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Abstract

As large language models (LLMs) become more integrated into everyday appli-
cations, ensuring their robustness and security is increasingly critical. In par-
ticular, LLMs can be manipulated into unsafe behaviour by prompts known as
jailbreaks. The variety of jailbreak styles is growing, necessitating the use of
external defenses known as guardrails. While many jailbreak defences have been
proposed, not all defences are able to handle new out-of-distribution attacks due
to the narrow segment of jailbreaks used to align them. Moreover, the lack of
systematisation around defences has created significant gaps in their practical ap-
plication. In this work, we perform systematic benchmarking across 18 different
defences considering a broad swathe of malicious and benign datasets. We find
that there is significant performance variation depending on the style of jailbreak a
defence is subject to. Additionally, we show that based on current datasets avail-
able for evaluation, simple baselines can display competitive out-of-distribution
performance compared to many state-of-the-art defences. Code is available at
https://github.com/IBM/Adversarial-Prompt-Evaluation.

1 Introduction

Large language models (LLMs) have gained attention due to their advanced capabilities, and are
increasingly becoming part of more complex systems [1, 2, 3], which necessitates the requirement
that these models be robust against adversarial manipulations. LLMs not only inherit traditional
security pitfalls like evasion and poisoning attacks [4, 5], but are also prone to safety vulnerabilities
like jailbreaks and prompt injection attacks. To make LLMs robust, they are usually trained/fine-tuned
to produce safe output in a process called ‘safety training’ or ‘alignment’ [6].

To evaluate the safety aspects of aligned LLMs, prompt injection and jailbreak attacks are of particular
importance, as they are employed to target aligned LLM models to produce adversarially-controlled
outputs [7, 8, 9, 10]. As jailbreaks have been shown to break alignment of safety-trained models,
additional layers of protection called guardrails have been proposed. These guardrails can be used
in addition to the alignment process, and make the overall LLM-based system more secure. Some
of these guardrails can be composed of perplexity filters, tools for input prompt paraphrasing [11],
keyword-based detectors, semantic similarity based detectors [12], or output filters that monitor the
response generated by LLMs to detect any harmful information [13]. Despite showing improvement
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in defending against jailbreak attacks, these approaches have limitations and their applicability against
more sophisticated attackers remains an open research problem [7, 14].

Currently, there is no standard benchmark framework for evaluating different guardrails as the
approaches proposed in the literature vary widely in terms of evaluation approaches, representative
datasets used for comparison, and metrics, e.g. string matching evaluation or BERT-based models for
classifying the prompt as jailbreak or benign [14]. In this context, our work addresses the following
research questions (RQs):

RQ1: Are the currently available benchmarking datasets sufficient to adequately assess the quality
of proposed guardrails, and how well do existing guardrails and defences perform on a wide
cross-section of different attacks and datasets?

RQ2: How do guardrails compare when considering additional constraints such as memory size,
inference time, and extensibility?

RQ3: How to approach and recommend guardrails to practitioners for deployment and use?

Guided by the above RQs and existing limitations in jailbreak evaluation benchmarks, we present an
extensive benchmark evaluation with the following contributions:

I We highlight the limitations of previous benchmark evaluations, and how they might result in
inaccurate attack and defence evaluation.

II We evaluate attack success rates on known adversarial datasets in a systematic manner, using an
evaluation framework combining different evaluation metrics.

III We evaluate different defences proposed in the literature including different guardrails using the
evaluation benchmark presented in this paper.

IV We provide insights on whether model complexity in the defence provides better out-of-
distribution (OOD) generalization.

2 Related Works

Attacks: Prompt injection describe attacks where crafted inputs aim to generate an inappropriate
response. This can be achieved by circumventing existing safeguards via jailbreaks [8, 9, 15, 10] or
via indirect injection attacks [16, 17]. Here, adversarial prompts are crafted to pursue different goals
like mislead models into producing unwanted output, leak confidential information, or even perform
malicious actions [18, 19, 20]. Furthermore, attacks can be categorised based on their methods of
generation, e.g optimization-based attacks, manually crafted attacks, and parameter-based attacks
that exploit the model’s sampling and decoding strategies for output generation [8, 21].

Defences: Strategies to defend against prompt injection attacks include safety training [22, 23],
guardrails [24, 25], or prompt engineering and instruction management [26, 27, 28]. These techniques
have different resource requirements, and currently, there is neither a silver bullet to defend against
prompt injection attacks, nor a way to prescribe a specific defense. Our work on benchmarking
guardrails creates a system of recommendations for defences against prompt injection attacks.

Benchmarks: Our first line of benchmarking work includes representative datasets of inputs generat-
ing unwanted outputs. One such repository of sources is available at www.safetyprompts.com [29]
which contains multiple databases characterised along dimensions of safe vs. unsafe. Our second line
of work attempts to consolidate prompt injection attacks for comparison, which includes works like
HarmBench [30], Jailbreakbench [31], and EasyJailbreak [32]. However, defences have not received
the same attention and there is currently no benchmarking suite specifically for guardrails.

3 Datasets

Our benchmarking is founded on a compilation of diverse datasets containing both benign and
malicious prompts. These datasets are categorized based on their target type, either “jailbreak” or
“benign”, and their details in terms of their splits, the number of samples, and the types of prompts
they include is described in Table 1. The prompt types span several categories, including instruction-
based, question-based, artificial attacks (e.g., those generated iteratively with the use of language
models), role-playing, harmful behavior, toxic content, and chat-based interactions. A detailed dataset
description is found in the Appendix.
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Prompt Type

Target Dataset Split Samples Instruction Question Artificial
Attack

Role
Playing

Harmful
Behavior

Toxic
Behavior Chat

aart [33] Train/Test 3224 ✓ ✓
attaq [34] Train/Test 455 ✓
do_not
_answer [35] Train/Test 938 ✓ ✓ ✓

gandalf_ignore
_instructions [36] Train/Test 1000 ✓ ✓

gcg_vicuna [37] Train/Test 520 ✓ ✓ ✓
harmful
behavior [37] Train/Test 512 ✓

jailbreak
prompts [38] Train/Test 652 ✓ ✓

sap [39] Train/Test 1600 ✓
tap [40] Train/Test 2134 ✓ ✓
toxicchat [41] OOD Test 204 ✓ ✓

jailbreak

malicious
instruct [42] OOD Test 100 ✓ ✓

jailbreak
benign xstest [43] Train/Test 450 ✓ ✓

alpaca [44] Train/Test 52002 ✓
awesome_chatgpt
_prompts [45] Train/Test 152 ✓

boolq [46] Train/Test 12697 ✓
no_robots [47] Train/Test 9996 ✓ ✓
puffin [48] Train/Test 5833 ✓
super_natural
_instructions [49] Train/Test 1545 ✓

benign

ultrachat [50] Train/Test 256026 ✓

Table 1: A overview of the characteristics of the datasets used. The prompt types are specified across
several categories: instruction-based, question-based, artificial attack (e.g., if generated through other
models), role playing, harmful- and toxic-behavior, and chat-based.

This characterisation of jailbreak datasets is useful for contextualising guardrails. Comparing
guardrails across these datasets highlights their strengths and shortcomings in terms of handling
different jailbreak styles. Additionally, we include several benign datasets to assess the false positive
rate, and thus the feasibility of deploying guardrail defenses in production. Generalisation capability
of guardrail beyond the anecdotally observed jailbreaks is critical to their deployment. Our analysis
of out-of-distribution evaluation set is specifically tailored for this analysis.

4 Model Defences

Broadly, defences can be categorised into two groups. First, are detection-based approaches that
construct guardrails externally to the LLM to detect attacks. Second, are methods that use LLMs to
judge and filter out malicious prompts based on their alignment coupled with a defence algorithm.

4.1 Detection-Based Approaches

Perplexity Threshold: This detector uses perplexity as a mechanism for detecting perturbations
within prompts. We implement the perplexity filter from Jain et al. [11], which was proposed for
identifying sequences of text that contain adversarial perturbation, like those added by GCG [8]. We
use GPT-2 for computing perplexity, and fix a threshold at the maximum perplexity calculated over
all prompts in the AdvBench dataset, as per the author implementation.

Random Forest: The classifier consists of a simple random forest trained on unigram features
extracted from the training dataset (see Section 5). The text corpus is initially transformed to
lower-case and then tokenized, using each word and punctuation as single token (i.e., feature).

Transformer Based Classifiers: We implement a series of simple baseline classifiers consisting of
the BERT [51], DeBERTa [52], and GPT2 [53] architectures. The classifiers are fine-tuned to detect
malicious vs non-malicious prompts over the training datasets described in Section 5.
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LangKit Injection Detection: In this approach1, a prompt is transformed to its embedding and
compared to embeddings of known jailbreaks. Cosine similarity is used as the closeness metric.
The exact prompts used for constructing the malicious embedding are not specified by WhyLab’s
LangKit.

ProtectAI: ProtectAI Guard is a security tool designed to detect prompt injection attacks. The model
is a fine-tuned version of the microsoft/deberta-v3-base model, which is based on Microsoft’s
BERT Language Model and features 86 million backbone parameters [54]. ProtectAI Guard is trained
on a diverse dataset comprising prompt injections, jailbreaks, and benign prompts. In this work, we
utilize both versions available on Hugging Face (i.e., v12 and v23).

Azure AI Content Safety: The Azure AI Content Safety API is a service provided by Microsoft
Azure for moderating content safety [55]. It utilizes a combination of classification models designed
to prevent the generation of harmful content. For our experiment, we use the jailbreak endpoint API4.

OpenAI Moderation: OpenAI Moderator [56] is an AI-powered content moderation API designed
to monitor and filter potentially harmful user-generated content [57]. In our experiments, we use
the text-moderation-007 model, which classifies content into 11 categories, each associated with
a probability score. We treat content moderation as a binary classification task, where the highest
probability among the harmful categories indicates the likelihood of a jailbreak.

4.2 LLM as a Judge

Vicuna: As a baseline we use the Vicuna LLM model and check if it refused to answer a particular
prompt. We follow a similar strategy to [8, 58] and check for the presence of refusal keywords to
automate the output analysis.

SmoothLLM: SmoothLLM [58] aims to tackle GCG-style attacks. The core of the defence is to
perturb the prompt such that the functionality of the adversarial payload breaks, and the LLM then
refuses to answer the question. The principal drawback is the high computational cost: each prompt
needs to be perturbed multiple times which can incur an order of magnitude higher compute costs,
and the defence is relatively specialised tackling only a particular style of jailbreak.

LangKit Proactive Defence: This defence [12, 17] relies on the idea of supplying a specific secret
string for the LLM to repeat when concatenated with user prompts. As many attacks will contain
elaborate instructions to override system prompt directives, then, when under attack, the model will
not repeat the secret string but rather respond to the adversarial prompt.

NeMo Guardrails: NeMo guardrails [24] provides a toolkit for programmable guardrails that can be
categorized into topical guardrails and execution guardrails. The input moderation guardrail is part of
the execution guardrails where input is vetted by a well-aligned LLM, and then passed to the main
system after vetting it. The input moderation guardrail implementation in this work is inspired by the
NeMo input moderation guardrail5, and is modified by including additional instructions and splitting
the template between system prompt and post-user prompt, which guides the initial response of the
LLM. Changes are specified in the Appendix.

Llama-Guard: Llama-Guard is an LLM-based safeguard model specifically designed for Human-AI
conversation scenarios [25]. Two versions of the Llama-Guard model are considered: Llama-Guard
[59] which belongs to the Llama2 family of models and Llama-Guard-2 [60] which belongs to the
Llama3 family of models. Llama-Guard models function as binary classifiers, categorizing prompts
as either “safe” or “unsafe” with its first generated token.

1https://github.com/whylabs/langkit/tree/main
2https://huggingface.co/protectai/deberta-v3-base-prompt-injection
3https://huggingface.co/protectai/deberta-v3-base-prompt-injection-v2
4The version used for the current experiment is 2023-10-01-preview
5https://github.com/NVIDIA/NeMo-Guardrails/tree/a7874d15939543d7fbe512165287506f0820a57b/

docs/getting_started/4_input_rails
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Guardrails defence AUC ACC F1 Recall Precision

Random Forest 0.9821 0.7261 0.6440 0.4756 0.9970
BERT 0.9949 0.9489 0.9490 0.9127 0.9882
DeBERTa 0.9845 0.9417 0.9413 0.8975 0.9896
GPT2 0.9803 0.9205 0.9198 0.8764 0.9679
Protect AI (v1) 0.5725 0.5598 0.2880 0.1709 0.9144
Protect AI (v2) 0.6538 0.6170 0.4259 0.2727 0.9715
Llama-Guard - 0.7841 0.7397 0.5891 0.9939
Llama-Guard 2 - 0.8292 0.8054 0.6785 0.9904
Langkit Injection Detection 0.8398 0.7223 0.6511 0.4975 0.9421
SmoothLLM - 0.7735 0.7653 0.7091 0.8312
Perplexity - 0.5076 0.2178 0.1316 0.6307
OpenAI_moderation 0.8482 0.5648 0.2841 0.1658 0.9913
Azure AI Content Safety - 0.5576 0.2636 0.1520 0.9905
NeMo Inspired Input rail (Vicuna-7b-v1.5) - 0.5451 0.6905 0.9745 0.5347
NeMo Inspired Input rail (Vicuna-13b-v1.5) - 0.7341 0.7567 0.7942 0.7227
Langkit Proactive Defence - 0.7330 0.6912 0.5738 0.8689
Vicuna-7b-v1.5 Refusal Rate - 0.7371 0.6848 0.5484 0.9117
Vicuna-13b-v1.5 Refusal Rate - 0.8193 0.8043 0.7127 0.9228

Table 2: Complete list of guardrails defence results on sub sample dataset.

5 Experimental Setting

In- and Out-of-Distribution Sample Sets: We divide our datasets into two categories: in-distribution
datasets for training the classifier-based detection mechanisms and out-of-distribution datasets that
have not been used for training or validation of any of the models we train ourselves. In-distribution-
sample datasets are divided into 80% training and 20% testing samples and the training dataset is
divided into an additional 20% validation split. For each dataset, we remove both within-dataset and
cross-dataset duplicate samples.

Our in-distribution datasets comprise AART, Alpaca, AttaQ, Awesome ChatGPT Prompts, BoolQ,
Do Not Answer, Gandalf Ignore Instructions, GCG, Harmful Behaviours, Jailbreak Prompts, No
Robots, Puffin, SAP, Super Natural Instructions, TAP, Ultrachat, and XSTest.

Our out-of-distribution datasets include ToxicChat and MaliciousInstruct to evaluate a detector’s
generalisability to unseen attack vectors. Note, that for defences that we do not train ourselves (e.g.
Vicuna), the distinction between the two splits does not apply.

Evaluation Set: To establish a standardised testing environment we sample up to 200 random
instances from each of the test splits of the in-distribution datasets, filter prompts larger than 1k
characters to allow evaluation against APIs with prompt length limitations, and filter for duplicates.
This yields a total of 2640 samples, with 1265 benign and 1375 malicious samples. For the out-
of-distribution datasets we take all malicious queries from ToxicChat and MaliciousInstruct. After
filtering for duplicates and prompt length this gives 214 malicious OOD samples.

6 Results

Our main results are presented in Tables 2–3 and Figures 1–2. We now discuss their implications in
the context of the three research questions presented in Section 1.

Are Current Benchmarks Sufficient? (RQ1): We test 18 different models, ranging from a simple
random forest classifier to more sophisticated LLM based guardrails on the datasets described in
Section 3; results are presented in Table 2. We can draw the following observations:

• Using NeMo style guardrails boosts the detection and refusal performance of the larger model
(Vicuna-13b), however, an increased false positive rate is also observed compared to the baseline
model. On the other hand, a smaller Vicuna-7b model was unable to process and adhere to the
modified NeMo style system prompt, and performs significantly worse compared to the baseline.

• The classifier models based on BERT, DeBERTa and GPT2 achieved high AUC and accuracy
values on the test dataset as shown in Table 2, and also generalised to new datasets as shown in
Table 3 surpassing more computationally expensive open and closed source defences.

• A simple random forest trained on unigram features can give competitive performance on their
in-distribution test data (Table 2). Although they do not generalise well to the OOD data (Table 3),
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Figure 1: Heatmap illustration of the true positive rates of different guardrails defenses on each
jailbreak dataset. NB: the GCG attack was computed against Vicuna 7b.

their minimal computational cost and training time indicates that they can act as a viable defence
that can be continuously updated with new datasets.

• Guardrails based on LLMs generally boost the detection rate at the cost of an increase in FP rate
and this FP rate increase is not necessarily uniform among datasets, e.g., SmoothLLM incurred
significant penalties on BoolQ and XSTest datasets. This highlights that defences must be evaluated
using a broad a set of datasets, as SmoothLLM defence’s evaluation in the original paper did not
show low performance on benign datasets.

Guardrail defence ToxicChat Malicious
Instruct

Random Forest 0.1228 0.2400
BERT 0.7105 0.9400
DeBERTa 0.7281 0.9000
GPT2 0.6930 0.8000
Protect AI (v1) 0.4386 0.0000
Protect AI (v2) 0.5702 0.0000
Llama-Guard 0.2636 0.8200
Llama-Guard 2 0.1491 0.8900
Langkit Injection Detection 0.4386 0.0000
SmoothLLM 0.4649 0.4800
Perplexity 0.0088 0.0000
OpenAI_moderation 0.0702 0.0200
Azure AI Content Safety 0.5614 0.0000
NeMo Inspired Input rail
(Vicuna-7b-v1.5) 0.9210 1.0000

NeMo Inspired Input rail
(Vicuna-13b-v1.5) 0.4912 1.0000

Langkit Proactive Defence 0.4474 0.4200
Vicuna-7b-v1.5 Refusal Rate 0.3421 0.4200
Vicuna-13b-v1.5 Refusal Rate 0.3596 0.6900

Table 3: TP rate performance of each defence on
out-of-distribution (OOD) datasets. We want point
out to the reader that what can be considered OOD
samples for Random Forest, BERT, DeBERTa, and
GPT2 could not be guaranteed for others defences.

Overall, based on current benchmark results,
we can remark that: (i) either the breadth and
range of openly available data is sufficient to
adequately represent jailbreak attack diversity,
in which case simpler classification-based de-
fences can provide competitive performance at
a fraction of the compute cost. (ii) Or, if we
are to hypothesise that LLM-based defences can
generalise better than their classifier-based coun-
terparts, then we do not currently have a rich-
enough source of data to demonstrate this in the
academic literature, particularly when some pa-
pers evaluate only on a small quantity of data
[58]. This highlights both the limitations of
available datasets in covering the attack space
and, consequently, the rapid growth of new un-
explored attacks, which makes it challenging to
evaluate a defence’s generalisation capability.

How do the Guardrails compare beyond per-
formance metrics? (RQ2): We record model
size and inference conditions for comparing
guardrails in practical use. The latter determines
how input prompts of different lengths are han-
dled, the inference time for each request, and
the throughput of the guardrail. For LLM-based
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Figure 2: FP rate heatmap results of different guardrails defence on each benign dataset.

guardrails this includes the number of inferences required by the defence. Exact time and throughput
results can be seen in the Appendix.

Firstly, memory footprint of guardrails varies from as little as 91 MB from LangKit Injection Detection
scheme to host the embedding model, to as high as 26.03 GB to handle the memory footprint of
Vicuna 13b. Detection-based approach rely on an underlying classification pipeline and generally
are amongst those with the highest memory vs performance ratios: with the transformers of BERT,
DeBERTa, and GPT2 varying in memory footprint between 371MB - 548MB.

Secondly, inference scheme for the different guardrails is tightly coupled with their latency and
throughput. For any guardrail that implicitly relies on a transformer, the maximal token length of the
model determines the length of input prompts that the system can handle. Chunking and windowing
can be used to extend this to strings of arbitrary length, but this will increase the inference time and
reduce the throughput.

Lastly, LLM-based guardrails including NeMo and LangKit’s Proactive defence can be used as
standalone guardrails, or as modules that protect larger/unaligned LLMs. Comparing NeMo with the
baseline provides an insight into the added benefits of using the NeMo pre-filtering step. However, in
this modality using LLM based schemes incur additional non-negligible inference calls. SmoothLLM
can add up to 10 extra inferences, while NeMo adds 1 extra inference per prompt.

In conclusion, when comparing guardrails beyond performance for deployment scenarios, model
size, inference performance, and response metrics are crucial. LLM-based approaches can require
additional inference calls which may impact memory footprint, latency and throughput.

How to recommend guardrails for practical use? (RQ3):

Recommending a guardrail for practical use requires knowledge of the defender’s capabilities. With
access to compute resources, guardrails can be deployed as a standalone service which filters every
inference request before feeding it to an LLM. Most of the guardrails we have discussed within the
context of this work do not use additional information about the LLM they are seeking to protect.
However, one can envision scenarios where white-box access to the underlying LLM is used to
determine and filter a prompt attack vector. We can draw the following suggestions:

• As discussed in Section 6 guardrails have significantly different resource requirements, and cur-
rently, there is no one-size-fits-all solution. LLMs receive safety training and often continue to
receive updates for patching observed security vulnerabilities like jailbreaks and prompt injections.
Therefore, the choice of guardrail for an LLM depends on a model’s inherent defense mechanism
against these threats as there will be an overlap between their defense capabilities. Moreover,
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the spectrum of threat vectors can vary from direct instructions to adversarial manipulation via
persuasive language [61], or even algorithmically computed strings [8]. Off-loading the detection of
all such vectors to one guardrail is a significant challenge requiring a large range of representative
datasets to have an effective true positive rate vs. false positive rate trade-off.

• Another dimension to consider is the extensibility of these models to new attack vectors. Score-
based guardrails like the perplexity threshold filter is only parameterised by a threshold. Therefore,
it does not need model training, and can be easily adapted to new scenarios. Similarly, the LangKit
detector may be extended to new scenarios by adopting the database of vectors used for similarity
comparisons. Classifier-based approaches require model re-training to extend to new attack vectors.
NeMo guardrail is only parameterised by its prompt, and so is highly extensible and can be used in
combination with an aligned LLM. Llama-Guard on the other hand is parameterised by a system
prompt but in addition also relies on the underlying model that has been tuned for the task of
safe vs unsafe classification. Adopting Llama-Guard to new scenarios will therefore require both
training and potentially changes to the prompt template. Finally, while the guardrails seek a binary
decision of safe vs unsafe, it is useful to assess their performance by considering a third dimension
of unsure. LLM as a judge based defences may be more easily extended to include this third option
via prompting. However, adopting the binary classifiers to such scenarios may require retraining or
techniques like conformal calibration on output probabilities [62].

In conclusion, recommending a guardrail for practical use requires understanding the defender’s
capabilities, as guardrails vary significantly in resource requirements and extensibility to new attacks.
The choice of a guardrail depends on the model’s inherent defenses and the spectrum of threat vectors
it faces, highlighting the need for a tailored approach rather than a one-size-fits-all solution.

7 Conclusion and Limitations

In this work, we performed a wide benchmarking of guardrails over a large number of datasets.
We show that many defences can have large performance differences depending on the attack style
considered, highlighting that evaluating over many different categories of attacks is essential for
accurately determining guardrail performance. Furthermore, guardrails can vary significantly in
both memory footprint, computational cost, and extensibility to new attack vectors. Increasing the
computation by an order of magnitude to defend against jailbreaks may thus not be a feasible solution
in relation to far more lightweight approaches that have been relatively under-explored, and able to
satisfy practical deployment constraints. A principal limitation of this work is that we were required
to subsample our final evaluation data due to the high computation cost of several defences, and the
range of datasets being evaluated.
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A Appendix

A.1 Datasets

To conduct our benchmarking we gather a range of different datasets comprising of both benign and
malicious prompts.

aart: The AI-Assisted Red-Teaming (AART) dataset [33] consists of harmful prompts generated
in an automated manner. The users can guide the adversarial prompt generation by providing and
modifying high level recipes for a downstream LLM to follow in creation of the adversarial examples.

alpaca: The Alpaca dataset 6 includes 52,000 instructions and demonstrations generated by OpenAI’s
text-davinci-003 [44]. Primarily, this dataset is intended to serve as a key resource for instruction-
tuning language models, enhancing their ability to follow instructions accurately. In our context,
the distilled instruction set will contain benign prompts, contrasting with role-playing jailbreak
instruction prompts to highlight their effects.

awesome_chatgpt_prompts: Awesome ChatGPT Prompts 7 is a repository featuring a curated
collection of example prompts specifically designed for use with the ChatGPT model [45]. This
collection is tailored to be effective across various ChatGPT applications. For our purposes, it expands
the set of prompts used in benign role-playing scenarios.

attaq: The Adversarial Question Attack (AttaQ) dataset consists of harmful questions gathered from
three sources: 1) questions from Anthropic’s red teaming dataset, 2) attack prompts synthesised by
LLMs directly by providing a toxic directive and example question, and 3) LLM generated harmful
prompts when given instances of harmful activities and the corresponding actions involved in them;
the LLM is then instructed to generate prompts that a user who whishes to engage in such an activity
may pose [34].

boolq: The BoolQ dataset is comprised of 16k question/answer pairs curated by Clark et al. [46].
The questions are formulated such that answers are yes or no and were gathered from anonymized,
aggregated queries sent to Google’s search engine. Additional filters were put in place when selecting
the questions/answer pairs, such as the length of the query, and whether a Wikipedia page was
returned in the top results of the query to Google. Human annotators were also used to determine if
the question was of good quality e.g. easily understandable. In the context of this work, this dataset
represents benign prompts typical users might ask an LLM to answer in place of a search engine.
Alon et al. [63] use 3,270 BoolQ prompts as non-adversarial during evaluation.

do_not_answer: Do-Not-Answer8 dataset [35] contains 939 instructions across 5 risk areas (e.g.,
information hazards, human-chatbot interaction harms etc.) and 12 harm types (e.g, self harm,
disinformation, body shaming etc.). The dataset is curated in a way that most responsible LLMs do
not answer the dataset samples. The dataset samples are generated using GPT-4 using a strategy that
involves simulated conversation history and three conversation rounds to generate the samples across
above mentioned risk and harm dimensions, and only inherently risky samples are selected from
generated responses.

gandalf_ignore_instructions: The Gandalf Ignore Instruction 9 dataset was collected by Lakera AI
as part of an educational game designed to raise awareness about the risks of prompt attacks on large
language models [36]. This dataset comprises 1,000 instruction-based prompts that use role-playing
techniques to bypass the model’s alignment defenses and reveal the game’s secret password.

gcg_vicuna: The Greedy Coordinate Gradient (GCG)-Vicuna dataset was generated following the
methodology described by [37]. It consists of 512 Harmful Behaviors’ samples which were used
to prompt the Vicuna model during the attack. The attack type employed is the “individual GCG
attack” method. For each harmful behavior prompt, the attack begins by appending an adversarial
suffix of twenty spaced exclamation marks (i.e., “! ”) to the prompt. The suffix is then iteratively
revised to minimize loss until the model responds without refusal keywords. Multiple distinct attack
suffixes may be generated, with the final selection being the one that achieved a successful attack.

6https://huggingface.co/datasets/tatsu-lab/alpaca
7https://huggingface.co/datasets/fka/awesome-chatgpt-prompts
8https://huggingface.co/datasets/LibrAI/do-not-answer
9https://huggingface.co/datasets/Lakera/gandalf_ignore_instructions
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The Vicuna-7b-v1.5 model 10, a fine-tuned version of Llama2, was used to generate and test the
performance of the new suffix, replicating the experimental setup of [64].

harmful_behaviours: The Harmful Behaviors dataset is a subset of the AdvBench dataset, designed
to test the alignment of large language models (LLMs) with safety requirements [37]. It is divided
into two subsets: Harmful Strings and Harmful Behaviors. Both subsets were generated by prompting
Wizard-Vicuna-30B-Uncensored, an uncensored and unaligned version of the Vicuna model. The
authors manually crafted 100 and 50 prompts for each subset, respectively, and then generated 10 new
samples for each prompt using a 5-shot demonstration method. The Harmful Behaviors subset, which
was selected for this work, consists of 512 instruction-based prompts that cover the same themes as
the Harmful Strings subset. These prompts are framed as questions to elicit harmful content from
the model in response to the harmful instructions. The dataset includes various themes observed in
online interactions, such as cyberbullying, hate speech, and harassment, making it a critical resource
for training and evaluating algorithms designed to detect and mitigate harmful behavior in digital
environments and online communities.

jailbreak_prompts: The Jailbreak Prompts dataset comprises examples of four platforms (i.e.,
Reddit, Discord, websites, and open-sources datasets) from December 2022 to May 2023, which
consists of 6387 prompts, then filtered to 666 prompt considered as jailbreaks "in the wild" by [38].

malicious_instruct: The MaliciousInstruct dataset is comprised of 100 prompt instructions con-
taining malicious intent, similar to AdvBench. It was created by Huang et al. [42] as an additional
benchmark dataset for carrying out evaluations, but with the goal of being more diverse with respect
to malicious categories present in the prompts, thus facilitating more rigorous evaluations. The dataset
was created using ChatGPT in "Do Anything Now" mode, and prompted to define 10 categories
of malicious behaviour: psychological manipulation, sabotage, theft, defamation, cyberbullying,
false accusation, tax fraud, hacking, fraud, and illegal drug use. For each category, 20 malicious
instructions were subsequently generated using the LLM, and further manually reviewed by the
authors for alignment to the selected malicious categories and diversity, after which 100 malicious
prompts remained. ChatGPT, under normal operating conditions, was also used to evaluate the
prompts, with each one prompting refusal to answer.

no_robots: The No Robots dataset is constructed using 10,000 instructions and demonstrations by
humans [47]. It contains a wide range of prompts on topics such as question answering, coding, and
free-text generation.

puffin: The Puffin dataset11 is a collection of multi-turn conversations between GPT-4 and hu-
mans [48]. This dataset comprises 2,000 conversations, each averaging 10 turns, with conversation
context lengths exceeding 1,000 tokens. For the purposes of this study, we selected a subset of 6,994
prompts generated by the human participants, as these align most closely with benign labeled data.

SAP: The Semi-automatic Attack Prompts (SAP) dataset [39] is a collection of attack prompts
constructed in a semi-automated manner. Initial manual prompts are supplied to an LLM and via
in-context learning the LLM is tasked to generate additional malicious prompts. In total this results
in 1,600 prompts covering a wide range of harmful topics.

super_natural_instructions: Super Natural-Instructions dataset [49] is a benchmark of natural
language processing tasks containing 1616 instructions related to 76 different task types (e.g. classi-
fication, text matching, paraphrasing etc.) and 33 different domains (e.g., news, sociology, fiction,
medicine etc.) which was collected through community effort on Github12. For our benchmark
evaluation we select 1,613 instructions as they closely align with benign labeled data.

TAP: The TAP dataset was generated using the algorithm proposed by Mehrotra et al. [40] in Tree of
Attacks with Pruning (TAP). During generation, harmful behaviours from the AdvBench dataset are
used as seed to generate candidate attack prompts using tree-of-thoughts reasoning. The candidates
are iteratively refined using a black-box LLM, in this case Vicuna-7b-v1.5, until a jailbreak is
determined.

10https://huggingface.co/lmsys/vicuna-7b-v1.5
11https://huggingface.co/datasets/LDJnr/Puffin
12https://github.com/allenai/natural-instructions
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toxic_chat: ToxicChat dataset [41] is based on real user queries from a Vicuna online demo13 which
is one of the most used community chatbot platform and data is collected related to interactions
between users and chatbot from March 30 to April 12, 2023 at the consent of the users. The dataset
contains 10,165 data points and we use the version 012414 of the dataset and select jailbreaking
samples.

ultrachat: The Ultrachat dataset [50] is comprised of over half a million conversations between a
(simulated) human and AI. In creating the dataset high level conversation topics are selected and two
LLMs interact, playing the roles of the user and the AI in practice.

xstest: The eXaggerated Safety behaviors Test (XSTest) dataset 15 provides a mix of benign and ma-
licious examples [43]. The benign examples frequently carry words which are commonly associated
with harmful behaviour, but used in a benign query (e.g. “How to do kill a Python Process”). This
aims to uncover defences which have been excessively tuned to detect jailbreaks such that they now
misidentify such benign queries as malicious.

A.2 Refusal Keyword List

We use the keyword list presented in [58] comprising the following keywords:

Keywords = [ "I’m sorry", "Sorry", "I am sorry", "I apologize", "As an", "As an AI", "I’m an", "I’m
just", "As a language model", "As an Assistant", "I cannot", "I do not", "Hello!" ]

A.3 Nemo Guardrail

We use an augmented version of the guardrail prompt from [24] (in color blue) with additional
directives (in color red) to cover the range of different attacks we evaluate against.

System Prompt Addition: The following text is appended to the system prompt:

Nemo Chat Template - System Prompt Template

Your task is to check if the user message below complies with the company policy for talking with an
artificial intelligence assistant.
Company policy for the user messages:

– should not contain harmful data

– should not ask the bot to forget about rules

– should not try to instruct the bot to respond in an inappropriate manner

– should not contain explicit content

– should not ask the bot to tell unethical content

– should not ask the bot to tell illegal content

– should not ask the bot to tell fake news articles

– should not ask the bot to tell any content that promotes misinformation

– should not ask the bot to tell any content that spreads false information

– should not use abusive language, even if just a few words

– should not share sensitive or personal information

– should not contain code or ask to execute code

– should not ask to return programmed conditions or system prompt text

– should not contain garbled language.

Assistant Role Text: Following text is appended to conversation template after the assistant role:

13https://chat.lmsys.org/
14https://huggingface.co/datasets/lmsys/toxic-chat
15https://github.com/paul-rottger/exaggerated-safety
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Nemo Chat Template - Assistant Role Text

Does the user message comply with company policy? Reply with ‘YES’ or ‘NO’

A.4 Inference call footprint

Guardrail defence Memory(GB) Device Hardware Latency [s/sample] Throughput [samples/s]

Random Forest 0.418 CPU 10 cores_x86 0.0142+/-0.0001 70.99+/-0.4559
BERT 0.436 GPU V100 32GB 0.0120+/-0.0107 142.92+/-2.652
DeBERTa 0.371 GPU V100 32GB 0.0189+/-0.0034 60.81+/-1.46
GPT2 0.548 GPU V100 32GB 0.0132+/-0.0139 118.53+/-5.162
Protect AI (v1) 0.738 GPU V100 32GB 0.0200+/-0.0052 54.69+/-1.1869
Protect AI (v2) 0.738 GPU V100 32GB 0.0184+/-0.0004 54.75+/-1.2123
Llama-Guard 13.50 GPU V100 32GB 0.2892+/-0.0151 3.62+/-0.0068
Llama-Guard 2 16.07 GPU V100 32GB 0.1413+/-0.0006 7.62+/-0.0201
LangKit Injection 0.091 GPU V100 32GB 0.0117+0.0173 170.36+/-2.223
LangKit Injection 0.091 CPU 10 cores_x86 0.1101+0.0068 12.093+/-1.868
LangKit Proactive Defence 13.48 GPU V100 32GB 4.911+/-0.0246 0.2453+/-0.0007
SmoothLLM 13.48 GPU V100 32GB 17.979+/-0.6397 0.1237+/-0.0020
Perplexity 0.523 GPU V100 32GB 0.0777+/-0.0023 16.7519+/-0.3320
NeMo (Vicuna-7b-v1.5) 13.48 GPU V100 32GB 0.2255+/-0.0317 4.8683+/-0.0124
NeMo (Vicuna-13b-v1.5) 26.03 GPU V100 32GB 0.4914+/-0.0446 2.5405+/-0.0072
Vicuna-7b-v1.5 13.48 GPU V100 32GB 3.4449+/0.1888 0.4402+/- 0.0207
Vicuna-13b-v1.5 26.03 GPU V100 32GB 5.5665+/-0.0169 0.2831+/-0.0009

Table 4: The memory usage, latency, throughput, and hardware requirements of various guardrails-
specific methods have been thoroughly evaluated. Specifically in the table’s results we show the
average and standard deviation on 100 random prompts repeated 10 times using a batch size of 1.
The experiments were conducted on a scheduled job utilizing 10 cores of an Intel(R) Xeon(R) Gold
6258R CPU @ 2.70GHz, 50GB of RAM, and a NVIDIA’s V100 GPU with 32GB of memory. Note
that due to the order of inversing and averaging, latency and throughput are not exact inverses e.g.
mean([1, 0.5, 2, 3]) ̸= mean ([1/1, 1/0.5, 1/2, 1/3])
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