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ABSTRACT

Graph contrastive learning (GCL) has become a powerful tool for learning graph
data, but its scalability remains a significant challenge. In this work, we propose
a simple yet effective training framework called Structural Compression (Struct-
Comp) to address this issue. Inspired by a sparse low-rank approximation on the
diffusion matrix, StructComp trains the encoder with the compressed nodes. This
allows the encoder not to perform any message passing during the training stage,
and significantly reduces the number of sample pairs in the contrastive loss. We
theoretically prove that the original GCL loss can be approximated with the con-
trastive loss computed by StructComp. Moreover, StructComp can be regarded
as an additional regularization term for GCL models, resulting in a more robust
encoder. Empirical studies on various datasets show that StructComp greatly re-
duces the time and memory consumption while improving model performance
compared to the vanilla GCL models and scalable training methods.

1 INTRODUCTION

Graph neural networks (GNNs) (Kipf & Welling, 2017; Velickovic et al., 2018; Chen et al., 2020b;
Liu et al., 2020) provide powerful tools for analyzing complex graph datasets and are widely ap-
plied in various fields such as recommendation system (Cai et al., 2023), social network analysis
(Zhang et al., 2021a), traffic flow prediction (Wang et al., 2020), and molecular property prediction
(Alex Fout & Ben-Hur, 2019). However, the scalability limitation of GNNs hampers their extensive
adoption in both industrial and academic domains. This challenge is particularly pronounced within
the realm of unsupervised graph contrastive learning (GCL). Compared to the research on the scala-
bility of supervised GNNs (Hamilton et al., 2017; Chen et al., 2018c;b; Zou et al., 2019; Cong et al.,
2020; Ramezani et al., 2020; Markowitz et al., 2021; Zeng et al., 2020; Chiang et al., 2019; Zeng
et al., 2021), there is little attention paid to the scalability of GCL (Wang et al., 2022; Zheng et al.,
2022), and there is no universal framework for training various GCL models.

The scalability issue of GCL mainly has two aspects: Firstly, the number of nodes that need to be
computed in message passing grows exponentially. Secondly, GCL usually requires computation
of a large number of sample pairs, which may require computation and memory quadratic in the
number of nodes. At the same time, the graph sampling (Zeng et al., 2020; Chiang et al., 2019;
Zeng et al., 2021) and decoupling technology (Wu et al., 2019; Zhu & Koniusz, 2021) used for
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supervised GNN training are not applicable to GCL. Graph sampling might affect the quality of
positive and negative samples, thereby reducing the performance of the model. As GCL usually
involves data augmentation, the decoupling method that precomputes the diffusion matrix is not
feasible.

In order to solve the two aforementioned problems simultaneously, we use a sparse assignment ma-
trix to replace message passing, which is a low-rank approximation of the diffusion matrix. Utilizing
the assignment matrix, we can compute the mixed node features, which contain all the local node
information and can be regarded as the community center feature. By controlling the similarity of
the community center embeddings, we can make node embeddings in similar communities close
to each other, and node embeddings in dissimilar communities distant from each other. Since the
number of sample pairs needed for computation by mixed nodes is significantly less than that for full
nodes, and the encoder no longer computes message passing, the computational resources required
for training are greatly saved.

Specifically, we propose an extremely simple yet effective GCL training framework, called Struc-
tural Compression (StructComp). This framework is applicable to various single-view GCL models
and multi-view GCL models. During the training process, the GNN encoder does not need to per-
form message passing, at which point the encoder can be regarded as a MLP. Our model takes the
compressed features as input and trains in the same way as the corresponding GCL model (i.e., the
same loss function, optimization algorithm). In the inference process, we take the complete graph
structure information and node features as input, and use the GNN encoder to obtain the embedding
representations of all nodes.

Our contributions are summarized as follows:

1. We propose a novel GCL training framework, StructComp. Motivated by a low-rank ap-
proximation of the adjacency matrix, StructComp significantly improves the scalability
of GCLs by substituting message-passing with node compression. StructComp trains MLP
encoder on these mixed nodes and later transfers parameters to GNN encoder for inference.

2. We customize a data augmentation method specifically for StructComp, making Struct-
Comp adaptive to both single-view and multi-view GCL models. To the best of our knowl-
edge, StructComp is the first unified framework designed specifically for GCL training.

3. We theoretically guarantee that the compressed contrastive loss can be used to approximate
the original graph contrastive loss. And we prove that our method introducing an extra
regularization term into the scalable training, which makes the model more robust.

4. We empirically compare StructComp with full graph training and other scalable training
methods under four GCL models. Experimental results on seven datasets demonstrate that
StructComp improves the GCL model’s performance, and significantly reduces memory
consumption and training time.

2 PRELIMINARIES

Notation. Consider an undirected graph G = (A,X), where A ∈ {0, 1}n×n represents the adja-
cency matrix of G, and X ∈ Rn×d is the feature matrix. The set of vertices and edges is represented
as V and E, with the number of vertices and edges given by n = |V | and m = |E|, respectively.
The degree of node vi denoted as di. The degree matrix D is a diagonal matrix and its i-th diagonal
entry is di.

Graph neural network encoders. The GNN encoders compute node representations by aggregat-
ing and transforming information from neighboring nodes. One of the most common encoders is the
Graph Convolutional Network (GCN) (Kipf & Welling, 2017), and its propagation rule is defined as
follows:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
, (1)

where Ã = A+ I , D̃ = D+ I and W (l) is a learnable parameter matrix. GCNs consist of multiple
convolution layers of the above form, with each layer followed by an activation σ such as ReLU.

Graph contrastive learning. Graph contrastive learning is an unsupervised graph representation
learning method. Its objective is to learn the embeddings of the graph by distinguishing between
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similar and dissimilar nodes. Common methods of graph contrastive learning can be divided into
two types: single-view graph contrastive learning (Zhang et al., 2020; Zhu et al., 2021a) and multi-
view graph contrastive learning (Zhu et al., 2020; 2021b; Zhang et al., 2021b; Zheng et al., 2022).

In single-view graph contrastive learning, positive and negative sample pairs are generated under the
same view of a graph. In this case, the positive samples are typically pairs of adjacent or connected
nodes, while the negative samples are randomly selected pairs of non-adjacent nodes. Then, through
a GNN encoder and a contrastive loss function, the algorithm learns to bring the embedding vectors
of positive sample pairs closer and push the embedding of negative sample pairs further apart. The
common single-view contrastive loss function (Hamilton et al., 2017) of node u is as follows:

L(u) = − log(σ(zTu zv))−
K∑

k=1

log(σ(−zTu zk)). (2)

Here, node v is the positive sample of node u, node k is the negative sample of node u, and K
represents the number of negative samples.

Multi-view graph contrastive learning uses different views of the graph to generate sample pairs.
These views can be contracted by different transformations of the graph, such as DropEdge (Rong
et al., 2020) and feature masking (Zhu et al., 2020). We generate the embeddings of the nodes, aim-
ing to bring the embedding vectors of the same node but from different views closer, while pushing
the embedding vectors from different nodes further apart. The common multi-view contrastive loss
function of each positive pair (u, v) is as follows:

L(u, v) = log
eϕ(zu,zv)/τ

eϕ(zu,zv)/τ +
∑

k ̸=u,k∈G1
eϕ(zu,zk)/τ +

∑
k ̸=u,k∈G2

eϕ(zu,zk)/τ
. (3)

Here u and v represent the same node from different views, ϕ is a function that computes the simi-
larity between two embedding vectors. G1 and G2 are two different views of the same graph. τ is
temperature parameter.

3 STRUCTURAL COMPRESSION

3.1 MOTIVATION

To reduce the training complexity of GCLs, we start with a low-rank approximation C of the ad-
jacency matrix Âk, such that Âk = CCT . Although the complexity of matrix multiplication is
significantly reduced by the approximation, the actual training time will not decrease due to the
dense nature of C. Moreover, the amount of negative pairs needed for the contrastive learning re-
mains O(n2). To address the above issues simultaneously, we introduce a sparse constraint for the
low-rank approximation and force C to be a graph partition matrix P ′ ∈ Rn×n′

(P ′
ij = 1 if and only

if the node i belongs to cluster j), where n′ is the number of clusters in the partition. Using P ′PTX

to approximate ÂkX (where P is the row-normalized version of P ′), a key advantage is that nodes
in the same cluster share the same embedding, and PTX contains all the information needed to
compute the loss function. Therefore, we only compute PTX ∈ Rn′×d: a “node compression”
operation, where nodes in the same cluster are merged together. Since nodes in the same cluster
share their embeddings, performing contrastive learning on these compressed nodes is equivalent
to that on the nodes after the low-rank propagation (i.e., P ′PTX). Thus, the number of negative
pairs reduced to n′2. Moreover, the complexity of matrix multiplication is now down to O(n) while
persevering the sparsity. In a nutshell, two major challenges for scalable GCL in Section 1 can be
solved simultaneously by our method.

To generate the graph partition matrix P , we need to solve the following optimization problem:

minimize ∥P ′PT − Âk∥,

subject to P ′ ∈ {0, 1}n×n′
, P ′1n′ = 1n.

(4)

Intuitively, P ′PT is a normalized graph that connects every pair of nodes within a community while
discarding all inter-community edges. Thus, ∥P ′PT − Â∥ equals the number of inter-community
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edges plus the number of disconnected node pairs within communities. Minimizing the former is
the classic minimum cut problem, and minimizing the latter matches well with balanced separation,
given the number of nodes pair grows quadratically. These objective aligns well with off-the-shelf
graph partition methods, so we directly utilize METIS to produce P .

From the perspective of spatial domain, we always hope to obtain an embedding f(ÂkXW ) of the
following form: embeddings of nodes of the same class are close enough, while embeddings of
nodes of different classes are far apart. Intuitively, this goal can be simplified to the class centers
of the various class node embeddings being far apart, and the similarity of nodes within the same
class being as high as possible. In other words, we can use the community center f(PTXW ) as
the embedding that needs to be computed in the loss function, instead of using all nodes in the com-
munity for computation. On the other hand, if the embeddings of nodes within the community are
identical, we no longer need to compute the similarity of nodes within the community. Considering
these, it is natural to use PTX in place of ÂkX to compute the loss function. Moreover, since P
is solved based on graph partitioning, the result of the graph partitioning can facilitate the construc-
tion of positive and negative samples. The idea of using structural compression as a substitute of
message-passing can be extended to a multi-layer and non-linear GNN, which is shown in Appendix
A.1.

3.2 FRAMEWORK OF STRUCTCOMP

Preprocessing. We carry out an operation termed “node compression”. Based on the above analysis,
we use the METIS algorithm to obtain the graph partition matrix, and then take the mean value
of the features of the nodes in each cluster as the compressed feature, i.e., Xc = PTX . After
computing the compressed features, we also construct a compressed graph, i.e., Ac = PTAP .
Each node in Ac represents a cluster in the original graph, and the edges represent the relationships
between these clusters. Ac is only used when constructing the contrastive loss and is not involved
in the computations related to the encoder. To make our StructComp adaptive to different types
of GCL models, we carefully design some specific modules for single-view and multi-view GCLs,
respectively.

Single-view

Training 

Inference

Compression

MLP

Encoder

GCN

Encoder

Shared   Weight

Compressed

Feature Contrastive

 Loss

A, X

Node

Embedding

Input Graph

Node Input

𝑿c = 𝑷𝑻𝑿

Input

Input Graph

Output

Compressed

Embedding

Figure 1: The overall framework of single-view StructComp.

Single-view StructComp. In single-view graph contrastive learning, we use the preprocessed com-
pression features Xc as input, and replace the GNN encoders with MLP encoders. For instance, a
two-layer neural network and embedding can be represented as follows:

Zc = σ(σ(XcW1)W2) (5)

We proposed to sample positive and negative pairs based on the compressed graph Ac instead of
A. One additional advantages of using the compressed graph over the original graph is that it
significantly improves the accuracy of negative pairs sampling. For instance, since highly connected
nodes are compressed together, they are not able to be selected as negative pairs. Then we use the
same loss function and optimization algorithm as original GCL models to optimize the single-view
contrastive learning loss L(Zc). Figure 1 shows the flow chart of single-view StructComp.
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Once the model is adequately trained, we transition to the inference phase. We revert the changes
made during the training phase by replacing the MLP encoder back to the GNN encoder. Then, we
input the complete graph structure information and node features to generate the embeddings for all
nodes, as detailed below:

Z = σ(Âσ(ÂXW1)W2). (6)

Multi-view StructComp. In multi-view contrastive learning, we need to compare two perturbed
views of the graph. This requires us not only to compress the node features but also to apply data
augmentation to these compressed features. However, traditional data augmentation methods such as
DropEdge are not applicable in StructComp, as there is no longer an A available for them to perturb
during training. To fill this gap, we introduce a new data augmentation method called ‘DropMem-
ber’. This technique offers a novel way to generate different representations of compressed nodes,
which are essential for multi-view contrastive learning under StructComp.

The DropMember method is implemented based on a predetermined assignment matrix P. For each
node in the compressed graph, which represents a community, we randomly drop a portion of the
nodes within the community and recalculate the community features. Formally, for each cluster j in
the augmented X ′

c, we have:

x′j =
1

s′

s∑
i=1

mixi. (7)

Here, s represents the number of nodes contained in cluster j, mi is independently drawn from a
Bernoulli distribution and s′ =

∑s
i=1mi. By performing contrastive learning on the compressed

features obtained after DropMember and the complete compressed features, we can train a robust
encoder. The loss of some node information within the community does not affect the embedding
quality of the community.

Compression

Contrastive

 Loss

MLP

Encoder

MLP

Encoder

Shared WeightMulti-view 

Training

Input Graph

Compressed

Feature

𝑿c = 𝑷𝑻𝑿

𝑷′ = DropMember(𝑷)

Compressed

Feature

𝑿𝒄
′ = 𝑷′𝑻𝑿

Figure 2: The training process of multi-view StructComp.

For the multi-view graph contrastive learning model, we need to compute the representations of two
different views. Figure 2 shows the training process of multi-view StructComp. In our implementa-
tion, we use the complete Xc and the perturbed X ′

c after DropMember as two different views. The
embeddings of the two views are as follows:

Zc = σ(σ(XcW1)W2), Z ′
c = σ(σ(X ′

cW1)W2). (8)

We use the same loss function and optimization algorithm as original multi-view GCL models to
optimize the contrastive loss L(Zc, Z

′
c). Once the model is trained, the inference process of multi-

view StructComp is the same as that of single-view StructComp.
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4 THEORY ANALYSIS OF STRUCTCOMP

4.1 THE EQUIVALENCE OF THE COMPRESSED LOSS AND THE ORIGINAL LOSS

In this section, we demonstrate that the contrastive loss on the original graph is close to the sum of
the compressed contrastive loss and the low-rank approximation gap. In other words, if the low-rank
approximation in section 3.1 is properly satisfied, we can estimate the original GCL loss using the
compressed contrastive loss.

Here we consider the Erdős-Rényi model, denoted as G(n, p), where edges between n vertices are
included independently with probability p. We use ∥ · ∥2 to represent l2 norm and ∥ · ∥F to represent
Frobenius norm. Additionally, we denote the feature vector of each node as Xi ∈ Rd. Then we can
prove the following theorem, for simplicity, we only consider a one-layer message-passing and an
unweighted node compression. We leave the proof and details of notations in Appendix A.2.
Theorem 4.1. For the random graph G(n, p) from Erdős-Rényi model, we construct an even par-
tition P = {S1, · · · , Sn′}. Let fG(X) = AXW be a feature mapping in the original graph and
fP(X) = P

′TXW as a linear mapping for the mixed nodes, where W ∈ Rd×d′
. Then by conduct-

ing single-view contrastive learning, the contrastive loss for the original graph, denoted as LG(W ),
can be approximated as the sum of the compressed contrastive loss, LP(W ), and a term related to
the low-rank approximation. Assume the features are bounded by SX := maxi ∥Xi∥2, we have

|LG(W )− LP(W )| ≤ ∥A− P
′
P

′T ∥FSX∥W∥2.

For a similar upper bound without the Erdős-Rényi graph assumption, please refer to Appendix A.3.

4.2 THE REGULARIZATION INTRODUCED BY STRUCTCOMP

Following Fang et al. (2023), we show that multi-view StructComp is equivalent to random masking
on the message matrices M , where Mi,j = ψ(hi, hj , ei,j) and ψ is a function that takes the edges
ei,j and the attached node representations hi, hj . First, the low rank approximation ||P ′P − Âk||
is dropping the inter-cluster edges Edrop = {Ei,j |Ak

i,j = 1 and S(i) ̸= S(j)}, where S(i) denote
the cluster that node i belongs to. And the latter is then equivalent to DropMessage Mdrop =
{Mi|edge(Mi) ∈ Edrop}, where edge(Mi) ∈ Edrop indicates which edge that Mi corresponds
to. Our DropMember for the cluster c is dropping V c

drop = {Xi|ϵi = 0 and S(i) = c}. This is
equivalent to Mdrop = {Mi|node(Mi) ∈

⋃
c V

c
drop}. Then we have the following theorem:

Theorem 4.2. Consider a no-augmentation InfoNCE loss,

LInfoNCE =
∑
i

∑
j∈pos(i)

[hTi hj ] +
∑
i

∑
j∈neg(i)

[log(eh
T
i hi + eh

T
i hj )]. (9)

Optimizing the expectation of this with augmentation E[L̃InfoNCE] introduce an additional regular-
ization term, i.e.,

E[L̃InfoNCE] = LInfoNCE +
1

2

∑
i

∑
j∈neg(i)

ϕ(hi, hj)Var(h̃i), (10)

where ϕ(hi, hj) =
(eh

2
i h2

i+ehihjh2
j )(e

h2
i +ehihj )−(eh

2
i hi+ehihjhj)

2

2(eh
2
i +ehihj )2

.

Theorem 4.2 shows that, multi-view StructComp not only improves the scalability of GCLs training,
but also introduces an additional regularization term into the InfoNCE loss. By optimizing the
variance of the augmented representations, encoders trained with StructComp are more robust to
minor perturbation. Please refer to the Appendix A.4 for more details.

5 RELATED WORK

Scalable training on graph. To overcome the scalability issue of training GNNs, most of the pre-
vious scalable GNN training methods use sampling techniques (Hamilton et al., 2017; Chen et al.,
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2018c;b; Zou et al., 2019; Cong et al., 2020; Ramezani et al., 2020; Markowitz et al., 2021; Zeng
et al., 2020; Chiang et al., 2019; Zeng et al., 2021), including node-wise sampling, layer-wise sam-
pling, and graph sampling. The key idea is to train GNNs with small subgraphs instead of the whole
graph at each epoch. However, graph sampling techniques are mainly used for training supervised
GNNs and are not applicable to unsupervised GNNs, as it is difficult to guarantee the provision of
high-quality positive and negative samples after sampling. Another direction for scalable GNNs is
to simplify models by decoupling the graph diffusion process from the feature transformation. The
diffusion matrix is precomputed, and then a standard mini-batch training can be applied (Bojchevski
et al., 2020; Chen et al., 2020a; Wu et al., 2019). This preprocessing method is also not applicable
to graph contrastive learning, as the adjacency matrix and feature matrix are perturbed in contrastive
learning, which necessitates the repeated computation of the diffusion matrix, rather than only in
preprocessing. Besides, methods represented by GraphZoom (Chen et al., 2018a; Liang et al., 2018;
Deng et al., 2019) learn node embeddings on the coarsened graph, and then refine the learned coarsed
embeddings to full node embeddings. These methods mainly consider graph structural information,
only applicable to handling traditional graph embedding(Perozzi et al., 2014; Grover & Leskovec,
2016), but are not suitable for GCL models. Most importantly, these methods require a lot of time
to construct the coarsened graph, and the coarse-to-refine framework inevitably leads to information
loss.

See the Appendix B for a discussion of the related work on graph contrastive learning.

6 EXPERIMENT

6.1 EXPERIMENTAL SETUP

The results are evaluated on night real-world datasets (Kipf & Welling, 2017; Veličković et al., 2018;
Zhu et al., 2021b; Hu et al., 2020), Cora, Citeseer, Pubmed, Amazon Computers, Amazon Photo,
Ogbn-Arixv, Ogbn-Products and Ogbn-Papers100M. On small-scale datasets, including Cora, Cite-
seer, Pubmed, Amazon Photo and Computers, performance is evaluated on random splits. We ran-
domly select 20 labeled nodes per class for training, while the remaining nodes are used for testing.
All results on small-scale datasets are averaged over 50 runs, and standard deviations are reported.
For Ogbn-Arixv, Ogbn-Products and Ogbn-Papers100M, we use fixed data splits as in previous stud-
ies Hu et al. (2020). More detailed statistics of the night datasets are summarized in the Appendix
C.

We use StructComp to train two representative single-view GCL models, SCE (Zhang et al., 2020)
and COLES (Zhu et al., 2021a), and two representative multi-view GCL models, GRACE (Zhu
et al., 2020) and CCA-SSG (Zhang et al., 2021b). To demonstrate the effectiveness of StructComp,
we compare the classification performance of the original models and StructComp trained models
on small-scale datasets. For scalability on large graphs, we compare StructComp with three scal-
able training methods (i.e., Cluster-GCN (Chiang et al., 2019), Graphsaint (Zeng et al., 2020) and
Graphzoom (Deng et al., 2019)). For all the models, the learned representations are evaluated by
classifiers under the same settings.

The key hyperparameter of our framework is the number of clusters, which is set to [300, 300,
2000, 1300, 700, 20000, 25000, 5000] on night datasets, respectively. All algorithms and models
are implemented using Python and PyTorch Geometric. More implementation details can be found
in Appendix C. Additional discussions and experimental results are included in Appendix D.

6.2 EXPERIMENTAL RESULTS

Performance on small-scale datasets. Table 1 shows the model performance on small datasets
using the full graph training and StructComp training. The results show that StructComp improves
the performance of the model in the vast majority of cases, especially the multi-view GCL models.
In the single-view GCL models, StructComp improves the average accuracy of SCE and COLES
by 0.4% and 0.2%, respectively. In the multi-view GCL models, StructComp improves the average
accuracy of GRACE and CCA-SSG by 2.6% and 1.6%, respectively. The observed performance
improvement can be attributed to two main factors. First, StructComp constructs high-quality posi-
tive and negative pairs, e.g., it ensures that highly-connected nodes are not erroneously selected as
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negative pairs in multi-view GCLs. Second, as mentioned in Section 4.2, StructComp implicitly
introduces regularization into the contrastive learning process, resulting in a more robust encoder.

Table 1: Comparison between StructComp and full graph training across four GCL models on small
datasets. The performance is measured by classification accuracy. “Ave ∆” is the average improve-
ment achieved by StructComp.

Method Cora Citeseer Pubmed Computers Photo Ave ∆

SCE 81.0±1.3 71.7±1.1 76.5±2.8 79.2 ±1.7 87.8 ±1.4
SCEStructComp 81.6±0.9 71.5±1.0 77.2±2.9 79.7 ±1.7 88.2 ±1.4 +0.4

COLES 81.7±0.9 71.2±1.2 74.6±3.4 79.5±1.6 88.5±1.4
COLESStructComp 81.8±0.8 71.6±0.9 75.3±3.1 79.4±1.6 88.5±1.4 +0.2

GRACE 78.5±0.9 68.9±1.0 76.1±2.8 76.2±1.9 85.1±1.6
GRACEStructComp 79.7±0.9 70.5±1.0 77.2±1.4 80.6±1.5 90.0±1.1 +2.6

CCA-SSG 79.2±1.4 71.8±1.0 76.0±2.0 82.7±1.0 88.7±1.1
CCA-SSGStructComp 82.3±0.8 71.6±0.9 78.3±2.5 83.1±1.4 90.8±1.0 +1.6

Time and memory usage for small-scale datasets. Table 2 shows the improvements in runtime
and memory usage of each GCL model. StructComp saves the memory usage of the GCL models on
the Cora, Citeseer, Pubmed, Computers, and Photo datasets by 5.9 times, 4.8 times, 33.5 times, 22.2
times and 57.1 times, respectively. At the same time, the training is speeded up by 1.8 times, 2.1
times, 17.1 times, 10.9 times and 21.1 times, respectively. This improvement is particularly evident
when the dataset is large. The memory consumption for GRACE on the Computers dataset is even
reduced by two orders of magnitude. These results strongly suggest that our method significantly
reduces time consumption and memory usage while enhancing model performance.

Table 2: Time (s/epoch) and memory usage (MB) for GCL training on small-scale datasets. “Ave
improvement” is the proportion of training resources used by StructComp to the resources used by
full graph training.

Method Cora Citeseer Pubmed Photo Computers

Mem Time Mem Time Mem Time Mem Time Mem Time

SCE 82 0.003 159 0.004 1831 0.027 329 0.006 920 0.015
SCEStructComp 23 0.002 59 0.002 54 0.003 16 0.002 29 0.002

COLES 115 0.004 204 0.004 1851 0.033 378 0.015 1018 0.031
COLESStructComp 24 0.002 60 0.003 61 0.003 21 0.003 39 0.003

GRACE 441 0.017 714 0.025 11677 0.252 1996 0.106 5943 0.197
GRACEStructComp 37 0.009 72 0.009 194 0.009 59 0.008 54 0.008

CCA-SSG 132 0.010 225 0.011 825 0.123 1197 0.112 2418 0.210
CCA-SSGStructComp 38 0.006 71 0.005 85 0.006 41 0.005 40 0.005

Ave improvement 5.9× 1.8× 4.8× 2.1× 33.5× 17.1× 22.2× 10.9× 57.1× 21.1×

Scalability on large graphs. Table 3 and Table 4 show the results of StructComp on two large
datasets Arxiv and Products, and compare them with three scalable training methods: Cluster-GCN,
Graphsaint, and Graphzoom. We tested these training methods on four GCL models. Our method
achieves the best performance on all GCL models on both datasets. The experimental results for
Papers100M are listed in Appendix D.1. The models trained by our method achieve the highest
accuracy, while also require significantly lower memory and time consumption compared to other
models. These results highlight the effectiveness of our method in handling large-scale graph data.

Table 3: Performance and training consumption (time in s/epoch and memory usage in GB) on the
Ogbn-Arxiv dataset. Each model is trained by StructComp and three scalable training frameworks.

Method SCE COLES GRACE CCA-SSG

Acc Time Mem Acc Time Mem Acc Time Mem Acc Time Mem

Cluser-GCN 70.4±0.2 10.8 4.2 71.4±0.2 13.0 4.2 70.1±0.1 3.5 17.3 72.2±0.1 2.2 1.3
Graphsaint 70.4±0.2 7.6 9.0 71.3±0.1 26.9 22.5 70.0±0.2 3.6 14.1 72.1±0.1 4.4 1.8
Graphzoom 70.6±0.2 0.04 9.8 70.0±0.3 0.08 14.3 68.2±0.3 3.9 13.7 71.3±0.2 1.0 3.4
StructComp 71.6±0.2 0.03 1.8 71.8±0.2 0.05 3.4 71.7±0.2 1.2 11.7 72.2±0.1 0.9 0.5
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Table 4: Performance and training consumption (time in s/epoch and memory usage in GB) on the
Ogbn-Products dataset. Each model is trained by StructComp and three scalable training frame-
works.

Method SCE COLES GRACE CCA-SSG

Acc Time Mem Acc Time Mem Acc Time Mem Acc Time Mem

Cluser-GCN 74.6±0.2 196.8 8.0 75.2±0.2 239.1 8.0 75.2±0.1 35.1 16.2 74.1±0.3 37.1 5.7
Graphsaint 74.5±0.3 18.5 9.5 75.3±0.1 20.6 9.9 75.4±0.2 36.8 14.3 74.8±0.4 35.4 3.3
Graphzoom 60.6±0.5 0.06 8.8 68.1±0.4 0.1 13.2 61.0±0.4 11.1 13.1 68.6±0.3 4.5 10.0
StructComp 75.2±0.1 0.05 2.7 75.5±0.1 0.08 5.3 75.7±0.1 4.0 12.0 75.8±0.2 3.7 0.6
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Figure 3: The trends of the original GCL loss and the loss that computed by StructComp-trained
parameters. “loss o” is L(A,X;W ) and “loss c” is L(A,X;U) where U is trained with L(Xc;U).

Comparison of loss trends. To examine the equivalence of StructComp training and traditional
GCL training, we plug the parameters U trained with the compressed loss L(Xc;U) back into the
GNN encoder and compute the complete loss function L(A,X;U). Figure 3 shows the trends of
L(A,X;U) and the original loss L(A,X;W ) trained with full graph. The behavior of the two losses
matches astonishingly. This observation implies that, StructComp produces similar parameters to
the traditional full graph GCL training.

Effect of compression rate. We study the influence of the compression rate on the performance of
StructComp. We use StructComp to train four GCL models under different compression rates on
Cora, Citeseer, and Pubmed. Figure 4 shows the performance change with respect to compression
rates. We observed that when the compression rate is around 10%, the performance of the models
is optimal. If the compression rate is too low, it may leads to less pronounced coarsened features,
thereby reducing the effectiveness of the training.
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Figure 4: The influence of the compression rate on the performance of StructComp.

7 CONCLUSION

In this paper, we introduce StructComp, a scalable training framework for GCL. StructComp is
driven by a sparse low-rank approximation of the diffusion matrix. In StructComp, the message-
passing operation is substituted with node compression, leading to substantial reductions in time
and memory consumption. Theoretical analysis indicates that StructComp implicitly optimizes the
original contrastive loss with fewer resources and is likely to produced a more robust encoder.
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Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2018.

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-
pass contrastive learning can work for both homophilic and heterophilic graph. Transactions on
Machine Learning Research, 2023.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In ACM SIGKDD international
conference on Knowledge Discovery and Data Mining, pp. 1082–1092, 2020.

Yili Wang, Kaixiong Zhou, Rui Miao, Ninghao Liu, and Xin Wang. Adagcl: Adaptive subgraph
contrastive learning to generalize large-scale graph training. In ACM International Conference on
Information and Knowledge Management, 2022.

11



Published as a conference paper at ICLR 2024

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International Conference on Machine Learning, pp.
6861–6871, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in neural information processing systems,
pp. 5812–5823, 2020.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations, 2020.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal Kan-
nan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph neural
networks. In Advances in Neural Information Processing Systems, 2021.

Guozhen Zhang, Yong Li, Yuan Yuan, Fengli Xu, Hancheng Cao, Yujian Xu, and Depeng Jin.
Community value prediction in social e-commerce. In Jure Leskovec, Marko Grobelnik, Marc
Najork, Jie Tang, and Leila Zia (eds.), The Web Conference, pp. 2958–2967, 2021a.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S. Yu. From canonical correlation
analysis to self-supervised graph neural networks. In Advances in Neural Information Processing
Systems, 2021b.

Shengzhong Zhang, Zengfeng Huang, Haicang Zhou, and Ziang Zhou. SCE: scalable network em-
bedding from sparsest cut. In ACM SIGKDD international conference on Knowledge Discovery
and Data Mining, pp. 257–265, 2020.

Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, and Philip S. Yu. Rethinking and scaling
up graph contrastive learning: An extremely efficient approach with group discrimination. In
Advances in Neural Information Processing Systems, 2022.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International Conference on
Learning Representations, 2021.

Hao Zhu, Ke Sun, and Peter Koniusz. Contrastive laplacian eigenmaps. In Advances in neural
information processing systems, pp. 5682–5695, 2021a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. In International Conference on Machine Learning Workshop on Graph
Representation Learning and Beyond, 2020.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In The Web Conference, pp. 2069–2080, 2021b.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. In Advances in
neural information processing systems, 2019.

12



Published as a conference paper at ICLR 2024

A PROOF DETAILS

A.1 THE NON-LINEAR EXTENSION FOR EQUATION 4

We explain how to extend the results to non-linear deep models below. Equation 4 provides the
motivation of structural compression on a linear GNN (which can also be considered as an approx-
imation to one layer in a multi-layer non-linear GNN). The analysis can be extended to non-linear
deep GNNs. For instance, given a two-layer non-linear GCN σ(Âσ(ÂXW1)W2), we first approxi-
mate Ã by P ′PT , then the whole GCN can be approximated as

σ(P ′PTσ(P ′PTXW1)W2) = σ(P ′PTP ′σ(PTXW1)W2) = P ′σ(σ(PTXW1)W2). (11)

The first equality holds because P ′ is a partition matrix and the last equality follows from the fact
that PTP ′ = I . Therefore, our analysis provides theoretical justifications of using StructComp as a
substitute for non-linear deep GNNs.

A.2 PROOF FOR THEOREM 4.1

Single-view Graph Contrastive Learning. We view adjacent nodes as positive pairs and non-
adjacent nodes as negative pairs. In a coarse graph of supernodes, we define a pair of supernodes as
positive if there exist two nodes within each supernode that are adjacent in the original graph. Let
f : X → Rd′

be a feature mapping. We are interested in a variant of the contrastive loss function
that aims to minimize the distance between the features of positive pairs v, v+.

L(f) = Ev,v+∥f(v)− f(v+)∥2. (12)

Graph Partition. For a graph G = (V,E,X), we consider the Erdős-Rényi model, denoted as
G(n, p), where edges between n vertices are included independently with probability p. We compute
a partition P on the nodes. We denote P = {S1, · · · , Sn′}, such that V =

⋃n′

j=1 Sj and Sj1

⋂
Sj2 =

∅ for j1 ̸= j2. We define a partition P to be an even partition if each subset has the same size
|S1| = |S2| = · · · = |Sn′ |. For each vertex v, we denote S(v) ∈ P as the subset that v belongs
to. We denote N(v) := {s : (s, v) ∈ E or (v, s) ∈ E} as the set of neighbors of v. Denote
M(v) := N(v)\S(v) be the set of v’s neighbors that are not in the subset with v.

For the partition P , we denote P ′ ∈ {0, 1}n×n′
as its corresponding partition matrix, where P ′

ij = 1

if the node vi belongs to the subset Sj . LetR = A−P ′P ′T be the partition remainder. By definition,
Rij = 1 if node j ∈M(i). Here we define the partition loss as

Lpartition = ∥R∥F := ∥A− P ′P ′T ∥F , where ∥ · ∥F denotes the Frobenius norm.

Now we are ready to prove Theorem 4.1.
Theorem 4.1. For the random graph G(n, p) from Erdős-Rényi model, we construct an even par-
tition P = {S1, · · · , Sn′}. Let fG(X) = AXW be a feature mapping in the original graph and
fP(X) = P ′TXW as a linear mapping for the mixed nodes, where W ∈ Rd×d′

. Then by conduct-
ing single-view contrastive learning, the contrastive loss for the original graph, denoted as LG(W ),
can be approximated as the sum of the compressed contrastive loss, LP(W ), and a term related to
the low-rank approximation. Assume the features are bounded by SX := maxi ∥Xi∥2, we have

|LG(W )− LP(W )| ≤ ∥A− P ′P ′T ∥FSX∥W∥2.

Proof. We denote the transpose of i-th row of X as Xi. In the original graph, by the definition of
adjacent matrix A, the embedding of each node vi is

fG,W (vi) = (AXW )i =
∑

vs∈N(vi)

WTXs.

For the compressed loss, each mixed node corresponds to a subset Si of the partition P . We denote
B(Si) := {Sj ∈ P : ∃u ∈ Si, v ∈ Sj , s.t.(u, v) ∈ E} as the set of mixed nodes that are connected
to Si. Then the embedding of mixed node Si can be written as

fP,W (Si) = (P ′TXW )i
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For a positive pair u, v in the original graph, we can measure their difference in the feature subspace
as follows.

fG,W (u)− fG,W (v) =(AXW )u − (AXW )v

=WT (
∑

vi∈S(u)

Xi −
∑

vi∈S(v)

Xi +
∑

vi∈M(u)

Xi −
∑

vi∈M(v)

Xi)

=(P ′TXW )S(u) − (P ′TXW )S(v) + (RXW )u − (RXW )v.

For a positive pair (Si, Sj) in the compressed loss, their difference in the feature subspace is

fP,W (Si)− fP,W (Sj) = (P ′TXW )i − (P ′TXW )j .

For any i, j ∈ [n], (vi, vj) is an edge in G independently with probability p. We denote pos as the
set of positive pairs in the compressed loss. Then by calculating contrastive loss on both graphs, we
have

LG(W )− LP(W )

= E
(u,v)∈E

∥fG,W (u)− fG,W (v)∥2 − E
(Si,Sj)∈ pos

∥fP,W (Si)− fP,W (Sj)∥2

= E
(u,v)∈E

∥(P ′TXW )S(u) − (P ′TXW )S(v) + (RXW )u − (RXW )v∥2

− E
(Si,Sj)∈ pos

∥(P ′TXW )i − (P ′TXW )j∥2

≤ E
(u,v)∈E

∥(P ′TXW )S(u) − (P ′TXW )S(v)∥2 − E
(Si,Sj)∈ pos

∥(P ′TXW )i − (P ′TXW )j∥2

+ E
(u,v)∈E

∥(RXW )u − (RXW )v∥2

= E
(u,v)∈E

∥(RXW )u − (RXW )v∥2.

The last step holds because the partition is even. On the other hand,

LP(W )− LG(W )

= E
(Si,Sj)∈ pos

∥(P ′TXW )i − (P ′TXW )j∥2

− E
(u,v)∈E

∥(P ′TXW )D(u) − (P ′TXW )D(v) + (RXW )u − (RXW )v∥2

≤ E
(Si,Sj)∈ pos

∥(P ′TXW )i − (P ′TXW )j∥2

− E
(u,v)∈E

∥(P ′TXW )D(u) − (P ′TXW )D(v)∥2 + E
(u,v)∈E

∥(RXW )u − (RXW )v∥2

= E
(u,v)∈E

∥(RXW )u − (RXW )v∥2.

We combine both inequalities. Denote η = ∥A− P ′P ′T ∥F . Then we have

|LG(W )− LP(W )| ≤ E
(u,v)∈E

∥(RXW )u − (RXW )v∥2

≤∥δTXW∥2 ▷ δ ∈ Rn is an η sparse vector with 0,±1 entries

≤
∑

i∈[n]:δi ̸=0

∥XiW∥2

≤ηSX∥W∥2
=∥A− P ′P ′T ∥FSX∥W∥2.
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A.3 AN UPPER BOUND OF THE APPROXIMATION GAP WITHOUT ER GRAPH

We give an extra analysis on arbitrary graphs. For non-random graphs, the approximation gap of
losses is simply bounded by the Equation 4. Suppose the loss L is L-Lipschitz continuous,

|L(P ′PTXW )− L(ÂkXW )| ≤ L ∥P ′PT − Âk∥︸ ︷︷ ︸
Equation 4

∥X∥∥W∥.
(13)

And for a spectral contrastive loss Lspec, assume the graph partition are even, we have:

Lspec(P
TXW ) = − 2

n

n∑
i=1

eT1,ie2,i +
1

n2

n∑
i=1

n∑
j=1

(eT1,ie2,j)
2

= − 2

n

n′∑
k=1

∑
i∈Sk

eT1,ie2,i +
1

n2

n∑
i=1

n′∑
l=1

∑
j∈Sl

(eT1,ie2,j)
2

= − 2

n′

n′∑
k=1

ET
1,iE2,i +

1

nn′

n∑
i=1

n′∑
l=1

(eT1,iE2,j)
2

= − 2

n′

n′∑
k=1

ET
1,iE2,i +

1

nn′

n′∑
k=1

∑
i∈Sk

n′∑
l=1

(eT1,iE2,j)
2

= − 2

n′

n′∑
k=1

ET
1,iE2,i +

1

n′2

n′∑
k=1

n′∑
l=1

(ET
1,iE2,j)

2 = Lspec(P
′PTXW ),

(14)

where e1,i denotes the representations of a recovered node and ET
1,i denotes the representations of a

compressed node. The above analysis shows that our approximation is reasonable for fixed graphs.

A.4 PROOF FOR THEOREM 4.2

Theorem 4.2. Consider a no-augmentation InfoNCE loss,

LInfoNCE =
∑
i

∑
j∈pos(i)

[hTi hj ] +
∑
i

∑
j∈neg(i)

[log(eh
T
i hi + eh

T
i hj )]. (15)

Optimizing the expectation of this with augmentation E[L̃InfoNCE] introduce an additional regular-
ization term, i.e.,

E[L̃InfoNCE] = LInfoNCE +
1

2

∑
i

∑
j∈neg(i)

ϕ(hi, hj)Var(h̃i), (16)

where ϕ(hi, hj) =
(eh

2
i h2

i+ehihjh2
j )(e

h2
i +ehihj )−(eh

2
i hi+ehihjhj)

2

2(eh
2
i +ehihj )2

.

Proof.

E[L̃InfoNCE] =
∑
i

∑
j∈pos(i)

[hTi hj ] + E[∆1] +
∑
i

∑
j∈neg(i)

[log(eh
T
i hi + eh

T
i hj )] + E[∆2], (17)

where

E[∆1] = E

∑
i

∑
j∈pos(i)

[hj(h̃i − hi)]

 = 0 (18)
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and

E[∆2] = E

∑
i

∑
j∈neg

log(eh̃ihi + eh̃ihj )− log(ehihi + ehihj )


≈ E[

∑
i

∑
j∈neg

[
ehihihi + ehihjhj
ehihi + ehihj

(h̃i − hi)

+
(eh

2
i h2i + ehihjh2j )(e

h2
i + ehihj )− (eh

2
i hi + ehihjhj)

2

2(ehihi + ehihj )2
(h̃i − hi)

2]]

=
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Thus,
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B MORE RELATED WORK

Graph contrastive learning. Graph contrastive learning is an unsupervised representation learning
technique that learns node representations by comparing similar and dissimilar sample pairs. Classi-
cal graph contrastive learning models, such as DGI (Veličković et al., 2018) and MVGRL (Hassani
& Ahmadi, 2020), use a loss function based on mutual information estimation (Belghazi et al., 2018;
Hjelm et al., 2019) to contrast node embeddings and graph embeddings. GRACE (Zhu et al., 2020)
and its variants (Zhu et al., 2021b; You et al., 2020) strive to maximize the similarity of positive
pairs while minimizing the similarity of negative pairs in augmented graphs, intending to learn more
effective node embeddings. However, the computational complexity of these methods is too high
for datasets, limiting their applications in large-scale graphs. To reduce computational consumption,
CCA-SSG (Zhang et al., 2021b) simplified the loss function by eliminating negative pairs. Recently,
GGD (Zheng et al., 2022) uses binary cross-entropy loss to distinguish between two groups of node
samples, further reducing computational usage. Despite recent related work focusing on the scala-
bility problem of graph contrastive learning (Wang et al., 2022), these methods still need to rely on
graph sampling techniques when processing graphs with millions of nodes.

C IMPLEMENTATION DETAILS

The detailed statistics for the datasets used for transductive node classification are shown in Table
5. We compare GCL models trained with full graph and those trained with StructCompon small
datasets. On Arxiv and Products, most GCL models cannot perform full graph training, so we com-
pare the performance of different scalable training methods. For all GCL models, the learned rep-
resentations are evaluated by training and testing a logistic regression classifier on smaller datasets.
Due to Ogbn-Arxiv, Ogbn-Products and Ogbn-Papers100M exhibits more complex characteristics,
we use a three-layers MLP as classifier.
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Table 5: Summary of the datasets used in our experiments

.

Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Amazon-Photo 7,650 238,163 745 8
Amazon-Computers 13,752 491,722 767 10
Ogbn-Arxiv 169,343 1,157,799 128 40
Ogbn-Products 2,449,029 61,859,140 100 47
Papers100M 111,059,956 1,615,685,872 128 172

Details of Baselines. We test the performance of StructComp on four GCL models: SCE1,
COLES2,GRACE3, CCA-SSG4. And we compared StructComp with three scalable training meth-
ods Cluster-GCN5, Graphsaint6, and Graphzoom7 on large graphs.

Details of our model. In Table 6, we present the specific formulations of both the embeddings
and the loss functions that we have trained in our experiments. All models are optimized using the
Adam optimizer. The hyperparameters for GCL models trained with StructComp are basically the
same as those used for full graph training of GCL models. We show the main hyperparameters in
Table 7 and 8. The remaining hyperparameter settings for each GCL model are list in our code:
https://github.com/szzhang17/StructComp.

Table 6: The compression and loss function of GCL models under StructComp framework.
Model Compression embedding Loss function

SCE Zc = XcW L = α
Tr(ZT

c L
neg
c Zc)

COLES Zc = XcW L = Tr(ZT
c Lneg

c Zc) − Tr(ZT
c LcZc)

GRACE

Zc = ReLU((XcW1)W2),

Z
′
c = ReLU((X

′
cW1)W2),

L(u, v) = log
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eϕ(zu,zv)/τ +
∑
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2
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c
T
Z̃′

c − I∥2F )

Table 7: Summary of the main hyper-parameters on small datasets.

Model Cora Citeseer Pubmed Photo Computers

Lr Epoch Lr Epoch Lr Epoch Lr Epoch Lr Epoch

SCEStructComp 0.001 50 0.0001 50 0.02 25 0.001 20 0.001 20
COLESStructComp 0.001 20 0.0001 50 0.02 50 0.001 20 0.001 20
GRACEStructComp 0.001 20 0.0001 30 0.02 75 0.001 200 0.001 150
CCA-SSGStructComp 0.001 20 0.0001 50 0.01 50 0.002 100 0.005 40

Configuration. All the algorithms and models are implemented in Python and PyTorch Geometric.
Experiments are conducted on a server with an NVIDIA 3090 GPU (24 GB memory) and an Intel(R)
Xeon(R) Silver 4210R CPU @ 2.40GHz.

1SCE (MIT License): https://github.com/szzhang17/Sparsest-Cut-Network-Embed
ding

2COLES (MIT License): https://github.com/allenhaozhu/COLES
3GRACE (Apache License 2.0): https://github.com/CRIPAC-DIG/GRACE
4CCA-SSG (Apache License 2.0): https://github.com/hengruizhang98/CCA-SSG
5Cluster-GCN (MIT License): https://github.com/pyg-team/pytorch_geometric/blob

/master/examples/cluster_gcn_reddit.py
6Graphsaint (MIT License): https://github.com/pyg-team/pytorch_geometric/blob/m

aster/examples/graph_saint.py
7Graphzoom (MIT License): https://github.com/cornell-zhang/GraphZoom
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Table 8: Summary of the main hyper-parameters on large datasets.
Ogbn-Arxiv Ogbn-Products Ogbn-Papers100M

Lr Epoch Weight decay Lr Epoch Weight decay Lr Epoch Weight decay

SCEStructComp 0.0001 10 0 0.0001 5 0.0005 0.001 1 0.0005
COLESStructComp 0.0001 5 0.0005 0.001 5 0.0005 0.001 1 0.0005
GRACEStructComp 0.001 5 0.0005 0.001 5 0.0005 0.001 1 0.0005
CCA-SSGStructComp 0.0001 10 0 0.001 10 0 0.001 1 0.0005

D MORE EXPERIMENTAL RESULTS AND DISCUSSIONS

D.1 EXPERIMENTS ON OGBN-PAPERS100M

We conduct experiments on the Ogbn-Papers100M dataset. The experimental results are shown in
Table 9. We use StructComp to train four representative GCL models. Here, we compressed ogbn-
papers100M into a feature matrix Xc ∈ R5000∗128 and trained GCL using StructComp. The table
also presents the results of GGD trained with ClusterGCN. Although GGD is specifically designed
for training large graphs, when dealing with datasets of the scale of ogbn-papers100M, it still re-
quires graph sampling to construct subgraphs and train GGD on a large number of subgraphs. In
contrast, our StructComp only requires training a simple and small-scale MLP, resulting in signifi-
cantly lower resource consumption compared to GGD+ClusterGCN.

Table 9: The accuracy, training time per epoch and memory usage on the Ogbn-Papers100M dataset.
Method Acc Time Mem

GGD 63.5±0.5 1.6h 4.3GB
SCEStructComp 63.6±0.4 0.18s 0.1GB
COLESStructComp 63.6±0.4 0.16s 0.3GB
GRACEStructComp 64.0±0.3 0.44s 0.9GB
CCA-SSGStructComp 63.5±0.2 0.18s 0.1GB

D.2 EXPERIMENTS ON THE STABILITY OF STRUCTCOMP

We conduct extra experiments to study the robustness of StructComp. We randomly add 10% of
noisy edges into three datasets and perform the node classification task. The experimental results
are shown in Table 10. On the original dataset, the models trained with StructComp showed per-
formance improvements of 0.36, 0.40, 1.30 and 1.87, respectively, compared to the models trained
with full graphs. With noisy perturbation, the models trained with StructComp showed performance
improvements of 0.80, 1.27, 2.47, and 1.87, respectively, compared to full graph training. This
indicates that GCL models trained with StructComp exhibit better robustness.

Table 10: The results over 50 random splits on the perturbed datasets.
Method Cora Citeseer Pubmed

SCE 78.8±1.2 69.7±1.0 73.4±2.2
SCEStructComp 79.3±0.9 69.3±0.9 75.7±2.8

COLES 78.7±1.2 68.0±1.0 66.5±1.8
COLESStructComp 79.0±1.0 68.3±0.9 69.7±2.6

GRACE 77.6±1.1 64.1±1.4 64.5±1.7
GRACEStructComp 78.3±0.8 69.1±0.9 66.2±2.4

CCA-SSG 75.5±1.3 69.1±1.2 73.5±2.2
CCA-SSGStructComp 78.2±0.7 69.2±0.8 76.3±2.5
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D.3 EXPERIMENTS ON DEEP GNN ENCODER

In order to verify the approximation quality to the diffusion matrix of StructComp, we test the
performance on a deep GNN architecture called SSGC (Zhu & Koniusz, 2021). We transferred the
trained parameters of StructComp to the SSGC encoder for inference. For full graph training in
GCL, both the training and inference stages were performed using the SSGC encoder. Table 11
shows our experimental results, indicating that even with a deeper and more complicated encoder,
StructComp still achieved outstanding performance.

Table 11: The results of GCLs with SSGC encoders over 50 random splits.
Method Cora Citeseer Pubmed

SCE 81.8±0.9 72.0±0.9 78.4±2.8
SCEStructComp 82.0±0.8 71.7±0.9 77.8±2.9

COLES 81.8±0.9 71.3±1.1 74.8±3.4
COLESStructComp 82.0±0.8 71.6±1.0 75.6±3.0

GRACE 80.2±0.8 70.7±1.0 77.3±2.7
GRACEStructComp 81.1±0.8 71.0±1.0 78.2±1.3

CCA-SSG 82.1±0.9 71.9±0.9 78.2±2.8
CCA-SSGStructComp 82.6±0.7 71.7±0.9 79.4±2.6

D.4 COMPARISON WITH RECENT GCL BASELINES

We provide a comparison between StructComp and recent GCL baselines (Li et al., 2023; Wang
et al., 2023; Ma et al., 2023; Zheng et al., 2022). The specific results are shown in Table 12. For
SP-GCL, we are unable to get the classification accuracy on CiteSeer since it does not take isolated
nodes as input. The performance and resource consumption of various GCL models trained with
StructComp are superior to recent GCL baselines.

It should be noted that the goal of these studies and our work are different. The aim of SPGCL is to
handle homophilic graphs and heterophilic graphs simultaneously. BlockGCL attempts to explore
the application of deep GNN encoder in the GCL field. Contrast-Reg is a novel regularization
method which is motivated by the analysis of expected calibration error. GGD is a GCL model
specifically designed for training large graphs, it is not a training framework. On the other hand,
StructComp is a framework designed to scale up the training of GCL models: it aims to efficiently
train common GCL models without performance drop. It is not a new GCL model that aims to
achieve SOTA performance compared to existing GCL models. So our work is orthogonal to these
previous works. In fact, StructComp can be used as the training method for SP-GCL, BlockGCL,
Contrast-Reg and GGD. In future work, we will further investigate how to train these recent graph
contrastive learning methods using StructComp.

Table 12: The results of StructComp-trained GCLs and some GCL baselines over 50 random splits.

Method Cora Citeseer Pubmed

Acc Time Mem Acc Time Mem Acc Time Mem

BlockGCL 78.1±2.0 0.026 180 64.5±2.0 0.023 329 74.7±3.1 0.037 986
SP-GCL 81.4±1.2 0.016 247 - 0.021 319 74.8±3.2 0.041 1420
Contrast-Reg 79.2±1.3 0.048 355 69.8±1.6 0.097 602 72.4±3.5 0.334 11655
GGD 79.9±1.7 0.013 118 71.3±0.7 0.018 281 74.0±2.4 0.015 311
SCEStructComp 81.6±0.9 0.002 23 71.5±1.0 0.002 59 77.2±2.9 0.003 54
COLESStructComp 81.8±0.8 0.002 24 71.6±0.9 0.003 60 75.3±3.1 0.003 61
GRACEStructComp 79.7±0.9 0.009 37 70.5±1.0 0.009 72 77.2±1.4 0.009 194
CCA-SSGStructComp 82.3±0.8 0.006 38 71.6±0.9 0.005 71 78.3±2.5 0.006 85

D.5 DISCUSSION ON GRAPH PARTITIONING

We conducted additional experiments to investigate the impact of graph partitioning on the perfor-
mance of StructComp. In Table 13, we demonstrate the effects of three algorithms, algebraic JC,
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variation neighborhoods, and affinity GS, on the performance of StructComp. These three graph
coarsening algorithms are widely used in scalable GNNs (Huang et al., 2021), from which we can
obtain the specific graph partition matrix P. The experimental results suggest that different graph
partition methods has little impact on StructComp on these datasets.

Table 13: The results of different graph partition methods.
Method Cora Citeseer Pubmed

VN+SCEStructComp 81.3±0.8 71.5±1.0 77.5±2.7
JC+SCEStructComp 81.2±0.9 71.5±1.1 77.3±2.7
GS+SCEStructComp 81.5±0.8 71.4±1.0 77.4±3.0
METIS+SCEStructComp 81.6±0.9 71.5±1.0 77.2±2.9

VN+COLESStructComp 81.4±0.9 71.6±0.9 75.5±3.0
JC+COLESStructComp 81.4±0.9 71.5±1.0 75.3±3.0
GS+COLESStructComp 81.8±0.8 71.6±1.0 75.5±3.2
METIS+COLESStructComp 81.8±0.8 71.6±0.9 75.3±3.1

D.6 EXPERIMENTS ON INDUCTIVE DATASETS

Our StructComp can also be used to handle inductive node classification tasks (Hamilton et al.,
2017; Zeng et al., 2021). We provide additional experiments on inductive node classification in
Table 14. Clearly, the GCL models trained with StructComp also perform exceptionally well on
inductive node classification tasks.

Table 14: The results on two inductive datasets. OOM means Out of Memory on GPU.

Method Flickr Reddit
Acc Time Mem Acc Time Mem

SCE 50.6 0.55 8427 - - OOM
SCEStructComp 51.6 0.003 43 94.4 0.017 1068

COLES 50.3 0.83 9270 - - OOM
COLESStructComp 50.7 0.003 48 94.2 0.024 1175

GRACE - - OOM - - OOM
GRACEStructComp 51.5 0.010 221 94.3 0.079 8683

CCA-SSG 51.6 0.125 1672 94.9 0.21 5157
CCA-SSGStructComp 51.8 0.007 99 95.2 0.56 457

D.7 EXPERIMENTS ON HETEROPHILOUS GRAPHS

We conduct experiments to train SP-GCL (Wang et al., 2023) with StructComp, in order to verify the
performance of StructComp on heterophilous graphs. The experimental results are shown in Table
15. Overall, the SP-GCL trained by StructComp is superior to full graph training. This is our initial
attempt to use StructComp to handle heterophilous graphs, and it is obviously a valuable direction
worth further research.

Table 15: The results on heterophilous datasets.

Method Chameleon Squirrel Actor

Acc Time Mem Acc Time Mem Acc Time Mem

SP-GCL 65.28±0.53 0.038 739 52.10±0.67 0.080 3623 28.94±0.69 0.041 802
SP-GCLStructComp 66.65±1.63 0.011 168 53.08±1.39 0.009 217 28.70±1.25 0.013 159
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