ravfogel et al. (2020)).
In our experiments: (i) We always update the parameters (even for pretrained models), and (ii) we
did not change the way the parameters were updated in concurrent works (to ensure fair comparison).
Specifically,

* for language model finetuning (Appendix B.2), we followed Mahabadi et al. (2021) and did
a joint update;

« for the fair classification task (Appendix B.3), we followed common practice and used the
algorithm described in Algorithm | which rely on an alternated update;

* for the domain adaptation task (Appendix B.4), we followed common practice and used a
joint method.

B.2 INFORMATION BOTTLENECK FOR LANGUAGE MODEL FINETUNING

For this experiment we follow the experimental setting introduced in Mahabadi et al. (2021) and
work with the GLUE data”’.

Model Architecture. We report in Table 9, the multilayer perceptron (MLP) used to compute the
compressed sentence representations produced by BERT. Variance and Mean MLP networks are
composed of fully connected layers.

Zsee https://gluebenchmark.com/faq
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Figure 6: Bias, variance, and MSE for MI estimation on uniformly distributed data.

Algorithm 1 Disentanglement using a MI-based regularizer

INPUT Labelled training set D = {(z;, s;,y;)Vj € [n + 1, N|}; independent set of samples &;

0 parameters KNIFE; v parameters of network.
INITIALIZE parameters 6, ¢
OPTIMIZATION
while (6, 1)) not converged do
for i € [1,Unroll] do
Sample a batch B from &
Update 6 using ((9)).
end for
Sample a batch B’ from D
Update 6 with B’ ((11)).

. end while
: OUTPUT Encoder and classifier weights ¢

> Learning Step for KNIFE
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Table 10: Experimental details on Informa-
Table 9: Architecture of the model used in the tion Bottleneck.

IB finetuning experiment. We use ReLU as
an activation function.

Parameter Value

Layer type Input shape  Output shape Leaming Rate  See Appendix B.2

Optimizer AdamW
Fully connected 768 BU+K Warmup Steps 0.0
Fully connected =i mesh Dropout 0.0

Batch Size 32

Table 11: Datasets from the GLUE as used in our experiments.

#Labels Train  Val. Test

RTE 2 2.5k 0.08k 3k
STS-B 1 (regression) 5.8k 1.5k 1.4k
MRPC 2 37« 04k 1.7k

Model Training. For model training, all models are trained for 6 epochs and we use early stopping
(best model is selected on validation set error). For IB, \ is selected in {107%,107°,107°} and K is
selected in {144,192, 288, 384}. We follow (Alemi et al., 2016) where the posterior is averaged over
5 samples and a linear annealing schedule is used for A. Additional hyper-parameters are reported in
Table 10.

Dataset Statistics. Table |1 reports the statistics of the dataset used in our finetuning experiment.

Computational Resources. For all these experiments we rely on NVidia-P100 with 16GB of RAM.
To complete the full grid-search on 10 seeds and on the three datasets, approximately 1.5k hours are
required.

B.3 FAIR TEXTUAL CLASSIFICATION

In this section, we gather the experimental details for the textual fair classification task.

B.3.1 DETAILS OF THE KNIFE-BASED ESTIMATOR

In this experiment, we estimate the MI between a continuous random variable, namely Z = ®,, (X),
and a discrete variable, denoted by S € S = {1,2,...,|S|}. We follow the strategy outlined in
Section 2.4 for estimating the conditional DE h(Z|S). However, we will reuse the estimate of the
conditional PDF j(z|s; ®) to compute an estimate of the DE as

1 N
h(Z) ~ N Z log (ZﬁKNIFE(ZnSQ 9)]5(5)> ) (14)
n=1

seS

where p(s) = x-|{n : s, = s}|is used to indicate the empirical distribution of S in the training set

D,.” In our experiments, with |S| = 2, we found that estimating the DE h(Z) based on the KNIFE
estimator learnt for h(Z|S) increases the stability of training. We adopted the same strategy for DOE.

B.3.2 EXPERIMENTAL DETAILS

Model Architecture. For the encoder, we use a bidirectionnal GRU with two layers with hidden
and input dimension set to 128. We use LeakyReLU as the activation function. The classification
head is composed of fully connected layers of input dimension 256. We use a learning rate of 0.0001
for AdamW. The dropout rate is set to 0.2. The number of warmup steps is set to 1000.

*As we work with balanced batches, we will have f(s) = GE
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Computational Resources. For all these experiments, we rely on NVIDIA-P100 with 16GB of
RAM. Each model is trained for 30k steps. The model with the lowest MI is selected. The training of
a single network takes around 3 hours.

B.4 UNSUPERVISED DOMAIN ADAPTATION

We follow the experimental setup given in Cheng et al. (2020a) as closely as possible, i.e., we pick
hyperparameters given in the paper, or if not provided, those set in the code:*

Model Training. We use Adam optimizer for all modules with a learning rate of 0.001. Batch size
is set to 128. We set the weighting parameter A = 0.1. The original code of Cheng et al. (2020a) uses
15 000 training iterations, but we found most methods had not properly converged at this stage, and
hence use 25 000 iterations instead. Similar to other experiments, we set the kernel size M = 128.

Model Architecture. Table 12 summarizes the architectures used for the different modules. For
the MI network of each method, the best configuration, based on the validation set of the first task
MNIST — MNIST-M, is chosen among 4 configurations: with or without LayerNorm and with ReLU
or tanh activation.

Computational Resources. For these experiments, we used a cluster of NVIDIA-V100 with 16GB
of RAM. Each training (i.e., 25k iterations) on a single task requires on average 2 hours. Given that
we have 6 tasks, and repeat the training for 3 different seeds, on average 36 hours computation time
is required for each method.

C BOUNDING THE ERROR

In the following, fix L > 0 and let P, be the set of L-Lipschitz PDFs supported’ on X' := [0, 1]¢,
ie., [, p(z)dz =1, and

Va,y € R : p(z) — p(y)| < Lz — y|| (15)

for p € Pr, where® ||z|| := >, |2kl
Assume p € P, and let x be a PDF supported on X'. In order to show that estimation of h(X) is

achievable, we use a standard Parzen-Rosenblatt estimator f(z;w) := 17— S0 _ & (m_TXT/”), as
in (2). The entropy estimate is then defined by the empirical average
N 1 X
h(Dy; w) = —N;bgﬁ(Xn;w). (16)
Further, define the following quantities, which are assumed to be finite:
Pmax = max{p(z) :x € X'}, (17)
Cy = /p(m) log? p(z)dz, (18)
Cy = L/||u||/i(u)du, (19)
Kax = max{k(x) : x € X}. (20)

Note that it is easily seen that .y < % and (7 < max { Pmax log2 Pmax; 46*2} by our assumptions.
The requirement Cs, K, < 0o represents a mild condition on the kernel function «.

We can now show the following.

*nttps://github.com/Linear95/CLUB/tree/master/MI_DA.

> Any known compact support suffices. An affine transformation then yields X = [0, 1]d, while possibly
resulting in a different Lipschitz constant.

SThe ¢; norm is chosen to facilitate subsequent computations. By the equivalence of norms on R%, any norm
suffices.
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Table 12: Architectures used for the Unsupervised Domain Adaptation experiments. For the MI
network of each method, we chose the best performing configuration between with or without
LayerNorm layer and best activation between ReLU and tanh, using the validation set of MNIST-M.

Encoder (both ® and ®%)

Layer type Input shape Output shape Details
Convolution sequence (3,H, W) (64, H, W) Cf. below
Noisy downsampling (64, H, W) (64, H//2,W//2) Cf. below

Convolution sequence (64, H//2, W //2) (64,H//2, W //2) Cf. below
Noisy downsampling (64, H//2, W //2) (64, H//4, W //4) Cf. below
Convolution sequence (64, H//4, W //4) (64,H// 4, W //4) Cf. below

Global Average Pool (64, H// 4, W [/ 4) (64, -
Main classifier C Domain classifier C¢
Layer type Input shape  Output shape Layer type Input shape  Output shape
Fully connected (64,) (10,) Fully connected (64,) 2,

Convolution sequence

Layer type Input shape  Output shape Parameters

2D convolution (3, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (3, H, W) (64, H, W) -

Activation (3,H, W) (64, H, W) LeakyRelu 0.1
2D convolution (64, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (64, H, W) (64, H, W) -

Activation (64, H, W) (64, H, W) LeakyRelu 0.1
2D convolution (64, H, W) (64, H, W) 3x3, 64 channels, Stride=1, Padding=1
2D BatchNorm (64, H, W) (64, H, W) -

Activation (64, H, W) (64, H, W) LeakyRelu 0.1

Noisy downsampling

Layer type Input shape Output shape Parameters
MaxPool (64, H, W) (64, H//2,H/I?2) 2x2, Stride=2
Dropout (64, H//2,W//2) (64,H//2,H//2) p=0.5

Noise 64, H//2,W//2) (64, H//2,H//2) Gaussianwitho =1
MI network
Layer type Input shape  Output shape Details
LayerNorm (Cinsy) (Cinsy) Optional
Fully connected (Ciny) (64, Activation = [ReLLU, tanh]
LayerNorm (Cins) (64,) Optional
Fully connected (64, (Cout») Optional

Theorem 2. With probability greater than 1 — § we have

BN Kmax [log 5 3NCyw ) [3C
wd§ 2M 1 N§’

|h(X) — h(Dy;w)| < —log | 1 - @1

if the expression in the logarithm is positive.
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In particular, the estimation error approaches zero as N — oo if w = w(N) — 0, M = M(N) — oo
are chosen such that

Nw — 0, (22)
N2?log N

We prove Theorem 2 in several Lemmas.
Lemma 3. Fix § > 0 and xoy € X. Then, with probability greater than 1 — §,

X Knax | log 3
— <
|p($0) p($0)| — U/'d 2M

Proof. First, we can show that

1 U 0 — T
Elp (o) ~ploo)| = |z S [ (25 oot —pte 2s)
1 f To—T

== / K <10w ! ) p(z)dz — p(zo) (26)

= //-f, (u) p(xo — wu)du — p(xo) 27

= /h (u) [p(xo — wu) — p(xo)]du (28)

< / K (u) [p(xo — wu) — p(xo)|du (29)

< / K (u) Lw||u||du (30)

= ;1)02. (31)

Next, note that
Kinax [log §
[Ep(r0)] — plao)| <~/ 22 (32)

holds with probability greater than 1 — ¢ as the requirements of McDiarmid’s inequality (Paninski,
2003, Sec. 3) are satisfied with ¢; = K"E,’; and thus P{|E[p(z0)] — p(z0)| > e} < J with

M
Kumax [log 3
= 33
c we 2M (33)
Combining (31) and (32) gives (24). O
Lemma 4. For any continuous random variable X supported on X and a > 0, we have
P{p(X) <a} <a. (34)
Proof. We apply Markov’s inequality to the random variable Y = ﬁ and observe that
P{p(X) <a} =P{Y >a"'} <vol(X)a = a. (35)
O
Lemmas5. Ifz >0,y>a>0,0<a<1,and|z—y| <6< a,then
a )
|logx — logy| < log = —log (1— ) . (36)
a—9 a
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Proof. Casex > y. Wecanwritey =a+bandx =y+c=a+b+cforb>0and0<c¢ < < a.

T c
log = | = 14+ ——
ogy‘ log( +a+b) (37)
<log(1+c)<log(1+6>. (38)
a a
Furthermore,
a 1) 1
1 — | =1 1+—-) =log —n—— 3
Og(a—a) Og(*a) % lat o) a—0) &
1
1
> log — = —2loga > 0. 4n
a

Case r < y. Here, wecanwritty =a+bandz=y—c=a+b—cforb>0and 0 < c < < a.

1ogx‘logy (42)
Y x
a+b
=1 _— 4
Og(a—i—b—c) “43)
smg( . ) (44)
a—c
<log( a4 >:—log(1—6>. (45)
a—9 a
O

Proof of Theorem 2. We apply Lemma 3 N times and use the union bound to show that with proba-
bility greater than 1 — g we have for every n € [N]

Kimax IOg %
wd 2M

Ip(Xn) — P(Xn)| < + Chw. (46)

Similarly, by Lemma 4, we have with probability greater than 1 — % that

0

X,) > —

(47)

forall n € [N].

Again by the union bound, we have that with probability greater than 1 — 2—3‘5 both (46) and (47) hold
for all n € [NV], and thus, by Lemma 5, we obtain

N
1 p(Xn)
— log =
N 2% (%)

6N
Kgf?x V lozgjvfS + Chw
1-— 49)

S
3N

N
~ 1
h(Dy; w) + N > logp(X)

n=1

(48)

< —log

BN Kmax log °F  3NCyw
w§ 2M ) ’

=—log|1-— (50)
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provided the argument in the logarithm is positive. Finally, we have the upper bound on the variance

1 Y ’ 1 &
E <h(X)+Nzlogp(Xn)> = WZE[(h(X)Hng(X))Q]

= %(E[log2 p(X)] — h(X)?)

1
< =C
Sy
and apply Chebychev’s inequality, showing that with probability greater than 1 — g,
N

1 3C,
— <3/ —.
h(X) + N E logp(X,)| < No

n=1

The union bound and the triangle inequality applied to (50) and (54) yields the desired result.

D LIBRARIES USED

For our experiments, we built upon code from the following sources.

e VIBERT (Mahabadi et al., 2021) at github.com/rabeehk/vibert.

DoOE (McAllester & Stratos, 2020) at github.com/karlstratos/doe.

InfoNCE, MINE, NWJ, CLUB (Cheng et al., 2020a) at github.com/Linear95/CLUB.

25

&1V

(52)

(53)

(54)

TRANSFORMERS (Wolf et al., 2019) at github.com/huggingface/transformers.

SMILE (Song & Ermon, 2019) at github.com/ermongroup/smile-mi-estimator.


https://github.com/rabeehk/vibert
https://github.com/huggingface/transformers
https://github.com/karlstratos/doe
https://github.com/ermongroup/smile-mi-estimator
https://github.com/Linear95/CLUB
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