
Published as a conference paper at ICLR 2023

USER-INTERACTIVE OFFLINE REINFORCEMENT
LEARNING

Phillip Swazinna
Siemens & TU Munich
Munich, Germany
swazinna@in.tum.de

Steffen Udluft
Siemens Technology
Munich, Germany
steffen.udluft@siemens.com

Thomas Runkler
Siemens & TU Munich
Munich, Germany
thomas.runkler@siemens.com

ABSTRACT

Offline reinforcement learning algorithms still lack trust in practice due to the
risk that the learned policy performs worse than the original policy that generated
the dataset or behaves in an unexpected way that is unfamiliar to the user. At
the same time, offline RL algorithms are not able to tune their most important
hyperparameter - the proximity of the learned policy to the original policy. We
propose an algorithm that allows the user to tune this hyperparameter at runtime,
thereby addressing both of the above mentioned issues simultaneously. This allows
users to start with the original behavior and grant successively greater deviation, as
well as stopping at any time when the policy deteriorates or the behavior is too far
from the familiar one.

1 INTRODUCTION

Recently, offline reinforcement learning (RL) methods have shown that it is possible to learn effective
policies from a static pre-collected dataset instead of directly interacting with the environment
(Laroche et al., 2019; Fujimoto et al., 2019; Yu et al., 2020; Swazinna et al., 2021b). Since direct
interaction is in practice usually very costly, these techniques have alleviated a large obstacle on the
path of applying reinforcement learning techniques in real world problems.

A major issue that these algorithms still face is tuning their most important hyperparameter: The
proximity to the original policy. Virtually all algorithms tackling the offline setting have such a
hyperparameter, and it is obviously hard to tune, since no interaction with the real environment is
permitted until final deployment. Practitioners thus risk being overly conservative (resulting in no
improvement) or overly progressive (risking worse performing policies) in their choice.

Additionally, one of the arguably largest obstacles on the path to deployment of RL trained policies
in most industrial control problems is that (offline) RL algorithms ignore the presence of domain
experts, who can be seen as users of the final product - the policy. Instead, most algorithms today can
be seen as trying to make human practitioners obsolete. We argue that it is important to provide these
users with a utility - something that makes them want to use RL solutions. Other research fields, such
as machine learning for medical diagnoses, have already established the idea that domain experts
are crucially important to solve the task and complement human users in various ways Babbar et al.
(2022); Cai et al. (2019); De-Arteaga et al. (2021); Fard & Pineau (2011); Tang et al. (2020). We see
our work in line with these and other researchers (Shneiderman, 2020; Schmidt et al., 2021), who
suggest that the next generation of AI systems needs to adopt a user-centered approach and develop
systems that behave more like an intelligent tool, combining both high levels of human control and
high levels of automation. We seek to develop an offline RL method that does just that. Furthermore,
we see giving control to the user as a requirement that may in the future be much more enforced when
regulations regarding AI systems become more strict: The EU’s high level expert group on AI has
already recognized “human autonomy and oversight” as a key requirement for trustworthy AI in their
Ethics Guidelines for Trustworthy AI (Smuha, 2019). In the future, solutions found with RL might
thus be required by law to exhibit features that enable more human control.

In this paper, we thus propose a simple method to provide users with more control over how an
offline RL policy will behave after deployment. The algorithm that we develop trains a conditional
policy, that can after training adapt the trade-off between proximity to the data generating policy on

1

Published as a conference paper at ICLR 2023

the one hand and estimated performance on the other. Close proximity to a known solution naturally
facilitates trust, enabling conservative users to choose behavior they are more inclined to confidently
deploy. That way, users may benefit from the automation provided by offline RL (users don’t need
to handcraft controllers, possibly even interactively choose actions) yet still remain in control as
they can e.g. make the policy move to a more conservative or more liberal trade-off. We show how
such an algorithm can be designed, as well as compare its performance with a variety of offline
RL baselines and show that a user can achieve state of the art performance with it. Furthermore,
we show that our method has advantages over simpler approaches like training many policies with
diverse hyperparameters. Finally, since we train a policy conditional on one of the most important
hyperparameters in offline RL, we show how a user could potentially use it to tune this hyperparameter.
In many cases of our evaluations, this works almost regret-free, since we observe that the performance
as a function of the hyperparameter is mostly a smooth function.

2 RELATED WORK

Offline RL Recently, a plethora of methods has been published that learn policies from static datasets.
Early works, such as FQI and NFQ (Ernst et al., 2005; Riedmiller, 2005), were termed batch instead
of offline since they didn’t explicitly address issue that the data collection cannot be influenced.
Instead, similarly to other batch methods (Depeweg et al., 2016; Hein et al., 2018; Kaiser et al., 2020),
they assumed a uniform random data collection that made generalization to the real environment
simpler.

Among the first to explicitly address the limitations in the offline setting under unknown data
collection were SPIBB(-DQN) (Laroche et al., 2019) in the discrete and BCQ (Fujimoto et al., 2019)
in the continuous actions case. Many works with different focuses followed: Some treat discrete
MDPs and come with provable bounds on the performance at least with a certain probability Thomas
et al. (2015); Nadjahi et al. (2019), however many more focused on the continuous setting: EMaQ,
BEAR, BRAC, ABM, various DICE based methods, REM, PEBL, PSEC-TD-0, CQL, IQL, BAIL,
CRR, COIL, O-RAAC, OPAL, TD3+BC, and RvS (Ghasemipour et al., 2021; Kumar et al., 2019;
Wu et al., 2019; Siegel et al., 2020; Nachum et al., 2019; Zhang et al., 2020; Agarwal et al., 2020;
Smit et al., 2021; Pavse et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021; Chen et al., 2019;
Wang et al., 2020; Liu et al., 2021; Urpí et al., 2021; Ajay et al., 2020; Brandfonbrener et al., 2021;
Emmons et al., 2021) are just a few of the proposed model-free methods over the last few years.
Additionally, many model-based as well as hybrid approaches have been proposed, such as MOPO,
MOReL, MOOSE, COMBO, RAMBO, and WSBC (Yu et al., 2020; Kidambi et al., 2020; Swazinna
et al., 2021b; Yu et al., 2021; Rigter et al., 2022; Swazinna et al., 2021a). Even approaches that train
policies purely supervised, by conditioning on performance, have been proposed (Peng et al., 2019;
Emmons et al., 2021; Chen et al., 2021). Model based algorithms more often use model uncertainty,
while model-free methods use a more direct behavior regularization approach.

Offline policy evaluation or offline hyperparameter selection is concerned with evaluating (or at
least ranking) policies that have been found by an offline RL algorithm, in order to either pick the best
performing one or to tune hyperparameters. Often, dynamics models are used to evaluate policies
found in model-free algorithms, however also model-free evaluation methods exist (Hans et al., 2011;
Paine et al., 2020; Konyushova et al., 2021; Zhang et al., 2021b; Fu et al., 2021). Unfortunately, but
also intuitively, this problem is rather hard since if any method is found that can more accurately
assess the policy performance than the mechanism in the offline algorithm used for training, it should
be used instead of the previously employed method for training. Also, the general dilemma of not
knowing in which parts of the state-action space we know enough to optimize behavior seems to
always remain. Works such as Zhang et al. (2021a); Lu et al. (2021) become applicable if limited
online evaluations are allowed, making hyperparameter tuning much more viable.

Offline RL with online adaptation Other works propose an online learning phase that follows after
offline learning has conceded. In the most basic form, Kurenkov & Kolesnikov (2021) introduce
an online evaluation budget that lets them find the best set of hyperparameters for an offline RL
algorithm given limited online evaluation resources. In an effort to minimize such a budget, Yang et al.
(2021) train a set of policies spanning a diverse set of uncertainty-performance trade-offs. Ma et al.
(2021) propose a conservative adaptive penalty, that penalizes unknown behavior more during the
beginning and less during the end of training, leading to safer policies during training. In Pong et al.

2

Published as a conference paper at ICLR 2023

(2021); Nair et al. (2020); Zhao et al. (2021) methods for effective online learning phases that follow
the offline learning phase are proposed. In contrast to these methods, we are not aiming for a fully
automated solution. Instead, we want to provide the user with a valuable tool after training, so we do
not propose an actual online phase, also since practitioners may find any performance deterioration
inacceptable. To the best of our knowledge, no prior offline RL method produces policies that remain
adaptable after deployment without any further training.

3 LION: LEARNING IN INTERACTIVE OFFLINE ENVIRONMENTS

In this work, we address two dilemmas of the offline RL setting: First and foremost, we would like to
provide the user with a high level control option in order to influence the behavior of the policy, since
we argue that the user is crucially important for solving the task and not to be made obsolete by an
algorithm. Further we address the issue that in offline RL, the correct hyperparameter controlling the
trade-off between conservatism and performance is unknown and can hardly be tuned. By training a
policy conditioned in the proximity hyperparameter, we aim to enable the user to find a good trade-off
hyperparameter. Code will be made available at https://github.com/pswazinna/LION.

As mentioned, behavior cloning, will most likely yield the most trustworthy solution due to its
familiarity, however the solution is of very limited use since it does not outperform the previous one.
Offline RL on the other hand is problematic since we cannot simply evaluate policy candidates on the
real system and offline policy evaluation is still an open problem (Hans et al., 2011; Paine et al., 2020;
Konyushova et al., 2021; Zhang et al., 2021b; Fu et al., 2021). In the following, we thus propose a
solution that moves the hyperparameter choice from training to deployment time, enabling the user to
interactively find the desired trade-off between BC and offline optimization. A user may then slowly
move from conservative towards better solutions.

3.1 TRAINING

During training time, we optimize three components: A model of the original policy βϕ(s), an
ensemble of transition dynamics models {f iψi

(s, a)|i ∈ 0, . . . , N − 1}, as well as the user adaptive
policy πθ(s, λ). The dynamics models {f i} as well as the original policy β are trained in isolation
before the actual policy training starts. Both π and β are always simple feedforward neural networks
which map states directly to actions in a deterministic fashion (practitioners likely favor deterministic
policies over stochastic ones due to trust issues). β is trained to simply imitate the behavior present in
the dataset by minimizing the mean squared distance to the observed actions:

L(ϕ) =
1

N

∑
st,at∼D

[at − βϕ(st)]
2 (1)

Depending on the environment, the transition models are either also feedforward networks or simple
recurrent networks with a single recurrent layer. The recurrent networks build their hidden state
over G steps and are then trained to predict a window of size F into the future (similarly to (Hein
et al., 2017b)), while the feedforward dynamics simply predict single step transitions. Both use mean
squared error as loss:

L(ψi) =
1

N

∑
st,at,st+1∼D

[
st+1 − f iψi

(st, at)
]2

(2)

L(ψi) =
1

N

∑
t∼D

F∑
f=1

[st+G+f+1 − f iψi
(st, at, . . . st+G, at+G, . . . ŝt+G+f , at+G+f)]

2

where ŝt+H+f are the model predictions that are fed back to be used as input again. For simplicity,
in this notation we assume the reward to be part of the state. Also we do not explicitly show the
recurrence and carrying over of the hidden states.

After having trained the two components βϕ(s) and {f iψi
(s, a)}, we can then move on to policy

training. Similarly to MOOSE and WSBC, we optimize the policy πθ by sampling start states from D
and performing virtual rollouts throughout the dynamics ensemble using the current policy candidate.
In every step, the ensemble predicts the reward as the minimum among its members and the next state

3

https://github.com/pswazinna/LION

Published as a conference paper at ICLR 2023

that goes with it. At the same time we collect the mean squared differences between the actions that
πθ took in the rollout and the one that βϕ would have taken. The loss is then computed as a weighted
sum of the two components. Crucially, we sample the weighting factor λ randomly and pass it to the
policy as an additional input - the policy thus needs to learn all behaviors ranging from pure behavior
cloning to entirely free optimization:

L(θ) = −
∑
s0∼D

T∑
t

γt[λe(st, at)− (1− λ)p(at)] at = πθ(st, λ) (3)

where we sample λ between 0 & 1, e(st, at) = min{r(f iψi(st, at))|i ∈ 0, ..., N − 1} denotes the
output of the ensemble prediction for reward (we omit explicit notation of recurrence for simplicity)
and p(at) = [βψ(st) − at]

2 denotes the penalty based on the mean squared distance between the
original policy and the actions proposed by πθ. See Fig. 1 for a visualization of our proposed training
procedure.

Figure 1: Schematic of LION policy training. During policy training (Eq. 3) only πθ (in green) is
adapted, while the original policy model βϕ (orange) and the dynamics ensemble {fψi} (blue) are
already trained and remain unchanged. From left to right, we first sample a start state (black) from
the dataset and a λ value from its distribution. Then, we let the original policy (orange) as well as the
currently trained policy (green) predict actions - note that the newly trained policy is conditioned on
λ. Both actions are then compared to calculate the penalty for that timestep (red). The action from
the currently trained policy is then also fed into the trained transition model (blue) together with the
current state (black / blue), to get the reward for that timestep (yellow) as well as the next state (blue).
This procedure is repeated until the horizon of the episode is reached. The rewards and penalties are
then summed up and weighted by λ to be used as a loss function for policy training.

We motivate our purely model-based approach (no value function involved) with the fact that we have
fewer moving parts: Our ensemble can be kept fixed once it is trained, while a value function has to
be learned jointly with πθ, which is in our case more complex than usual. See experimental results in
Fig. 10 a brief attempt at making our approach work in the model-free domain.

In addition to Eq. 3, we need to penalize divergence not only from the learned model of the original
policy during virtual roll-outs, but also from the actual actions in the dataset at λ = 0. It seems that if
this is not done, the trained policy π sticks to the (also trained) original policy β during the rollouts,
but during those rollouts, there are states that did not appear in the original dataset, enabling π to
actually diverge from the true trajectory distribution. We thus penalize both rollout as well as data
divergence at λ = 0:

L(θ) = −
∑
s0∼D

T∑
t

γt[λe(st, at)− (1− λ)p(at)] + η
∑
s,a∼D

[a− π(s, λ = 0)]2 (4)

where η controls the penalty weight for not following dataset actions at λ = 0, see Appendix A for
more details. Furthermore, we normalize states to have zero mean and unit variance during every

4

Published as a conference paper at ICLR 2023

forward pass through dynamics model or policy, using the mean and standard deviation observed
in the dataset. We also normalize the rewards provided by the ensemble rt = e(st, at), so that they
live in the same magnitude as the action penalties (we assume actions to be in [−1, 1]D, so that the
penalty can be in [0, 4]D where D is the action dimensionality).

Intuitively, one might choose to sample λ uniformly between zero and one, however instead we
choose a beta distribution with parameters (0.1, 0.1), which could be called bathtub-shaped. Similarly
to (Seo et al., 2021), we find that it is important to put emphasis on the edge cases, so that the extreme
behavior is properly learned, rather than putting equal probability mass on each value in the [0, 1]
range. The interpolation between the edges seems to be easier and thus require less samples. Fig. 11
shows policy results for different lambda distributions during training.

3.2 DEPLOYMENT

Algorithm 1 LION (Training)
1: Require Dataset D = {τi}, randomly initialized param-

eters θ, ϕ, ψ, lambda distribution parameters Beta(a,b),
horizon H , number of policy updates U

2: // dynamics and original policy models can be trained
supervised and independently of other components

3: train original policy model βϕ using D and Equation 1
4: train dynamics models f iψi with D and Equation 2
5: for j in 1..U do
6: sample start states S0 ∼ D
7: sample lambda values λ ∼ Beta(a,b)
8: initialize policy loss L(θ) = 0
9: for t in 0..H do

10: calculate policy actions at = πθ(st, λ)
11: calculate behavioral actions bt = βϕ(st)
12: calculate penalty term p(at) = [βψ(st)− at]

2

13: rt, st+1 = f iψi(st, at)

s.t. i = argmini{r(f iψi(st, at))}
14: L(θ)+ = −γt[λrt − (1− λ)p(at)]

15: update πθ using gradient ∇θL(θ) and Adam
16: return πθ;

At inference time, the trained policy
can at any point be influenced by the
user that would otherwise be in con-
trol of the system, by choosing the λ
that is passed to the policy together
with the current system state to obtain
an action:
at = πθ(st, λ) λ ∈ User(st). (5)

He or she may choose to be conserva-
tive or adventurous, observe the feed-
back and always adjust the proximity
parameter of the policy accordingly.
At this point, any disliked behavior
can immediately be corrected without
any time loss due to re-training and
deploying a new policy, even if the
user’s specific preferences were not
known at training time.
We propose to initially start with
λ = 0 during deployment, in order
to check whether the policy is actu-
ally able to reproduce the original pol-
icy and to gain the user’s trust in the
found solution. Then, depending on
how critical failures are and how much time is at hand, λ may be increased in small steps for as long
as the user is still comfortable with the observed behavior. Figure 3 shows an example of how the
policy behavior changes over the course of λ. Once the performance stops to increase or the user is
otherwise not satisfied, we can immediately return to the last satisfying λ value.

4 EXPERIMENTS

At first, we intuitively showcase LION in a simple 2D-world in order to get an understanding of how
the policy changes its behavior based on λ. Afterwards, we move to a more serious test, evaluating
our algorithm on the 16 industrial benchmark (IB) datasets (Hein et al., 2017a; Swazinna et al.,
2021b). We aim to answer the following questions:

• Do LION policies behave as expected, i.e. do they reproduce the original policy at λ = 0
and deviate more and more from it with increased freedom to optimize for return?

• Do LION policies at least in parts of the spanned λ space perform better or similarly well to
state of the art offline RL algorithms?

• Is it easy to find the λ values that maximize return for practitioners? That is, are the
performance courses smooth or do they have multiple local mini- & maxima?

• Is it possible for users to exploit the λ regularization at runtime to restrict the policy to only
exhibit behavior he or she is comfortable with?

5

Published as a conference paper at ICLR 2023

4.1 2D-WORLD

0 2 4 6 8 10
0

2

4

6

8

10(a) Behavioral Policy w/o noise

0 2 4 6 8 10
0

2

4

6

8

10 (b) 2D Env reward distribution

0

0.5

1.0

1.5

2.0

an
gl

e
to

 (1
,0

)

0

0.5

1.0

re
wa

rd

Figure 2: (a) Original policy for data collection
and - color represents action direction (b) reward
distribution in the 2D environment - color repre-
sents reward value

We evaluate the LION approach on a simplistic
2D benchmark. The states are x & y coordi-
nates in the environment and rewards are given
based on the position of the agent, following a
Gaussian distribution around a fixed point in the
state space, i.e. r(st) = 1

σ
√
2π
e−0.5((st−µ)/σ)2 .

In this example we set µ = (3, 6)T and σ =
(1.5, 1.5)T. A visualization of the reward dis-
tribution can be seen in Fig. 2 (b). We collect
data from the environment using a simple policy
that moves either to position (2.5, 2.5)T or to
(7.5, 7.5)T, depending on which is closer to the randomly drawn start state (shown in Fig. 2(a)),
adding ε = 10% random actions as exploration. Then we follow the outlined training procedure, by
training a transition model, original policy model and finally a new policy that can at runtime change
its behavior based on the desired proximity to the original policy. Fig. 3 shows policy maps for
λ ∈ {0.0, 0.6, 0.65, 0.7, 0.85, 1.0}, moving from simply imitating the original policy, over different
mixtures, to pure return optimization. Since the task is easy and accurately modeled by the dynamics
ensemble, one may give absolute freedom to the policy and optimize for return only. As it can be
seen, the policy moves quickly to the center of the reward distribution for λ = 1.

0 2 4 6 8 10
0

2

4

6

8

10 Policymap - = 0.0

0 2 4 6 8 10

Policymap - = 0.6

0 2 4 6 8 10

Policymap - = 0.65

0 2 4 6 8 10

Policymap - = 0.7

0 2 4 6 8 10

Policymap - = 0.85

0 2 4 6 8 10

Policymap - = 1.0

0

0.5

1.5

2

Figure 3: Policy maps for increasing values of λ in the 2D environment - colors represent action
direction. Initially, the policy simply imitates the original policy (see Fig. 2 (a)). With increased
freedom, the policy moves less to the upper right and more to the bottom left goal state of the original
policy, since that one is closer to the high rewards. Then, the policy moves its goal slowly upwards
on the y-axis until it is approximately at the center of the reward distribution. Since enough data was
available (1,000 interactions) and the environment so simple, the models capture the true dynamics
well and the optimal solution is found at λ = 1. This is however not necessarily the case if not
enough or not the right data was collected (e.g. due to a suboptimal original policy - see Fig. 4).

4.2 INDUSTRIAL BENCHMARK

Datasets We evaluate LION on the industrial benchmark datasets initially proposed in (Swazinna
et al., 2021b). The 16 datasets are created with three different baseline original policies (optimized,
mediocre, bad) mixed with varying degrees of exploration. The optimized baseline is an RL trained
policy and simulates an expert practitioner. The mediocre baseline moves the system back and
forth around a fixed point that is rather well behaved, while the bad baseline steers to a point on
the edge of the state space in which rewards are deliberately bad. Each baseline is combined with
ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}-greedy exploration to collect a dataset (making the ε = 0.0 datasets
extreme cases of the narrow distribution problem). Together, they constitute a diverse set of offline
RL settings. The exact baseline policies are given by:

πbad =

100− vt
100− gt
100− ht

πmed =

25− vt
25− gt
25− ht

πopt =

−ṽt−5 − 0.91

2f̃t−3 − p̃+ 1.43

−3.48h̃t−3 − h̃t−4 + 2p̃+ 0.81

The datasets contain 100,000 interactions collected by the respective baseline policy combined with
the ε-greedy exploration. The IB is a high dimensional and partially observable environment - if
access to the full Markov state were provided, it would contain 20 state variables. Since only six of
those are observable, and the relationship to the other variables and their subdynamics are complex

6

Published as a conference paper at ICLR 2023

and feature heavily delayed components, prior work Hein et al. (2017b) has stated that up to 30 past
time steps are needed to form a state that can hope to recover the true dynamics, so the state can be
considered 180 dimensional. In our case we thus set the number of history steps G = 30. The action
space is 3 dimensional. The benchmark is not supposed to mimic a single industrial application,
but rather exhibit common issues observable in many different applications (partial observability,
delayed rewards, multimodal and heteroskedastic noise, ...). The reward is a weighted combination of
the observable variables fatigue and consumption, which are conflicting (usually move in opposite
directions and need trade-off) and are influenced by various unobservable variables. As in prior work
Hein et al. (2018); Depeweg et al. (2016); Swazinna et al. (2021b) we optimize for a horizon of 100.
The datasets are available at https://github.com/siemens/industrialbenchmark/
tree/offline_datasets/datasets under the Apache License 2.0.

300

200

100

re
tu

rn

IB bad 0.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

1

d
is

t.
 t

o
 o

rg
. 300

200

100

IB bad 0.2

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

1

200

150

100
IB bad 0.4

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.25
0.50
0.75

150

125

100

75
IB bad 0.6

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.25

0.50

120

100

80

IB bad 0.8

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.25
0.50
0.75

150

100

re
tu

rn

IB mediocre 0.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

d
is

t.
 t

o
 o

rg
.

150

100

IB mediocre 0.2

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

150

125

100

75

IB mediocre 0.4

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

90

80

70

IB mediocre 0.6

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.5

1.0

1.5
75

70

65

60

IB mediocre 0.8

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.2

0.4

70

60

re
tu

rn

IB optimized 0.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.5

1.0

1.5

d
is

t.
 t

o
 o

rg
.

65

60

IB optimized 0.2

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.5

1.0

62.5

60.0

57.5

IB optimized 0.4

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.25
0.50
0.75

65.0

62.5

60.0

57.5

IB optimized 0.6

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.0

0.5

65

60

IB optimized 0.8

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.0

0.5

LION (ours) MOOSE WSBC BRAC-v BEAR BCQ TD3+BC CQL MOPO MOReL (below Y-range) LION (distance to original)

Figure 4: Evaluation performance (top portion of each graph) and distance to the original policy
(lower portion of each graph) of the LION approach over the chosen λ hyperparameter. Various state
of the art baselines are added as dashed lines with their standard set of hyperparameters (results from
(Swazinna et al., 2022)). Even though the baselines all exhibit some hyperparameter that controls
the distance to the original policy, all are implemented differently and we can neither map them to
a corresponding lambda value of our algorithm, nor change the behavior at runtime, which is why
we display them as dashed lines over the entire λ-spectrum. See Fig. 12 for the 100% exploration
dataset.

Baselines We compare performances of LION with various state of the art offline RL baselines:

• BEAR, BRAC, BCQ, CQL and TD3+BC (Kumar et al., 2019; Wu et al., 2019; Fujimoto
et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021) are model-free algorithms. They
mostly regularize the policy by minimizing a divergence to the original policy. BCQ samples
only likely actions and CQL searches for a Q-function that lower bounds the true one.

• MOOSE and WSBC (Swazinna et al., 2021a;b) are purely model based algorithms that
optimize the policy via virtual trajectories through the learned transition model. MOOSE
penalizes reconstruction loss of actions under the original policy (learned by an autoencoder),
while WSBC constrains the policy directly in weight space. MOOSE is from the policy
training perspective the closest to our LION approach.

• MOPO and MOReL (Yu et al., 2020; Kidambi et al., 2020) are hybrid methods that learn
a transition model as well as a value function. Both use the models to collect additional
data and regularize the policy by means of model uncertainty. MOPO penalizes uncertainty
directly, while MOReL simply stops episodes in which future states become too unreliable.
MOReL uses model-disagreement and MOPO Gaussian outputs to quantify uncertainty.

7

https://github.com/siemens/industrialbenchmark/tree/offline_datasets/datasets
https://github.com/siemens/industrialbenchmark/tree/offline_datasets/datasets

Published as a conference paper at ICLR 2023

Evaluation In order to test whether the trained LION policies are able to provide state of the art
performance anywhere in the λ range, we evaluate them for λ from 0 to 1 in many small steps. Figs.
4 and 12 show results for the 16 IB datasets. We find that the performance curves do not exhibit
many local optima. Rather, there is usually a single maximum before which the performance is
rising and after which the performance is strictly dropping. This is a very desirable characteristic
for usage in the user interactive setting, as it enables users to easily find the best performing λ value
for the policy. In 13 out of 16 datasets, users can thus match or outperform the current state of the
art method on that dataset, and achieve close to on-par performance on the remaining three. The
distance-to-original-policy curves are even monotonously increasing from start to finish, making it
possible for the practitioner to find the best solution he or she is still comfortable with in terms of
distance to the familiar behavior.

Discrete baseline A simpler approach might be to train an existing offline RL algorithm for many
trade-offs in advance, to provide at least discrete options. Two downsides are obvious: (a) we
wouldn’t be able to handle the continuous case, i.e. when a user wants a trade-off that lies between
two discrete policies, and (b) the computational cost increases linearly with the number of policies
trained. We show that a potentially even bigger issue exists in Figure 5: When we train a discrete
collection of policies with different hyperparameters, completely independently of each other, they
often exhibit wildly different behaviors even when the change in hyperparameter was small. LION
instead expresses the collection as a single policy network, training them jointly and thus forcing them
to smoothly interpolate among each other. This helps to make the performance a smooth function
of the hyperparameter (although this must not always be the case) and results in a performance
landscape that is much easier to navigate for a user searching for a good trade-off.

0.0 0.5 1.0 1.5 2.0 2.5
 (Penalty Parameter of MOPO)

140

130

120

110

100

90

80

Ev
al

ua
tio

n
Re

tu
rn

Bad-0.4 - Multi Hyperparameter Baseline

0.0 0.5 1.0 1.5 2.0 2.5
 (Penalty Parameter of MOPO)

120

110

100

90

80

70

Ev
al

ua
tio

n
Re

tu
rn

Mediocre-0.0 - Multi Hyperparameter Baseline

0.0 0.5 1.0 1.5 2.0 2.5
 (Penalty Parameter of MOPO)

95

90

85

80

75

70

65

Ev
al

ua
tio

n
Re

tu
rn

Optimized-0.6 - Multi Hyperparameter Baseline
mopo

Figure 5: Prior offline RL algorithms like MOPO do not behave consistently when trained across a
range of penalizing hyperparameters.

Return conditioning baseline Another interesting line of work trains policies conditional on the
return to go, such as RvS (Emmons et al., 2021) (Reinforcement Learning via Supervised Learning) or
DT (Chen et al., 2021) (Decision Transformer). A key advantage of these methods is their simplicity -
they require neither transition model nor value function, just a policy suffices, and the learning can be
performed in an entirely supervised fashion. The resulting policies could be interpreted in a similar
way as LION policies: Conditioning on returns close to the original performance would result in the
original behavior, while choosing to condition on higher returns may lead to improved performance if
the extrapolation works well. In Fig. 6 we report results of the RvS algorithm on the same datasets as
the discrete baseline. The returns in the datasets do not exhibit a lot of variance, so it is unsurprising
that the approach did not succeed in learning a lot of different behaviors.

300 275 250 225 200 175 150 125 100
Conditioned Return

200

180

160

140

120

100

80

Ev
al

ua
tio

n
Re

tu
rn

Bad-0.4
RvS-R

80 78 76 74 72 70 68 66
Conditioned Return

120

110

100

90

80

70

Ev
al

ua
tio

n
Re

tu
rn

Mediocre-0.0

72.5 70.0 67.5 65.0 62.5 60.0 57.5 55.0
Conditioned Return

100

95

90

85

80

75

70

65

60

Ev
al

ua
tio

n
Re

tu
rn

Optimized-0.6

Figure 6: Return conditioned policies did not learn many different behaviors on the IB datasets.

8

Published as a conference paper at ICLR 2023

Finding a suitable λ We would like to emphasize that we neither want to optimize all offline
hyperparameters with our solution, nor are we interested in a fully automated solution. Users may
thus adopt arbitrary strategies to finding their personal trade-off of preference. We will however
provide a conservative example strategy: The operator starts with the most conservative value available
and then moves in small, but constant steps towards more freedom. Whenever the performance drops
below the previous best or the baseline performance, he immediately stops and uses the last λ before
that. Table 1 summarizes how this strategy would perform.

LION MOPO RvS LION MOPO RvS
Dataset Final λ Final λ Final R̂ Return Return Return
Bad-0.4 1.0 2.4 -287 -102.4 -107.2 -158.2

Mediocre-0.0 0.2 2.4 -81 -70.8 -87.8 -86.6
Optimized-0.6 0.35 2.5 -71 -58.9 -72.4 -61.9

Table 1: If a user adopts the simple strategy of moving in small steps (0.05 for LION, 0.1 for MOPO
since its range is larger, 10.0 / 1.0 for RvS) from conservative towards better solutions, immediately
stopping when a performance drop is observed, LION finds much better solutions due to the consistent
interpolation between trade-offs. Note that in MOPO, we start with large λ = 2.5 (1.0 is the default)
since there it controls the penalty, while we start with λ = 0 in LION, where it controls the return.

5 DISCUSSION & CONCLUSION

In this work we presented a novel offline RL approach that, to the best of our knowledge, is the first
to let the user adapt the policy behavior after training is finished. We let the user tune the behavior
by allowing him to choose the desired proximity to the original policy, in an attempt to solve two
issues: (1) The problem that practitioners cannot tune the hyperparameter in offline RL & (2) the
general issue that users have no high level control option when using RL policies (they might even
have individual preferences with regards to the behavior of a policy that go beyond just performance).

We find that effectively, LION provides a high level control option to the user, while still profiting
from a high level of automation. It furthermore takes much of the risk that users normally assume
in offline RL away since deployments can always start with a BC policy when they start at λ = 0,
before moving to better options. While behavior cloning does not have to work in general, we did
not experience any issues with it in our experiments, and it should be easier than performing RL
since it can be done entirely in a supervised fashion. Given that BC works, deployments can thus
start with minimal risk. In prior offline algorithms, users experienced the risk that the algorithm did
not produce a satisfying policy on the particular dataset they chose. E.g.: WSBC produces state of
the art results for many of the IB datasets, however for mediocre-0.6 it produces a catastrophic -243
(original performance is -75). Similarly, CQL is the prior best method on optimized-0.8, however the
same method produces a performance of -292 on bad-0.2 (MOOSE, MOPO, and WSBC get between
-110 & -130). Due to the smoothness of the interpolation of behaviors in LION, practitioners should
be able to use it to find better trade-offs with lower risk than prior methods. Adaptable policies are
thus likely a step towards more deployments in industrial applications.

Future Work As outlined at the end of Section C of the appendix, we were unable to incorporate
value functions into our approach. This can be seen as a limiting factor, since there exist environments
with sparse or very delayed rewards or that for other reasons exhibit long planning horizons. The
industrial benchmark features delayed rewards and evaluation trajectories are 100 steps long, however
other environments can be more extreme in their characteristics. At some point, even the best
dynamics models suffer from compounding errors and cannot accurately predict the far away future.
We do not believe that it is in principle not possible to combine the LION approach with value
functions, however future work will likely need to find methods to stabilize the learning process.

Other potential limitations of our approach include difficulties with the behavior cloning, e.g. when
the original policy is stochastic or was not defined in the same state space as we use (e.g. different
human operators controlled the system at different times in the dataset), as well as difficulties
when interpolating between vastly different behaviors on the Pareto front spanned by proximity and
performance. We mention these potential limitations only for the sake of completeness since we were
unable to observe them in our practical experiments.

9

Published as a conference paper at ICLR 2023

6 ETHICS STATEMENT

Generally, (offline) reinforcement learning methods can be used to optimize control policies for many
different systems beyond the control of the researchers. Malicious individuals may thus use findings
in manners that negatively impact others or society as a whole (e.g. by using it in weapons). Faulty
policies could also potentially result in other safety concerns (e.g. policies for heavy machinery).
In ML research, there is also always the concern that increased automation may lead to rising
unemployment. While some institutions like the UN and the WEF are convinced AI will lead to
long term job growth, Bordot (2022) found that a slightly increased unemployment risk can be found
empirically.

Beyond these usual concerns that mostly apply to ML/RL research as a whole, rather than our
individual paper, we believe that no additional considerations are necessary for our method. If at all,
the societal impact should be positive, since our solution fosters trust by practitioners and should thus
increase the usage and human-machine collaborative deployment of offline RL policies in practice,
enabling more efficient control strategies in many industrial domains.

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Offline primitive
discovery for accelerating offline reinforcement learning. arXiv preprint arXiv:2010.13611, 2020.

Varun Babbar, Umang Bhatt, and Adrian Weller. On the utility of prediction sets in human-AI teams.
arXiv preprint arXiv:2205.01411, 2022.

Florent Bordot. Artificial intelligence, robots and unemployment: Evidence from OECD countries.
Journal of Innovation Economics Management, 37(1):117–138, 2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Carrie J Cai, Emily Reif, Narayan Hegde, Jason Hipp, Been Kim, Daniel Smilkov, Martin Wattenberg,
Fernanda Viegas, Greg S Corrado, Martin C Stumpe, et al. Human-centered tools for coping with
imperfect algorithms during medical decision-making. In Proceedings of the 2019 chi conference
on human factors in computing systems, pp. 1–14, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Xinyue Chen, Zijian Zhou, Zheng Wang, Che Wang, Yanqiu Wu, and Keith Ross. BAIL: Best-action
imitation learning for batch deep reinforcement learning. arXiv preprint arXiv:1910.12179, 2019.

Maria De-Arteaga, Artur Dubrawski, and Alexandra Chouldechova. Leveraging expert consistency
to improve algorithmic decision support. arXiv preprint arXiv:2101.09648, 2021.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with Bayesian neural networks. arXiv preprint
arXiv:1605.07127, 2016.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. RvS: What is essential for
offline RL via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. J.
Mach. Learn. Res., 6:503–556, December 2005. ISSN 1532-4435.

M Milani Fard and Joelle Pineau. Non-deterministic policies in Markovian decision processes.
Journal of Artificial Intelligence Research, 40:1–24, 2011.

10

Published as a conference paper at ICLR 2023

Justin Fu, Mohammad Norouzi, Ofir Nachum, George Tucker, Ziyu Wang, Alexander Novikov,
Mengjiao Yang, Michael R Zhang, Yutian Chen, Aviral Kumar, et al. Benchmarks for deep
off-policy evaluation. arXiv preprint arXiv:2103.16596, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-max
Q-learning operator for simple yet effective offline and online RL. In International Conference on
Machine Learning, pp. 3682–3691. PMLR, 2021.

Alexander Hans, Siegmund Duell, and Steffen Udluft. Agent self-assessment: Determining policy
quality without execution. In 2011 IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), pp. 84–90. IEEE, 2011.

Daniel Hein, Stefan Depeweg, Michel Tokic, Steffen Udluft, Alexander Hentschel, Thomas A Runkler,
and Volkmar Sterzing. A benchmark environment motivated by industrial control problems. In
2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE, 2017a.

Daniel Hein, Steffen Udluft, Michel Tokic, Alexander Hentschel, Thomas A Runkler, and Volkmar
Sterzing. Batch reinforcement learning on the industrial benchmark: First experiences. In 2017
International Joint Conference on Neural Networks (IJCNN), pp. 4214–4221. IEEE, 2017b.

Daniel Hein, Steffen Udluft, and Thomas A Runkler. Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence, 76:158–169, 2018.

Markus Kaiser, Clemens Otte, Thomas A Runkler, and Carl Henrik Ek. Bayesian decomposition of
multi-modal dynamical systems for reinforcement learning. Neurocomputing, 2020.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ksenia Konyushova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J
Mankowitz, Misha Denil, and Nando de Freitas. Active offline policy selection. Advances in
Neural Information Processing Systems, 34, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
Q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Vladislav Kurenkov and Sergey Kolesnikov. Showing your offline reinforcement learning work:
Online evaluation budget matters. arXiv preprint arXiv:2110.04156, 2021.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International Conference on Machine Learning, pp. 3652–3661. PMLR,
2019.

Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, and Tie-Yan Liu.
Curriculum offline imitating learning. In Thirty-Fifth Conference on Neural Information Processing
Systems, 2021.

11

Published as a conference paper at ICLR 2023

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J Roberts. Revisiting
design choices in offline model based reinforcement learning. In International Conference on
Learning Representations, 2021.

Yecheng Jason Ma, Andrew Shen, Osbert Bastani, and Dinesh Jayaraman. Conservative and adaptive
penalty for model-based safe reinforcement learning. arXiv preprint arXiv:2112.07701, 2021.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. Advances in Neural Information Processing Systems,
32, 2019.

Kimia Nadjahi, Romain Laroche, and Rémi Tachet des Combes. Safe policy improvement with
soft baseline bootstrapping. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 53–68. Springer, 2019.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,
Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning.
arXiv preprint arXiv:2007.09055, 2020.

Brahma Pavse, Ishan Durugkar, Josiah Hanna, and Peter Stone. Reducing sampling error in batch
temporal difference learning. In International Conference on Machine Learning, pp. 7543–7552.
PMLR, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Vitchyr H Pong, Ashvin Nair, Laura Smith, Catherine Huang, and Sergey Levine. Offline meta-
reinforcement learning with online self-supervision. arXiv preprint arXiv:2107.03974, 2021.

Martin Riedmiller. Neural fitted Q iteration–first experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine Learning, pp. 317–328. Springer, 2005.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-RL: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Albrecht Schmidt, Fosca Giannotti, Wendy Mackay, Ben Shneiderman, and Kaisa Väänänen. Artifi-
cial intelligence for humankind: A panel on how to create truly interactive and human-centered AI
for the benefit of individuals and society. In IFIP Conference on Human-Computer Interaction, pp.
335–339. Springer, 2021.

Sungyong Seo, Sercan Arik, Jinsung Yoon, Xiang Zhang, Kihyuk Sohn, and Tomas Pfister. Con-
trolling neural networks with rule representations. Advances in Neural Information Processing
Systems, 34, 2021.

Ben Shneiderman. Human-centered artificial intelligence: three fresh ideas. AIS Transactions on
Human-Computer Interaction, 12(3):109–124, 2020.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert,
Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Jordi Smit, Canmanie T Ponnambalam, Matthijs TJ Spaan, and Frans A Oliehoek. PEBL: Pessimistic
ensembles for offline deep reinforcement learning. In Robust and Reliable Autonomy in the Wild
Workshop at the 30th International Joint Conference of Artificial Intelligence, 2021.

Nathalie Smuha. Ethics guidelines for trustworthy AI. European Commission, Directorate-General
for Communications Networks, Content and Technology Publications Office, 2019.

Phillip Swazinna, Steffen Udluft, Daniel Hein, and Thomas Runkler. Behavior constraining in weight
space for offline reinforcement learning. arXiv preprint arXiv:2107.05479, 2021a.

12

Published as a conference paper at ICLR 2023

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. Engineering Applications of Artificial Intelligence, 104:104366,
2021b.

Phillip Swazinna, Steffen Udluft, Daniel Hein, and Thomas Runkler. Comparing model-free and
model-based algorithms for offline reinforcement learning. arXiv preprint arXiv:2201.05433,
2022.

Shengpu Tang, Aditya Modi, Michael Sjoding, and Jenna Wiens. Clinician-in-the-loop decision
making: Reinforcement learning with near-optimal set-valued policies. In International Conference
on Machine Learning, pp. 9387–9396. PMLR, 2020.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380–2388. PMLR, 2015.

Núria Armengol Urpí, Sebastian Curi, and Andreas Krause. Risk-averse offline reinforcement
learning. arXiv preprint arXiv:2102.05371, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Jost Tobias Springenberg, Scott Reed, Bobak
Shahriari, Noah Siegel, Josh Merel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. arXiv preprint arXiv:2006.15134, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Yijun Yang, Jing Jiang, Tianyi Zhou, Jie Ma, and Yuhui Shi. Pareto policy pool for model-based
offline reinforcement learning. In International Conference on Learning Representations, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, volume 33, pp. 14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34, 2021.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua, Frank
Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for model-based
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
4015–4023. PMLR, 2021a.

Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang,
and Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and
optimization. arXiv preprint arXiv:2104.13877, 2021b.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking generalized offline
estimation of stationary values. In International Conference on Machine Learning, pp. 11194–
11203. PMLR, 2020.

Yi Zhao, Rinu Boney, Alexander Ilin, Juho Kannala, and Joni Pajarinen. Adaptive behavior cloning
regularization for stable offline-to-online reinforcement learning. 2021.

13

Published as a conference paper at ICLR 2023

APPENDIX

A OTHER HYPERPARAMETERS

Similarly to other methods, we introduce a set of hyperparameters in our method either explicitly
or implicitly. Any hyperparameter that is involved in training the original policy model βϕ or the
transition dynamics models {fψi} can obviously be tuned offline, by holding out a validation set of
transitions from the original dataset and evaluating the trained models on them to test how well they
predict dataset actions or future states and rewards. This is true for example for the architecture of
the transition models, their learning rate, or the number of epochs to train.
When we train the policy in offline reinforcement learning however, the equivalent of an evaluation
dataset does not exist, since we cannot evaluate the policy on the true environment dynamics. While
efforts are being made to make hyperparameter tuning possible via offline policy evaluation, the
problem is hard for obvious reasons and we cannot really rely on them yet. Especially the arguably
most important hyperparameter, how closely the newly trained policy needs to follow the actions
proposed by the original policy, cannot realistically be tuned since it involves knowing when the
evaluation method itself cannot be trusted any more. This is precisely why we propose the selection
of this hyperparameter at runtime via user interaction.
Our method however introduces some hyperparameters that are used during policy training and
that could thus be seen as critical hyperparameters that cannot be tuned: η, controlling the penalty
magnitude for not following the dataset actions at λ = 0, and the parameters of the Beta distribution
from which λ is sampled during training. We did not tune them, since we simply copied the
parameters from (Seo et al., 2021) so that λ ∼ Beta(0.1, 0.1) and also set η = 0.1 without any
experiments. We would however like to point out, that these parameters are at least partially tunable
even in the offline setting, since they do not depend on the accuracy of the transition models: η
controls how strongly one adheres to the actions of the dataset, and we can easily asses whether this
is working properly, by evaluating whether the final trained policy still adheres to the actions of the
dataset at λ = 0. We evaluated policies for different η in Figure 7 (a) and show that there is not
a great difference between different η, as long as it is not zero, so it seems reasonable to choose
something small that is still doing the trick. Similarly, we show an evaluation for different parameters
of the beta distribution in Fig. 7 (b). The parameters control how often which parts of the λ-spectrum
are seen during training (see Fig. 11). As can be seen, the more the distribution tends towards a
uniform distribution, the more the policy deviates from the original policy model at λ = 0, which is
undesired. When more probability mass is focused on the edges of the distribution, we can see that
the original policy model is reproduced more accurately.
Both η and β can thus be reasonably well tuned entirely offline, even without using the transition
models.

0.0 0.2 0.4 0.6 0.8 1.0
0.30

0.32

0.34

0.36

0.38

0.40

Da
ta

 D
ist

an
ce

 Impact @ = 0

0.2 0.4 0.6 0.8 1.0
x in Beta(x,x)

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Di
st

an
ce

 to
 O

rig
in

al
 P

ol
icy

 M
od

el

Beta Distribution Impact @ = 0

Figure 7: Some hyperparameters like η and the parameters of the Beta distribution can be adjusted
entirely offline, since they do not require evaluation on the true transition dynamics.

14

Published as a conference paper at ICLR 2023

B COMPLETE POLICY VISUALIZATION IN 2D-ENV

In Fig. 3, we chose only a set of interesting λ values for visualization for page limit reasons. See Fig
8 for a more fine-grained evaluation.

0 2 4 6 8 10
0

2

4

6

8

10
Policymap - = 0.0

0 2 4 6 8 10

Policymap - = 0.05

0 2 4 6 8 10

Policymap - = 0.1

0 2 4 6 8 10

Policymap - = 0.15

0 2 4 6 8 10

Policymap - = 0.2

0 2 4 6 8 10

Policymap - = 0.25

0 2 4 6 8 10

Policymap - = 0.3

0 2 4 6 8 10
0

2

4

6

8

10
Policymap - = 0.35

0 2 4 6 8 10

Policymap - = 0.4

0 2 4 6 8 10

Policymap - = 0.45

0 2 4 6 8 10

Policymap - = 0.5

0 2 4 6 8 10

Policymap - = 0.55

0 2 4 6 8 10

Policymap - = 0.6

0 2 4 6 8 10

Policymap - = 0.65

0 2 4 6 8 10
0

2

4

6

8

10
Policymap - = 0.7

0 2 4 6 8 10

Policymap - = 0.75

0 2 4 6 8 10

Policymap - = 0.8

0 2 4 6 8 10

Policymap - = 0.85

0 2 4 6 8 10

Policymap - = 0.9

0 2 4 6 8 10

Policymap - = 0.95

0 2 4 6 8 10

Policymap - = 1.0

0

0.5

1.0

1.5

2.0

an
gl

e
to

 (1
,0

)

0

0.5

1.0

1.5

2.0

an
gl

e
to

 (1
,0

)

0

0.5

1.0

1.5

2.0

an
gl

e
to

 (1
,0

)

Figure 8: Visualization for more λ values of the trained policy in the simple 2D Env than in Fig. 3.

C MODEL-FREE EXPERIMENTS

66

64

62

IB global 1.0

LION (ours)
-TD3+BC

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.2

0.4

Figure 9: Model-free ex-
periment on the 100% ex-
ploration dataset.

Model-free We motivate our purely model-based implementation with
the idea that it should be simpler to implement compared to model-free
policy training. When learning a policy with a value function, we have
always two models that are trained jointly - the policy and the Q-function
interact with each other and both are essentially a moving target. While it
should be possible to derive a similar algorithm as LION in the model-free
world, we were not quite able to do so: Figs. 9 and 10 show experiments
in which we augment TD3+BC with our approach by sampling λ from
the same distribution as in LION and providing it to the policy, only that
now it controls the influence the value function has on the optimization
of the policy and (1-λ) controls the distance to the behavior actions.
Interestingly however, the trained policy is unable to alter its behavior
anywhere in the λ-range. Instead it seems that the policy training is rather
unstable and the policy collapses to a solution that behaves always the
same, regardless of λ. Similarly, the distance to the original policy does
not change with varying λ. We chose TD3+BC due to its simplicity - it
exhibits fewer trained models and implementational pitfalls than others.
The original Q-function and policy optimization objectives in TD3+BC are:

Q = argmin
Q

Es,a,s′∼D
[
[Q(s, a) − (r + γQt(s′, π(s))]2)

]
,

where Qt denotes the slow moving target Q-function used for computing the Q-targets. And:

π = argmax
π

Es,a∼D

[
α

1
N

∑
s |Q(s, π(s))|

Q(s, π(s)) − (π(s) − a)2

]
In our extension, denoted by λ-TD3+BC, we provide the sampled λ to the policy and use it to balance
the two optimization terms, similarly to our LION approach. The new objectives are:

Q = argmin
Q

Es,a,s′∼D

[
[Q(s, a, λ) − (r + γQt(s′, π(s, λ), λ)]2)

]
,

15

Published as a conference paper at ICLR 2023

and:

π = argmax
π

Es,a∼D

[
λ

α
1
N

∑
s,a |Q(s, π(s, λ), λ)|

Q(s, π(s, λ), λ) − (1 − λ) (π(s, λ) − a)2

]

We show complete experiments for all of the IB datasets in Figs. 10 & 9. As already mentioned
in Section C, we are unable to observe that the policy is able to alter its behavior anywhere in the
λ-range. We hypothesize that methods for stabilizing the Q-function are needed in order for the
policy to not collapse.

300

200

100

re
tu

rn

IB bad 0.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

d
is

t.
 t

o
 o

rg
.

200

100
IB bad 0.2

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

1

300

200

100
IB bad 0.4

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

300

200

100

IB bad 0.6

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

300

200

100

IB bad 0.8

LION (ours)
-TD3+BC

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

150

125

100

75

re
tu

rn

IB mediocre 0.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

d
is

t.
 t

o
 o

rg
.

150

100

IB mediocre 0.2

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

150

125

100

75

IB mediocre 0.4

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

1

2

300

200

100

IB mediocre 0.6

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

90

80

70

60
IB mediocre 0.8

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0

2

150

100

re
tu

rn

IB optimized 0.0

0.0 0.2 0.4 0.6 0.8 1.0
- Optimization Mixture Parameter

0

2

d
is

t.
 t

o
 o

rg
.

80

60

IB optimized 0.2

0.0 0.2 0.4 0.6 0.8 1.0
- Optimization Mixture Parameter

0

2

62

60

58
IB optimized 0.4

0.0 0.2 0.4 0.6 0.8 1.0
- Optimization Mixture Parameter

0.25

0.50

0.75

64

62

60

58

IB optimized 0.6

0.0 0.2 0.4 0.6 0.8 1.0
- Optimization Mixture Parameter

0.0

0.5

64

62

60

58
IB optimized 0.8

0.0 0.2 0.4 0.6 0.8 1.0
- Optimization Mixture Parameter

0.0

0.5

Figure 10: Model-free experiments incorporating the LION approach. The trained policies are unable
to alter their behavior for different inputs of λ.

D SAMPLING λ

0.0 0.2 0.4 0.6 0.8 1.0
x

p(
x)

Beta PDFs

0.0 0.2 0.4 0.6 0.8 1.0

275

250

225

200

175

150

125

100

Ev
al

ua
tio

n
Re

tu
rn

LION performances
behavior performance

Beta (0.05, 0.05) Beta (0.1, 0.1) Beta (0.5, 0.5) Beta (1.0, 1.0) [=U(0, 1)]

Figure 11: Beta distributions and resulting per-
formances on bad-0.2. Edge cases become more
accurate with increased probability mass.

As mentioned, we do not sample λ uniformly
since doing so leads to less accurate learning
at the edges of the λ-spectrum. In Fig 11, we
show visualizations of different symmetric Beta
distributions from which we draw λ together
with the policy results on the bad-0.2 dataset.
The Beta(1, 1) case corresponds to the uniform
distribution and has a significant discrepancy at
the λ = 0 end of the range: The original policy
(its performance) is not accurately reproduced.
Generally, it seems the flatter the distribution
becomes, the more are the two extreme cases
moved together. We observe this phenomenon
even though the policy has plenty of capacity
and even in the simple 2D environment.

16

Published as a conference paper at ICLR 2023

E EXPERIMENTAL DETAILS

67.5

65.0

62.5

60.0

IB global 1.0

0.00 0.25 0.50 0.75 1.00
- Optimization Mixture Parameter

0.2

0.4

Figure 12: LION results
as presented in Fig. 4
for the 100% exploration
dataset.

We conducted experiments on a system with a Xeon Gold 5122 CPU
(4 × 3.6 GHz, no GPU support used). A single policy training took
about 45 minutes, a single dynamics model about 2 hours. We train
dynamics models using a 90/10 random data split and select the best
models according to their validation performance. The final ensemble
contains four models. The recurrent models for the industrial benchmark
have an RNN cell with size 30 and an output layer mapping from the
cell state to the state space. We use G = 30 history steps to build up
the hidden state of the RNN and then predict F = 50 steps into the
future. The feedforward models of the 2D env have two layers of size
20 & 10. We use adam (Kingma & Ba, 2014) with standard parameters
and an exponentially decaying learning rate with factor 0.99 and train
for up to 3000 epochs. The models of the original policy have a single
hidden layer of size 30 and the final policies have two layers of size 1024.

We use ReLU nonlinearities throughout all experiments. During policy and original policy model
training we use the entire dataset instead of just the 90% split from the dynamics training. We use
a discount factor of γ = 0.97 and perform rollouts of length H = 100 to train and evaluate the
policy.

F HYPERPARAMETERS OF THE TRANSITION ENSEMBLE

Instead of using the minimum over the predicted rewards during rollouts, one might as well use other
forms of aggregation, like the mean. In Fig. 13 we show results for such mean reward experiments -
the future state was then randomly selected among the predictions of the transition ensemble. The
resulting performance curves look similar as those in 4, except that in the mediocre and the optimized
setting, the performance decrease on the λ = 1 end is even steeper than with the minimum reward
prediction. This makes intuitively sense, since the mean is much easier exploited than the minimum.

150

125

100

75

re
tu

rn

IB bad 0.6

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0.25
0.50

di
st

. t
o

or
g.

100

200

300

IB mediocre 0.2

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0

2

65.0

62.5

60.0

57.5
IB optimized 0.4

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0.5

1.0

LION (mean) MOOSE WSBC BRAC-v BEAR BCQ TD3+BC CQL MOPO

Figure 13: Results as in Fig. 4 for the mean reward rollout experiments.

Similar effects can be observed when the number of ensemble members is reduced. In Fig. 14,
we show results on the same datasets when only a single model instead of an ensemble with four
members is used (thus mean and min become the same). Here, the performance drops even earlier as
well as stronger in the mediocre and optimized settings.

150

125

100

75

re
tu

rn

IB bad 0.6

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0.25

0.50

di
st

. t
o

or
g.

100

200

300

IB mediocre 0.2

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0

2

65.0

62.5

60.0

57.5
IB optimized 0.4

0.0 0.2 0.4 0.6 0.8 1.0
 - Optimization Mixture Parameter

0.1
0.2
0.3

LION (single) MOOSE WSBC BRAC-v BEAR BCQ TD3+BC CQL MOPO

Figure 14: Results as in Fig. 4 for the single model rollout experiments.

17

Published as a conference paper at ICLR 2023

G PRELIMINARIES ON OFFLINE RL

In offline reinforcement learning, we are trying to optimize the sum of discounted rewards, called
return, R =

∑
t γ

trt obtained by acting in the MDP M =< S,A,R, T, γ, s0 >, where S is
the set of states, s0 ⊆ S the set of starting states, A the set of actions, R : S ×A → R the reward
function, T : S ×A → S the transition dynamics function, and γ ∈ [0, 1) the discount factor. We
train a policy πθ : S → A to obtain an action a when in state s, in order to produce trajectories of
length H: τ = (s0, a0, r0, s1, a1, r1, . . . , sH , aH , rH). While online RL methods are able to
continuously explore their environment, collect new data and test new behaviors, offline RL methods
need to optimize the return R by learning only from a fixed dataset of interactions D = {τi},
i = 1, ...,K. Often, this is done by solving the approximate MDP M̂ =< S,A,R, TD, γ, s0 >,
where TD is directly estimated with a transition model using the transitions from D. However, also
model-free offline approaches exist, that do not estimate TD and directly try to optimize a policy
with a value function that is only trained on D. Since neither model-free nor model-based variants
can be sure to accurately assess the policy’s performance in unknown parts of the state-action space,
offline RL algorithms regularize their policy to stay in a way ’close’ to the policy that generated the
data. The crucial question - how close should πθ be to the original policy? - is an open problem. We
address the dilemma that the user has no meaningful way of choosing the correct proximity since
offline policy selection / evaluation remain generally unsolved problems.

18

	Introduction
	Related Work
	LION: Learning in Interactive Offline eNvironments
	Training
	Deployment

	Experiments
	2D-World
	Industrial Benchmark

	Discussion & Conclusion
	Ethics Statement
	Other Hyperparameters
	Complete Policy Visualization in 2D-Env
	Model-free experiments
	Sampling
	Experimental Details
	Hyperparameters of the Transition Ensemble
	Preliminaries on Offline RL

