

000 BEYOND PENALIZATION: DIFFUSION-BASED OUT-OF- 001 DISTRIBUTION DETECTION AND SELECTIVE REGU- 002 LARIZATION IN OFFLINE REINFORCEMENT LEARNING 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Offline reinforcement learning (RL) faces a critical challenge of overestimating
 011 the value of out-of-distribution (OOD) actions. Existing methods mitigate this is-
 012 sue by penalizing unseen samples, yet they fail to accurately identify OOD actions
 013 and may suppress beneficial exploration beyond the behavioral support. Although
 014 several methods have been proposed to differentiate OOD samples with distinct
 015 properties, they typically rely on restrictive assumptions about the data distribu-
 016 tion and remain limited in discrimination ability. To address this problem, we pro-
 017 pose **DOSER** (Diffusion-based OOD Detection and SElective Regularization), a
 018 novel framework that goes beyond uniform penalization. DOSER trains two dif-
 019 fusion models to capture the behavior policy and state distribution, using single-
 020 step denoising reconstruction error as a reliable OOD indicator. During policy
 021 optimization, it further distinguishes between beneficial and detrimental OOD
 022 actions by evaluating predicted transitions, selectively suppressing risky actions
 023 while encouraging exploration of high-potential ones. Theoretically, we prove
 024 that **DOSER** is a γ -contraction and therefore admits a unique fixed point with
 025 bounded value estimates. We further provide an asymptotic performance guaran-
 026 tee relative to the optimal policy under model approximation and OOD detection
 027 errors. Across extensive offline RL benchmarks, DOSER consistently attains
 028 superior performance to prior methods, especially on suboptimal datasets.
 029

030 1 INTRODUCTION 031

032 Offline reinforcement learning (RL) has emerged as a powerful paradigm for learning policies ex-
 033clusively from static datasets, eliminating the need for potentially costly or risky online interac-
 034tions (Levine et al., 2020). This capability renders it particularly appealing for real-world domains
 035 where exploration is constrained, such as robotics, healthcare and autonomous systems. However,
 036 directly applying standard off-policy RL algorithms to offline dataset pose a fundamental challenge
 037 of *distribution shift*. When the learned policy generates actions that deviate substantially from the
 038 training data distribution, value functions tend to extrapolate erroneously, leading to severe value
 039 overestimation and ultimately catastrophic performance degradation (Fujimoto et al., 2019).
 040

041 Existing approaches to alleviate this problem can be divided into two categories: 1) Policy constraint
 042 methods enforce the learned policy remain close to the behavior policy to avoid out-of-distribution
 043 (OOD) actions (Kumar et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021),
 044 typically relying on variational auto-encoders (VAEs) (Kingma & Welling, 2013) for behavior mod-
 045eling. While effective in principle, these methods struggle to capture the multi-modal nature of
 046 real-world behaviors, often collapsing diverse action distributions into suboptimal averaged outputs
 047 within low-density regions (Wang et al., 2022). 2) Value regularization methods offer an alternative
 048 by learning conservative Q-functions that penalize OOD actions (Kumar et al., 2020; Wu et al., 2021;
 049 Bai et al., 2022; Mao et al., 2023). Their effectiveness depends on the underlying OOD identifica-
 050 tion mechanism, which is a challenging task due to the limited representation capacity of the models
 051 used to characterize data distribution. Furthermore, they usually apply uniform penalties across the
 052 entire out-of-support region, without considering valuable explorations that could enhance policy
 053 performance (Figure 1, left).

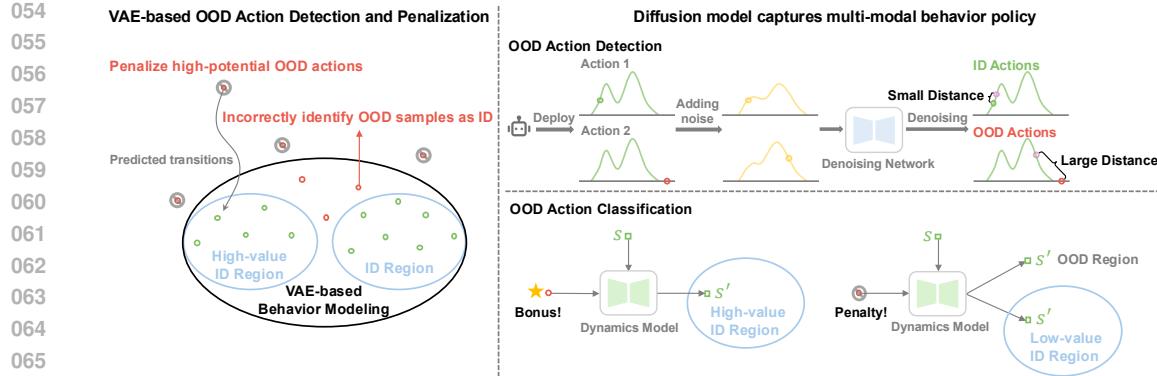


Figure 1: VAE-based behavior modeling methods (left) often lead to erroneous OOD action detection, whereas uniform penalties suppress high-potential OOD actions. Our proposed framework (right) employs a trained diffusion model to characterize multi-modal behavior policy, using reconstruction error as an OOD indicator. Following precise detection, we further classify OOD actions, imposing penalties on harmful ones while compensating beneficial actions.

Recent efforts have sought to mitigate excessive pessimism by controlling the level of conservatism in a fine-grained manner. CCVL (Hong et al., 2022) conditions the Q-function on a confidence level to learn a spectrum of conservative value estimates, enabling adaptive policies that dynamically adjust conservatism during online evaluation. ACL-QL (Wu et al., 2024) models the behavior policy as a Gaussian distribution and introduces learnable weighting functions to adaptively modulate conservatism at the state-action level. DoRL-VC (Huang et al., 2024) employs a VAE-based detector to separate OOD from ID actions, and further distinguish OOD actions with different properties. Nevertheless, such approaches either rely on Q-ensemble learning to achieve varying degrees of conservatism, incurring additional training overhead, or inherits strong Gaussian assumptions regarding the behavior policy, which fundamentally limit their ability to reliably identify OOD samples.

To address these challenges, we present **DOSER** (Diffusion-based OOD Detection and SSelective Regularization), advancing OOD handling through two key innovations (Figure 1, right). First, we utilize diffusion models to achieve precise OOD detection. By deploying two separate diffusion models for behavior policy approximation and state distribution modeling, we establish reconstruction errors as theoretically rigorous metrics, avoiding strong parametric assumptions inherent in Gaussian models while maintaining well-calibrated detection performance. Second, we introduce an adaptive discrimination mechanism that goes beyond binary classification of in-distribution (ID) and OOD. By integrating a learned dynamics model, we distinguish between beneficial OOD actions (those with potential to improve performance while staying within state distribution) and detrimental OOD actions (those likely to induce state distribution shift or value degradation). This fine-grained discrimination enables selective regularization, discouraging hazardous actions while encouraging promising explorations, which yields a robust framework that maintains necessary conservatism while facilitating policy improvement.

The key contributions of this paper are as follows: 1) We propose a diffusion-based approach for OOD detection in offline RL, using reconstruction error as a theoretically grounded metric. 2) We introduce a dual regularization strategy that adaptively adjusts its treatment of OOD actions based on predicted outcomes, suppressing detrimental actions while encouraging beneficial ones. 3) Extensive experiments on D4RL benchmarks demonstrate superior or competitive performance compared to prior methods, with detailed ablations verifying the effectiveness of each component.

2 PRELIMINARY

Offline RL. We consider the RL problem formulated by the Markov Decision Process (MDP), which is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, R, \gamma, d_0)$, with state space \mathcal{S} , action space \mathcal{A} , transition dynamics $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$, reward function $R : \mathcal{S} \times \mathcal{A} \rightarrow [R_{\min}, R_{\max}]$, discount factor $\gamma \in [0, 1]$, and initial state distribution $d_0 : \mathcal{S} \rightarrow [0, 1]$ (Sutton et al., 1998). The goal of RL is to learn a policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ that maximizes the expected discounted return $J(\pi) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(\mathbf{s}_t, \mathbf{a}_t)]$. For

any policy π , we define the value function as $V^\pi(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) | s_0 = s]$, and the Q-function as $Q^\pi(s) = \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) | s_0 = s, a_0 = a]$. Given that rewards are bounded, the Q-function must lie between $Q_{\min} = R_{\min}/(1 - \gamma)$ and $Q_{\max} = R_{\max}/(1 - \gamma)$. In offline RL, the agent is limited to learn from a static dataset $\mathcal{D} = \{(s, a, r, s')\}$ collected by a behavior policy π_β , without any interaction with the environment (Lange et al., 2012). We denote the empirical behavior policy as $\hat{\pi}_\beta$, which depicts the conditional action distribution observed in \mathcal{D} .

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) have emerged as a powerful class of generative models that excel in capturing complex data distributions. The core idea revolves around a forward diffusion process that gradually perturbs data into noise and a reverse process that learns to reconstruct the original data. Given a clean sample $\mathbf{x}_0 \sim p_{\text{data}}(\mathbf{x}_0)$ with standard deviation σ_{data} , the forward process constructs a sequence of increasingly noisy samples $\mathbf{x}_t \sim p(\mathbf{x}_t; \sigma_t)$ by adding i.i.d. Gaussian noise with standard deviation σ_t that increases along the schedule $\sigma_{\min} = \sigma_0 < \sigma_1 < \dots < \sigma_N = \sigma_{\max}$. Commonly, σ_{\min} is chosen sufficiently small that $p_{\min}(\mathbf{x}) \approx p_{\text{data}}(\mathbf{x})$, while σ_{\max} is large enough that the final distribution approximates isotropic Gaussian noise, i.e., $p_{\max}(\mathbf{x}) \approx \mathcal{N}(\mathbf{x}; 0, \sigma_{\max}^2 \mathbf{I})$.

In the original DDPM (Ho et al., 2020) formulation, this process is modeled as a discrete Markov chain. Subsequent works reinterpret it through the lens of stochastic differential equations (SDEs) (Song et al., 2020), describing the evolution of \mathbf{x}_t over continuous time $t \in [0, T]$ as:

$$d\mathbf{x}_t = f(\mathbf{x}_t, t) dt + g(t) d\mathbf{w}_t \quad (1)$$

where $f(\cdot, t)$ and $g(t)$ are the drift and diffusion coefficients, and \mathbf{w}_t is a standard Wiener process.

The EDM framework (Karras et al., 2022) refines this paradigm by reparameterizing the diffusion path with differentiable noise schedules $\sigma(t)$. The reverse process is governed by a corresponding probability-flow ODE derived from the forward SDE, which is formulated as:

$$d\mathbf{x}_t = -\dot{\sigma}(t)\sigma(t)\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) dt \quad (2)$$

where $\dot{\sigma}(t) = \frac{d\sigma}{dt}$ is the time derivative of noise schedule controlling the noise change rate, $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ is the score function of the marginal distribution $p_t(\mathbf{x}_t)$. The score is approximated by a neural network $\epsilon_\theta(\mathbf{x}_t; \sigma_t)$ trained via denoising score matching (Vincent, 2011). The denoising model ϵ_θ is trained to predict the true clean sample \mathbf{x}_0 from its noisy version $\mathbf{x}_t = \mathbf{x}_0 + \sigma_t \epsilon$ by minimizing the reweighted L_2 loss:

$$\mathcal{L}(\theta) = \mathbb{E}_{\sigma_t, \mathbf{x}_0 \sim p(\mathbf{x}_0), \epsilon \sim \mathcal{N}(0, \mathbf{I})} [\lambda(\sigma_t) \|\mathbf{x}_0 - \epsilon_\theta(\mathbf{x}_t, \sigma_t)\|_2^2], \quad (3)$$

where $\lambda(\sigma_t)$ is the loss weight. Compared to the original DDPM that requires thousands of denoising steps, EDM accelerates sampling by introducing optimized noise schedules and higher-order ODE solvers, achieving high-quality generation within only a few dozen steps.

3 DIFFUSION-BASED OOD DETECTION AND SELECTIVE REGULARIZATION

In this section, we present the technical framework of DOSER. We begin by introducing three main components that enable precise detection and classification of OOD actions, then demonstrate the complete integration of these components into a unified algorithmic framework, detailing the practical implementation. Figure 2 provides an overview of the proposed method. For comprehensive theoretical analysis, please refer to Appendix A.

3.1 DIFFUSION-BASED BEHAVIOR AND STATE MODELING

The foundation of our approach is to establish two diffusion models that jointly capture the underlying distributions of the offline dataset. We first construct a conditional diffusion model that learns the empirical behavior policy distribution $\hat{\pi}_\beta(a|s)$ by training a denoising network $\epsilon_{\theta_a}(a_t, \sigma_t, s)$ to reconstruct the original action a_0 through the following optimization objective:

$$\mathcal{L}(\theta_a) = \mathbb{E}_{\sigma_t, (s, a_0) \sim \mathcal{D}, \epsilon \sim \mathcal{N}(0, \mathbf{I})} [\lambda(\sigma_t) \|a_0 - \epsilon_{\theta_a}(a_t, \sigma_t, s)\|_2^2]. \quad (4)$$

where $a_t = a_0 + \sigma_t \epsilon$ is the noisy action with noise scale σ_t , $\lambda(\sigma_t)$ balances loss scales across noise levels and $\epsilon \sim \mathcal{N}(0, \mathbf{I})$.

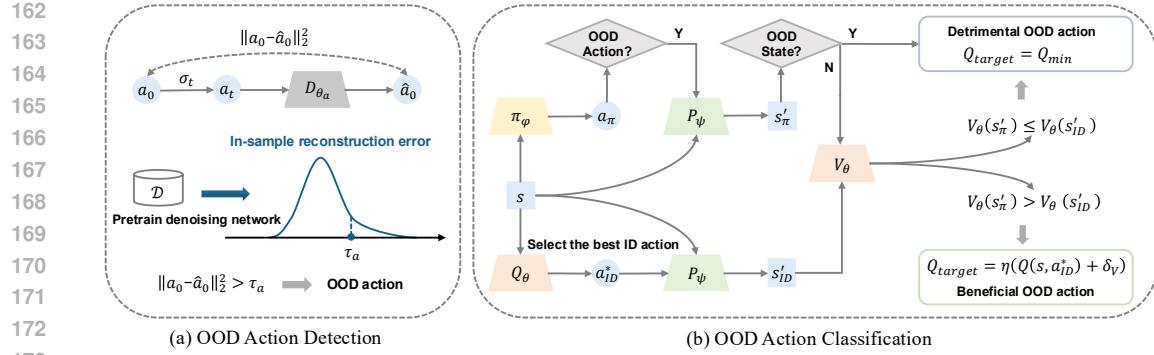


Figure 2: Overview of the proposed method: (a) Diffusion-based OOD action detection, (b) Integrating the detector to achieve OOD action classification.

In parallel, we develop a diffusion model to capture the state distribution $d_0(s)$ of the dataset. The corresponding denoising network $\epsilon_{\theta_s}(s_t, \sigma_t)$ is trained to recover the original states s_0 from its noisy version s_t , using the following reconstruction objective:

$$\mathcal{L}(\theta_s) = \mathbb{E}_{\sigma_t, s \sim \mathcal{D}, \epsilon \sim \mathcal{N}(0, I)} [\lambda(\sigma_t) \|s_0 - \epsilon_{\theta_s}(s_t, \sigma_t)\|_2^2]. \quad (5)$$

3.2 OOD DETECTION VIA RECONSTRUCTION ERROR

Our detection mechanism leverages the denoising capabilities of pretrained diffusion models to identify OOD samples based on reconstruction errors. Given a state-action pair (s, a_0) encountered during policy optimization, we compute its OOD score through a two-step procedure.

First, we sample a noise scale σ_t from the training noise schedule and perturb the action as $a_t = a_0 + \sigma_t \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$. The OOD score is then defined as the L_2 reconstruction error between the original action and its denoised counterpart:

$$\mathcal{E}_a(s, a_0) = \|a_0 - \epsilon_{\theta_a}(a_t, \sigma_t, s)\|_2. \quad (6)$$

Analogously, for state inputs, we measure the reconstruction error between the original state s_0 and its denoised version:

$$\mathcal{E}_s(s_0) = \|s_0 - \epsilon_{\theta_s}(s_t, \sigma_t)\|_2, \quad (7)$$

where s_t denotes the noise-corrupted state.

Formally, the OOD indicator functions are given by:

$$\mathbb{I}_{\text{ood}}(a_0) = \{\mathcal{E}_a(s, a_0) > \tau_a\}, \quad \mathbb{I}_{\text{ood}}(s_0) = \{\mathcal{E}_s(s_0) > \tau_s\}, \quad (8)$$

where the thresholds τ_a and τ_s are set as the p -th percentiles of the reconstruction errors on the training dataset \mathcal{D} , with p controlling the level of conservatism.

This reconstruction-based method offers three key advantages: 1) Reconstruction error provides a likelihood-free surrogate for distributional alignment, directly measuring conformity to the data manifold without explicit density estimation. 2) Diffusion models naturally capture multi-modal distributions, avoiding the restrictive unimodal Gaussian assumptions of conventional approaches. 3) Detection is efficient, requiring only a single forward pass per sample. Moreover, evaluating errors across multiple randomly sampled diffusion timesteps rather than a fixed noise level improves robustness, since different noise scales correspond to varying levels of information bottleneck in the data distribution.

3.3 ADAPTIVE OOD ACTION CLASSIFICATION

Building on the detection framework, we introduce an adaptive classification mechanism to handle OOD actions during policy optimization. Unlike conventional methods that indiscriminately penalize all deviations, our approach distinguishes between *beneficial* and *detimental* OOD actions through a two-stage assessment process.

216 **Algorithm 1** Diffusion-Based OOD Detection with selective regularization (DOSER)

217 Initialize Q-network Q_θ , V-network V_θ , diffusion behavior model ϵ_{θ_a} , diffusion state model ϵ_{θ_s} ,
 218 policy network π_ϕ , dynamics model p_ψ , and target networks $Q_{\theta'}$, $V_{\theta'}$, $\pi_{\phi'}$
 219 **# Model Pretraining**
 220 Pretraining dynamics model p_ψ by minimizing (13)
 221 Pretraining diffusion models ϵ_{θ_a} and ϵ_{θ_s} by minimizing (4) and (5)
 222 Calculate OOD detection thresholds τ_a and τ_s based on in-sample reconstruction error
 223 **for** each iteration **do**
 224 Sample transition minibatch $\{(s, a, r, s')\}$ from \mathcal{D}
 225 **# Critic Learning**
 226 Generate action $a_\pi \sim \pi_\phi(s)$ and predict the next state $s'_\pi = p_\psi(s, a_\pi)$
 227 Select the best ID action a_{id}^* and predict the next state $s'_{\text{id}} = p_\psi(s, a_{\text{id}}^*)$
 228 Calculate the reconstruction errors of policy action and next state by (6) and (7)
 229 Calculate the adaptive bonus $\delta_V = V_\theta(s'_\pi) - V_\theta(s'_{\text{id}})$
 230 Update Q_θ and V_θ by minimizing (10) and (12)
 231 **# Actor Learning**
 232 Update π_ϕ by minimizing (14)
 233 **# Target Network Update**
 234 $\theta' \leftarrow \rho\theta + (1 - \rho)\theta'$, $\phi' \leftarrow \rho\phi + (1 - \rho)\phi'$
 235 **end for**
 236

237 For each policy-generated OOD action a_{ood} in state s , we first predict the subsequent state s'_π using
 238 the learned dynamics model $p_\psi(s'|s, a)$, pretrained via supervised learning on the offline dataset
 239 \mathcal{D} . Since value estimation for OOD states is inherently unreliable, we then evaluate the outcome
 240 of a_{ood} along two dimensions: 1) Whether s'_π lies outside the training distribution, determined by
 241 the proposed OOD detection mechanism; 2) If s'_π is in-distribution, whether $V(s'_\pi)$ exceeds $V(s'_{\text{id}})$,
 242 where s'_{id} denotes the predicted next state after executing the optimal in-distribution action.
 243

244 Formally, the classification rule for OOD actions is given in Definition 1.
 245 **Definition 1** (Beneficial and detrimental OOD action sets). *Let the beneficial OOD action set $\mathcal{A}_{\text{ood}}^+$ and the detrimental OOD action set $\mathcal{A}_{\text{ood}}^-$ be subsets of the action space \mathcal{A} . Then:*

$$\begin{aligned} \mathcal{A}_{\text{ood}}^+ &:= \{a \in \mathcal{A} \mid \mathcal{E}_s(s'_\pi) \leq \tau_s \wedge V(s'_\pi) \geq V(s'_{\text{id}})\}, \\ \mathcal{A}_{\text{ood}}^- &:= \{a \in \mathcal{A} \mid \mathcal{E}_s(s'_\pi) > \tau_s \vee V(s'_\pi) < V(s'_{\text{id}})\}, \end{aligned} \quad (9)$$

246 where $s'_\pi \sim p_\psi(\cdot|s, a_{\text{ood}})$, $s'_{\text{id}} \sim p_\psi(\cdot|s, a_{\text{id}}^*)$, $a_{\text{id}}^* = \arg \max_{a \sim \pi_\beta(\cdot|s)} Q(s, a)$ is the optimal in-
 247 distribution action at state s , $\mathcal{E}_s(\cdot)$ is the state reconstruction error defined in (7), and τ_s is the state
 248 OOD threshold.

249 Accordingly, detrimental OOD actions are penalized to mitigate overestimation. Conversely, to
 250 encourage exploration beyond dataset support, beneficial OOD actions receive an adaptive bonus
 251 $\delta_V = V(s'_\pi) - V(s'_{\text{id}})$. This compensates for extrapolation errors in value estimation and guides the
 252 policy towards high-value regions, even when Q-value estimates for OOD actions remain imperfect.

253 Therefore, we minimize the following loss for policy evaluation:
 254

$$\begin{aligned} \mathcal{L}(\theta) &= \mathbb{E}_{(s, a, s') \sim \mathcal{D}} \left[\underbrace{\left(Q_\theta(s, a) - \left(R(s, a) + \gamma \mathbb{E}_{a' \sim \pi_\beta(\cdot|s)} [Q_{\theta'}(s', a')] \right) \right)^2}_{\text{Standard Bellman error}} \right] \\ &\quad + \beta \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_\phi(\cdot|s)} \left[\underbrace{\mathbb{I}(a \in \mathcal{A}_{\text{ood}}^-) \cdot (Q_\theta(s, a) - Q_{\min})^2}_{\text{Penalty for detrimental OOD actions}} \right] \\ &\quad + \lambda \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_\phi(\cdot|s)} \left[\underbrace{\mathbb{I}(a \in \mathcal{A}_{\text{ood}}^+) \cdot (Q_\theta(s, a) - \eta(Q_{\theta'}(s, a_{\text{id}}^*) + \delta_V))^2}_{\text{Bonus for beneficial OOD actions}} \right] \end{aligned} \quad (10)$$

255 where $Q_{\theta'}$ is the target Q-network, $Q_{\min} = R_{\min}/(1 - \gamma)$ is the theoretical minimal Q-value of the
 256 MDP. In practical implementation, we approximate a_{id}^* as:

$$\hat{a}_{\text{id}}^* = \arg \max_{a_i \sim \hat{\pi}_\beta(\cdot|s)} Q(s, a_i) \quad \text{for } i = 1, \dots, N \quad (11)$$

257 with $N = 10$ empirically balancing computational cost and performance across all tasks.
 258

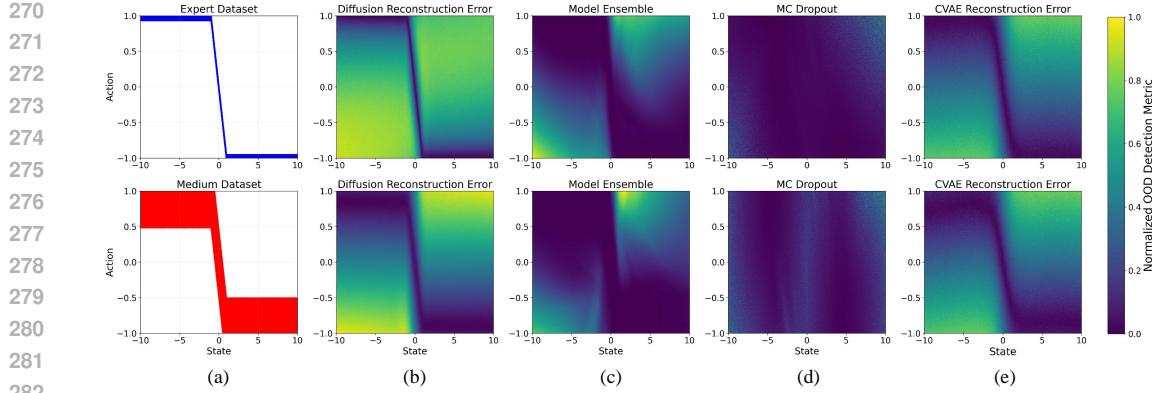


Figure 3: OOD detection experiments on 1D navigation task, where a higher OOD detection metric (reconstruction error or uncertainty estimation) indicates a greater likelihood of being OOD. (a) Two offline datasets with distinct data distributions: expert (top) and medium (bottom). (b) OOD scores across the entire state-action space, evaluated using diffusion-based reconstruction error. (c) OOD scores based on model ensemble uncertainty. (d) OOD scores based on MC dropout uncertainty. (e) OOD scores derived from CVAE-based reconstruction error.

3.4 PRACTICAL IMPLEMENTATION

In this section, we provide the practical implementation of our algorithm.

Value Learning. Similar to IQN, we perform expectile regression to train the value network.

$$\mathcal{L}(\theta) = \mathbb{E}_{(\mathbf{s}, r, \mathbf{s}') \sim \mathcal{D}} [L_2^\tau(r + \gamma V_{\theta'}(\mathbf{s}') - V_\theta(\mathbf{s}))] \quad (12)$$

where $L_2^\tau(u) = |\tau - \mathbb{I}(u < 0)|u^2$ denotes the asymmetric L_2 loss, and $V_{\theta'}$ is the target V-network.

Dynamics Model. With the quadruples $(\mathbf{s}, \mathbf{a}, \mathbf{s}')$ in offline dataset \mathcal{D} , we train the dynamics model via supervised regression:

$$\mathcal{L}(\psi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, \mathbf{s}') \sim \mathcal{D}} \|\mathbf{p}_\psi(\cdot | \mathbf{s}, \mathbf{a}) - \mathbf{s}'\|_2^2 \quad (13)$$

Policy Learning. To enhance exploration, we optimize the actor network with maximum entropy regularization:

$$\mathcal{L}(\phi) = \mathbb{E}_{\mathbf{s} \sim \mathcal{D}, \mathbf{a} \sim \pi_\phi(\mathbf{s})} [\alpha \log \pi_\phi(\cdot | \mathbf{s}) - Q_\theta(\mathbf{s}, \mathbf{a})] \quad (14)$$

where α is dynamically adjusted to maintain target entropy.

Overall Algorithm. Putting everything together, we summarize our implementation in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the effectiveness of our proposed method. We aim to answer the following key questions: 1) Is diffusion-based reconstruction error better than existing approaches in detecting OOD samples? 2) How does DOSER perform on standard offline RL benchmarks compared to prior SOTA methods? 3) Does each component in DOSER contribute meaningfully to the overall performance? 4) How sensitive is DOSER to its key hyperparameter? More experimental details and results are provided in Appendix B and C.

4.1 OOD DETECTION

To evaluate the effectiveness of diffusion-based reconstruction error for OOD detection, we design a simple 1D navigation task, the discrete state-action space is defined over position $\mathbf{s} \in [-10, 10]$ and step size $\mathbf{a} \in [-1, 1]$. The reward function is defined as the negative distance to the target state 0, such that rewards increase as the agent approaches the target. By perturbing optimal actions with noise of varying scales, we generate two offline datasets, *expert* and *medium*. We then compare our diffusion-based approach against three representative baselines:

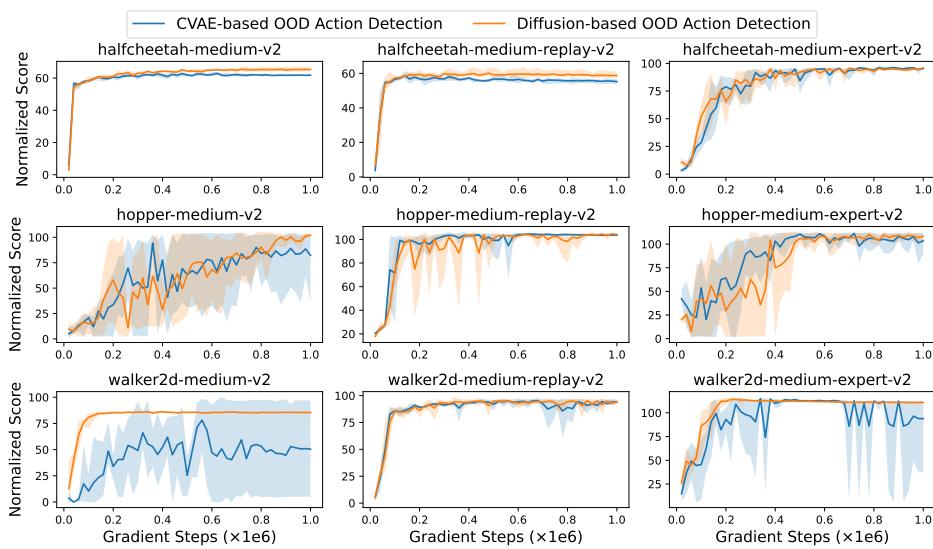


Figure 4: Comparison of OOD action detection performance between CVAE-based reconstruction error and the proposed diffusion-based method in the D4RL MuJoCo domain.

1) Model ensemble. An ensemble of dynamics models is trained to capture epistemic uncertainty, with OOD samples identified based on high prediction variance across ensemble members.

2) MC dropout. Monte Carlo dropout is applied during inference to approximate model uncertainty, where actions with high estimated uncertainty are flagged as OOD.

3) CVAE-based reconstruction error. A conditional VAE (CVAE) is trained to model the behavior distribution, and the reconstruction error is used as the OOD indicator.

As shown in Figure 3, our diffusion-based method effectively separates ID and OOD samples across the entire state-action space, whereas baseline methods fail to achieve reliable identification even in this simple setting. In particular, the model ensemble approach frequently misclassifies OOD samples as in-distribution due to its inability to disentangle epistemic and aleatoric uncertainty. Similarly, MC dropout tends to conflate these two sources of uncertainty, while also introducing undesirable stochasticity at inference. Although the CVAE-based reconstruction error baseline shows stronger discrimination than the other two methods, its performance primarily stems from reconstruction ability, while its limited capacity to model multi-modal distributions remains a fundamental limitation (Wang et al., 2022). For more experimental details, please refer to Appendix B.4.

We further compare the OOD action detection performance using CVAE-based reconstruction error with our proposed diffusion-based approach in the D4RL MuJoCo domain (Fu et al., 2020), with results presented in Figure 4. Both methods rely solely on reconstruction error as the detection metric, without incorporating any additional classification or compensation. As illustrated, the CVAE-based method struggles to reliably identify OOD samples in high-dimensional continuous control tasks, which is attributed to its tendency to produce over-smoothed reconstructions, thus diminishing sensitivity to anomalous action inputs. In contrast, our proposed diffusion-based OOD detection consistently delivers superior performance across all evaluated datasets.

4.2 COMPARISONS ON D4RL BENCHMARKS

We evaluate the policy performance of DOSER on the standard D4RL benchmark, covering a diverse set of continuous control tasks with varying dataset qualities.

We compare DOSER against a broad range of baselines, including conventional algorithms and SOTA diffusion-based approaches. For policy constraint methods, we include TD3+BC (Fujimoto & Gu, 2021), IQL (Kostrikov et al., 2021) and A2PR (Liu et al., 2024). For value regularization methods, we compare against CQL (Kumar et al., 2020), SVR (Mao et al., 2023) and ACL-QL (Wu

378
 379
 380
 Table 1: Evaluation results on D4RL benchmark. We report the average normalized scores at the last
 training iteration over 4 random seeds. Note that m=medium, m-r=medium-replay, m-e=medium-
 expert. **Bold** indicates the values within 95% of the maximum value.

Dataset	Conventional methods						Diffusion-based methods						
	TD3+BC	IQL	A2PR	CQL	SVR	ACL-QL	DQL	SfBC	IDQL	QGPO	SRPO	DTQL	DOSER (Ours)
halfcheetah-m	48.3	47.4	68.6	44.0	60.5	69.8	51.5	45.9	51.0	54.1	60.4	57.9	67.5 ± 0.5
hopper-m	59.3	66.3	100.8	58.5	103.5	97.9	90.5	57.1	65.4	98.0	95.5	99.6	104.0 ± 0.5
walker2d-m	83.7	78.3	89.7	72.5	92.4	79.3	87.0	77.9	82.5	86.0	84.4	89.4	86.7 ± 1.2
halfcheetah-m-r	44.6	44.2	56.6	45.5	52.5	55.9	47.8	37.1	45.9	47.6	51.4	50.9	63.0 ± 1.1
hopper-m-r	60.9	94.7	101.5	95.0	103.7	99.3	101.3	86.2	92.1	96.9	101.2	100.0	104.4 ± 0.6
walker2d-m-r	81.8	73.9	94.4	77.2	95.6	96.5	95.5	65.1	85.1	84.4	84.6	88.5	94.4 ± 1.3
halfcheetah-m-e	90.7	86.7	98.3	91.6	94.2	87.4	96.8	92.6	95.9	93.5	92.2	92.7	96.2 ± 0.4
hopper-m-e	98.0	91.5	112.1	105.4	111.2	107.2	111.1	108.6	108.6	108.0	100.1	109.3	111.5 ± 1.6
walker2d-m-e	110.1	109.6	114.6	108.8	109.3	113.4	110.1	109.8	112.7	110.7	114.0	110.0	110.9 ± 0.2
MuJoCo-v2 Average	75.3	83.3	93.0	77.6	91.4	89.6	88.0	75.6	82.1	86.6	87.1	88.7	93.2
pen-human	54.9	71.5	-	35.2	73.1	-	72.8	-	-	73.9	-	64.1	87.8 ± 14.7
pen-cloned	63.8	37.3	-	27.2	70.2	-	57.3	-	-	54.2	-	81.3	79.3 ± 8.9
Adroit-v1 Average	59.4	54.4	-	31.2	71.7	-	65.1	-	-	64.1	-	72.7	83.6

394
 395
 396 et al., 2024). For diffusion-based methods, we consider approaches that also leverage diffusion mod-
 397 ells for behavior cloning, such as DQL (Wang et al., 2022), SfBC (Chen et al., 2022), IDQL (Hansen-
 398 Estruch et al., 2023), QGPO (Lu et al., 2023), SRPO (Chen et al., 2023) and DTQL (Chen et al.,
 399 2024). **Baseline performance is taken from original papers or recent literature. Some baselines did**
 400 **not report results on the pen tasks, and key hyperparameters for reproduction are unavailable, so we**
 401 **mark these entries as “-”.**

402 As shown in Table 1, DOSER consistently achieves strong performance, outperforming prior meth-
 403 ods on both Gym-MuJoCo and Adroit tasks. Its advantage is particularly pronounced in the more
 404 challenging “medium” and “medium-replay” settings, where the datasets contain a significant pro-
 405 portion of suboptimal and heterogeneous behaviors. This highlights the effectiveness of our pro-
 406 posed diffusion-based OOD detection mechanism and its ability of selective regularization. While
 407 existing diffusion-based baselines already exhibit improved performance over traditional approaches
 408 due to their expressive modeling capacity, DOSER further improves upon them by explicitly classi-
 409 fying OOD actions, which allows for more refined value estimation and better policy improvement.
 410 Note that methods such as SVR and A2PR also incorporate behavior modeling into their frame-
 411 works, either for value regularization or policy constraint. Specifically, SVR employs a CVAE to
 412 approximate the support of the behavior policy and imposes uniform penalties to actions that fall
 413 outside this estimated support. Similar to the motivation of DOSER, A2PR introduces an action
 414 discrimination mechanism to guide policy optimization. However, A2PR’s discriminator is solely
 415 applied to in-distribution actions identified by an enhanced CVAE, thereby restricting policy learning
 416 to a potentially inaccurate approximation of the dataset support. In contrast to these CVAE-based
 417 approaches, DOSER leverages the expressive power of diffusion models for more accurate OOD
 418 detection and employs a selective regularization strategy targeted at OOD actions. This enables the
 419 learned policy to extrapolate to high-value regions beyond the offline dataset, ultimately contributing
 420 to superior empirical performance.

4.3 ABLATION STUDY ON COMPONENTS IN DOSER

421 To systematically validate the effectiveness of each component in the DOSER framework, we con-
 422 duct ablation studies on two variants.

423 **1) DOSER w/o AC and VC.** This variant removes both OOD action classification (AC) and value
 424 compensation (VC). It relies solely on diffusion-based reconstruction error to detect OOD actions,
 425 applying a uniform penalty without distinguishing between beneficial and detrimental cases. This
 426 serves as a direct test of the core capability of diffusion models in OOD detection.

427 **2) DOSER w/o VC.** Building on the baseline above, this variant further differentiates OOD ac-
 428 tions by incorporating both next-state distribution modeling and value estimation. Specifically, it
 429 identifies OOD actions that either (i) lead to OOD states or (ii) yield lower value outcomes than op-

432
433 Table 2: Components ablation across MuJoCo-v2 tasks.
434

Method	halfcheetah			hopper			walker2d		
	m	m-r	m-e	m	m-r	m-e	m	m-r	m-e
DOSER w/o AC and VC	65.4 \pm 1.1	58.8 \pm 1.6	94.9 \pm 0.2	102.1 \pm 1.7	104.2 \pm 1.3	108.3 \pm 2.5	85.4 \pm 0.4	94.1 \pm 1.5	110.8 \pm 0.4
DOSER w/o VC	67.2 \pm 0.9	61.9 \pm 1.5	96.0 \pm 0.2	99.4 \pm 4.	103.2 \pm 1.8	111.2 \pm 3.2	85.8 \pm 0.6	93.0 \pm 1.0	111.1 \pm 0.5
DOSER	67.5 \pm 0.5	63.0 \pm 1.1	96.2 \pm 0.4	104.0 \pm 0.5	104.4 \pm 0.6	111.5 \pm 1.6	86.7 \pm 1.2	94.4 \pm 1.3	110.9 \pm 0.2

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
20

Glow (Kingma & Dhariwal, 2018) and VAEs (Kingma & Welling, 2013) often assign higher likelihoods to OOD samples than to ID data (Hendrycks et al., 2018; Nalisnick et al., 2018). Although improvements like likelihood ratios (Ren et al., 2019) and typicality tests (Nalisnick et al., 2019) have been proposed, their reliance on likelihood estimation remains a fundamental limitation. In contrast, reconstruction-based methods (Denoudun et al., 2018; Zong et al., 2018) directly measure reconstruction quality, based on the premise that models trained on ID data reconstruct familiar patterns well, while exhibiting significant errors on anomalous inputs. Traditional autoencoders (Lyudchik, 2016) and more recent diffusion-based models (Graham et al., 2023) have shown promising results in this regard, with diffusion models leveraging iterative refinement to further enhance ID reconstruction. Consequently, reconstruction error provides a more reliable signal of distribution shift than likelihood-based metrics, offering improved discriminability between ID and OOD samples.

OOD Detection in Offline RL. Offline RL presents additional challenges for OOD detection due to the lack of online interaction. To mitigate the risk of extrapolation error, BCQ (Fujimoto et al., 2019) and SVR (Mao et al., 2023) employ VAEs to approximate the behavior policy, constraining the learned policy to remain within behavior support. However, VAEs often fail to capture multi-modal distributions accurately (Wang et al., 2024), resulting in oversimplified generations. Another line of work quantifies uncertainty to identify OOD samples. Model ensemble methods (Lakshminarayanan et al., 2017) identify OOD state-action pairs via predictive variance, with algorithms such as MOPO (Yu et al., 2020) incorporating this uncertainty as a penalty into the reward function. Similarly, Monte Carlo (MC) dropout offers a computationally efficient approximation to Bayesian inference (Gal & Ghahramani, 2016), and has been applied in offline RL for uncertainty-aware OOD detection (Wu et al., 2021). While effective to some extent, both approaches often conflate epistemic and aleatoric uncertainty, which may lead to erroneous identification of OOD actions (Zhang et al., 2023). Alternatively, CQL (Kumar et al., 2020) avoids explicit density estimation by regularizing the Q-function to assign lower values to all unseen actions. This implicit OOD detection eliminates the need for behavior modeling but risks being overly conservative, potentially suppressing valuable actions that lie outside the behavior support but could lead to improved performance.

Diffusion Models in Offline RL. Diffusion models have recently emerged as powerful paradigms in RL for modeling multi-modal distributions. This capability is particularly valuable in offline RL settings, where capturing the diversity of behaviors is essential for deriving robust policies. Methods such as Diffusion-QL (Wang et al., 2022) and DAC (Fang et al., 2024) incorporate Q-function guidance into the reverse diffusion process, shaping action generation toward higher-value regions. In contrast, IDQL (Hansen-Estruch et al., 2023) and SfBC (Chen et al., 2022) first pretrain a conditional diffusion model to generate multiple action candidates for a given state, and subsequently resample according to Q-values to select the best action for execution. Notably, while these approaches effectively integrate diffusion models with value functions for policy improvement, their use of diffusion remains largely limited to guiding or selecting actions, none of them fully exploit the inherent properties of diffusion models, such as reconstruction fidelity or noise sensitivity, to directly assess whether state-action pairs lie within the support of the training distribution.

6 CONCLUSION

In this work, we proposed DOSER, a framework that mitigates distribution shift through diffusion-based reconstruction error. Unlike prior methods that rely on heuristic uncertainty measures or unreliable likelihood estimates, DOSER leverages the expressive power of diffusion models to compute theoretically grounded reconstruction errors for both behavior policy and state distributions. This provides robust detection metrics that overcome the multi-modality limitations of Gaussian-based approximators. Crucially, DOSER introduces a selective regularization mechanism that classifies OOD samples into beneficial and detrimental actions, enabling suppression of detrimental extrapolations while compensating promising explorations via value-difference bonuses. Extensive experiments demonstrate that DOSER achieves superior or competitive performance compared to state-of-the-art methods, particularly on suboptimal datasets.

Nonetheless, DOSER has two key limitations: 1) its reliance on the accuracy of the diffusion-based reconstruction and the learned dynamics model, and 2) the computational overhead of the iterative diffusion sampling. Future work could focus on enhancing the robustness of dynamics model and improving efficiency via model distillation and accelerated sampling techniques.

540 REFERENCES
541

542 Kingma DP Ba J Adam et al. A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
543 1412(6), 2014.

544 Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, and Zhaoran
545 Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. *arXiv
546 preprint arXiv:2202.11566*, 2022.

547 Stefan Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations
548 intégrales. *Fundamenta mathematicae*, 3(1):133–181, 1922.

549 Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. *arXiv
550 preprint arXiv:2005.02359*, 2020.

551 Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
552 via high-fidelity generative behavior modeling. *arXiv preprint arXiv:2209.14548*, 2022.

553 Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimiza-
554 tion through diffusion behavior. *arXiv preprint arXiv:2310.07297*, 2023.

555 Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
556 offline reinforcement learning. *Advances in Neural Information Processing Systems*, 37:50098–
557 50125, 2024.

558 Yunqiang Chen, Xiang Sean Zhou, and Thomas S Huang. One-class svm for learning in im-
559 age retrieval. In *Proceedings 2001 international conference on image processing (Cat. No.
560 01CH37205)*, volume 1, pp. 34–37. IEEE, 2001.

561 Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan, and Sachin
562 Vernekar. Improving reconstruction autoencoder out-of-distribution detection with mahalanobis
563 distance. *arXiv preprint arXiv:1812.02765*, 2018.

564 Francois Dufour and Tomas Prieto-Rumeau. Finite linear programming approximations of con-
565 strained discounted markov decision processes. *SIAM Journal on Control and Optimization*, 51
566 (2):1298–1324, 2013.

567 Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bing-Yi Jing. Diffusion actor-critic:
568 Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
569 learning. *arXiv preprint arXiv:2405.20555*, 2024.

570 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
571 data-driven reinforcement learning. *arXiv preprint arXiv:2004.07219*, 2020.

572 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
573 *Advances in neural information processing systems*, 34:20132–20145, 2021.

574 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
575 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

576 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
577 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
578 PMLR, 2016.

579 Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael J Cree. Regularisation of neural net-
580 works by enforcing lipschitz continuity. *Machine Learning*, 110(2):393–416, 2021.

581 Mark S Graham, Walter HL Pinaya, Petru-Daniel Tudosi, Parashkev Nachev, Sebastien Ourselin,
582 and Jorge Cardoso. Denoising diffusion models for out-of-distribution detection. In *Proceedings
583 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2948–2957, 2023.

584 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
585 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
586 cations. *arXiv preprint arXiv:1812.05905*, 2018.

594 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 595 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
 596 *arXiv:2304.10573*, 2023.

597

598 Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
 599 exposure. *arXiv preprint arXiv:1812.04606*, 2018.

600 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 601 *neural information processing systems*, 33:6840–6851, 2020.

602

603 Joey Hong, Aviral Kumar, and Sergey Levine. Confidence-conditioned value functions for offline
 604 reinforcement learning. *arXiv preprint arXiv:2212.04607*, 2022.

605

606 Zhenbo Huang, Jing Zhao, and Shiliang Sun. De-pessimism offline reinforcement learning via value
 607 compensation. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.

608 Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
 609 *International conference on machine learning*, pp. 5084–5096. PMLR, 2021.

610 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 611 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 612 2022.

613

614 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 615 *arXiv:1312.6114*, 2013.

616 Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
 617 *Advances in neural information processing systems*, 31, 2018.

618

619 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 620 learning. *arXiv preprint arXiv:2110.06169*, 2021.

621 Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
 622 q-learning via bootstrapping error reduction. *Advances in neural information processing systems*,
 623 32, 2019.

624

625 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 626 reinforcement learning. *Advances in neural information processing systems*, 33:1179–1191, 2020.

627 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 628 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 629 30, 2017.

630

631 Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In *Reinforce-
 632 ment learning: State-of-the-art*, pp. 45–73. Springer, 2012.

633 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 634 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

635

636 Tenglong Liu, Yang Li, Yixing Lan, Hao Gao, Wei Pan, and Xin Xu. Adaptive advantage-guided
 637 policy regularization for offline reinforcement learning. *arXiv preprint arXiv:2405.19909*, 2024.

638

639 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. *arXiv*
 640 *preprint arXiv:1608.03983*, 2016.

641 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 642 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Inter-
 643 national Conference on Machine Learning*, pp. 22825–22855. PMLR, 2023.

644

645 Olga Lyudchik. Outlier detection using autoencoders. Technical report, 2016.

646

647 Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, and Xiangyang Ji. Supported value regulariza-
 648 tion for offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36:
 40587–40609, 2023.

648 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
 649 deep generative models know what they don't know? *arXiv preprint arXiv:1810.09136*, 2018.
 650

651 Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting
 652 out-of-distribution inputs to deep generative models using typicality. *arXiv preprint
 653 arXiv:1906.02994*, 2019.

654 Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
 655 with dataset constraint for offline reinforcement learning. In *International conference on machine
 656 learning*, pp. 28701–28717. PMLR, 2023.

657 Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
 658 Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. *Advances in neural
 659 information processing systems*, 32, 2019.

660 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 661 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 662 ing*, pp. 2256–2265. pmlr, 2015.

663 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 664 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 665 arXiv:2011.13456*, 2020.

666 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 667 press Cambridge, 1998.

668 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-
 669 tion*, 23(7):1661–1674, 2011.

670 Mianchu Wang, Yue Jin, and Giovanni Montana. Learning on one mode: Addressing multi-modality
 671 in offline reinforcement learning. *arXiv preprint arXiv:2412.03258*, 2024.

672 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 673 class for offline reinforcement learning. *arXiv preprint arXiv:2208.06193*, 2022.

674 Kun Wu, Yinuo Zhao, Zhiyuan Xu, Zhengping Che, Chengxiang Yin, Chi Harold Liu, Qinru Qiu,
 675 Feifei Feng, and Jian Tang. Acl-ql: Adaptive conservative level in q -learning for offline reinforce-
 676 ment learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.

677 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 678 *arXiv preprint arXiv:1911.11361*, 2019.

679 Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua Susskind, Jian Zhang, Ruslan Salakhutdinov, and
 680 Hanlin Goh. Uncertainty weighted actor-critic for offline reinforcement learning. *arXiv preprint
 681 arXiv:2105.08140*, 2021.

682 Huaqing Xiong, Tengyu Xu, Lin Zhao, Yingbin Liang, and Wei Zhang. Deterministic policy gra-
 683 dient: Convergence analysis. In *Uncertainty in Artificial Intelligence*, pp. 2159–2169. PMLR,
 684 2022.

685 Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
 686 and Tengyu Ma. Mopo: Model-based offline policy optimization. *Advances in Neural Information
 687 Processing Systems*, 33:14129–14142, 2020.

688 Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based models
 689 for anomaly detection. In *International conference on machine learning*, pp. 1100–1109. PMLR,
 690 2016.

691 Hongchang Zhang, Jianzhen Shao, Shuncheng He, Yuhang Jiang, and Xiangyang Ji. Darl: distance-
 692 aware uncertainty estimation for offline reinforcement learning. In *Proceedings of the AAAI Con-
 693 ference on Artificial Intelligence*, volume 37, pp. 11210–11218, 2023.

694 Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
 695 Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *Inter-
 696 national conference on learning representations*, 2018.

APPENDIX

A THEORETICAL ANALYSIS

In this section, we provide the formal definitions and theoretical analysis in the paper.

A.1 DEFINITIONS

Definition 2 (In-sample Bellman operator). *The in-sample Bellman operator is defined as:*

$$\mathcal{T}_{\text{In}} Q(s, a) := R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a), a' \sim \hat{\pi}_\beta(\cdot|s')} [Q(s', a')], \quad (15)$$

where $\hat{\pi}_\beta$ is the empirical behavior policy in the dataset.

Based on Definition 2, DOSER operator is defined as follows.

Definition 3 (DOSER operator). *From an optimization perspective, (10) lead to the DOSER policy evaluation operator:*

$$\mathcal{T}_{\text{DOSER}} Q(s, a) = \begin{cases} \mathcal{T}_{\text{In}} Q(s, a) & \text{if } \mathcal{E}_a(s, a) \leq \tau_a \\ Q_{\text{adj}}(s, a) & \text{otherwise} \end{cases} \quad (16)$$

where $Q_{\text{adj}}(s, a)$ is the adjusted Q-target for OOD actions:

$$Q_{\text{adj}}(s, a) = \begin{cases} Q_{\min} & \text{if } a \in \mathcal{A}_{\text{ood}}^- \\ \eta(Q(s, a_{\text{id}}^*) + \delta_V) & \text{if } a \in \mathcal{A}_{\text{ood}}^+ \end{cases} \quad (17)$$

Therefore, DOSER guarantees that the Q-values of ID actions remain unbiased, while underestimate those detrimental OOD actions. By applying value compensation δ_V to beneficial OOD actions, it incentivizes exploration toward high-potential state-action pairs.

A.2 THEOREMS

Theorem 1 (Contraction mapping property). *For arbitrary Q-functions Q_1 and Q_2 defined on the whole state-action space $\mathcal{S} \times \mathcal{A}$, the DOSER operator $\mathcal{T}_{\text{DOSER}}$ constitutes a γ -contraction mapping in the \mathcal{L}_∞ norm:*

$$\|\mathcal{T}_{\text{DOSER}} Q_1 - \mathcal{T}_{\text{DOSER}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty. \quad (18)$$

By the Banach fixed-point theorem (Banach, 1922), repeatedly applying $\mathcal{T}_{\text{DOSER}}$ converges to a unique fixed point from any initial Q-function.

Theorem 2 (Bounded value estimation). *For any policy π , let Q_{DOSER}^π denote the unique fixed point of the DOSER operator $\mathcal{T}_{\text{DOSER}}$. Then, Q_{DOSER}^π satisfies the following boundedness property for all (s, a) :*

$$Q_{\min} \leq Q_{\text{DOSER}}^\pi(s, a) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta \delta_V, \quad (19)$$

where $Q_{\text{In}}^\pi(s, a_{\text{id}}^*) = \max_{a \sim \pi_\beta(\cdot|s)} Q_{\text{In}}^\pi(s, a)$ is the optimal Q-value by iterating the in-sample Bellman operator \mathcal{T}_{In} .

Since Q_{In}^π corresponds to the fixed point of the in-sample Bellman operator, it yields reliable value estimates within the data distribution. Therefore, Theorem 2 implies that DOSER incurs controlled value overestimation while enabling exploration to high-value regions via the compensation mechanism. The upper bound tightens as the compensation target weight η and value difference δ_V decrease, since smaller values of these parameters directly constrain the magnitude of the value adjustment for OOD actions, aligning the value estimate closer to the in-distribution baseline Q_{In}^π .

By dynamically adjusting how OOD actions are treated based on their predicted outcomes, the proposed selective regularization mechanism balances safety and performance, avoiding the pitfalls of binary classification. Crucially, our method preserves standard Q-learning convergence guarantees while enabling safer exploration beyond the behavior policy support.

Theorem 3 (Bounded critic deviation). *Let π_{ref} denote the reference policy obtained with the true environment dynamics P and without OOD detection error, with $Q^{\pi_{\text{ref}}}$ being its corresponding action-value function. Let $\hat{\pi}$ denote the learned policy of DOSER under a dynamics model approximation error ε_{dyn} and an OOD detection misclassification probability ε_{det} . Then, the deviation of the learned critic \hat{Q} from $Q^{\pi_{\text{ref}}}$ is bounded as follows:*

$$\|\hat{Q} - Q^{\pi_{\text{ref}}}\|_{\infty} \leq \frac{\gamma}{1 - \gamma} (Q_{\max} (C_1 \varepsilon_{\text{dyn}} + C_2 \varepsilon_{\text{det}}) + \eta \delta_V), \quad (20)$$

where $Q_{\max} = \frac{R_{\max}}{1 - \gamma}$, and C_1, C_2 are constants that capture the sensitivity of the policy optimization process to dynamics and detection errors respectively.

Theorem 4 (Performance gap of DOSER). *Let $\hat{\pi}$ be the policy learned by DOSER through iterative application of $\mathcal{T}_{\text{DOSER}}$, and let π^* denote the optimal policy. Suppose δ_f represents the function approximation error. Then the performance gap between π^* and $\hat{\pi}$ satisfies*

$$|J(\pi^*) - J(\hat{\pi})| \leq \delta_f + \frac{CL_P R_{\max}}{1 - \gamma} (C_1 \varepsilon_{\text{dyn}} + C_2 \varepsilon_{\text{det}}), \quad (21)$$

where C_1, C_2 are positive constants, and L_P is the Lipschitz constant of the environment dynamics.

Consequently, the performance gap is influenced by three key components: the function approximation error δ_f , the OOD detection error ε_{det} , and the dynamics model approximation error ε_{dyn} . In our setting, the diffusion model provides a reliable mechanism for OOD detection, as confirmed by extensive experiments, which keeps ε_{det} small. Meanwhile, the learned dynamics model maintains stable predictive performance, ensuring that ε_{dyn} remains bounded. Therefore, when the diffusion reconstruction error becomes negligible and the dynamics model is sufficiently well fitted, together with a small δ_f , then the right-hand side of the bound vanishes, implying $J(\hat{\pi}) \rightarrow J(\pi^*)$.

A.3 PROOFS

A.3.1 PROOF OF THEOREM 1

Proof. Let $\mathcal{T}_{\text{DOSER}}$ denote the DOSER operator acting on bounded Q-functions defined on $\mathcal{S} \times \mathcal{A}$. Assume

- Q-functions lie in the Banach space $(\mathcal{B}, \|\cdot\|_{\infty})$ of bounded real functions on $\mathcal{S} \times \mathcal{A}$ with the sup-norm;
- the compensation coefficient satisfies $0 \leq \eta \leq \gamma < 1$;
- the value-compensation term δ_V is a scalar that does not depend on the Q-function being evaluated (i.e., it is treated as fixed when comparing two Q-functions; if δ_V depends on Q , then it must be Lipschitz continuous in Q with a sufficiently small Lipschitz constant to preserve contraction; here we assume it is fixed for simplicity and clarity).

Let $Q_1, Q_2 \in \mathcal{B}$ be two arbitrary Q-functions. We will bound $\|\mathcal{T}_{\text{DOSER}}Q_1 - \mathcal{T}_{\text{DOSER}}Q_2\|_{\infty}$ by considering the three types of actions that DOSER treats differently: 1) in-distribution actions, 2) detrimental OOD actions, and 3) beneficial OOD actions.

1) In-distribution actions. For any (\mathbf{s}, \mathbf{a}) with $\mathcal{E}_a(\mathbf{s}, \mathbf{a}) \leq \tau_a$, DOSER reduces to the in-sample Bellman operator

$$\mathcal{T}_{\text{DOSER}}Q(\mathbf{s}, \mathbf{a}) = \mathcal{T}_{\text{In}}Q(\mathbf{s}, \mathbf{a}) = R(\mathbf{s}, \mathbf{a}) + \gamma \mathbb{E}_{\mathbf{s}' \sim P(\cdot | \mathbf{s}, \mathbf{a}), \mathbf{a}' \sim \hat{\pi}_{\beta}(\cdot | \mathbf{s}')} [Q(\mathbf{s}', \mathbf{a}')] \quad (22)$$

810 Hence, the contraction property follows from standard Bellman operator properties:
 811

$$\begin{aligned}
 & \|\mathcal{T}_{\text{DOSER}} Q_1(s, a) - \mathcal{T}_{\text{DOSER}} Q_2(s, a)\|_\infty \\
 &= \|\mathcal{T}_{\text{In}} Q_1(s, a) - \mathcal{T}_{\text{In}} Q_2(s, a)\|_\infty \\
 &= \|(R(s, a) + \gamma \mathbb{E}_{s', a'} [Q_1(s', a')]) - (R(s, a) + \gamma \mathbb{E}_{s', a'} [Q_2(s', a')])\|_\infty \\
 &= \gamma \max_{s, a} |\mathbb{E}_{s', a'} [Q_1(s', a') - Q_2(s', a')]| \\
 &\leq \gamma \max_{s, a} \mathbb{E}_{s', a'} |Q_1(s', a') - Q_2(s', a')| \\
 &\leq \gamma \max_{s, a} \|Q_1 - Q_2\|_\infty \\
 &= \gamma \|Q_1 - Q_2\|_\infty
 \end{aligned} \tag{23}$$

812 Thus for all in-distribution (s, a) , we have
 813

$$\|\mathcal{T}_{\text{DOSER}} Q_1 - \mathcal{T}_{\text{DOSER}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty \tag{24}$$

814 **2) Detrimental OOD actions.** For detrimental OOD actions $a \in \mathcal{A}_{\text{OOD}}^-$, Q-target are set to a
 815 constant Q_{\min} (independent of the current Q):
 816

$$\mathcal{T}_{\text{DOSER}} Q(s, a) = Q_{\min} \tag{25}$$

817 The difference vanishes for any Q-functions Q_1, Q_2 :
 818

$$\|\mathcal{T}_{\text{DOSER}} Q_1(s, a) - \mathcal{T}_{\text{DOSER}} Q_2(s, a)\|_\infty = \|Q_{\min} - Q_{\min}\|_\infty = 0 \leq \gamma \|Q_1 - Q_2\|_\infty \tag{26}$$

819 **3) Beneficial OOD actions.** For beneficial OOD actions $a \in \mathcal{A}_{\text{OOD}}^+$, DOSER applies a value
 820 compensation, quantified as the difference between the value of the next state s'_π reaching by taking
 821 the beneficial OOD action a and s'_{id} after executing the best ID action a_{id}^* :
 822

$$\begin{aligned}
 \mathcal{T}_{\text{DOSER}} Q(s, a) &= \eta(Q(s, a_{\text{id}}^*) + \delta_V) \\
 &= \eta \left(\max_{a \sim \hat{\pi}_\beta(\cdot | s)} Q(s, a) + V(s'_\pi) - V(s'_{\text{id}}) \right)
 \end{aligned} \tag{27}$$

823 where by assumption δ_V is treated as a fixed scalar w.r.t. the Q-function comparison. Thus
 824

$$\begin{aligned}
 & \|\mathcal{T}_{\text{DOSER}} Q_1(s, a) - \mathcal{T}_{\text{DOSER}} Q_2(s, a)\|_\infty \\
 &= \|\eta(Q_1(s, a_{\text{id}, 1}^*) + \delta_V) - \eta(Q_2(s, a_{\text{id}, 2}^*) + \delta_V)\|_\infty \\
 &= \eta \max_{s, a} |Q_1(s, a_{\text{id}, 1}^*) - Q_2(s, a_{\text{id}, 2}^*)| \\
 &= \eta \max_{s, a} |\max_a Q_1(s, a) - \max_a Q_2(s, a)| \\
 &\leq \eta \max_{s, a} \|Q_1 - Q_2\|_\infty \\
 &\leq \gamma \|Q_1 - Q_2\|_\infty
 \end{aligned} \tag{28}$$

825 Combining all three cases, we have $\|\mathcal{T}_{\text{DOSER}} Q_1 - \mathcal{T}_{\text{DOSER}} Q_2\|_\infty \leq \gamma \|Q_1 - Q_2\|_\infty$.
 826

827 By the Banach fixed-point theorem (Banach, 1922), $\mathcal{T}_{\text{DOSER}}$ admits a unique fixed point in \mathcal{B} and
 828 iterative application of $\mathcal{T}_{\text{DOSER}}$ from any initial Q-function converges to that fixed point at rate at
 829 most γ . \square
 830

831 A.3.2 PROOF OF THEOREM 2

832 *Proof.* Suppose the DOSER operator $\mathcal{T}_{\text{DOSER}}$ admits a unique fixed point Q_{DOSER}^π (Theorem 1).
 833 Assume the compensation term δ_V is a scalar that does not depend on the Q-function being evaluated
 834 (if δ_V is estimated from Q, a Lipschitz assumption on this estimator must be made).
 835

836 We reason by cases according to DOSER's treatment of actions. By Theorem 1, the fixed point
 837 Q_{DOSER}^π exists and for each (s, a) satisfies
 838

$$Q_{\text{DOSER}}^\pi(s, a) = \begin{cases} \mathcal{T}_{\text{In}} Q_{\text{DOSER}}^\pi(s, a) & \text{if } \mathcal{E}_a(s, a) \leq \tau_a \quad (\text{in-distribution}) \\ Q_{\min} & \text{if } a \in \mathcal{A}_{\text{OOD}}^- \quad (\text{detrimental OOD}) \\ \eta(Q_{\text{DOSER}}^\pi(s, a_{\text{id}}^*) + \delta_V) & \text{if } a \in \mathcal{A}_{\text{OOD}}^+ \quad (\text{beneficial OOD}) \end{cases} \tag{29}$$

839 We show the two inequalities (lower and upper bounds) by treating each action type.
 840

864 **1) Lower bound:** $Q_{\text{DOSER}}^\pi(s, a) \geq Q_{\min}$.

865

866 \bullet *In-distribution actions.* For $\mathcal{E}_a(s, a) \leq \tau_a$, we have the in-sample Bellman fixed-point
867 relation

868

$$Q_{\text{DOSER}}^\pi(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a), a' \sim \hat{\pi}_\beta(\cdot | s')} [Q_{\text{DOSER}}^\pi(s', a')] \quad (30)$$

870

871 Since $R(s, a) \geq R_{\min}$ and the fact that for all successor pairs $Q_{\text{DOSER}}^\pi(s', a') \geq Q_{\min}$,
872 we obtain

873

$$Q_{\text{DOSER}}^\pi(s, a) \geq R_{\min} + \gamma Q_{\min} = Q_{\min} \quad (31)$$

874

875 \bullet *Detrimental OOD actions.* The operator directly assigns $Q_{\text{DOSER}}^\pi(s, a) = Q_{\min}$ for $a \in$
876 $\mathcal{A}_{\text{OOD}}^-$, so the lower bound holds with equality.

877

878 \bullet *Beneficial OOD actions.* For $a \in \mathcal{A}_{\text{OOD}}^+$, they receive value compensation weighted by
879 $\eta \in [0, 1]$. Given that the fixed-point value $Q_{\text{DOSER}}^\pi(s, a_{\text{id}}^*)$ is at least Q_{\min} , $\delta_V \geq 0$ is
880 satisfied for beneficial OOD actions, and $Q_{\min} < 0$ is strictly negative, we have:

881

$$Q_{\text{DOSER}}^\pi(s, a) = \eta(Q_{\text{DOSER}}^\pi(s, a_{\text{id}}^*) + \delta_V) \geq \eta Q_{\min} \geq Q_{\min} \quad (32)$$

882

883 Combining the three subcases establishes the global lower bound $Q_{\text{DOSER}}^\pi(s, a) \geq Q_{\min}$ for all
884 state-action pairs (s, a) .

885

886 **2) Upper bound:** $Q_{\text{DOSER}}^\pi(s, a) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V$. Let Q_{In}^π denote the fixed point of the in-
887 sample Bellman operator \mathcal{T}_{In} , by construction $Q_{\text{DOSER}}^\pi(s, a) = Q_{\text{In}}^\pi(s, a)$ for every ID state-action
888 pair (s, a) . This upper bound guarantees that DOSER incurs only limited overestimation.

889

890

891 \bullet *In-distribution actions.* If $\mathcal{E}_a(s, a) \leq \tau_a$, then

892

$$Q_{\text{DOSER}}^\pi(s, a) = Q_{\text{In}}^\pi(s, a) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V \quad (33)$$

893

894 since $\eta\delta_V \geq 0$.

895

896 \bullet *Detrimental OOD actions.* For $a \in \mathcal{A}_{\text{OOD}}^-$:

897

$$Q_{\text{DOSER}}^\pi(s, a) = Q_{\min} \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V \quad (34)$$

898

899

900 \bullet *Beneficial OOD actions.* For $a \in \mathcal{A}_{\text{OOD}}^+$,

901

$$Q_{\text{DOSER}}^\pi(s, a) = \eta(Q_{\text{DOSER}}^\pi(s, a_{\text{id}}^*) + \delta_V) \quad (35)$$

902

903 Note that a_{id}^* is an in-distribution action, hence

904

$$Q_{\text{DOSER}}^\pi(s, a_{\text{id}}^*) = Q_{\text{In}}^\pi(s, a_{\text{id}}^*). \quad (36)$$

905

906 Substituting yields

907

$$Q_{\text{DOSER}}^\pi(s, a) = \eta(Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \delta_V) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V \quad (37)$$

908

909 Putting together the three cases yields the desired upper bound $Q_{\text{DOSER}}^\pi(s, a) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V$
910 for all (s, a) .

911

912 Combining the lower and upper bounds above, we obtain for any state-action pair (s, a)

913

914

$$Q_{\min} \leq Q_{\text{DOSER}}^\pi(s, a) \leq Q_{\text{In}}^\pi(s, a_{\text{id}}^*) + \eta\delta_V \quad (38)$$

915

916 which shows the fixed-point values are uniformly bounded and that DOSER prevents uncontrolled
917 value overestimation while permitting strategic exploration of beneficial out-of-distribution regions.

□

918 A.3.3 PROOF OF THEOREM 3
919920 We begin by introducing three key assumptions and an auxiliary lemma that will be used in the
921 proof.922 **Assumption 1** (Dynamics model error bound). *There exists a constant $\varepsilon_{\text{dyn}} \geq 0$ such that the
923 learned dynamics model $\hat{P}(\cdot | s, a)$ is uniformly close to the true transition kernel $P(\cdot | s, a)$ in the
924 ℓ_1 -norm, satisfying for all $(s, a) \in \mathcal{S} \times \mathcal{A}$:*

925
$$\|\hat{P}(\cdot | s, a) - P(\cdot | s, a)\|_1 \leq \varepsilon_{\text{dyn}}. \quad (39)$$

926 **Assumption 2** (OOD detector error bound). *There exists a constant $\varepsilon_{\text{det}} \geq 0$ such that the misclas-
927 sification probability of the Out-of-Distribution detector is uniformly bounded:*

928
$$\Pr[\text{detector misclassifies } (s, a)] \leq \varepsilon_{\text{det}} \quad \text{for all } (s, a) \in \mathcal{S} \times \mathcal{A}. \quad (40)$$

929 **Assumption 3** (Policy deviation bound). *There exist constants $C_1, C_2 > 0$, characterizing the
930 sensitivity of the policy optimization to dynamics model and OOD detection errors respectively,
931 such that for all states $s \in \mathcal{S}$:*

932
$$\|\hat{\pi}(\cdot | s) - \pi_{\text{ref}}(\cdot | s)\|_{\text{TV}} \leq C_1 \varepsilon_{\text{dyn}} + C_2 \varepsilon_{\text{det}}. \quad (41)$$

933 where ε_{dyn} and ε_{det} are defined in Assumptions 1 and 2.934 **Lemma 1.** *Let μ and ν be two probability distributions over a finite set \mathcal{X} , and let $f : \mathcal{X} \rightarrow \mathbb{R}$ be a
935 bounded function with $\|f\|_{\infty} \leq M$. Then,*

936
$$|\mathbb{E}_{x \sim \mu}[f(x)] - \mathbb{E}_{x \sim \nu}[f(x)]| \leq 2M \cdot \|\mu - \nu\|_{\text{TV}}, \quad (42)$$

937 where $\|\mu - \nu\|_{\text{TV}} = \sup_{A \subseteq \mathcal{X}} |\mu(A) - \nu(A)|$ is the total variation distance. For a finite set \mathcal{X} , this
938 is equivalent to $\|\mu - \nu\|_{\text{TV}} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)|$.939 *Proof.* The expectation difference can be written as:

940
$$\begin{aligned} |\mathbb{E}_{\mu}[f] - \mathbb{E}_{\nu}[f]| &= \left| \sum_{x \in \mathcal{X}} f(x) \mu(x) - \sum_{x \in \mathcal{X}} f(x) \nu(x) \right| \\ &= \left| \sum_{x \in \mathcal{X}} f(x) (\mu(x) - \nu(x)) \right| \\ &\leq \sum_{x \in \mathcal{X}} |f(x)| \cdot |\mu(x) - \nu(x)| \\ &\leq M \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)| \\ &= 2M \cdot \|\mu - \nu\|_{\text{TV}}. \end{aligned} \quad (43)$$

941 The last equality follows from the definition of total variation distance. \square

942 Now we start the proof of Theorem 3.

943 *Proof.* We begin by defining the Bellman operator associated with the reference policy π_{ref} :

944
$$\mathcal{T}_{\text{ref}} Q(s, a) := r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a), a' \sim \pi_{\text{ref}}(\cdot | s')} [Q(s', a')] \quad (44)$$

945 Denote the fixed point of the reference operator as $Q^{\pi_{\text{ref}}}$, so that

946
$$Q^{\pi_{\text{ref}}} = \mathcal{T}_{\text{ref}} Q^{\pi_{\text{ref}}} \quad (45)$$

947 DOSER critic constructs a modified Bellman target due to three factors: (i) dynamics model error,
948 (ii) detector misclassification, and (iii) value adjustment. Accordingly, the DOSER Bellman operator
949 can be expressed as:

950
$$\mathcal{T}_{\text{DOSER}} Q(s, a) := r(s, a) + \gamma \mathbb{E}_{s' \sim \hat{P}(\cdot | s, a), a' \sim \hat{\pi}(\cdot | s')} [(Q(s', a') + b(s', a'))] \quad (46)$$

972 where $\hat{\pi}$ differs from π_{ref} due to dynamics model error and OOD detector error, b represents the
 973 value adjustment applied to the target Q .
 974

975 Now we compare the difference between the two operators when applied to $Q^{\pi_{\text{ref}}}$. Define
 976

$$\Delta(\mathbf{s}, \mathbf{a}) := |\mathcal{T}_{\text{DOSER}} Q^{\pi_{\text{ref}}}(\mathbf{s}, \mathbf{a}) - \mathcal{T}_{\text{ref}} Q^{\pi_{\text{ref}}}(\mathbf{s}, \mathbf{a})| \quad (47)$$

977 Substituting the operator definitions yields:
 978

$$\Delta(\mathbf{s}, \mathbf{a}) = \gamma \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}} + b] - \mathbb{E}_{P, \pi_{\text{ref}}}[Q^{\pi_{\text{ref}}}] \right| \leq \gamma((I) + (II)) \quad (48)$$

980 where the components correspond to
 981

$$(I) := \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \pi_{\text{ref}}}[Q^{\pi_{\text{ref}}}] \right|, \quad (II) := \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[b] \right| \quad (49)$$

982 **Bound on (I):** We decompose (I) into the dynamics model approximation error and policy distribu-
 983 tion bias:
 984

$$\begin{aligned} (I) &= \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] + \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \pi_{\text{ref}}}[Q^{\pi_{\text{ref}}}] \right| \\ &\leq \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] \right| + \left| \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \pi_{\text{ref}}}[Q^{\pi_{\text{ref}}}] \right| \end{aligned} \quad (50)$$

987 For the dynamics model error, consider the function $f(\mathbf{s}') = \mathbb{E}_{\mathbf{a}' \sim \hat{\pi}(\cdot | \mathbf{s}')}[Q^{\pi_{\text{ref}}}(\mathbf{s}', \mathbf{a}')]$. Since
 988 $|Q^{\pi_{\text{ref}}}| \leq Q_{\max}$, the function is bounded by $\|f\|_{\infty} \leq Q_{\max}$. Applying Lemma 1 with distribu-
 989 tions $\mu = \hat{P}(\cdot | \mathbf{s}, \mathbf{a})$ and $\nu = P(\cdot | \mathbf{s}, \mathbf{a})$ gives:
 990

$$\begin{aligned} \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] \right| &= \left| \mathbb{E}_{\mathbf{s}' \sim \hat{P}}[f(\mathbf{s}')] - \mathbb{E}_{\mathbf{s}' \sim P}[f(\mathbf{s}')] \right| \\ &\leq 2Q_{\max} \cdot \|\hat{P}(\cdot | \mathbf{s}, \mathbf{a}) - P(\cdot | \mathbf{s}, \mathbf{a})\|_{\text{TV}} \end{aligned} \quad (51)$$

994 Using the definition of TV distance $\|\mu - \nu\|_{\text{TV}} = \frac{1}{2}\|\mu - \nu\|_1 \leq \frac{\varepsilon_{\text{dyn}}}{2}$ and Assumption 1, we have:
 995

$$\left| \mathbb{E}_{\hat{P}, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] \right| \leq 2Q_{\max} \cdot \frac{\varepsilon_{\text{dyn}}}{2} = Q_{\max}\varepsilon_{\text{dyn}}. \quad (52)$$

997 For the policy distribution bias, we apply a similar argument in the action space \mathcal{A} :

$$\begin{aligned} \left| \mathbb{E}_{P, \hat{\pi}}[Q^{\pi_{\text{ref}}}] - \mathbb{E}_{P, \pi_{\text{ref}}}[Q^{\pi_{\text{ref}}}] \right| &\leq 2Q_{\max} \|\hat{\pi}(\cdot | \mathbf{s}') - \pi_{\text{ref}}(\cdot | \mathbf{s}')\|_{\text{TV}} \\ &= 2Q_{\max}(C_1\varepsilon_{\text{dyn}} + C_2\varepsilon_{\text{det}}) \end{aligned} \quad (53)$$

1000 Therefore, the combined bound for (I) is:
 1001

$$(I) \leq Q_{\max}((1 + 2C_1)\varepsilon_{\text{dyn}} + 2C_2\varepsilon_{\text{det}}) \quad (54)$$

1003 **Bound on (II):** Given $|b| \leq \eta\delta_V$, it follows directly that:
 1004

$$(II) = \left| \mathbb{E}_{\hat{P}, \hat{\pi}}[b] \right| \leq \mathbb{E}_{\hat{P}, \hat{\pi}}|b| \leq \eta\delta_V \quad (55)$$

1006 Thus, for all (\mathbf{s}, \mathbf{a}) ,

$$\Delta(\mathbf{s}, \mathbf{a}) \leq \gamma(Q_{\max}((1 + 2C_1)\varepsilon_{\text{dyn}} + 2C_2\varepsilon_{\text{det}}) + \eta\delta_V) \quad (56)$$

1008 Consequently, the operator difference is bounded in the supremum norm by:
 1009

$$\|(\mathcal{T}_{\text{DOSER}} - \mathcal{T}_{\text{ref}})Q^{\pi_{\text{ref}}}\|_{\infty} \leq \gamma(Q_{\max}((1 + 2C_1)\varepsilon_{\text{dyn}} + 2C_2\varepsilon_{\text{det}}) + \eta\delta_V) \quad (57)$$

1011 By Theorem 1 in the main paper, the DOSER critic converges to the fixed point of $\mathcal{T}_{\text{DOSER}}$. Thus:
 1012

$$\hat{Q} = \mathcal{T}_{\text{DOSER}}\hat{Q}. \quad (58)$$

1014 We now bound the final approximation error:
 1015

$$\begin{aligned} \|\hat{Q} - Q^{\pi_{\text{ref}}}\|_{\infty} &= \|\mathcal{T}_{\text{DOSER}}\hat{Q} - \mathcal{T}_{\text{ref}}Q^{\pi_{\text{ref}}}\|_{\infty} \\ &\leq \|\mathcal{T}_{\text{DOSER}}\hat{Q} - \mathcal{T}_{\text{DOSER}}Q^{\pi_{\text{ref}}}\|_{\infty} + \|(\mathcal{T}_{\text{DOSER}} - \mathcal{T}_{\text{ref}})Q^{\pi_{\text{ref}}}\|_{\infty} \\ &\leq \gamma\|\hat{Q} - Q^{\pi_{\text{ref}}}\|_{\infty} + \gamma(Q_{\max}((1 + 2C_1)\varepsilon_{\text{dyn}} + 2C_2\varepsilon_{\text{det}}) + \eta\delta_V) \end{aligned} \quad (59)$$

1019 Rearranging terms:
 1020

$$(1 - \gamma)\|\hat{Q} - Q^{\pi_{\text{ref}}}\|_{\infty} \leq \gamma(Q_{\max}((1 + 2C_1)\varepsilon_{\text{dyn}} + 2C_2\varepsilon_{\text{det}}) + \eta\delta_V) \quad (60)$$

1023 Absorbing the constants into C_1 and C_2 yields the final result:
 1024

$$\|\hat{Q} - Q^{\pi_{\text{ref}}}\|_{\infty} \leq \frac{\gamma}{1 - \gamma} \left(Q_{\max}(C_1\varepsilon_{\text{dyn}} + C_2\varepsilon_{\text{det}}) + \eta\delta_V \right) \quad (61)$$

1025 This completes the proof. \square

1026 A.3.4 PROOF OF THEOREM 4
1027

1028 We first make several common continuity assumptions about the learned Q function and the transi-
1029 tion dynamics P , which is frequently employed in the theoretical analysis of RL (Gouk et al., 2021;
1030 Dufour & Prieto-Rumeau, 2013).

1031 **Assumption 4** (Lipschitz Q). *For all $s \in \mathcal{S}$ and $a_1, a_2 \in \mathcal{A}$, the learned value function is L_Q -
1032 Lipschitz, then*

$$1033 \|Q(s, a_1) - Q(s, a_2)\| \leq L_Q \|a_1 - a_2\|. \quad (62)$$

1034 **Assumption 5** (Lipschitz P). *For all $s \in \mathcal{S}$ and $a_1, a_2 \in \mathcal{A}$, the transition dynamics is L_P -
1035 Lipschitz, then*

$$1036 \|P(\cdot | s, a_1) - P(\cdot | s, a_2)\| \leq L_P \|a_1 - a_2\|. \quad (63)$$

1037 **Lemma 2.** *Under Assumptions 5, the following inequality holds:*

$$1039 \text{TV}(d^{\pi_1} \| d^{\pi_2}) \leq CL_P \max_s \|\pi_1(s) - \pi_2(s)\|, \quad (64)$$

1040 where C is a positive constant and d^π is the state occupancy under policy π .

$$1042 1043 d^\pi(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_\pi [\mathbb{I}[s_t = s]]. \quad (65)$$

1045 *Proof.* Please refer to Lemma 1 in (Xiong et al., 2022) Lemma A.5 in (Ran et al., 2023). \square

1047 Now we start the proof of Theorem 4.

1049 *Proof.* The proof proceeds by decomposing the overall performance gap between the optimal policy
1050 π^* and the learned policy $\hat{\pi}$ into manageable components, then bounding each term individually.
1051 Similar to Theorem 3, let π_{ref} denote the ideal reference policy, then

$$1053 |J(\pi^*) - J(\hat{\pi})| = |J(\pi^*) - J(\pi_{\text{ref}}) + J(\pi_{\text{ref}}) - J(\hat{\pi})| \\ 1054 \leq |J(\pi^*) - J(\pi_{\text{ref}})| + |J(\pi_{\text{ref}}) - J(\hat{\pi})| \quad (66)$$

1055 The first term captures approximation error due to function approximation, we denote is as δ_f . Under
1056 the asymptotic regime where the empirical fitting errors vanish, this term can be arbitrarily small.
1057 Hence we focus on the second term, which quantifies the performance gap between the learned
1058 policy and the reference policy.

$$1060 |J(\pi_{\text{ref}}) - J(\hat{\pi})| \\ 1061 = \left| \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\pi_{\text{ref}}}} [r(s)] - \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^{\hat{\pi}}} [r(s)] \right| \\ 1062 = \frac{1}{1 - \gamma} \left| \sum_s (d^{\pi_{\text{ref}}}(s) - d^{\hat{\pi}}(s)) r(s) \right| \\ 1063 \leq \frac{1}{1 - \gamma} \sum_s |d^{\pi_{\text{ref}}}(s) - d^{\hat{\pi}}(s)| |r(s)| \\ 1064 \leq \frac{R_{\max}}{1 - \gamma} \text{TV}(d^{\pi_{\text{ref}}}(s) \| d^{\hat{\pi}}(s)) \\ 1065 \leq \frac{CL_P R_{\max}}{1 - \gamma} \max_s \|\pi_{\text{ref}}(s) - \hat{\pi}(s)\| \\ 1066 \leq \frac{CL_P R_{\max}}{1 - \gamma} (C_1 \varepsilon_{\text{dyn}} + C_2 \varepsilon_{\text{det}}) \quad (67)$$

1076 Combining both error terms yields the overall performance guarantee:

$$1077 |J(\pi^*) - J(\pi_{\text{ref}}^*)| \leq \delta_f + \frac{CL_P R_{\max}}{1 - \gamma} (C_1 \varepsilon_{\text{dyn}} + C_2 \varepsilon_{\text{det}}) \quad (68)$$

1078 \square

1080
1081

B EXPERIMENTAL DETAILS

1082
1083

B.1 DIFFUSION MODEL FRAMEWORK

1084
1085
1086
1087
1088
1089

We adopt the EDM framework (Karras et al., 2022) to leverage the advantages of continuous-time diffusion models for offline RL. EDM builds upon the continuous-time formulation derived from diffusion processes, which allows us to use an optimized ODE solver for sampling. This solver adaptively determines the steps along the noise level trajectory, significantly reducing the computational load and accelerating generation speed, while maintaining high sample quality compared to sampling with a fixed discrete schedule.

1090
1091
1092
1093
1094
1095

Noise schedule. In the DOSER framework, the noise schedule is a crucial component of the diffusion model, defining how the noise levels vary over time. Following the insights from the EDM paper, the noise schedule σ_t is sampled from a log-logistic distribution $\sigma_t \sim \text{log-logistic}(\log \sigma_{\text{data}}, s)$, where $\log \sigma_{\text{data}}$ serves as the shape parameter and s as the scale parameter. Using this schedule, a noisy action \mathbf{a}_t is constructed as $\mathbf{a}_t = \mathbf{a}_0 + \sigma_t \epsilon$, with $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. The parameters are configured as follows: $\sigma_{\text{data}} = 0.5$, and the noise schedule is clamped between $\sigma_{\text{min}} = 0.02$ and $\sigma_{\text{max}} = 80$.

1096
1097
1098

Training loss. The EDM framework precondition the neural network with a σ_t -dependent skip connection to improve numerical stability. Specifically, the denoising network for behavior policy modeling is defined as follows:

1099
1100

$$\epsilon_{\theta_a}(\mathbf{a}_t, \sigma_t, \mathbf{s}) = c_{\text{skip}}(\sigma_t) \mathbf{a}_t + c_{\text{out}}(\sigma_t) F_{\theta_a}(c_{\text{in}}(\sigma_t); c_{\text{noise}}(\sigma_t) | \mathbf{s}) \quad (69)$$

1101
1102

Similarly, the denoising network for state distribution modeling is defined as:

1103
1104

$$\epsilon_{\theta_s}(\mathbf{s}_t, \sigma_t) = c_{\text{skip}}(\sigma_t) \mathbf{s}_t + c_{\text{out}}(\sigma_t) F_{\theta_s}(c_{\text{in}}(\sigma_t); c_{\text{noise}}(\sigma_t)) \quad (70)$$

1105
1106
1107

where F_{θ_a} and F_{θ_s} are the neural networks to be actually trained, $c_{\text{skip}}(\sigma_t)$ modulates the skip connection, $c_{\text{in}}(\sigma_t)$ and $c_{\text{out}}(\sigma_t)$ scale the input and output magnitudes respectively, and $c_{\text{noise}}(\sigma_t)$ maps noise level σ_t into a conditioning input for F_{θ_a} and F_{θ_s} .

1108
1109

We can equivalently express the loss (4) with respect to the raw network output F_{θ_a} in (69):

1110
1111
1112

$$\mathbb{E}_{\sigma_t, \mathbf{s}, \mathbf{a}, \epsilon} \left[\lambda(\sigma_t) c_{\text{out}}^2(\sigma_t) \| F_{\theta_a}(c_{\text{in}}(\sigma_t) \cdot (\mathbf{a} + \epsilon); c_{\text{noise}}(\sigma_t) | \mathbf{s}) - \frac{1}{c_{\text{out}}(\sigma_t)} (\mathbf{a} - c_{\text{skip}}(\sigma_t) \cdot (\mathbf{a} + \epsilon)) \|^2 \right] \quad (71)$$

1113
1114

Similarly, the loss (5) can be expressed based on (70):

1115
1116
1117

$$\mathbb{E}_{\sigma_t, \mathbf{s}, \epsilon} \left[\lambda(\sigma_t) c_{\text{out}}^2(\sigma_t) \| F_{\theta_s}(c_{\text{in}}(\sigma_t) \cdot (\mathbf{s} + \epsilon); c_{\text{noise}}(\sigma_t)) - \frac{1}{c_{\text{out}}(\sigma_t)} (\mathbf{s} - c_{\text{skip}}(\sigma_t) \cdot (\mathbf{s} + \epsilon)) \|^2 \right] \quad (72)$$

1118
1119

According to the variance normalization principles, we follow the practical implementation of EDM in parameter choice:

1120
1121
1122
1123
1124
1125
1126
1127

$$\begin{cases} c_{\text{skip}}(\sigma_t) &= \sigma_{\text{data}}^2 / (\sigma_t^2 + \sigma_{\text{data}}^2) \\ c_{\text{out}}(\sigma_t) &= \sigma_t \cdot \sigma_{\text{data}} / \sqrt{\sigma_t^2 + \sigma_{\text{data}}^2} \\ c_{\text{in}}(\sigma_t) &= 1 / (\sigma_t^2 + \sigma_{\text{data}}^2) \\ c_{\text{noise}}(\sigma_t) &= \frac{1}{4} \ln(\sigma_t) \\ \lambda(\sigma_t) &= (\sigma_t^2 + \sigma_{\text{data}}^2) / (\sigma_t \cdot \sigma_{\text{data}})^2 \end{cases} \quad (73)$$

1128
1129

B.2 NETWORK ARCHITECTURE

1130
1131
1132
1133

Behavior policy and state distribution modeling. Following Chen et al. (2024), we implement both our behavior policy and state distribution as MLP-based diffusion models. The denoising network for behavior policy $\epsilon_{\theta_a}(\mathbf{a}_t, t, \mathbf{s})$ is a conditional diffusion model that predicts actions given a noisy action vector \mathbf{a}_t , diffusion timestep t (encoded via sinusoidal positional embedding), and state condition \mathbf{s} . In contrast, the denoising network for state distribution $\epsilon_{\theta_s}(\mathbf{s}_t, t)$ is an unconditional

1134 diffusion model that predicts states from a noisy state s_t and timestep embedding. Both models
 1135 share the same base architecture, which consists of a 4-layer MLP with Mish activations and 256
 1136 hidden units per layer. The main difference lies in their input dimensions, the behavior policy net-
 1137 work additionally concatenates the state condition s , while the state distribution network operates
 1138 without conditioning.

1139 **Critic Networks.** Following the implementation of SVR (Mao et al., 2023), the critic network
 1140 comprises four Q-networks and two V-networks, each implemented as a 3-layer MLPs with 256
 1141 hidden units per layer and ReLU activation functions.

1142 **Actor Network.** The actor network adopts a Tanh-Gaussian policy structure similar to
 1143 SAC (Haarnoja et al., 2018). It is implemented as a 3-layer MLP with 256 hidden units and ReLU
 1144 activations in all hidden layers. The network supports both deterministic and stochastic action sam-
 1145 pling, while preserving entropy regularization for effective exploration.

1146 **Dynamics Model.** The dynamics model is implemented as a 3-layer MLPs with 256 hidden units
 1147 and ReLU activations, which takes concatenated state-action pairs as input and predicts both the
 1148 next state and reward.

1150 B.3 HYPERPARAMETERS

1152 Diffusion models and networks share the same hyperparameter settings across all tasks. The detailed
 1153 configurations are provided in Table 3.

1155 Table 3: Hyperparameters for all tasks.

1156 Hyperparameter	1157 Value
1158 Optimizer	Adam (Adam et al., 2014)
1159 Learning rate	3e-4
1160 Learning rate decay	Cosine (Loshchilov & Hutter, 2016)
1161 Batch size	256
1162 Discounted factor	0.99
1163 Target update rate	0.005
1164 Policy update frequency	2
1165 Target network update frequency	2
1166 Number of sampled actions	10
1167 Compensation coefficient λ	0.001
1168 Compensation target weight η	0.9

1169 To accommodate varying data distributions across different tasks, we employ task-specific hyperpa-
 1170 rameters including the penalty coefficient β for detrimental OOD action penalty, the OOD detection
 1171 thresholds τ_a and τ_s for actions and states, the expectile regression factor τ , and the lower bound of
 1172 Q-value Q_{\min} , with their specific values for each task configuration detailed in Table 4.

1173 B.4 EXPERIMENTAL DETAILS ON TOY EXAMPLE

1175 For the 1D navigation task illustrated in Figure 6(a), the state space $[-10, 10]$ represents the agent’s
 1176 current position, while actions correspond to step sizes within $[-1, 1]$. The reward function is the
 1177 negative distance to the target state 0. Based on this reward function, the ground truth Q-function
 1178 is calculated and depicted in Figure 6(b). To evaluate the performance of different methods, we
 1179 generate an *expert* dataset and a *medium* dataset, each containing 500,000 transitions. The expert
 1180 dataset is constructed by perturbing the optimal action derived from the ground truth Q-value with
 1181 small noise $\epsilon \sim \mathcal{U}[-0.05, 0.05]$, while the medium dataset is generated by adding larger noise
 1182 $\epsilon \sim \mathcal{U}[-0.5, 0.5]$. The score network in this toy example is implemented as a 4-layer MLP with
 1183 Mish activations and 256 hidden units per layer.

1184 For the model ensemble method, we employ 5 independently trained neural networks with identical
 1185 architectures to quantify predictive uncertainty. Each model is a 3-layer MLP with ReLU activations
 1186 and 128 hidden units. All models are trained in a supervised manner for 100 epochs using the Adam
 1187 optimizer with a fixed learning rate of 1e-3. During inference, the ensemble estimates epistemic
 1188 uncertainty by computing the normalized variance across model predictions.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Table 4: Task-specific hyperparameter settings.

Task	β	τ_a	τ_s	τ	Q_{\min}
halfcheetah-medium-v2	0.001	99th	99th	0.9	-366
halfcheetah-medium-replay-v2	0.001	99th	99th	0.9	-366
halfcheetah-medium-expert-v2	0.05	80th	80th	0.7	-366
halfcheetah-expert-v2	0.05	80th	80th	0.7	-366
halfcheetah-random-v2	0.001	99th	99th	0.9	-366
hopper-medium-v2	0.001	99th	99th	0.9	-125
hopper-medium-replay-v2	0.001	99th	99th	0.9	-125
hopper-medium-expert-v2	0.05	80th	80th	0.7	-125
hopper-expert-v2	0.05	80th	80th	0.7	-125
hopper-random-v2	0.001	99th	99th	0.9	-125
walker2d-medium-v2	0.001	99th	99th	0.9	-471
walker2d-medium-replay-v2	0.001	99th	99th	0.9	-471
walker2d-medium-expert-v2	0.05	99th	99th	0.7	-471
walker2d-expert-v2	0.05	99th	99th	0.7	-471
walker2d-random-v2	0.001	99th	99th	0.9	-471
pen-cloned-v1	1	60th	60th	0.7	-715
pen-human-v1	20	80th	80th	0.7	-715

(a) 1D navigation task



(b) Ground truth Q-function heatmap

Figure 6: Toy environment and ground truth Q-function heatmap visualization.

For the MC dropout framework, we adopt a Q-network architecture consisting of 3-layer MLP with 256 hidden units and ReLU activations. Dropout layers with a fixed probability of 0.1 are incorporated to introduce stochasticity during inference. This configuration enables the model to approximate Bayesian inference by maintaining dropout activation during both training and evaluation phases. The Q-network undergoes supervised training for 1,000 epochs using the Adam optimizer with a consistent learning rate of 1e-3. For uncertainty quantification, we perform 20 stochastic forward passes per state-action pair with dropout enabled, computing the epistemic uncertainty as the normalized variance across these Monte Carlo samples.

For the VAE-based method, we adopt a conditional VAE (CVAE) architecture to model the behavior policy distribution and quantify out-of-distribution actions using reconstruction error. The decoder reconstructs the original action through a single output head. The model is trained for 1,000 epochs with the Adam optimizer at a learning rate of 1e-3. During inference, the reconstruction error is computed for state-action pairs by comparing the reconstructed action to the original input action.

B.5 EXPERIMENTAL DETAILS ON D4RL BENCHMARKS

For all MuJoCo locomotion tasks, we pretrain the diffusion models for both the behavior policy and state distribution for 100,000 gradient steps using the Adam optimizer with a learning rate of 3e-4 and a batchsize of 1024. The dynamics models are also pretrained for 100,000 gradient steps with the same learning rate and batch size. Our algorithm is then trained for 2 million gradient steps to ensure convergence, with policy evaluation performed every 20,000 gradient steps. Results are reported as the average normalized scores over 40 random rollouts, comprising 4 independently trained models and 10 evaluation trajectories per model across all tasks. All experiments are con-

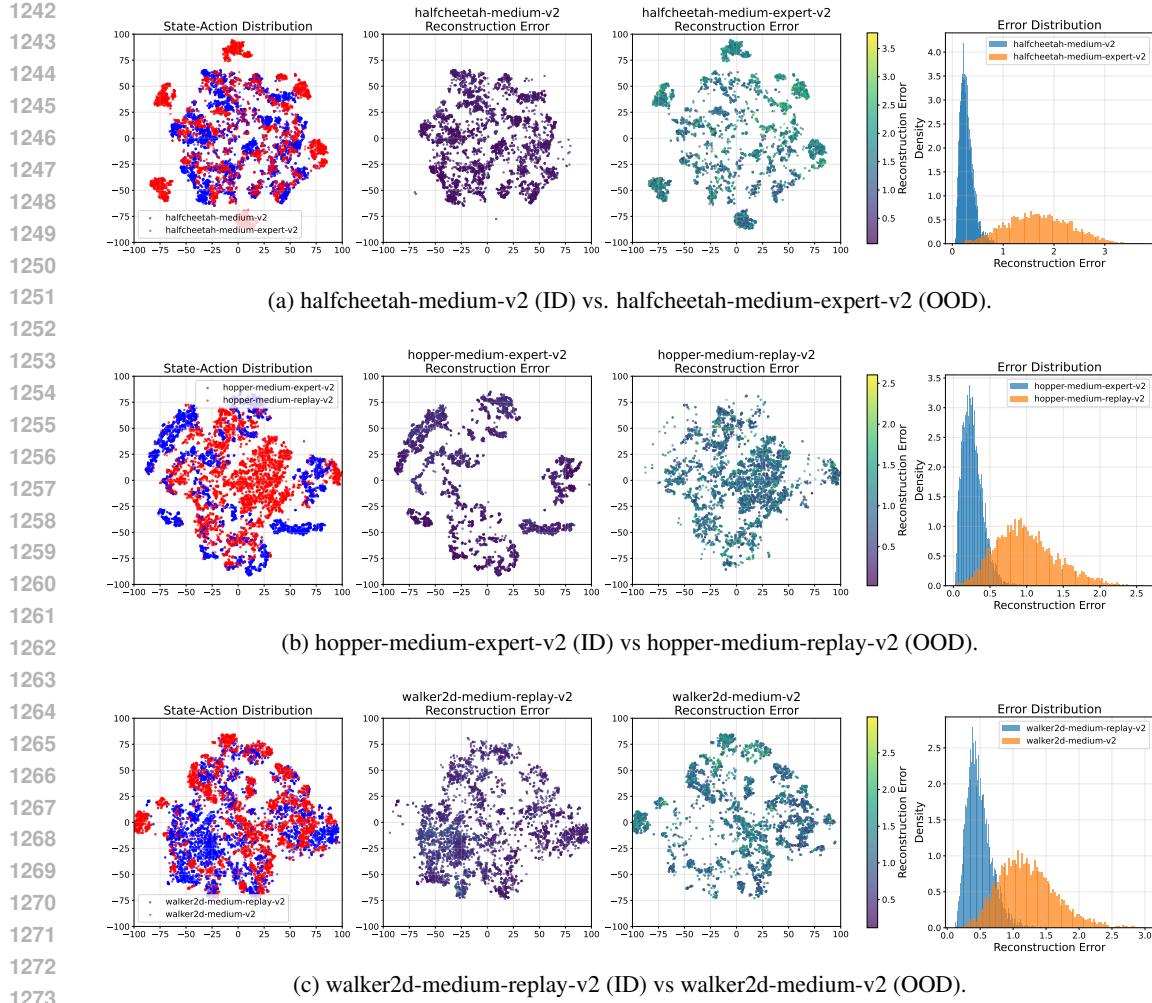


Figure 7: Diffusion-based reconstruction error distribution across datasets. Diffusion models were trained exclusively on in-distribution (ID) data. From left to right: t-SNE embedding of the state-action distributions; reconstruction errors of ID samples; reconstruction errors of OOD samples; and density plots of error distributions for both ID and OOD samples. The color bar indicates the magnitude of reconstruction error in the second and third columns.

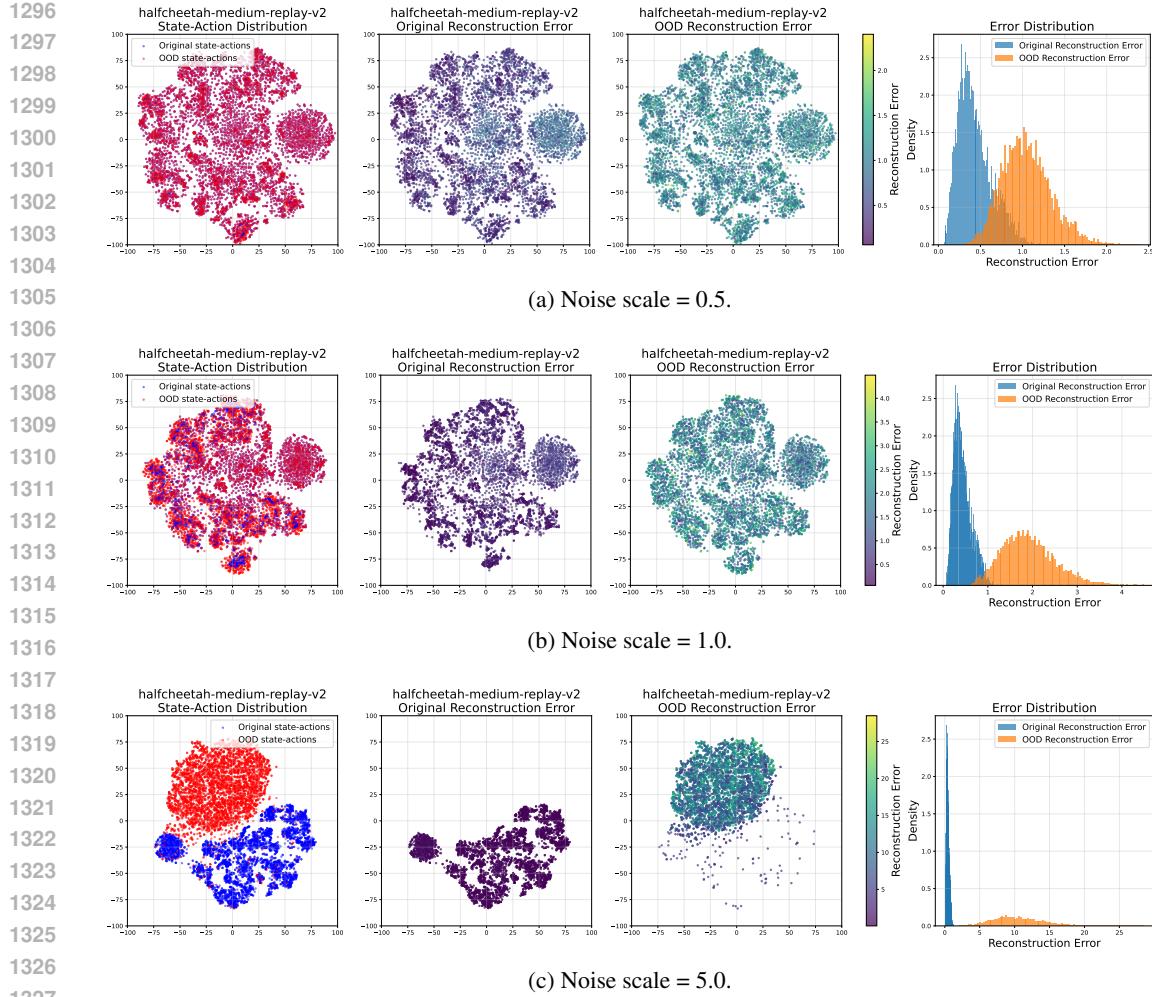
ducted on four NVIDIA GeForce RTX 3090 GPUs, with each experiment taking approximately 30 hours to complete, including both training and evaluation.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 OOD DETECTION PERFORMANCE ON D4RL BENCHMARKS

To evaluate the ability of our diffusion-based models to distinguish OOD samples, we conduct experiments on the D4RL benchmarks, designating certain datasets as in-distribution (ID) and others as OOD. Specifically, we pretrained diffusion models on the ID datasets, and evaluated their performance on the OOD datasets drawn from the same environment. For each dataset, we randomly sample 5,000 state-action pairs to ensure a balanced comparison. The reconstruction error distributions for the actions are visualized via color-mapped scatter plots and histograms in Figure 7.

Across all environments, OOD datasets consistently exhibit significantly larger reconstruction errors compared to their ID counterparts. This pronounced discrepancy is visually evident in both the color-mapped scatter plots and the histogram plots. In the scatter plots, ID samples are consis-



1328 Figure 8: Diffusion-based reconstruction error distributions on original ID datasets and synthetic
1329 OOD datasets.
1330

1331 Table 5: OOD detection metrics on synthetic OOD datasets.
1332

Noise Scale	TP	TN	FP	FN	Accuracy	Precision	Recall	F1-Score	AUROC
0.5	2910	4957	43	2090	0.7867	0.9854	0.5820	0.7318	0.9637
1.0	4832	4957	43	168	0.9789	0.9912	0.9664	0.9876	0.9980
5.0	5000	4957	43	0	0.9957	0.9915	1.0000	0.9957	1.0000

1337
1338
1339 tently associated with low reconstruction errors, whereas OOD samples display markedly high error
1340 values. Similarly, the histogram plots reveal a distinct shift in the error distributions between ID
1341 and OOD samples, with OOD data showing a heavier tail toward higher error values. These results
1342 strongly suggest that diffusion-based reconstruction error serves as a robust and effective indicator
1343 for OOD detection in this setting.

1344 To provide a more comprehensive quantitative analysis, we construct synthetic OOD datasets as fol-
1345 lows. We first sample 5,000 state-action pairs from the original D4RL dataset, and for each pair, we
1346 generate a corresponding OOD sample by perturbing the action with standard Gaussian noise using
1347 noise scales of 0.5, 1.0, and 5.0, respectively. We evaluate the OOD detection capability of our
1348 diffusion-based reconstruction error on these datasets, using the 99-th percentile of reconstruction
1349 errors computed from ID samples as the detection threshold. Based on this threshold, we report the
counts of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), to-

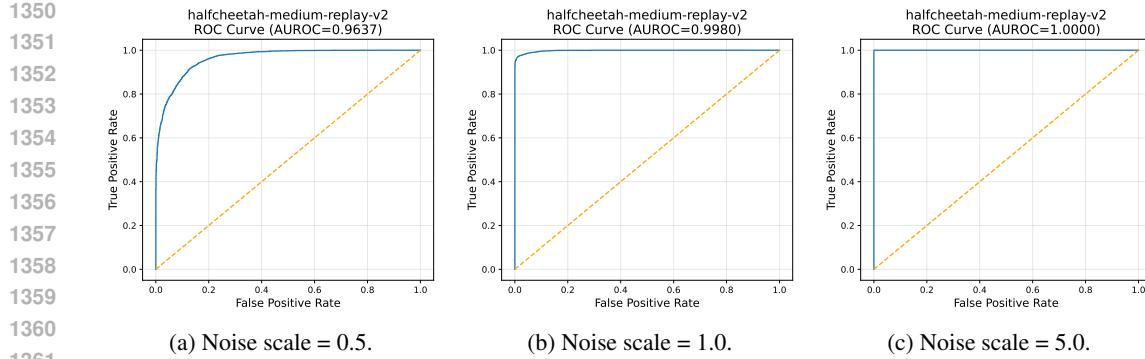


Figure 9: ROC curves for diffusion-based OOD detection under different noise scales.

Table 6: Validation on OOD detection benchmarks.

Method	KDDCUP			KDDCUP-Rev			Arrhythmia		
	Precision	Recall	F_1	Precision	Recall	F_1	Precision	Recall	F_1
OC-SVM	0.7457	0.8523	0.7954	0.7148	0.9940	0.8316	0.5397	0.4082	0.4581
DCN	0.7696	0.7829	0.7762	0.2875	0.2895	0.2885	0.3758	0.3907	0.3815
DSEBM-r	0.1972	0.2001	0.1987	0.2036	0.2036	0.2036	0.1515	0.1513	0.1510
DAGMM	0.9297	0.9442	0.9369	0.9370	0.9390	0.9380	0.4909	0.5078	0.4983
GOAD	-	-	0.9840	-	-	0.9890	-	-	0.5200
Ours	0.9862	0.9937	0.9899	0.9476	0.9144	0.9307	0.9545	0.9545	0.9545

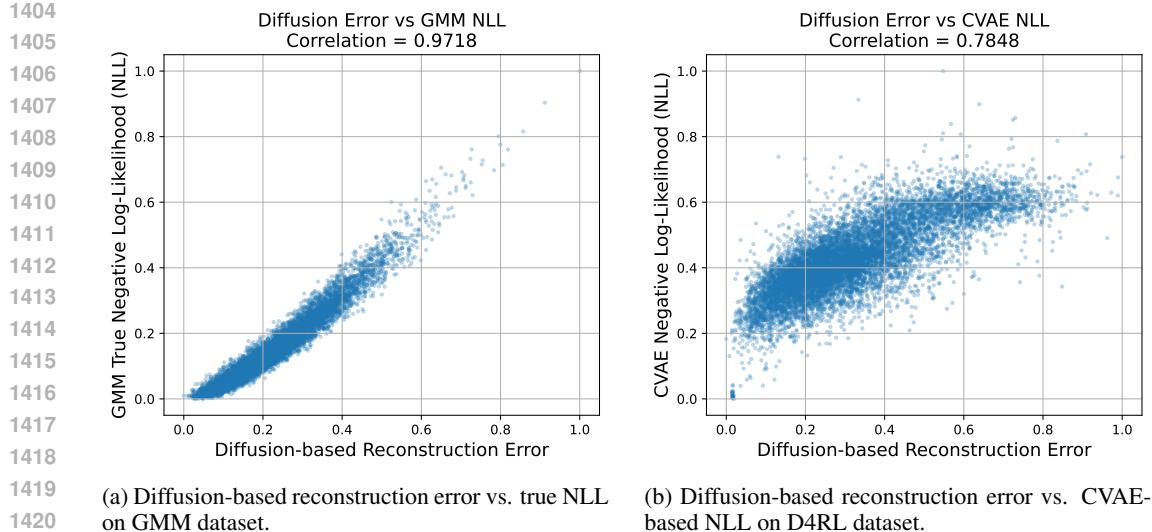
gether with standard classification metrics including precision, recall, F1-score, and AUROC. These results are summarized in Table 5, and Figure 8 presents the empirical distributions and histograms of reconstruction errors for both ID and OOD samples under different noise scales, while the corresponding ROC curves are shown in Figure 9.

The results show that diffusion-based reconstruction error is highly effective for OOD action detection across different levels of perturbation. When the noise scale is relatively small, the method achieves high precision but moderate recall, indicating that mildly perturbed OOD actions are more difficult to detect. As the noise scale increases, both recall and F1-score improve substantially, reaching nearly perfect detection performance at large perturbations. The AUROC also increases consistently and reaches 1.0 for the largest noise setting, demonstrating that the reconstruction error provides a reliable and discriminative signal for distinguishing ID and OOD actions under challenging distribution shifts.

C.2 VALIDATION ON OOD DETECTION BENCHAMRKS

To further investigate the effectiveness and generalizability of our proposed diffusion-based OOD detection mechanism beyond the reinforcement learning domain, we conducted additional experiments on three widely used anomaly detection benchmarks: *KDDCUP*, *KDDCUP-Rev*, and *Arrhythmia*. Following the procedure described in the main paper, we compute the OOD score of each sample using the single-step denoising reconstruction error produced by a trained diffusion model. We compare our approach against several state-of-the-art deep learning methods, including OC-SVM (Chen et al., 2001), DCN (Jin et al., 2021), DSEBM-r (Zhai et al., 2016), DAGMM (Zong et al., 2018), and GOAD (Bergman & Hoshen, 2020). Our experimental setup follows GOAD, and the baseline results are taken directly from the respective original publications.

Table 6 summarizes the precision, recall, and F1-scores across all benchmarks. The results demonstrate that our diffusion-based approach consistently achieves high detection accuracy and outperforms or matches existing baselines across all datasets. This robust performance further validates the diffusion model’s superior capability in modeling the in-distribution data manifold and confirms the reliability of using the reconstruction error as a general indicator for OOD detection, even across varying data distributions and task contexts.



(a) Diffusion-based reconstruction error vs. true NLL on GMM dataset.

(b) Diffusion-based reconstruction error vs. CVAE-based NLL on D4RL dataset.

Figure 10: Correlation analysis between diffusion-based reconstruction error and negative log-likelihood (NLL).

C.3 QUANTITATIVE ANALYSIS BETWEEN DIFFUSION-BASED RECONSTRUCTION ERROR AND NEGATIVE LOG-LIKELIHOOD (NLL)

To further examine whether diffusion-based reconstruction error serves as a meaningful proxy for likelihood estimation, we conduct quantitative correlation analyses on both synthetic and D4RL datasets. Scatter plots illustrating the relationship between diffusion reconstruction error and negative log-likelihood (NLL) are shown in Figure 10.

We first validate the relationship in a Gaussian mixture setting, where the ground-truth density is analytically available. Specifically, we construct a four-component symmetric Gaussian mixture and uniformly sample 10,000 points. Using a diffusion model trained on this distribution, we compute the reconstruction error for each sample and compare it against the true NLL derived from the underlying GMM. The result indicates a very strong Pearson correlation ($\rho = 0.9718$), confirming that the diffusion-based reconstruction error is highly consistent with the true likelihood when the underlying distribution is accurately modeled.

We further evaluate this relationship on the `halfcheetah-medium-replay-v2` dataset, where the true behavior policy density is not directly accessible. To approximate the behavior support likelihood, we train a CVAE on the dataset as a reference model and compute its NLL as a surrogate likelihood estimator. The diffusion reconstruction error again exhibits a strong positive correlation with the CVAE-based NLL ($\rho = 0.7848$), indicating that reconstruction error retains a substantial degree of statistical consistency with likelihood even in high-dimensional continuous control environments. However, since CVAEs are known to struggle with accurately modeling multi-modal behavior distributions, the resulting NLL values from the reference model may introduce estimation bias and should therefore be interpreted as only a rough approximation for the true likelihood.

C.4 ACTION TYPE PROPORTIONS DURING POLICY OPTIMIZATION

To gain a deeper insight into how the action distribution induced by the learned policy evolves over time, we track the proportions ID, beneficial OOD, and detrimental OOD actions throughout the training process. At each training iteration, the statistics are calculated over a sampled batch of size 256. We present the results for three `halfcheetah` tasks in Figure 11.

Across all datasets, the proportion of ID actions consistently increases as training progresses, accompanied by a corresponding decline in the overall proportion of OOD actions. This trend suggests that the learned policy progressively aligns more closely with the behavioral support during optimization. However, the relative magnitudes of the ID proportions vary considerably across the three datasets.

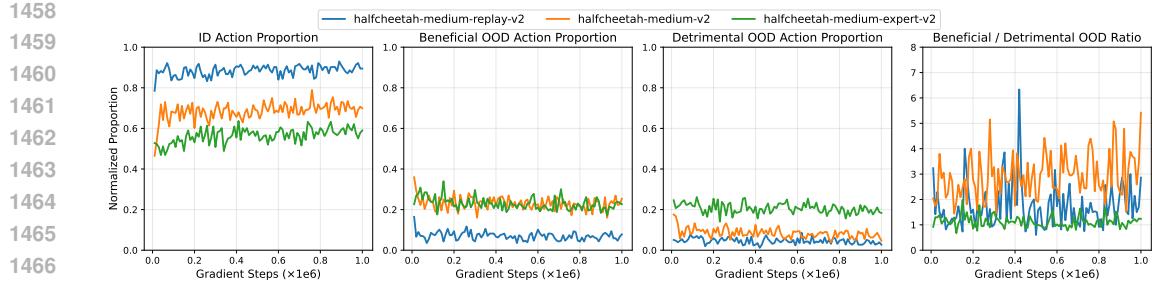


Figure 11: Proportions of different action types during policy optimization.

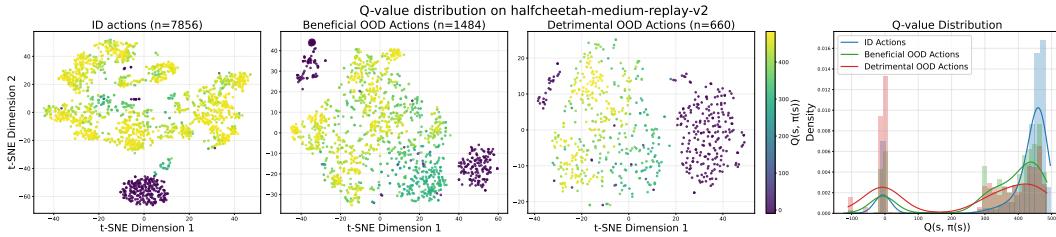


Figure 12: Q-value distributions for different action types.

Specifically, the medium-replay dataset exhibits the largest ID action ratio, followed by the medium dataset, whereas the medium-expert dataset yields the lowest ID proportion. We also visualize the ratio of beneficial to detrimental OOD actions in the rightmost column. For both the medium-replay and medium datasets, the proportion of beneficial OOD actions substantially exceeds that of detrimental ones. Conversely, on the medium-expert dataset, beneficial and detrimental OOD actions appear in almost equal proportion.

These differences can be attributed to the inherent characteristics of the datasets. The medium-expert dataset has a relatively narrow support concentrated around near-optimal trajectories. As a result, the learned policy more frequently generates actions that fall outside this narrow support, leading to a higher overall OOD proportion. Despite this, since the dataset already contains expert demonstrations, the potential performance gain from extrapolation is limited, leading to only a comparable proportion of beneficial and detrimental OOD actions. In contrast, the medium-replay and medium datasets exhibit more diverse distributions of generally suboptimal behaviors. This broader support enables the learned policy to benefit from moderate extrapolation, where slight deviations outside the data manifold can lead to meaningful performance improvements, which is consistent with our empirical results.

C.5 VISUALIZATION OF Q-VALUE DISTRIBUTION

To investigate whether beneficial OOD actions indeed lead the policy toward higher-value regions, we visualize the learned Q-value landscape. Specifically, we randomly sample 10,000 states from the offline dataset. For each evaluation state, we generate an action using the learned policy and categorize it as an ID action, a beneficial OOD action, or a detrimental OOD action based on the diffusion reconstruction error. We then apply t-SNE to embed the corresponding state-action pairs into a two-dimensional space, where each point is colored according to its Q-value estimate. In addition, we plot the Q-value distributions for the three categories to enable a direct statistical comparison.

As illustrated in Figure 12, beneficial OOD actions exhibit a clearly right-shifted Q-value distribution, indicating that the actions identified as beneficial by our method correspond to regions where the critic consistently predicts higher returns. In contrast, detrimental OOD actions predominantly occupy the low-value region, with their Q-value distribution concentrated near the lower tail. The critic assigns persistently low values to these actions, implying that they are unlikely to yield performance gains and should therefore be suppressed during policy improvement.

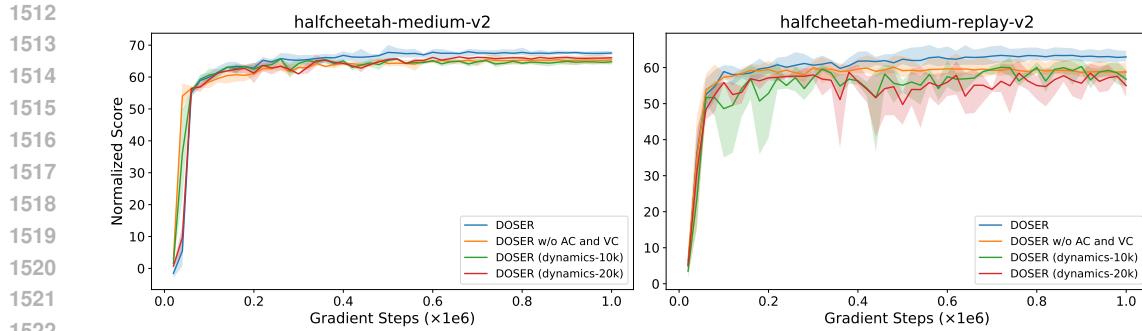


Figure 13: Sensitivity analysis of the dynamics model error.

1527 C.6 ADDITIONAL SENSITIVITY ANALYSIS

1529 C.6.1 DYNAMICS MODEL ERROR

1531 To evaluate how the accuracy of the learned dynamics model influences the performance of OOD
 1532 action classification, we conduct an additional ablation study. Specifically, we pretrain the dynamics
 1533 model for 100k gradient steps and save the intermediate checkpoints at 10k and 20k steps. These
 1534 early-stage models exhibit substantially higher prediction error compared to the final checkpoint,
 1535 providing a controlled mechanism to examine the impact of model inaccuracies. In the subsequent
 1536 experiments, we replace the fully trained dynamics model with the selected checkpoint while keep-
 1537 ing all other components unchanged. We evaluate these variants on two halfcheetah datasets, with
 1538 the corresponding training curves illustrated in Figure 13.

1539 Our results indicate that employing dynamics models derived from the early checkpoints consis-
 1540 tently deteriorates policy performance relative to the fully trained model. Furthermore, on the
 1541 halfcheetah-medium-replay-v2 dataset, we observe that when the dynamics model is poorly trained,
 1542 the performance may fall below that of the *DOSER w/o AC and VC* variant introduced in Section 4.3,
 1543 which intentionally excludes dynamics modeling. This finding highlights that if the dynamics model
 1544 fails to produce reliable next-state predictions, the resulting misclassification of OOD actions can be
 1545 more detrimental to overall performance than omitting OOD action classification entirely.

1546 In addition, the observed performance gap between the early-stage and fully trained dynamics mod-
 1547 els provides further evidence regarding the model’s ability to generalize beyond the dataset support.
 1548 This indicates that the final checkpoint captures meaningful structural regularities of the environ-
 1549 ment rather than merely memorizing in-distribution transitions. As a result, a well-trained dynamics
 1550 model can provide sufficiently reliable predictions for moderate OOD actions, which is crucial for
 1551 the selective regularization mechanism of DOSER.

1553 C.6.2 THE NUMBER OF CRITIC NETWORKS

1555 In our main experiments, we employ four critic networks for Q-function learning. This design
 1556 choice follows the implementation of SVR, upon which our training pipeline is partially built. The
 1557 use of multiple critics has been shown to reduce overestimation bias and stabilize value learning. To
 1558 examine whether this choice confers any unintended advantage, we perform an additional ablation
 1559 in which DOSER is trained with only two critic networks while keeping all other components and
 1560 hyperparameters fixed. We evaluate both settings on the halfcheetah-medium-v2 and halfcheetah-
 1561 medium-replay-v2 datasets, the corresponding learning curves are presented in Figure 14.

1562 Empirically, we observe that using two critics achieves comparable final performance to the four-
 1563 critic setting across both tasks, with only a slight difference within an acceptable range. This indi-
 1564 cates that DOSER does not rely on the increased critic ensemble size to obtain its performance gains.
 1565 While additional critics can enhance robustness during training, the core algorithmic contributions
 1566 of DOSER remain effective under the standard two-critic setup commonly used in offline RL.

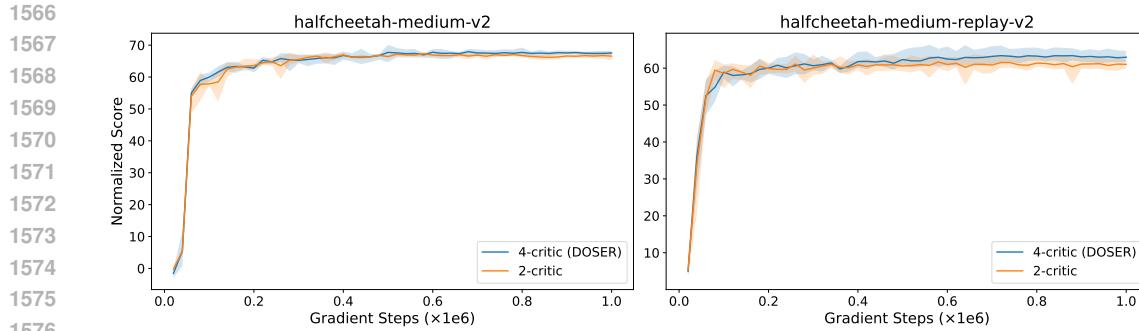
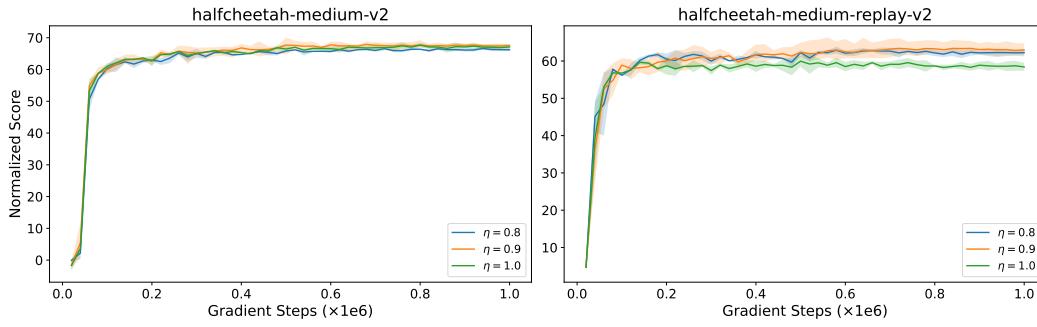


Figure 14: Sensitivity analysis of the number of critic networks.

Figure 15: Sensitivity analysis of the compensation target weight η .

C.6.3 COMPENSATION TARGET WEIGHT η

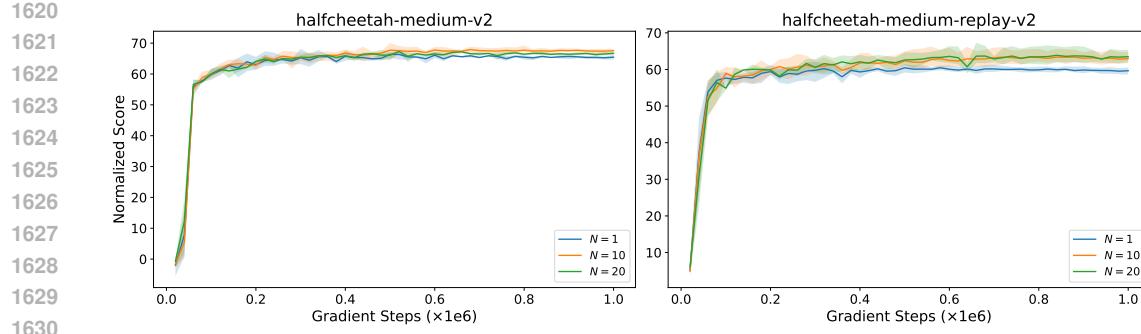
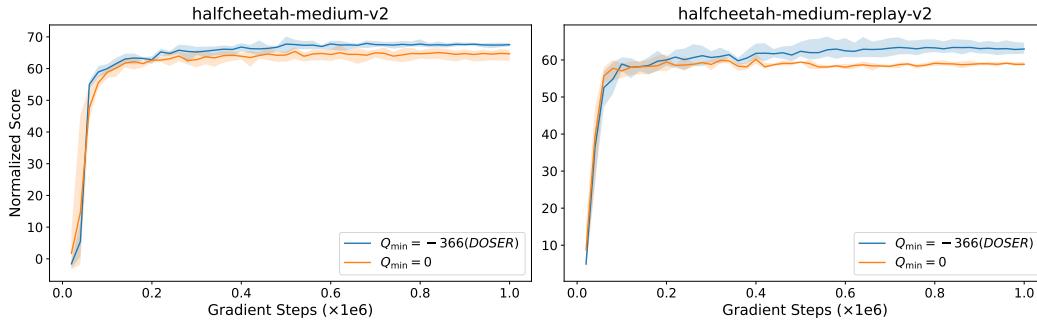
We set the default value of the compensation target weight η to 0.9 in all main experiments. This hyperparameter controls the weight of the target Q-value of beneficial OOD actions, a smaller η reduces the extent of compensation and makes DOSER more conservative. To evaluate the sensitivity of DOSER to this hyperparameter, we conduct an ablation study by varying $\eta \in \{0.8, 1.0\}$ while keeping all other components unchanged.

As shown in Figure 15, DOSER maintains consistently stable performance across this range. However, when setting $\eta = 1.0$, we observe a slight degradation in performance on halfcheetah-medium-replay-v2. This is primarily due to mild value overestimation introduced by fully adopting the target Q-values of beneficial OOD actions without discounting. Overall, the default choice $\eta = 0.9$ effectively mitigates such overestimation while still enabling meaningful policy improvement.

C.6.4 THE NUMBER OF SAMPLED IN-DISTRIBUTION ACTIONS N

In the OOD action classification stage, DOSER estimates the optimal in-distribution action by sampling N candidate actions from the offline dataset and selecting the one with the highest Q-value as the reference. To assess the robustness of DOSER to the choice of N , we conduct experiments on the halfcheetah tasks with $N \in \{5, 10, 20\}$.

The results in Figure 16 indicate that DOSER maintains strong performance across different values of N . A larger N provides a more accurate approximation of the optimal ID action but comes with increased computational cost, whereas a small N may introduce randomness in the estimation. Since the optimal ID Q-value is used only to construct an optimistic Q-target that guides beneficial OOD actions toward higher-value regions, DOSER does not rely heavily on the precise accuracy of this estimate. Therefore, we choose $N = 10$ as a reasonable trade-off between computational efficiency and estimation accuracy in our main experiments.

Figure 16: Sensitivity analysis of the number of sampled in-distribution actions N .Figure 17: Sensitivity analysis of the value of Q_{\min} .

1648 C.6.5 Q-VALUE LOWER BOUND Q_{\min}

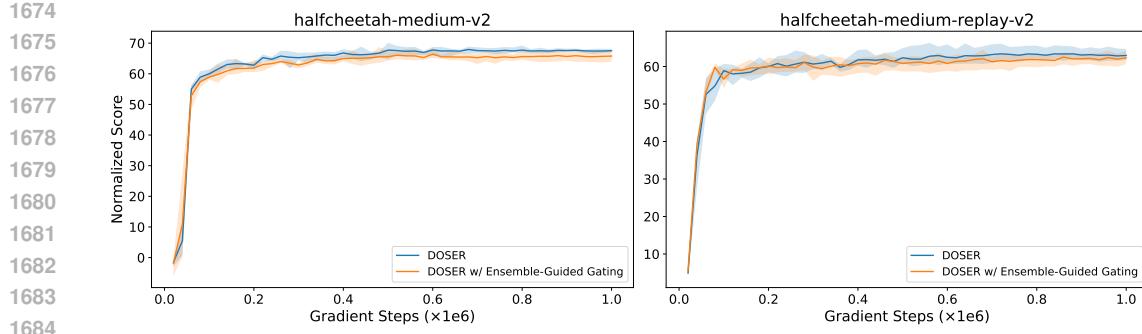
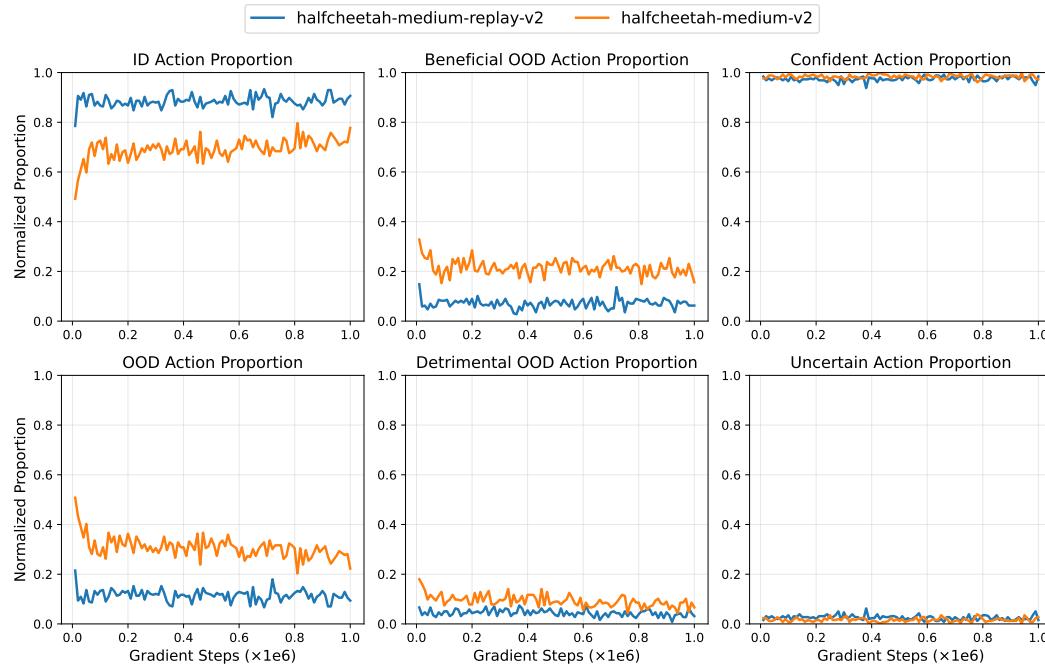
1649 DOSER employs a lower bound Q_{\min} when penalizing detrimental OOD actions. In our main
1650 experiments, this value is not treated as a tunable hyperparameter. Instead, it is derived directly from
1651 the environment dynamics as $Q_{\min} = \frac{R_{\min}}{1-\gamma}$, which corresponds to the standard minimum achievable
1652 return under the given discount factor γ . For the halfcheetah environment, setting γ to 0.99 yields
1653 $Q_{\min} = -366$. To further examine the impact of this parameter, we conduct an ablation study
1654 in which Q_{\min} is set to 0 while keeping all other components unchanged. This alternative setting
1655 corresponds to a less conservative penalty on potentially detrimental OOD actions. We evaluate this
1656 variant on the halfcheetah tasks, with the resulting learning curves reported in Figure 17.

1657 The results show that replacing the original value of Q_{\min} with 0 leads to performance degradation
1658 across both datasets. This outcome can be attributed to the fact that a higher lower bound reduces
1659 the penalization applied to detrimental OOD actions, thereby weakening the mechanism designed
1660 to mitigate value overestimation. Nevertheless, even with this suboptimal setting, the overall perfor-
1661 mance remains competitive with existing offline RL baselines.

1663 C.7 ENSEMBLE-GUIDED GATING MECHANISM

1665 We further introduce an ensemble-guided uncertainty gating mechanism on top of the learned dy-
1666 namics model, which is designed to prevent unreliable next-state predictions from influencing the
1667 classification of OOD actions. We construct an ensemble of $K = 5$ independently initialized dy-
1668 namics models, each trained on the original offline dataset. For any state-action pair (s, a) , the
1669 ensemble produces multiple next-state predictions $\{\hat{s}'_1, \hat{s}'_2, \dots, \hat{s}'_K\}$. We calculate the prediction
1670 variance across ensemble members as a measure of epistemic uncertainty:
1671

$$1672 \text{Var}(\hat{s}') = \frac{1}{K} \sum_{k=1}^K \|\hat{s}'_k - \bar{s}'\|^2, \quad \text{where} \quad \bar{s}' = \frac{1}{K} \sum_{k=1}^K \hat{s}'_k \quad (74)$$

1685
1686
1687
1688
Figure 18: Comparison of DOSER with and without ensemble-guided gating.1709
1710
1711
1712
Figure 19: Proportions of different action types with ensemble-guided gating.

1713 To determine whether a predicted next state is reliable, we estimate the empirical distribution of
 1714 these variances on the offline dataset and use the 99-th percentile as a reliability threshold τ_{var} .
 1715 Only when the prediction variance for an OOD action falls below this threshold do we trust the
 1716 predicted next state and apply the value-based beneficial/detrimental classification; otherwise, the
 1717 action is conservatively categorized as detrimental.

1718 However, Figure 18 demonstrates that incorporating this ensemble-guided gating mechanism into
 1719 DOSER brings no noticeable performance improvement in the halfcheetah environments. We further
 1720 analyze the action type proportions during training (Figure 19), defining confident actions as those
 1721 with prediction variance below the reliability threshold, and uncertain actions as those filtered out by
 1722 the gate. The results indicate that fewer than 5% of actions exceed the threshold and are consequently
 1723 filtered out.

1724 This result again suggests that the pretrained dynamics model already generalizes reasonably well to
 1725 the moderately OOD regions. It is also possible that the chosen ensemble size of 5 is insufficient to
 1726 fully capture epistemic uncertainty, and larger or more expressive ensembles might provide stronger
 1727 gating effects. We leave the exploration of more sophisticated uncertainty quantification methods to
 future work.

1728 Table 7: Additional performance comparison on Gym-MuJoCo expert and random datasets. We
 1729 report the mean and standard deviation over 4 seeds for DOSER.

Dataset	BC	BCQ	BEAR	DT	AWAC	OneStep	TD3+BC	CQL	IQL	DMG	DOSER (Ours)
halfcheetah-e	92.9	89.9	92.7	87.7	81.7	88.2	96.7	96.3	95.0	95.9	95.4 ± 0.6
hopper-e	110.9	109.0	54.6	94.2	109.5	106.9	107.8	96.5	109.4	111.5	111.6 ± 0.5
walker2d-e	107.7	106.3	106.6	108.3	110.1	110.7	110.2	108.5	109.9	114.7	111.2 ± 0.3
halfcheetah-r	2.6	2.2	2.3	2.2	6.1	2.3	11.0	17.5	13.1	28.8	32.8 ± 1.5
hopper-r	4.1	7.8	3.9	5.4	9.2	5.6	8.5	7.9	7.9	20.4	31.2 ± 0.1
walker2d-r	1.2	4.9	12.8	2.2	0.2	6.9	1.6	5.1	5.4	4.8	3.5 ± 2.3
Average	53.2	53.4	45.5	50.0	52.8	53.4	56.0	55.3	56.8	62.7	64.9

C.8 ADDITIONAL EXPERIMENT RESULTS ON D4RL BENCHAMRK

To further validate DOSER’s performance across a wider range of dataset qualities, we conduct additional experiments on the Gym-MuJoCo expert and random datasets, as shown in Table 7. Across the expert datasets, DOSER achieves competitive performance relative to prior offline RL methods. More notably, on the random datasets, where the behavior data is highly suboptimal, DOSER exhibits stronger performance, indicating its robustness under poor-quality offline data.

C.9 LEARNING CURVES

Learning curves on D4RL tasks are provided in Figure 20, Figure 21, and Figure 22. The curves are averaged over 4 random seeds, with the shaded area representing the standard deviation across seeds.

D THE USE OF LARGE LANGUAGE MODELS (LLMs)

We acknowledge the assistance of GPT-5 in proofreading and polishing the manuscript. The authors bear full responsibility for the content and presentation of this paper.

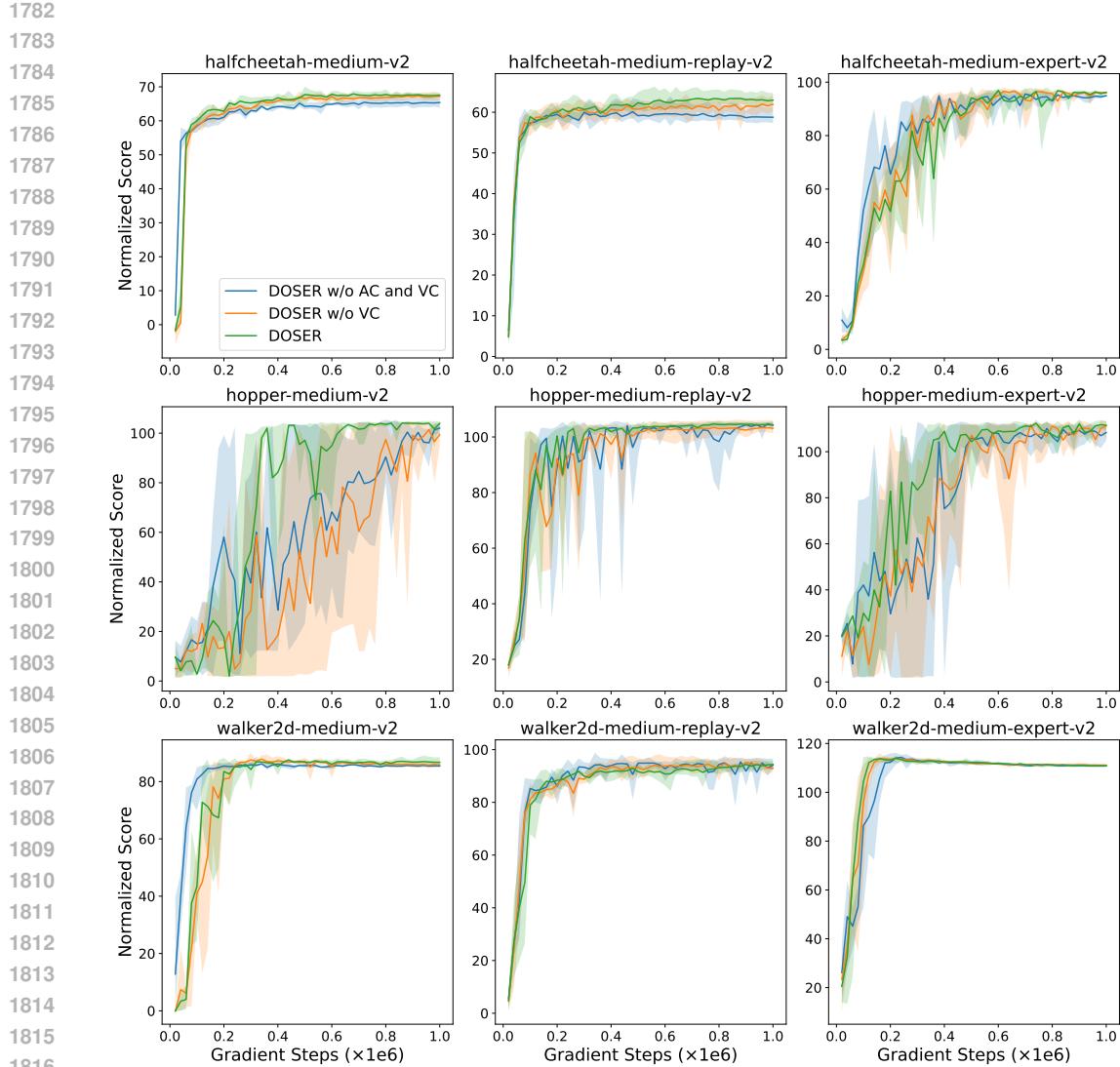


Figure 20: Learning curves of the component ablation study on Gym-MuJoCo tasks.

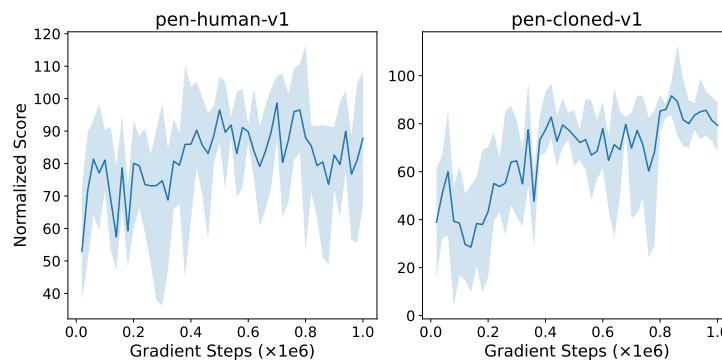


Figure 21: Learning curves on Adroit tasks.

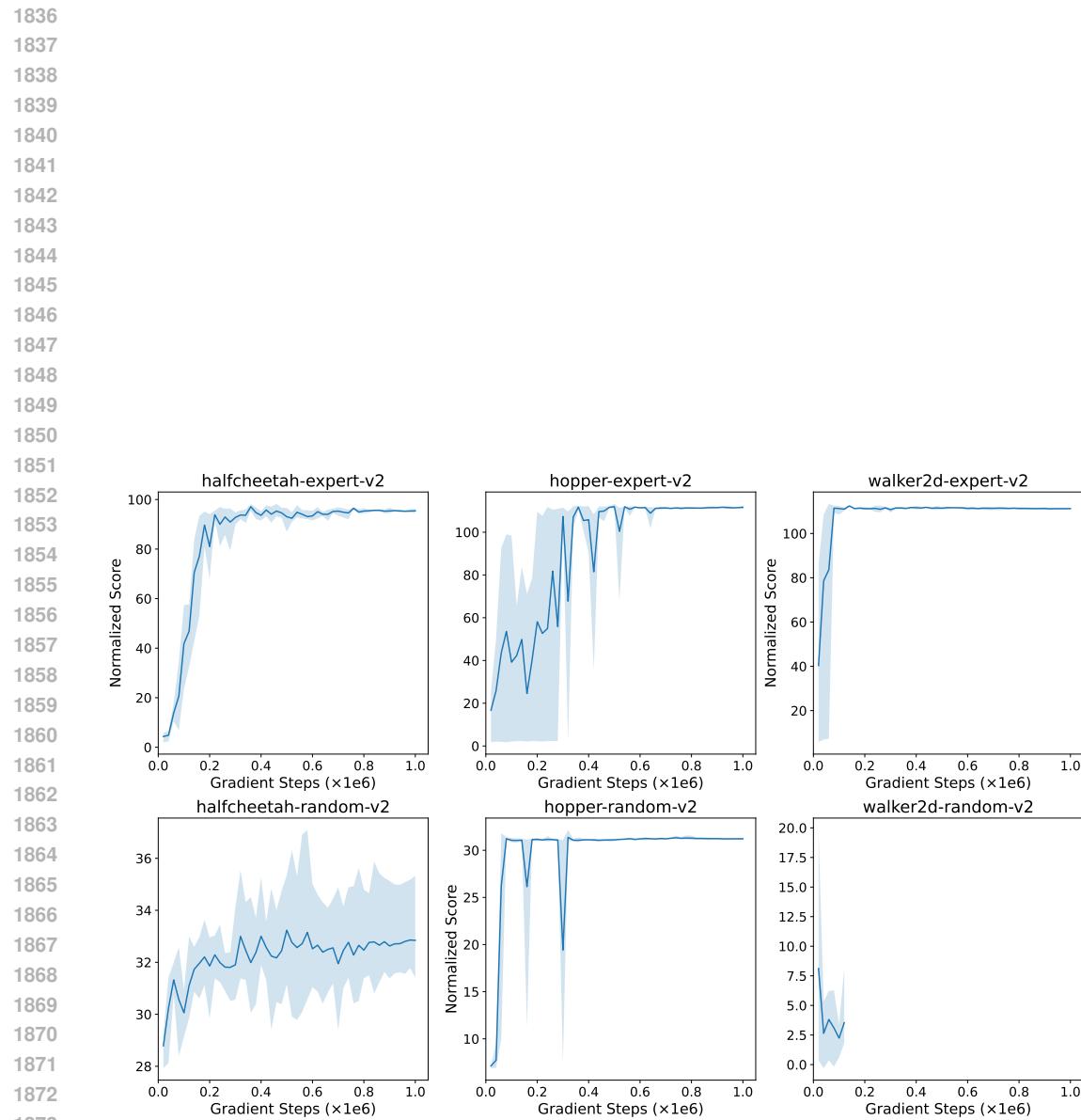


Figure 22: Learning curves on Gym-MuJoCo expert and random tasks.