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ABSTRACT

Offline reinforcement learning (RL) faces a critical challenge of overestimating
the value of out-of-distribution (OOD) actions. Existing methods mitigate this is-
sue by penalizing unseen samples, yet they fail to accurately identify OOD actions
and may suppress beneficial exploration beyond the behavioral support. Although
several methods have been proposed to differentiate OOD samples with distinct
properties, they typically rely on restrictive assumptions about the data distribu-
tion and remain limited in discrimination ability. To address this problem, we pro-
pose DOSER (Diffusion-based OOD Detection and SElective Regularization), a
novel framework that goes beyond uniform penalization. DOSER trains two dif-
fusion models to capture the behavior policy and state distribution, using single-
step denoising reconstruction error as a reliable OOD indicator. During policy
optimization, it further distinguishes between beneficial and detrimental OOD
actions by evaluating predicted transitions, selectively suppressing risky actions
while encouraging exploration of high-potential ones. Theoretically, we prove
that DOSER is a γ-contraction and therefore admits a unique fixed point with
bounded value estimates. We further provide an asymptotic performance guaran-
tee relative to the optimal policy under model approximation and OOD detection
errors. Across extensive offline RL benchmarks, DOSER consistently attains
superior performance to prior methods, especially on suboptimal datasets.

1 INTRODUCTION

Offline reinforcement learning (RL) has emerged as a powerful paradigm for learning policies ex-
clusively from static datasets, eliminating the need for potentially costly or risky online interac-
tions (Levine et al., 2020). This capability renders it particularly appealing for real-world domains
where exploration is constrained, such as robotics, healthcare and autonomous systems. However,
directly applying standard off-policy RL algorithms to offline dataset pose a fundamental challenge
of distribution shift. When the learned policy generates actions that deviate substantially from the
training data distribution, value functions tend to extrapolate erroneously, leading to severe value
overestimation and ultimately catastrophic performance degradation (Fujimoto et al., 2019).

Existing approaches to alleviate this problem can be divided into two categories: 1) Policy constraint
methods enforce the learned policy remain close to the behavior policy to avoid out-of-distribution
(OOD) actions (Kumar et al., 2019; Wu et al., 2019; Fujimoto & Gu, 2021; Kostrikov et al., 2021),
typically relying on variational auto-encoders (VAEs) (Kingma & Welling, 2013) for behavior mod-
eling. While effective in principle, these methods struggle to capture the multi-modal nature of
real-world behaviors, often collapsing diverse action distributions into suboptimal averaged outputs
within low-density regions (Wang et al., 2022). 2) Value regularization methods offer an alternative
by learning conservative Q-functions that penalize OOD actions (Kumar et al., 2020; Wu et al., 2021;
Bai et al., 2022; Mao et al., 2023). Their effectiveness depends on the underlying OOD identifica-
tion mechanism, which is a challenging task due to the limited representation capacity of the models
used to characterize data distribution. Furthermore, they usually apply uniform penalties across the
entire out-of-support region, without considering valuable explorations that could enhance policy
performance (Figure 1, left).
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Figure 1: VAE-based behavior modeling methods (left) often lead to erroneous OOD action de-
tection, whereas uniform penalties suppress high-potential OOD actions. Our proposed framework
(right) employs a trained diffusion model to characterize multi-modal behavior policy, using recon-
struction error as an OOD indicator. Following precise detection, we further classify OOD actions,
imposing penalties on harmful ones while compensating beneficial actions.

Recent efforts have sought to mitigate excessive pessimism by controlling the level of conservatism
in a fine-grained manner. CCVL (Hong et al., 2022) conditions the Q-function on a confidence level
to learn a spectrum of conservative value estimates, enabling adaptive policies that dynamically
adjust pessimism during online evaluation. ACL-QL (Wu et al., 2024) models the behavior pol-
icy as a Gaussian distribution and introduces learnable weighting functions to adaptively modulate
conservatism at the state-action level. DoRL-VC (Huang et al., 2024) employs a VAE-based detec-
tor to separate OOD from ID actions, and further distinguish OOD actions with different properties.
Nevertheless, such approaches either rely on Q-ensemble learning to achieve varying degrees of con-
servatism, incurring additional training overhead, or inherits strong Gaussian assumptions regarding
the behavior policy, which fundamentally limit their ability to reliably identify OOD samples.

To address these challenges, we present DOSER (Diffusion-based OOD Detection and SElective
Regularization), advancing OOD handling through two key innovations (Figure 1, right). First, we
utilize diffusion models to achieve precise OOD detection. By deploying two separate diffusion
models for behavior policy approximation and state distribution modeling, we establish reconstruc-
tion errors as theoretically rigorous metrics, avoiding strong parametric assumptions inherent in
Gaussian models while maintaining well-calibrated detection performance. Second, we introduce
an adaptive discrimination mechanism that goes beyond binary classification of in-distribution (ID)
and OOD. By integrating a learned dynamics model, we distinguish between beneficial OOD actions
(those with potential to improve performance while staying within state distribution) and detrimental
OOD actions (those likely to induce state distribution shift or value degradation). This fine-grained
discrimination enables selective regularization, discouraging hazardous actions while encouraging
promising explorations, which yields a robust framework that maintains necessary conservatism
while facilitating policy improvement.

The key contributions of this paper are as follows: 1) We propose a diffusion-based approach for
OOD detection in offline RL, using reconstruction error as a theoretically grounded metric. 2)
We introduce a dual regularization strategy that adaptively adjusts its treatment of OOD actions
based on predicted outcomes, suppressing detrimental actions while encouraging beneficial ones.
3) Extensive experiments on D4RL benchmarks demonstrate superior or competitive performance
compared to prior methods, with detailed ablations verifying the effectiveness of each component.

2 PRELIMINARY

Offline RL. We consider the RL problem formulated by the Markov Decision Process (MDP), which
is defined as a tuple (S,A,P, R, γ, d0), with state space S, action space A, transition dynamics
P : S × A × S −→ [0, 1], reward function R : S × A −→ [Rmin, Rmax], discount factor γ ∈ [0, 1),
and initial state distribution d0 : S −→ [0, 1] (Sutton et al., 1998). The goal of RL is to learn a policy
π : S −→ ∆(A) that maximizes the expected discounted return J(π) = E[

∑∞
t=0 γ

tR(st,at)]. For
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any policy π, we define the value function as V π(s) = E[
∑∞
t=0 γ

tR(st,at)|s0 = s], and the Q-
function as Qπ(s) = E[

∑∞
t=0 γ

tR(st,at)|s0 = s,a0 = a]. Given that rewards are bounded, the
Q-function must lie between Qmin = Rmin/(1− γ) and Qmax = Rmax/(1− γ). In offline RL, the
agent is limited to learn from a static dataset D = {(s,a, r, s′)} collected by a behavior policy πβ ,
without any interaction with the environment (Lange et al., 2012). We denote the empirical behavior
policy as π̂β , which depicts the conditional action distribution observed in D.

Diffusion Models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020) have emerged as a powerful class of generative models that excel in capturing complex data
distributions. The core idea revolves around a forward diffusion process that gradually perturbs
data into noise and a reverse process that learns to reconstruct the original data. Given a clean
sample x0 ∼ pdata(x0) with standard deviation σdata, the forward process constructs a sequence of
increasingly noisy samples xt ∼ p(xt;σt) by adding i.i.d. Gaussian noise with standard deviation
σt that increases along the schedule σmin = σ0 < σ1 < · · · < σN = σmax. Commonly, σmin

is chosen sufficiently small that pmin(x) ≈ pdata(x), while σmax is large enough that the final
distribution approximates isotropic Gaussian noise, i.e., pmax(x) ≈ N (x; 0, σ2

maxI).

In the original DDPM (Ho et al., 2020) formulation, this process is modeled as a discrete
Markov chain. Subsequent works reinterpret it through the lens of stochastic differential equations
(SDEs) (Song et al., 2020), describing the evolution of xt over continuous time t ∈ [0, T ] as:

dxt = f(xt, t) dt+ g(t) dwt (1)

where f(·, t) and g(t) are the drift and diffusion coefficients, and wt is a standard Wiener process.

The EDM framework (Karras et al., 2022) refines this paradigm by reparameterizing the diffusion
path with differentiable noise schedules σ(t). The reverse process is governed by a corresponding
probability-flow ODE derived from the forward SDE, which is formulated as:

dxt = −σ̇(t)σ(t)∇xt
log pt(xt)dt (2)

where σ̇(t) = dσ
dt is the time derivative of noise schedule controlling the noise change rate,

∇xt
log pt(xt) is the score function of the marginal distribution pt(xt). The score is approximated

by a neural network ϵθ(xt;σt) trained via denoising score matching (Vincent, 2011). The denoising
model ϵθ is trained to predict the true clean sample x0 from its noisy version xt = x0 + σtϵ by
minimizing the reweighted L2 loss:

L(θ) = Eσt,x0∼p(x0),ϵ∼N (0,I)

[
λ(σt)||x0 − ϵθ(xt, σt)||22

]
, (3)

where λ(σt) is the loss weight. Compared to the original DDPM that requires thousands of denoising
steps, EDM accelerates sampling by introducing optimized noise schedules and higher-order ODE
solvers, achieving high-quality generation within only a few dozen steps.

3 DIFFUSION-BASED OOD DETECTION AND SELECTIVE REGULARIZATION

In this section, we present the technical framework of DOSER. We begin by introducing three main
components that enable precise detection and classification of OOD actions, then demonstrate the
complete integration of these components into a unified algorithmic framework, detailing the prac-
tical implementation. Figure 2 provides an overview of the proposed method. For comprehensive
theoretical analysis, please refer to Appendix A.

3.1 DIFFUSION-BASED BEHAVIOR AND STATE MODELING

The foundation of our approach is to establish two diffusion models that jointly capture the under-
lying distributions of the offline dataset. We first construct a conditional diffusion model that learns
the empirical behavior policy distribution π̂β(a|s) by training a denoising network ϵθa(at, σt, s) to
reconstruct the original action a0 through the following optimization objective:

L(θa) = Eσt,(s,a0)∼D,ϵ∼N (0,I)

[
λ(σt)||a0 − ϵθa(at, σt, s)||22

]
. (4)

where at = a0 +σtϵ is the noisy action with noise scale σt, λ(σt) balances loss scales across noise
levels and ϵ ∼ N (0, I).
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Figure 2: Overview of the proposed method: (a) Diffusion-based OOD action detection, (b) Inte-
grating the detector to achieve OOD action classification.

In parallel, we develop a diffusion model to capture the state distribution d0(s) of the dataset. The
corresponding denoising network ϵθs(st, σt) is trained to recover the original states s0 from its
noisy version st, using the following reconstruction objective:

L(θs) = Eσt,s∼D,ϵ∼N (0,I)

[
λ(σt)||s0 − ϵθs(st, σt)||22

]
. (5)

3.2 OOD DETECTION VIA RECONSTRUCTION ERROR

Our detection mechanism leverages the denoising capabilities of pretrained diffusion models to iden-
tify OOD samples based on reconstruction errors. Given a state-action pair (s,a0) encountered
during policy optimization, we compute its OOD score through a two-step procedure.

First, we sample a noise scale σt from the training noise schedule and perturb the action as at =
a0+σtϵ, where ϵ ∼ N (0, I). The OOD score is then defined as the L2 reconstruction error between
the original action and its denoised counterpart:

Ea(s,a0) = ∥a0 − ϵθa(at, σt, s)∥2. (6)

Analogously, for state inputs, we measure the reconstruction error between the original state s0 and
its denoised version:

Es(s0) = ∥s0 − ϵθs(st, σt)∥2, (7)

where st denotes the noise-corrupted state.

Formally, the OOD indicator functions are given by:

Iood(a0) = {Ea(s,a0) > τa}, Iood(s0) = {Es(s0) > τs}, (8)

where the thresholds τa and τs are set as the p-th percentiles of the reconstruction errors on the
training dataset D, with p controlling the level of conservatism.

This reconstruction-based method offers three key advantages: 1) Reconstruction error provides
a likelihood-free surrogate for distributional alignment, directly measuring conformity to the data
manifold without explicit density estimation. 2) Diffusion models naturally capture multi-modal
distributions, avoiding the restrictive unimodal Gaussian assumptions of conventional approaches.
3) Detection is efficient, requiring only a single forward pass per sample. Moreover, evaluating
errors across multiple randomly sampled diffusion timesteps rather than a fixed noise level improves
robustness, since different noise scales correspond to varying levels of information bottleneck in the
data distribution.

3.3 ADAPTIVE OOD ACTION CLASSIFICATION

Building on the detection framework, we introduce an adaptive classification mechanism to handle
OOD actions during policy optimization. Unlike conventional methods that indiscriminately pe-
nalize all deviations, our approach distinguishes between beneficial and detrimental OOD actions
through a two-stage assessment process.
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Algorithm 1 Diffusion-Based OOD Detection with selective regularization (DOSER)

Initialize Q-network Qθ, V-network Vθ, diffusion behavior model ϵθa , diffusion state model ϵθs ,
policy network πϕ, dynamics model pψ , and target networks Qθ′ , Vθ′ , πϕ′

# Model Pretraining
Pretraining dynamics model pψ by minimizing ( 13)
Pretraining diffusion models ϵθa and ϵθs by minimizing ( 4) and ( 5)
Calculate OOD detection thresholds τa and τs based on in-sample reconstruction error
for each iteration do

Sample transition minibatch {(s,a, r, s′)} from D
# Critic Learning
Generate action aπ ∼ πϕ(s) and predict the next state s′π = pψ(s,aπ)
Select the best ID action a∗

id and predict the next state s′id = pψ(s,a
∗
id)

Calculate the reconstruction errors of policy action and next state by( 6) and( 7)
Calculate the adaptive bonus δV = Vθ(s

′
π)− Vθ(s′id)

Update Qθ and Vθ by minimizing ( 10) and ( 12)
# Actor Learning
Update πϕ by minimizing ( 14)
# Target Network Update
θ′ ← ρθ + (1− ρ)θ′, ϕ′ ← ρϕ+ (1− ρ)ϕ′

end for

For each policy-generated OOD action aood in state s, we first predict the subsequent state s′π using
the learned dynamics model pψ(s′|s,a), pretrained via supervised learning on the offline dataset
D. Since value estimation for OOD states is inherently unreliable, we then evaluate the outcome
of aood along two dimensions: 1) Whether s′π lies outside the training distribution, determined by
the proposed OOD detection mechanism; 2) If s′π is in-distribution, whether V (s′π) exceeds V (s′id),
where s′id denotes the predicted next state after executing the optimal in-distribution action.

Formally, the classification rule for OOD actions is given in Definition 1.
Definition 1 (Beneficial and detrimental OOD action sets). Let the beneficial OOD action set A+

ood

and the detrimental OOD action set A−
ood be subsets of the action space A. Then:

A+
ood := {a ∈ A | Es(s′π) ≤ τs ∧ V (s′π) ≥ V (s′id)} ,
A−

ood := {a ∈ A | Es(s′π) > τs ∨ V (s′π) < V (s′id)} ,
(9)

where s′π ∼ pψ(·|s,aood), s′id ∼ pψ(·|s,a∗
id), a

∗
id = argmaxa∼πβ(·|s)Q(s,a) is the optimal in-

distribution action at state s, Es(·) is the state reconstruction error defined in (7), and τs is the state
OOD threshold.

Accordingly, detrimental OOD actions are penalized to mitigate overestimation. Conversely, to
encourage exploration beyond dataset support, beneficial OOD actions receive an adaptive bonus
δV = V (s′π)−V (s′id). This compensates for extrapolation errors in value estimation and guides the
policy towards high-value regions, even when Q-value estimates for OOD actions remain imperfect.

Therefore, we minimize the following loss for policy evaluation:

L(θ) = E(s,a,s′)∼D
[ (
Qθ(s,a)−

(
R(s,a) + γEa′∼πβ(·|s)[Qθ′(s

′,a′)]
))2︸ ︷︷ ︸

Standard Bellman error

]
+ β Es∼D,a∼πϕ(·|s)

[
I(a ∈ A−

ood) · (Qθ(s,a)−Qmin)
2︸ ︷︷ ︸

Penalty for detrimental OOD actions

]
+ λEs∼D,a∼πϕ(·|s)

[
I(a ∈ A+

ood) · (Qθ(s,a)− η (Qθ′(s,a
∗
id) + δV ))

2︸ ︷︷ ︸
Bonus for beneficial OOD actions

] (10)

where Qθ′ is the target Q-network, Qmin = Rmin/(1− γ) is the theoretical minimal Q-value of the
MDP. In practical implementation, we approximate a∗

id as:
â∗
id = argmax

ai∼π̂β(·|s)
Q(s,ai) for i = 1, . . . , N (11)

with N = 10 empirically balancing computational cost and performance across all tasks.
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(a) (b) (c) (d) (e)

Figure 3: OOD detection experiments on 1D navigation task, where a higher OOD detection metric
(reconstruction error or uncertainty estimation) indicates a greater likelihood of being OOD. (a) Two
offline datasets with distinct data distributions: expert (top) and medium (bottom). (b) OOD scores
across the entire state-action space, evaluated using diffusion-based reconstruction error. (c) OOD
scores based on model ensemble uncertainty. (d) OOD scores based on MC dropout uncertainty. (e)
OOD scores derived from CVAE-based reconstruction error.

3.4 PRACTICAL IMPLEMENTATION

In this section, we provide the practical implementation of our algorithm.

Value Learning. Similar to IQL, we perform expectile regression to train the value network.

L(θ) = E(s,r,s′)∼D [Lτ2(r + γVθ′(s
′)− Vθ(s)] (12)

where Lτ2(u) = |τ − I(u < 0)|u2 denotes the asymmetric L2 loss, and Vθ′ is the target V-network.

Dynamics Model. With the quadruples (s,a, s′) in offline dataset D, we train the dynamics model
via supervised regression:

L(ψ) = E(s,a,s′)∼D||pψ(·|s,a)− s′||22 (13)

Policy Learning. To enhance exploration, we optimize the actor network with maximum entropy
regularization:

L(ϕ) = Es∼D,a∼πϕ(s) [α log πϕ(·|s)−Qθ(s,a)] (14)
where α is dynamically adjusted to maintain target entropy.

Overall Algorithm. Putting everything together, we summarize our implementation in Algorithm 1.

4 EXPERIMENTS

In this section, we conduct a series of experiments to validate the effectiveness of our proposed
method. We aim to answer the following key questions: 1) Is diffusion-based reconstruction er-
ror better than existing approaches in detecting OOD samples? 2) How does DOSER perform on
standard offline RL benchmarks compared to prior SOTA methods? 3) Does each component in
DOSER contribute meaningfully to the overall performance? 4) How sensitive is DOSER to its key
hyperparameter? More experimental details and results are provided in Appendix B and C.

4.1 OOD DETECTION

To evaluate the effectiveness of diffusion-based reconstruction error for OOD detection, we design
a simple 1D navigation task, the discrete state-action space is defined over position s ∈ [−10, 10]
and step size a ∈ [−1, 1]. The reward function is defined as the negative distance to the target state
0, such that rewards increase as the agent approaches the target. By perturbing optimal actions with
noise of varying scales, we generate two offline datasets, expert and medium. We then compare our
diffusion-based approach against three representative baselines:

6
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Figure 4: Comparison of OOD action detection performance between CVAE-based reconstruction
error and the proposed diffusion-based method in the D4RL MuJoCo domain.

1) Model ensemble. An ensemble of dynamics models is trained to capture epistemic uncertainty,
with OOD samples identified based on high prediction variance across ensemble members.

2) MC dropout. Monte Carlo dropout is applied during inference to approximate model uncertainty,
where actions with high estimated uncertainty are flagged as OOD.

3) CVAE-based reconstruction error. A conditional VAE (CVAE) is trained to model the behavior
distribution, and the reconstruction error is used as the OOD indicator.

As shown in Figure 3, our diffusion-based method effectively separates ID and OOD samples across
the entire state-action space, whereas baseline methods fail to achieve reliable identification even
in this simple setting. In particular, the model ensemble approach frequently misclassifies OOD
samples as in-distribution due to its inability to disentangle epistemic and aleatoric uncertainty.
Similarly, MC dropout tends to conflate these two sources of uncertainty, while also introducing un-
desirable stochasticity at inference. Although the CVAE-based reconstruction error baseline shows
stronger discrimination than the other two methods, its performance primarily stems from recon-
struction ability, while its limited capacity to model multi-modal distributions remains a fundamental
limitation (Wang et al., 2022). For more experimental details, please refer to Appendix B.4.

We further compare the OOD action detection performance using CVAE-based reconstruction er-
ror with our proposed diffusion-based approach in the D4RL MuJoCo domain (Fu et al., 2020),
with results presented in Figure 4. Both methods rely solely on reconstruction error as the detec-
tion metric, without incorporating any additional classification or compensation. As illustrated, the
CVAE-based method struggles to reliably identify OOD samples in high-dimensional continuous
control tasks, which is attributed to its tendency to produce over-smoothed reconstructions, thus di-
minishing sensitivity to anomalous action inputs. In contrast, our proposed diffusion-based OOD
detection consistently delivers superior performance across all evaluated datasets.

4.2 COMPARISONS ON D4RL BENCHMARKS

We evaluate the policy performance of DOSER on the standard D4RL benchmark, covering a diverse
set of continuous control tasks with varying dataset qualities.

We compare DOSER against a broad range of baselines, including conventional algorithms and
SOTA diffusion-based approaches. For policy constraint methods, we include TD3+BC (Fujimoto
& Gu, 2021), IQL (Kostrikov et al., 2021) and A2PR (Liu et al., 2024). For value regularization
methods, we compare against CQL (Kumar et al., 2020), SVR (Mao et al., 2023) and ACL-QL (Wu
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Table 1: Evaluation results on D4RL benchmark. We report the average normalized scores at the last
training iteration over 4 random seeds. Note that m=medium, m-r=medium-replay, m-e=medium-
expert. Bold indicates the values within 95% of the maximum value.

Dataset Conventional methods Diffusion-based methods

TD3+BC IQL A2PR CQL SVR ACL-QL DQL SfBC IDQL QGPO SRPO DTQL DOSER (Ours)

halfcheetah-m 48.3 47.4 68.6 44.0 60.5 69.8 51.5 45.9 51.0 54.1 60.4 57.9 67.5 ± 0.5
hopper-m 59.3 66.3 100.8 58.5 103.5 97.9 90.5 57.1 65.4 98.0 95.5 99.6 104.0 ± 0.5
walker2d-m 83.7 78.3 89.7 72.5 92.4 79.3 87.0 77.9 82.5 86.0 84.4 89.4 86.7 ± 1.2
halfcheetah-m-r 44.6 44.2 56.6 45.5 52.5 55.9 47.8 37.1 45.9 47.6 51.4 50.9 63.0 ± 1.1
hopper-m-r 60.9 94.7 101.5 95.0 103.7 99.3 101.3 86.2 92.1 96.9 101.2 100.0 104.4 ± 0.6
walker2d-m-r 81.8 73.9 94.4 77.2 95.6 96.5 95.5 65.1 85.1 84.4 84.6 88.5 94.4 ± 1.3
halfcheetah-m-e 90.7 86.7 98.3 91.6 94.2 87.4 96.8 92.6 95.9 93.5 92.2 92.7 96.2 ± 0.4
hopper-m-e 98.0 91.5 112.1 105.4 111.2 107.2 111.1 108.6 108.6 108.0 100.1 109.3 111.5 ± 1.6
walker2d-m-e 110.1 109.6 114.6 108.8 109.3 113.4 110.1 109.8 112.7 110.7 114.0 110.0 110.9 ± 0.2

MuJoCo-v2 Average 75.3 83.3 93.0 77.6 91.4 89.6 88.0 75.6 82.1 86.6 87.1 88.7 93.2

pen-human 54.9 71.5 - 35.2 73.1 - 72.8 - - 73.9 - 64.1 87.8 ± 14.7
pen-cloned 63.8 37.3 - 27.2 70.2 - 57.3 - - 54.2 - 81.3 79.3 ± 8.9

Adroit-v1 Average 59.4 54.4 - 31.2 71.7 - 65.1 - - 64.1 - 72.7 83.6

et al., 2024). For diffusion-based methods, we consider approaches that also leverage diffusion mod-
els for behavior cloning, such as DQL (Wang et al., 2022), SfBC (Chen et al., 2022), IDQL (Hansen-
Estruch et al., 2023), QGPO (Lu et al., 2023), SRPO (Chen et al., 2023) and DTQL (Chen et al.,
2024). Baseline performance is taken from original papers or recent literature. Some baselines did
not report results on the pen tasks, and key hyperparameters for reproduction are unavailable, so we
mark these entries as “–”.

As shown in Table 1, DOSER consistently achieves strong performance, outperforming prior meth-
ods on both Gym-MuJoCo and Adroit tasks. Its advantage is particularly pronounced in the more
challenging “medium” and “medium-replay” settings, where the datasets contain a significant pro-
portion of suboptimal and heterogeneous behaviors. This highlights the effectiveness of our pro-
posed diffusion-based OOD detection mechanism and its ability of selective regularization. While
existing diffusion-based baselines already exhibit improved performance over traditional approaches
due to their expressive modeling capacity, DOSER further improves upon them by explicitly classi-
fying OOD actions, which allows for more refined value estimation and better policy improvement.
Note that methods such as SVR and A2PR also incorporate behavior modeling into their frame-
works, either for value regularization or policy constraint. Specifically, SVR employs a CVAE to
approximate the support of the behavior policy and imposes uniform penalties to actions that fall
outside this estimated support. Similar to the motivation of DOSER, A2PR introduces an action
discrimination mechanism to guide policy optimization. However, A2PR’s discriminator is solely
applied to in-distribution actions identified by an enhanced CVAE, thereby restricting policy learning
to a potentially inaccurate approximation of the dataset support. In contrast to these CVAE-based
approaches, DOSER leverages the expressive power of diffusion models for more accurate OOD
detection and employs a selective regularization strategy targeted at OOD actions. This enables the
learned policy to extrapolate to high-value regions beyond the offline dataset, ultimately contributing
to superior empirical performance.

4.3 ABLATION STUDY ON COMPONENTS IN DOSER

To systematically validate the effectiveness of each component in the DOSER framework, we con-
duct ablation studies on two variants.

1) DOSER w/o AC and VC. This variant removes both OOD action classification (AC) and value
compensation (VC). It relies solely on diffusion-based reconstruction error to detect OOD actions,
applying a uniform penalty without distinguishing between beneficial and detrimental cases. This
serves as a direct test of the core capability of diffusion models in OOD detection.

2) DOSER w/o VC. Building on the baseline above, this variant further differentiates OOD ac-
tions by incorporating both next-state distribution modeling and value estimation. Specifically, it
identifies OOD actions that either (i) lead to OOD states or (ii) yield lower value outcomes than op-
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Table 2: Components ablation across MuJoCo-v2 tasks.
Method halfcheetah hopper walker2d

m m-r m-e m m-r m-e m m-r m-e

DOSER w/o AC and VC 65.4 ± 1.1 58.8 ± 1.6 94.9 ± 0.2 102.1 ± 1.7 104.2 ± 1.3 108.3 ± 2.5 85.4 ± 0.4 94.1 ± 1.5 110.8 ± 0.4
DOSER w/o VC 67.2 ± 0.9 61.9 ± 1.5 96.0 ± 0.2 99.4 ± 4. 103.2 ± 1.8 111.2 ± 3.2 85.8 ± 0.6 93.0 ± 1.0 111.1 ± 0.5
DOSER 67.5 ± 0.5 63.0 ± 1.1 96.2 ± 0.4 104.0 ± 0.5 104.4 ± 0.6 111.5 ± 1.6 86.7 ± 1.2 94.4 ± 1.3 110.9 ± 0.2

timal ID actions as detrimental, penalizing only those. All other OOD actions are retained without
regularization, enabling a more nuanced treatment of OOD behavior.

We keep all hyperparameters fixed across these variants and evaluate performance on MuJoCo loco-
motion tasks. Table 2 reports the average normalized scores of DOSER and its two ablated variants
across nine datasets. The complete learning curves are provided in Appendix C.9.

The results show that even the baseline variant (DOSER w/o AC and VC) already performs com-
petitively with existing SOTA methods, confirming the strong effectiveness of diffusion models
for OOD action detection. However, its uniform penalization strategy excessively suppresses po-
tentially beneficial OOD actions, leading to noticeable performance degradation. In contrast, the
classification-based variant (DOSER w/o VC) alleviates this issue by selectively regularizing only
detrimental OOD actions, resulting in smaller performance drops. Overall, these findings strongly
validate the effectiveness of DOSER’s fine-grained classification and compensation mechanism in
better balancing conservatism and exploration during policy optimization.

4.4 SENSITIVITY ANALYSIS
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(a) OOD detection thresholds τa and τs.
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(b) Penalty coefficient β.
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(c) Compensation coefficient λ.

Figure 5: Ablation study on hyperparameters for
halfcheetah tasks.

We compare different OOD detection thresh-
olds in Figure 5(a), set as the p-th percentile of
in-distribution reconstruction errors. A smaller
threshold implies more samples will be iden-
tified as OOD, which is beneficial for nar-
row behavior distributions like in the “medium-
expert” dataset, where a larger threshold might
overlook OOD samples. For more diverse
datasets like “medium” and “medium-replay”,
larger thresholds are preferred to prevent ID
samples from being misclassified as OOD.

We also investigate the impact of the penalty
coefficient β, varying it from 10−5 to 1, as
shown in Figure 5(b). Datasets with narrow dis-
tributions require a larger β to prevent value
overestimation, while more diverse datasets
benefit from a smaller β to avoid suppressing
beneficial OOD actions.

An ablation study on the compensation coeffi-
cient λ in Figure 5(c) shows that DOSER per-
forms well across a wide range of λ values on
the more diverse datasets. Setting λ = 0.001
yields stable performance across datasets, while
excessively large values can amplify the com-
pensation effect, leading to value overestima-
tion and disrupting the learning process.

5 RELATED WORKS

OOD Detection. Reliable identification of OOD samples is critical for the robustness of ma-
chine learning systems. Existing methods primarily fall into two categories: generative-based
and reconstruction-based. Generative-based methods leverage probabilistic models to estimate the
likelihood of test samples under the learned distribution (Ren et al., 2019), but models such as
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Glow (Kingma & Dhariwal, 2018) and VAEs (Kingma & Welling, 2013) often assign higher likeli-
hoods to OOD samples than to ID data (Hendrycks et al., 2018; Nalisnick et al., 2018). Although
improvements like likelihood ratios (Ren et al., 2019) and typicality tests (Nalisnick et al., 2019)
have been proposed, their reliance on likelihood estimation remains a fundamental limitation. In
contrast, reconstruction-based methods (Denouden et al., 2018; Zong et al., 2018) directly measure
reconstruction quality, based on the premise that models trained on ID data reconstruct familiar pat-
terns well, while exhibiting significant errors on anomalous inputs. Traditional autoencoders (Lyud-
chik, 2016) and more recent diffusion-based models (Graham et al., 2023) have shown promising
results in this regard, with diffusion models leveraging iterative refinement to further enhance ID re-
construction. Consequently, reconstruction error provides a more reliable signal of distribution shift
than likelihood-based metrics, offering improved discriminability between ID and OOD samples.

OOD Detection in Offline RL. Offline RL presents additional challenges for OOD detection due
to the lack of online interaction. To mitigate the risk of extrapolation error, BCQ (Fujimoto et al.,
2019) and SVR (Mao et al., 2023) employ VAEs to approximate the behavior policy, constraining
the learned policy to remain within behavior support. However, VAEs often fail to capture multi-
modal distributions accurately (Wang et al., 2024), resulting in oversimplified generations. Another
line of work quantifies uncertainty to identify OOD samples. Model ensemble methods (Laksh-
minarayanan et al., 2017) identify OOD state-action pairs via predictive variance, with algorithms
such as MOPO (Yu et al., 2020) incorporating this uncertainty as a penalty into the reward function.
Similarly, Monte Carlo (MC) dropout offers a computationally efficient approximation to Bayesian
inference (Gal & Ghahramani, 2016), and has been applied in offline RL for uncertainty-aware OOD
detection (Wu et al., 2021). While effective to some extent, both approaches often conflate epistemic
and aleatoric uncertainty, which may lead to erroneous identification of OOD actions (Zhang et al.,
2023). Alternatively, CQL (Kumar et al., 2020) avoids explicit density estimation by regularizing
the Q-function to assign lower values to all unseen actions. This implicit OOD detection eliminates
the need for behavior modeling but risks being overly conservative, potentially suppressing valuable
actions that lie outside the behavior support but could lead to improved performance.

Diffusion Models in Offline RL. Diffusion models have recently emerged as powerful paradigms
in RL for modeling multi-modal distributions. This capability is particularly valuable in offline RL
settings, where capturing the diversity of behaviors is essential for deriving robust policies. Meth-
ods such as Diffusion-QL (Wang et al., 2022) and DAC (Fang et al., 2024) incorporate Q-function
guidance into the reverse diffusion process, shaping action generation toward higher-value regions.
In contrast, IDQL (Hansen-Estruch et al., 2023) and SfBC (Chen et al., 2022) first pretrain a con-
ditional diffusion model to generate multiple action candidates for a given state, and subsequently
resample according to Q-values to select the best action for execution. Notably, while these ap-
proaches effectively integrate diffusion models with value functions for policy improvement, their
use of diffusion remains largely limited to guiding or selecting actions, none of them fully exploit
the inherent properties of diffusion models, such as reconstruction fidelity or noise sensitivity, to
directly assess whether state-action pairs lie within the support of the training distribution.

6 CONCLUSION

In this work, we proposed DOSER, a framework that mitigates distribution shift through diffusion-
based reconstruction error. Unlike prior methods that rely on heuristic uncertainty measures or
unreliable likelihood estimates, DOSER leverages the expressive power of diffusion models to com-
pute theoretically grounded reconstruction errors for both behavior policy and state distributions.
This provides robust detection metrics that overcome the multi-modality limitations of Gaussian-
based approximators. Crucially, DOSER introduces a selective regularization mechanism that clas-
sifies OOD samples into beneficial and detrimental actions, enabling suppression of detrimental
extrapolations while compensating promising explorations via value-difference bonuses. Extensive
experiments demonstrate that DOSER achieves superior or competitive performance compared to
state-of-the-art methods, particularly on suboptimal datasets.

Nonetheless, DOSER has two key limitations: 1) its reliance on the accuracy of the diffusion-based
reconstruction and the learned dynamics model, and 2) the computational overhead of the iterative
diffusion sampling. Future work could focus on enhancing the robustness of dynamics model and
improving efficiency via model distillation and accelerated sampling techniques.
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APPENDIX

A THEORETICAL ANALYSIS

In this section, we provide the formal definitions and theoretical analysis in the paper.

A.1 DEFINITIONS

Definition 2 (In-sample Bellman operator). The in-sample Bellman operator is defined as:

TInQ(s,a) := R(s,a) + γEs′∼P (·|s,a),a′∼π̂β(·|s′) [Q(s′,a′)] , (15)

where π̂β is the empirical behavior policy in the dataset.

Based on Definition 2, DOSER operator is defined as follows.

Definition 3 (DOSER operator). From an optimization perspective, (10) lead to the DOSER policy
evaluation operator:

TDOSERQ(s,a) =

{
TInQ(s,a) if Ea(s,a) ≤ τa
Qadj(s,a) otherwise

(16)

where Qadj(s,a) is the adjusted Q-target for OOD actions:

Qadj(s,a) =

{
Qmin if a ∈ A−

ood

η (Q(s,a∗
id) + δV ) if a ∈ A+

ood

(17)

Therefore, DOSER guarantees that the Q-values of ID actions remain unbiased, while underestimate
those detrimental OOD actions. By applying value compensation δV to beneficial OOD actions, it
incentivizes exploration toward high-potential state-action pairs.

A.2 THEOREMS

Theorem 1 (Contraction mapping property). For arbitrary Q-functions Q1 and Q2 defined on the
whole state-action space S ×A, the DOSER operator TDOSER constitutes a γ-contraction mapping
in the L∞ norm:

||TDOSERQ1 − TDOSERQ2||∞ ≤ γ||Q1 −Q2||∞. (18)

By the Banach fixed-point theorem (Banach, 1922), repeatedly applying TDOSER converges to a
unique fixed point from any initial Q-function.

Theorem 2 (Bounded value estimation). For any policy π, let QπDOSER denote the unique fixed
point of the DOSER operator TDOSER. Then, QπDOSER satisfies the following boundedness property
for all (s,a):

Qmin ≤ QπDOSER(s,a) ≤ QπIn(s,a∗
id) + ηδV , (19)

where QπIn(s,a
∗
id) = maxa∼πβ(·|s)Q

π
In(s,a) is the optimal Q-value by iterating the in-sample

Bellman operator TIn.

Since QπIn corresponds to the fixed point of the in-sample Bellman operator, it yields reliable value
estimates within the data distribution. Therefore, Theorem 2 implies that DOSER incurs controlled
value overestimation while enabling exploration to high-value regions via the compensation mech-
anism. The upper bound tightens as the compensation target weight η and value difference δV
decrease, since smaller values of these parameters directly constrain the magnitude of the value
adjustment for OOD actions, aligning the value estimate closer to the in-distribution baseline QπIn.

By dynamically adjusting how OOD actions are treated based on their predicted outcomes, the pro-
posed selective regularization mechanism balances safety and performance, avoiding the pitfalls of
binary classification. Crucially, our method preserves standard Q-learning convergence guarantees
while enabling safer exploration beyond the behavior policy support.
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Theorem 3 (Bounded critic deviation). Let πref denote the reference policy obtained with the true
environment dynamics P and without OOD detection error, with Qπref being its corresponding
action-value function. Let π̂ denote the learned policy of DOSER under a dynamics model approx-
imation error εdyn and an OOD detection misclassification probability εdet. Then, the deviation of
the learned critic Q̂ from Qπref is bounded as follows:

∥Q̂−Qπref∥∞ ≤
γ

1− γ
(Qmax (C1εdyn + C2εdet) + ηδV ) , (20)

where Qmax =
Rmax

1− γ
, and C1, C2 are constants that capture the sensitivity of the policy optimiza-

tion process to dynamics and detection errors respectively.

Theorem 4 (Performance gap of DOSER). Let π̂ be the policy learned by DOSER through iterative
application of TDOSER, and let π∗ denote the optimal policy. Suppose δf represents the function
approximation error. Then the performance gap between π∗ and π̂ satisfies

|J(π∗)− J(π̂)| ≤ δf +
CLPRmax

1− γ
(C1εdyn + C2εdet) , (21)

where C1, C2 are positive constants, and LP is the Lipschitz constant of the environment dynamics.

Consequently, the performance gap is influenced by three key components: the function approxima-
tion error δf , the OOD detection error εdet, and the dynamics model approximation error εdyn. In
our setting, the diffusion model provides a reliable mechanism for OOD detection, as confirmed by
extensive experiments, which keeps εdet small. Meanwhile, the learned dynamics model maintains
stable predictive performance, ensuring that εdyn remains bounded. Therefore, when the diffusion
reconstruction error becomes negligible and the dynamics model is sufficiently well fitted, together
with a small δf , then the right-hand side of the bound vanishes, implying J(π̂)→ J(π∗).

A.3 PROOFS

A.3.1 PROOF OF THEOREM 1

Proof. Let TDOSER denote the DOSER operator acting on bounded Q-functions defined on S ×A.
Assume

• Q-functions lie in the Banach space (B, ∥ · ∥∞) of bounded real functions on S × A with
the sup-norm;

• the compensation coefficient satisfies 0 ≤ η ≤ γ < 1;

• the value-compensation term δV is a scalar that does not depend on the Q-function being
evaluated (i.e., it is treated as fixed when comparing two Q-functions; if δV depends on Q,
then it must be Lipschitz continuous in Q with a sufficiently small Lipschitz constant to
preserve contraction; here we assume it is fixed for simplicity and clarity).

Let Q1, Q2 ∈ B be two arbitrary Q-functions. We will bound ∥TDOSERQ1 − TDOSERQ2∥∞ by
considering the three types of actions that DOSER treats differently: 1) in-distribution actions, 2)
detrimental OOD actions, and 3) beneficial OOD actions.

1) In-distribution actions. For any (s,a) with Ea(s,a) ≤ τa, DOSER reduces to the in-sample
Bellman operator

TDOSERQ(s,a) = TInQ(s,a) = R(s,a) + γ Es′∼P (·|s,a), a′∼π̂β(·|s′)

[
Q(s′,a′)

]
(22)
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Hence, the contraction property follows from standard Bellman operator properties:
∥TDOSERQ1(s,a)− TDOSERQ2(s,a)∥∞

= ∥TInQ1(s,a)− TInQ2(s,a)∥∞
= ∥(R(s,a) + γEs′,a′ [Q1(s

′,a′)])− (R(s,a) + γEs′,a′ [Q2(s
′,a′)])∥∞

= γmax
s,a
|Es′,a′ [Q1(s

′,a′)−Q2(s
′,a′)]|

≤ γmax
s,a

Es′,a′ |Q1(s
′,a′)−Q2(s

′,a′)|

≤ γmax
s,a
∥Q1 −Q2∥∞

= γ ∥Q1 −Q2∥∞

(23)

Thus for all in-distribution (s,a), we have
||TDOSERQ1 − TDOSERQ2||∞ ≤ γ||Q1 −Q2||∞ (24)

2) Detrimental OOD actions. For detrimental OOD actions a ∈ A−
OOD, Q-target are set to a

constant Qmin (independent of the current Q):
TDOSERQ(s,a) = Qmin (25)

The difference vanishes for any Q-functions Q1, Q2:
||TDOSERQ1(s,a)− TDOSERQ2(s,a)||∞ = ||Qmin −Qmin||∞ = 0 ≤ γ||Q1 −Q2||∞ (26)

3) Beneficial OOD actions. For beneficial OOD actions a ∈ A+
OOD, DOSER applies a value

compensation, quantified as the difference between the value of the next state s′π reaching by taking
the beneficial OOD action a and s′id after executing the best ID action a∗

id:
TDOSERQ(s,a) = η (Q(s,a∗

id) + δV )

= η

(
max

a∼π̂β(·|s)
Q(s,a) + V (s′π)− V (s′id)

)
(27)

where by assumption δV is treated as a fixed scalar w.r.t. the Q-function comparison. Thus
||TDOSERQ1(s,a)− TDOSERQ2(s,a)||∞

= ||η
(
Q1(s,a

∗
id,1) + δV

)
− η

(
Q2(s,a

∗
id,2) + δV

)
||∞

= ηmax
s,a
|Q1(s,a

∗
id,1)−Q2(s,a

∗
id,2)|

= ηmax
s,a
|max

a
Q1(s,a)−max

a
Q2(s,a)|

≤ ηmax
s,a
||Q1 −Q2||∞

≤ γ||Q1 −Q2||∞

(28)

Combining all three cases, we have ||TDOSERQ1 − TDOSERQ2||∞ ≤ γ||Q1 −Q2||∞.

By the Banach fixed-point theorem (Banach, 1922), TDOSER admits a unique fixed point in B and
iterative application of TDOSER from any initial Q-function converges to that fixed point at rate at
most γ.

A.3.2 PROOF OF THEOREM 2

Proof. Suppose the DOSER operator TDOSER admits a unique fixed point QπDOSER (Theorem 1).
Assume the compensation term δV is a scalar that does not depend on the Q-function being evaluated
(if δV is estimated from Q, a Lipschitz assumption on this estimator must be made).

We reason by cases according to DOSER’s treatment of actions. By Theorem 1, the fixed point
QπDOSER exists and for each (s,a) satisfies

QπDOSER(s,a) =


TInQπDOSER(s,a) if Ea(s,a) ≤ τa (in-distribution)

Qmin if a ∈ A−
OOD (detrimental OOD)

η
(
QπDOSER(s,a

∗
id) + δV

)
if a ∈ A+

OOD (beneficial OOD)

(29)

We show the two inequalities (lower and upper bounds) by treating each action type.
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1) Lower bound: QπDOSER(s,a) ≥ Qmin.

• In-distribution actions. For Ea(s,a) ≤ τa, we have the in-sample Bellman fixed-point
relation

QπDOSER(s,a) = R(s,a) + γ Es′∼P (·|s,a), a′∼π̂β(·|s′)

[
QπDOSER(s

′,a′)
]

(30)

Since R(s,a) ≥ Rmin and the fact that for all successor pairs QπDOSER(s
′,a′) ≥ Qmin,

we obtain
QπDOSER(s,a) ≥ Rmin + γQmin = Qmin (31)

• Detrimental OOD actions. The operator directly assigns QπDOSER(s,a) = Qmin for a ∈
A−

OOD, so the lower bound holds with equality.

• Beneficial OOD actions. For a ∈ A+
OOD, they receive value compensation weighted by

η ∈ [0, 1). Given that the fixed-point value QπDOSER(s,a
∗
id) is at least Qmin, δV ≥ 0 is

satisfied for beneficial OOD actions, and Qmin < 0 is strictly negative, we have:

QπDOSER(s,a) = η
(
QπDOSER(s,a

∗
id) + δV

)
≥ η Qmin ≥ Qmin (32)

Combining the three subcases establishes the global lower bound QπDOSER(s,a) ≥ Qmin for all
state-action pairs (s,a).

2) Upper bound: QπDOSER(s,a) ≤ QπIn(s,a
∗
id) + ηδV . Let QπIn denote the fixed point of the in-

sample Bellman operator TIn, by construction QπDOSER(s,a) = QπIn(s,a) for every ID state-action
pair (s,a). This upper bound guarantees that DOSER incurs only limited overestimation.

• In-distribution actions. If Ea(s,a) ≤ τa, then

QπDOSER(s,a) = QπIn(s,a) ≤ QπIn(s,a∗
id) ≤ QπIn(s,a∗

id) + ηδV (33)

since ηδV ≥ 0.

• Detrimental OOD actions. For a ∈ A−
OOD:

QπDOSER(s,a) = Qmin ≤ QπIn(s,a∗
id) + ηδV (34)

• Beneficial OOD actions. For a ∈ A+
OOD,

QπDOSER(s,a) = η
(
QπDOSER(s,a

∗
id) + δV

)
(35)

Note that a∗
id is an in-distribution action, hence

QπDOSER(s,a
∗
id) = QπIn(s,a

∗
id). (36)

Substituting yields

QπDOSER(s,a) = η
(
QπIn(s,a

∗
id) + δV

)
≤ QπIn(s,a∗

id) + ηδV (37)

Putting together the three cases yields the desired upper bound QπDOSER(s,a) ≤ QπIn(s,a∗
id)+ηδV

for all (s,a).

Combining the lower and upper bounds above, we obtain for any state-action pair (s,a)

Qmin ≤ QπDOSER(s,a) ≤ QπIn(s,a∗
id) + ηδV (38)

which shows the fixed-point values are uniformly bounded and that DOSER prevents uncontrolled
value overestimation while permitting strategic exploration of beneficial out-of-distribution regions.
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A.3.3 PROOF OF THEOREM 3

We begin by introducing three key assumptions and an auxiliary lemma that will be used in the
proof.

Assumption 1 (Dynamics model error bound). There exists a constant εdyn ≥ 0 such that the
learned dynamics model P̂ (· | s,a) is uniformly close to the true transition kernel P (· | s,a) in the
ℓ1-norm, satisfying for all (s,a) ∈ S ×A:

∥P̂ (· | s,a)− P (· | s,a)∥1 ≤ εdyn. (39)

Assumption 2 (OOD detector error bound). There exists a constant εdet ≥ 0 such that the misclas-
sification probability of the Out-of-Distribution detector is uniformly bounded:

Pr[detector misclassifies (s,a)] ≤ εdet for all (s,a) ∈ S ×A. (40)

Assumption 3 (Policy deviation bound). There exist constants C1, C2 > 0, characterizing the
sensitivity of the policy optimization to dynamics model and OOD detection errors respectively,
such that for all states s ∈ S:

∥π̂(· | s)− πref(· | s)∥TV ≤ C1εdyn + C2εdet. (41)

where εdyn and εdet are defined in Assumptions 1 and 2.

Lemma 1. Let µ and ν be two probability distributions over a finite set X , and let f : X → R be a
bounded function with ∥f∥∞ ≤M . Then,

|Ex∼µ[f(x)]− Ex∼ν [f(x)]| ≤ 2M · ∥µ− ν∥TV, (42)

where ∥µ− ν∥TV = supA⊆X |µ(A)− ν(A)| is the total variation distance. For a finite set X , this
is equivalent to ∥µ− ν∥TV = 1

2

∑
x∈X |µ(x)− ν(x)|.

Proof. The expectation difference can be written as:

|Eµ[f ]− Eν [f ]| =

∣∣∣∣∣∑
x∈X

f(x)µ(x)−
∑
x∈X

f(x)ν(x)

∣∣∣∣∣
=

∣∣∣∣∣∑
x∈X

f(x)(µ(x)− ν(x))

∣∣∣∣∣
≤

∑
x∈X
|f(x)| · |µ(x)− ν(x)|

≤M
∑
x∈X
|µ(x)− ν(x)|

= 2M · ∥µ− ν∥TV.

(43)

The last equality follows from the definition of total variation distance.

Now we start the proof of Theorem 3.

Proof. We begin by defining the Bellman operator associated with the reference policy πref :

TrefQ(s,a) := r(s,a) + γ Es′∼P (·|s,a),a′∼πref (·|s′)[Q(s′,a′)] (44)

Denote the fixed point of the reference operator as Qπref , so that

Qπref = TrefQπref (45)

DOSER critic constructs a modified Bellman target due to three factors: (i) dynamics model error,
(ii) detector misclassification, and (iii) value adjustment. Accordingly, the DOSER Bellman operator
can be expressed as:

TDOSERQ(s,a) := r(s,a) + γ Es′∼P̂ (·|s,a),a′∼π̂(·|s′)[(Q(s′,a′) + b(s′,a′))] (46)
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where π̂ differs from πref due to dynamics model error and OOD detector error, b represents the
value adjustment applied to the target Q.

Now we compare the difference between the two operators when applied to Qπref . Define
∆(s,a) :=

∣∣TDOSERQ
πref (s,a)− TrefQπref (s,a)

∣∣ (47)
Substituting the operator definitions yields:

∆(s,a) = γ
∣∣∣EP̂ ,π̂[Qπref + b]− EP,πref

[Qπref ]
∣∣∣ ≤ γ((I) + (II)

)
(48)

where the components correspond to
(I) :=

∣∣EP̂ ,π̂[Qπref ]− EP,πref
[Qπref ]

∣∣, (II) :=
∣∣EP̂ ,π̂[b]∣∣ (49)

Bound on (I): We decompose (I) into the dynamics model approximation error and policy distribu-
tion bias:

(I) =
∣∣EP̂ ,π̂[Qπref ]− EP,π̂[Qπref ] + EP,π̂[Qπref ]− EP,πref

[Qπref ]
∣∣

≤
∣∣EP̂ ,π̂[Qπref ]− EP,π̂[Qπref ]

∣∣+ ∣∣EP,π̂[Qπref ]− EP,πref
[Qπref ]

∣∣ (50)

For the dynamics model error, consider the function f(s′) = Ea′∼π̂(·|s′)[Q
πref (s′,a′)]. Since

|Qπref | ≤ Qmax, the function is bounded by ∥f∥∞ ≤ Qmax. Applying Lemma 1 with distribu-
tions µ = P̂ (· | s,a) and ν = P (· | s,a) gives:∣∣EP̂ ,π̂[Qπref ]− EP,π̂[Qπref ]

∣∣ = ∣∣Es′∼P̂ [f(s
′)]− Es′∼P [f(s

′)]
∣∣

≤ 2Qmax · ∥P̂ (· | s,a)− P (· | s,a)∥TV

(51)

Using the definition of TV distance ∥µ− ν∥TV = 1
2∥µ− ν∥1 ≤

εdyn
2 and Assumption 1, we have:∣∣EP̂ ,π̂[Qπref ]− EP,π̂[Qπref ]

∣∣ ≤ 2Qmax ·
εdyn
2

= Qmaxεdyn. (52)

For the policy distribution bias, we apply a similar argument in the action space A:∣∣EP,π̂[Qπref ]− EP,πref
[Qπref ]

∣∣ ≤ 2Qmax∥π̂(· | s′)− πref(· | s′)∥TV

= 2Qmax(C1εdyn + C2εdet)
(53)

Therefore, the combined bound for (I) is:
(I) ≤ Qmax((1 + 2C1)εdyn + 2C2εdet) (54)

Bound on (II): Given |b| ≤ ηδV , it follows directly that:
(II) =

∣∣EP̂ ,π̂[b]∣∣ ≤ EP̂ ,π̂
∣∣b∣∣ ≤ ηδV (55)

Thus, for all (s,a),
∆(s,a) ≤ γ

(
Qmax((1 + 2C1)εdyn + 2C2εdet) + ηδV

)
(56)

Consequently, the operator difference is bounded in the supremum norm by:
∥(TDOSER − Tref)Qπref∥∞ ≤ γ

(
Qmax((1 + 2C1)εdyn + 2C2εdet) + ηδV

)
(57)

By Theorem 1 in the main paper, the DOSER critic converges to the fixed point of TDOSER. Thus:

Q̂ = TDOSERQ̂. (58)

We now bound the final approximation error:

∥Q̂−Qπref∥∞ = ∥TDOSERQ̂− TrefQπref∥∞
≤ ∥TDOSERQ̂− TDOSERQ

πref∥∞ + ∥(TDOSER − Tref)Qπref∥∞
≤ γ∥Q̂−Qπref∥∞ + γ

(
Qmax((1 + 2C1)εdyn + 2C2εdet) + ηδV

) (59)

Rearranging terms:

(1− γ)∥Q̂−Qπref∥∞ ≤ γ
(
Qmax((1 + 2C1)εdyn + 2C2εdet) + ηδV

)
(60)

Absorbing the constants into C1 and C2 yields the final result:

∥Q̂−Qπref∥∞ ≤
γ

1− γ

(
Qmax(C1εdyn + C2εdet) + ηδV

)
(61)

This completes the proof.
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A.3.4 PROOF OF THEOREM 4

We first make several common continuity assumptions about the learned Q function and the transi-
tion dynamics P , which is frequently employed in the theoretical analysis of RL (Gouk et al., 2021;
Dufour & Prieto-Rumeau, 2013).
Assumption 4 (Lipschitz Q). For all s ∈ S and a1,a2 ∈ A, the learned value function is LQ-
Lipschitz, then

∥Q(s,a1)−Q(s,a2)∥ ≤ LQ∥a1 − a2∥. (62)

Assumption 5 (Lipschitz P). For all s ∈ S and a1,a2 ∈ A, the transition dynamics is LP -
Lipschitz, then

∥P (· | s,a1)− P (· | s,a2)∥ ≤ LP ∥a1 − a2∥. (63)

Lemma 2. Under Assumptions 5, the following inequality holds:

TV(dπ1∥dπ2) ≤ CLP max
s
∥π1(s)− π2(s)∥, (64)

where C is a positive constant and dπ is the state occupancy under policy π.

dπ(s) = (1− γ)
∞∑
t=0

γtEπ [I[st = s]] . (65)

Proof. Please refer to Lemma 1 in (Xiong et al., 2022) Lemma A.5 in (Ran et al., 2023).

Now we start the proof of Theorem 4.

Proof. The proof proceeds by decomposing the overall performance gap between the optimal policy
π∗ and the learned policy π̂ into manageable components, then bounding each term individually.
Similar to Theorem 3, let πref denote the ideal reference policy, then

|J(π∗)− J(π̂)| = |J(π∗)− J(πref) + J(πref)− J(π̂)|
≤ |J(π∗)− J(πref)|+ |J(πref)− J(π̂)|

(66)

The first term captures approximation error due to function approximation, we denote is as δf . Under
the asymptotic regime where the empirical fitting errors vanish, this term can be arbitrarily small.
Hence we focus on the second term, which quantifies the performance gap between the learned
policy and the reference policy.

|J(πref)− J(π̂)|

=

∣∣∣∣ 1

1− γ
Es∼dπref [r(s)]−

1

1− γ
Es∼dπ̂ [r(s)]

∣∣∣∣
=

1

1− γ

∣∣∣∣∣∑
s

(dπref (s)− dπ̂(s))r(s)

∣∣∣∣∣
≤ 1

1− γ
∑
s

|dπref (s)− dπ̂(s)||r(s)|

≤ Rmax

1− γ
TV(dπref (s)||dπ̂(s))

≤ CLPRmax

1− γ
max

s
∥πref(s)− π̂(s)∥

≤ CLPRmax

1− γ
(C1εdyn + C2εdet)

(67)

Combining both error terms yields the overall performance guarantee:

|J(π∗)− J(π∗
ref)| ≤ δf +

CLPRmax

1− γ
(C1εdyn + C2εdet) (68)
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B EXPERIMENTAL DETAILS

B.1 DIFFUSION MODEL FRAMEWORK

We adopt the EDM framework (Karras et al., 2022) to leverage the advantages of continuous-time
diffusion models for offline RL. EDM builds upon the continuous-time formulation derived from
diffusion processes, which allows us to use an optimized ODE solver for sampling. This solver
adaptively determines the steps along the noise level trajectory, significantly reducing the computa-
tional load and accelerating generation speed, while maintaining high sample quality compared to
sampling with a fixed discrete schedule.

Noise schedule. In the DOSER framework, the noise schedule is a crucial component of the diffu-
sion model, defining how the noise levels vary over time. Following the insights from the EDM pa-
per, the noise schedule σt is sampled from a log-logistic distribution σt ∼ log-logistic(log σdata, s),
where log σdata serves as the shape parameter and s as the scale parameter. Using this schedule, a
noisy action at is constructed as at = a0 + σtϵ, with ϵ ∼ N (0, I). The parameters are configured
as follows: σdata = 0.5, and the noise schedule is clamped between σmin = 0.02 and σmax = 80.

Training loss. The EDM framework precondition the neural network with a σt-dependent skip
connection to improve numerical stability. Specifically, the denoising network for behavior policy
modeling is defined as follows:

ϵθa(at, σt, s) = cskip(σt)at + cout(σt)Fθa(cin(σt); cnoise(σt)|s) (69)

Similarly, the denoising network for state distribution modeling is defined as:

ϵθs(st, σt) = cskip(σt)st + cout(σt)Fθs(cin(σt); cnoise(σt)) (70)

where Fθa and Fθs are the neural networks to be actually trained, cskip(σt) modulates the skip
connection, cin(σt) and cout(σt) scale the input and output magnitudes respectively, and cnoise(σt)
maps noise level σt into a conditioning input for Fθa and Fθs .

We can equivalently express the loss ( 4) with respect to the raw network output Fθa in ( 69):

Eσt,s,a,ϵ

[
λ(σt)c

2
out(σt)||Fθa(cin(σt) · (a+ ϵ); cnoise(σt)|s)−

1

cout(σt)
(a− cskip(σt) · (a+ ϵ))||2

]
(71)

Similarly, the loss ( 5) can be expressed based on ( 70):

Eσt,s,ϵ

[
λ(σt)c

2
out(σt)||Fθs(cin(σt) · (s+ ϵ); cnoise(σt))−

1

cout(σt)
(s− cskip(σt) · (s+ ϵ))||2

]
(72)

According to the variance normalization principles, we follow the practical implementation of EDM
in parameter choice: 

cskip(σt) = σ2
data/(σ

2
t + σ2

data)

cout(σt) = σt · σdata/
√
σ2
t + σ2

data

cin(σt) = 1/(σ2
t + σ2

data)

cnoise(σt) = 1
4 ln(σt)

λ(σt) = (σ2
t + σ2

data)/(σt · σdata)
2

(73)

B.2 NETWORK ARCHITECTURE

Behavior policy and state distribution modeling. Following Chen et al. (2024), we implement
both our behavior policy and state distribution as MLP-based diffusion models. The denoising net-
work for behavior policy ϵθa(at, t, s) is a conditional diffusion model that predicts actions given a
noisy action vector at, diffusion timestep t (encoded via sinusoidal positional embedding), and state
condition s. In contrast, the denoising network for state distribution ϵθs(st, t) is an unconditional
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diffusion model that predicts states from a noisy state st and timestep embedding. Both models
share the same base architecture, which consists of a 4-layer MLP with Mish activations and 256
hidden units per layer. The main difference lies in their input dimensions, the behavior policy net-
work additionally concatenates the state condition s, while the state distribution network operates
without conditioning.

Critic Networks. Following the implementation of SVR (Mao et al., 2023), the critic network
comprises four Q-networks and two V-networks, each implemented as a 3-layer MLPs with 256
hidden units per layer and ReLU activation functions.

Actor Network. The actor network adopts a Tanh-Gaussian policy structure similar to
SAC (Haarnoja et al., 2018). It is implemented as a 3-layer MLP with 256 hidden units and ReLU
activations in all hidden layers. The network supports both deterministic and stochastic action sam-
pling, while preserving entropy regularization for effective exploration.

Dynamics Model. The dynamics model is implemented as a 3-layer MLPs with 256 hidden units
and ReLU activations, which takes concatenated state-action pairs as input and predicts both the
next state and reward.

B.3 HYPERPARAMETERS

Diffusion models and networks share the same hyperparameter settings across all tasks. The detailed
configurations are provided in Table 3.

Table 3: Hyperparameters for all tasks.
Hyperparameter Value
Optimizer Adam (Adam et al., 2014)
Learning rate 3e-4
Learning rate decay Cosine (Loshchilov & Hutter, 2016)
Batch size 256
Discounted factor 0.99
Target update rate 0.005
Policy update frequency 2
Target network update frequency 2
Number of sampled actions 10
Compensation coefficient λ 0.001
Compensation target weight η 0.9

To accommodate varying data distributions across different tasks, we employ task-specific hyperpa-
rameters including the penalty coefficient β for detrimental OOD action penalty, the OOD detection
thresholds τa and τs for actions and states, the expectile regression factor τ , and the lower bound of
Q-value Qmin, with their specific values for each task configuration detailed in Table 4.

B.4 EXPERIMENTAL DETAILS ON TOY EXAMPLE

For the 1D navigation task illustrated in Figure 6(a), the state space [−10, 10] represents the agent’s
current position, while actions correspond to step sizes within [−1, 1]. The reward function is the
negative distance to the target state 0. Based on this reward function, the ground truth Q-function
is calculated and depicted in Figure 6(b). To evaluate the performance of different methods, we
generate an expert dataset and a medium dataset, each containing 500,000 transitions. The expert
dataset is constructed by perturbing the optimal action derived from the ground truth Q-value with
small noise ϵ ∼ U [−0.05, 0.05], while the medium dataset is generated by adding larger noise
ϵ ∼ U [−0.5, 0.5]. The score network in this toy example is implemented as a 4-layer MLP with
Mish activations and 256 hidden units per layer.

For the model ensemble method, we employ 5 independently trained neural networks with identical
architectures to quantify predictive uncertainty. Each model is a 3-layer MLP with ReLU activations
and 128 hidden units. All models are trained in a supervised manner for 100 epochs using the Adam
optimizer with a fixed learning rate of 1e-3. During inference, the ensemble estimates epistemic
uncertainty by computing the normalized variance across model predictions.
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Table 4: Task-specific hyperparameter settings.
Task β τa τs τ Qmin

halfcheetah-medium-v2 0.001 99th 99th 0.9 -366
halfcheetah-medium-replay-v2 0.001 99th 99th 0.9 -366
halfcheetah-medium-expert-v2 0.05 80th 80th 0.7 -366
halfcheetah-expert-v2 0.05 80th 80th 0.7 -366
halfcheetah-random-v2 0.001 99th 99th 0.9 -366
hopper-medium-v2 0.001 99th 99th 0.9 -125
hopper-medium-replay-v2 0.001 99th 99th 0.9 -125
hopper-medium-expert-v2 0.05 80th 80th 0.7 -125
hopper-expert-v2 0.05 80th 80th 0.7 -125
hopper-random-v2 0.001 99th 99th 0.9 -125
walker2d-medium-v2 0.001 99th 99th 0.9 -471
walker2d-medium-replay-v2 0.001 99th 99th 0.9 -471
walker2d-medium-expert-v2 0.05 99th 99th 0.7 -471
walker2d-expert-v2 0.05 99th 99th 0.7 -471
walker2d-random-v2 0.001 99th 99th 0.9 -471
pen-cloned-v1 1 60th 60th 0.7 -715
pen-human-v1 20 80th 80th 0.7 -715

-10

(a) 1D navigation task (b) Ground truth Q-function heatmap

100

Figure 6: Toy environment and ground truth Q-function heatmap visualization.

For the MC dropout framework, we adopt a Q-network architecture consisting of 3-layer MLP with
256 hidden units and ReLU activations. Dropout layers with a fixed probability of 0.1 are incor-
porated to introduce stochasticity during inference. This configuration enables the model to ap-
proximate Bayesian inference by maintaining dropout activation during both training and evaluation
phases. The Q-network undergoes supervised training for 1,000 epochs using the Adam optimizer
with a consistent learning rate of 1e-3. For uncertainty quantification, we performs 20 stochastic
forward passes per state-action pair with dropout enabled, computing the epistemic uncertainty as
the normalized variance across these Monte Carlo samples.

For the VAE-based method, we adopt a conditional VAE (CVAE) architecture to model the behavior
policy distribution and quantify out-of-distribution actions using reconstruction error. The decoder
reconstructs the original action through a single output head. The model is trained for 1,000 epochs
with the Adam optimizer at a learning rate of 1e-3. During inference, the reconstruction error is
computed for state-action pairs by comparing the reconstructed action to the original input action.

B.5 EXPERIMENTAL DETAILS ON D4RL BENCHMARKS

For all MuJoCo locomotion tasks, we pretrain the diffusion models for both the behavior policy
and state distribution for 100,000 gradient steps using the Adam optimizer with a learning rate of
3e-4 and a batchsize of 1024. The dynamics models are also pretrained for 100,000 gradient steps
with the same learning rate and batch size. Our algorithm is then trained for 2 million gradient
steps to ensure convergence, with policy evaluation performed every 20,000 gradient steps. Results
are reported as the average normalized scores over 40 random rollouts, comprising 4 independently
trained models and 10 evaluation trajectories per model across all tasks. All experiments are con-
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(a) halfcheetah-medium-v2 (ID) vs. halfcheetah-medium-expert-v2 (OOD).
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(b) hopper-medium-expert-v2 (ID) vs hopper-medium-replay-v2 (OOD).
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(c) walker2d-medium-replay-v2 (ID) vs walker2d-medium-v2 (OOD).

Figure 7: Diffusion-based reconstruction error distribution across datasets. Diffusion models were
trained exclusively on in-distribution (ID) data. From left to right: t-SNE embedding of the state-
action distributions; reconstruction errors of ID samples; reconstruction errors of OOD samples;
and density plots of error distributions for both ID and OOD samples. The color bar indicates the
magnitude of reconstruction error in the second and third columns.

ducted on four NVIDIA GeForce RTX 3090 GPUs, with each experiment taking approximately 30
hours to complete, including both training and evaluation.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 OOD DETECTION PERFORMANCE ON D4RL BENCHMARKS

To evaluate the ability of our diffusion-based models to distinguish OOD samples, we conduct ex-
periments on the D4RL benchmarks, designating certain datasets as in-distribution (ID) and others
as OOD. Specifically, we pretrained diffusion models on the ID datasets, and evaluated their per-
formance on the OOD datasets drawn from the same environment. For each dataset, we randomly
sample 5,000 state-action pairs to ensure a balanced comparison. The reconstruction error distribu-
tions for the actions are visualized via color-mapped scatter plots and histograms in Figure 7.

Across all environments, OOD datasets consistently exhibit significantly larger reconstruction er-
rors compared to their ID counterparts. This pronounced discrepancy is visually evident in both
the color-mapped scatter plots and the histogram plots. In the scatter plots, ID samples are consis-
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(a) Noise scale = 0.5.
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(b) Noise scale = 1.0.

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

halfcheetah-medium-replay-v2
State-Action Distribution

Original state-actions
OOD state-actions

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

halfcheetah-medium-replay-v2
Original Reconstruction Error

100 75 50 25 0 25 50 75 100
100

75

50

25

0

25

50

75

100

halfcheetah-medium-replay-v2
OOD Reconstruction Error

0 5 10 15 20 25
Reconstruction Error

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Error Distribution
Original Reconstruction Error
OOD Reconstruction Error

5

10

15

20

25

Re
co

ns
tru

ct
io

n 
Er

ro
r

(c) Noise scale = 5.0.

Figure 8: Diffusion-based reconstruction error distributions on original ID datasets and synthetic
OOD datasets.

Table 5: OOD detection metrics on synthetic OOD datasets.
Noise Scale TP TN FP FN Accuracy Precision Recall F1-Score AUROC
0.5 2910 4957 43 2090 0.7867 0.9854 0.5820 0.7318 0.9637
1.0 4832 4957 43 168 0.9789 0.9912 0.9664 0.9876 0.9980
5.0 5000 4957 43 0 0.9957 0.9915 1.0000 0.9957 1.0000

tently associated with low reconstruction errors, whereas OOD samples display markedly high error
values. Similarly, the histogram plots reveal a distinct shift in the error distributions between ID
and OOD samples, with OOD data showing a heavier tail toward higher error values. These results
strongly suggest that diffusion-based reconstruction error serves as a robust and effective indicator
for OOD detection in this setting.

To provide a more comprehensive quantitative analysis, we construct synthetic OOD datasets as fol-
lows. We first sample 5,000 state-action pairs from the original D4RL dataset, and for each pair, we
generate a corresponding OOD sample by perturbing the action with standard Gaussian noise using
noise scales of 0.5, 1.0, and 5.0, respectively. We evaluate the OOD detection capability of our
diffusion-based reconstruction error on these datasets, using the 99-th percentile of reconstruction
errors computed from ID samples as the detection threshold. Based on this threshold, we report the
counts of true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN), to-
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Figure 9: ROC curves for diffusion-based OOD detection under different noise scales.

Table 6: Validation on OOD detection benchmarks.

Method KDDCUP KDDCUP-Rev Arrhythmia
Precision Recall F1 Precision Recall F1 Precision Recall F1

OC-SVM 0.7457 0.8523 0.7954 0.7148 0.9940 0.8316 0.5397 0.4082 0.4581
DCN 0.7696 0.7829 0.7762 0.2875 0.2895 0.2885 0.3758 0.3907 0.3815
DSEBM-r 0.1972 0.2001 0.1987 0.2036 0.2036 0.2036 0.1515 0.1513 0.1510
DAGMM 0.9297 0.9442 0.9369 0.9370 0.9390 0.9380 0.4909 0.5078 0.4983
GOAD - - 0.9840 - - 0.9890 - - 0.5200
Ours 0.9862 0.9937 0.9899 0.9476 0.9144 0.9307 0.9545 0.9545 0.9545

gether with standard classification metrics including precision, recall, F1-score, and AUROC. These
results are summarized in Table 5, and Figure 8 presents the empirical distributions and histograms
of reconstruction errors for both ID and OOD samples under different noise scales, while the corre-
sponding ROC curves are shown in Figure 9.

The results show that diffusion-based reconstruction error is highly effective for OOD action de-
tection across different levels of perturbation. When the noise scale is relatively small, the method
achieves high precision but moderate recall, indicating that mildly perturbed OOD actions are more
difficult to detect. As the noise scale increases, both recall and F1-score improve substantially,
reaching nearly perfect detection performance at large perturbations. The AUROC also increases
consistently and reaches 1.0 for the largest noise setting, demonstrating that the reconstruction error
provides a reliable and discriminative signal for distinguishing ID and OOD actions under challeng-
ing distribution shifts.

C.2 VALIDATION ON OOD DETECTION BENCHAMRKS

To further investigate the effectiveness and generalizability of our proposed diffusion-based OOD
detection mechanism beyond the reinforcement learning domain, we conducted additional exper-
iments on three widely used anomaly detection benchmarks: KDDCUP, KDDCUP-Rev, and Ar-
rhythmia. Following the procedure described in the main paper, we compute the OOD score of
each sample using the single-step denoising reconstruction error produced by a trained diffusion
model. We compare our approach against several state-of-the-art deep learning methods, including
OC-SVM (Chen et al., 2001), DCN (Jin et al., 2021), DSEBM-r (Zhai et al., 2016), DAGMM (Zong
et al., 2018), and GOAD (Bergman & Hoshen, 2020). Our experimental setup follows GOAD, and
the baseline results are taken directly from the respective original publications.

Table 6 summarizes the precision, recall, and F1-scores across all benchmarks. The results demon-
strate that our diffusion-based approach consistently achieves high detection accuracy and outper-
forms or matches existing baselines across all datasets. This robust performance further validates
the diffusion model’s superior capability in modeling the in-distribution data manifold and confirms
the reliability of using the reconstruction error as a general indicator for OOD detection, even across
varying data distributions and task contexts.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Diffusion-based Reconstruction Error

0.0

0.2

0.4

0.6

0.8

1.0
GM

M
 Tr

ue
 N

eg
at

iv
e 

Lo
g-

Lik
el

ih
oo

d 
(N

LL
)

Diffusion Error vs GMM NLL
Correlation = 0.9718
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Figure 10: Correlation analysis between diffusion-based reconstruction error and negative log-
likelihood (NLL).

C.3 QUANTITIVE ANALYSIS BETWEEN DIFFUSION-BASED RECONSTRUCTION ERROR AND
NEGATIVE LOG-LIKELIHOOD (NLL)

To further examine whether diffusion-based reconstruction error serves as a meaningful proxy for
likelihood estimation, we conduct quantitative correlation analyses on both synthetic and D4RL
datasets. Scatter plots illustrating the relationship between diffusion reconstruction error and nega-
tive log-likelihood (NLL) are shown in Figure 10.

We first validate the relationship in a Gaussian mixture setting, where the ground-truth density is
analytically available. Specifically, we construct a four-component symmetric Gaussian mixture and
uniformly sample 10,000 points. Using a diffusion model trained on this distribution, we compute
the reconstruction error for each sample and compare it against the true NLL derived from the
underlying GMM. The result indicates a very strong Pearson correlation (ρ = 0.9718), confirming
that the diffusion-based reconstruction error is highly consistent with the true likelihood when the
underlying distribution is accurately modeled.

We further evaluate this relationship on the halfcheetah-medium-replay-v2 dataset, where the true
behavior policy density is not directly accessible. To approximate the behavior support likelihood,
we train a CVAE on the dataset as a reference model and compute its NLL as a surrogate likelihood
estimator. The diffusion reconstruction error again exhibits a strong positive correlation with the
CVAE-based NLL (ρ = 0.7848), indicating that reconstruction error retains a substantial degree of
statistical consistency with likelihood even in high-dimensional continuous control environments.
However, since CVAEs are known to struggle with accurately modeling multi-modal behavior dis-
tributions, the resulting NLL values from the reference model may introduce estimation bias and
should therefore be interpreted as only a rough approximation for the true likelihood.

C.4 ACTION TYPE PROPORTIONS DURING POLICY OPTIMIZATION

To gain a deeper insight into how the action distribution induced by the learned policy evolves over
time, we track the proportions ID, beneficial OOD, and detrimental OOD actions throughout the
training process. At each training iteration, the statistics are calculated over a sampled batch of size
256. We present the results for three halfcheetah tasks in Figure 11.

Across all datasets, the proportion of ID actions consistently increases as training progresses, accom-
panied by a corresponding decline in the overall proportion of OOD actions. This trend suggests that
the learned policy progressively aligns more closely with the behavioral support during optimization.
However, the relative magnitudes of the ID proportions vary considerably across the three datasets.
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Figure 11: Proportions of different action types during policy optimization.
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Figure 12: Q-value distributions for different action types.

Specifically, the medium-replay dataset exhibits the largest ID action ratio, followed by the medium
dataset, whereas the medium-expert dataset yields the lowest ID proportion. We also visualize the
ratio of beneficial to detrimental OOD actions in the rightmost column. For both the medium-replay
and medium datasets, the proportion of beneficial OOD actions substantially exceeds that of detri-
mental ones. Conversely, on the medium-expert dataset, beneficial and detrimental OOD actions
appear in almost equal proportion.

These differences can be attributed to the inherent characteristics of the datasets. The medium-expert
dataset has a relatively narrow support concentrated around near-optimal trajectories. As a result,
the learned policy more frequently generates actions that fall outside this narrow support, leading
to a higher overall OOD proportion. Despite this, since the dataset already contains expert demon-
strations, the potential performance gain from extrapolation is limited, leading to only a comparable
proportion of beneficial and detrimental OOD actions. In contrast, the medium-replay and medium
datasets exhibit more diverse distributions of generally suboptimal behaviors. This broader support
enables the learned policy to benefit from moderate extrapolation, where slight deviations outside
the data manifold can lead to meaningful performance improvements, which is consistent with our
empirical results.

C.5 VISUALIZATION OF Q-VALUE DISTRIBUTION

To investigate whether beneficial OOD actions indeed lead the policy toward higher-value regions,
we visualize the learned Q-value landscape. Specifically, we randomly sample 10,000 states from
the offline dataset. For each evaluation state, we generate an action using the learned policy and
categorize it as an ID action, a beneficial OOD action, or a detrimental OOD action based on the dif-
fusion reconstruction error. We then apply t-SNE to embed the corresponding state-action pairs into
a two-dimensional space, where each point is colored according to its Q-value estimate. In addition,
we plot the Q-value distributions for the three categories to enable a direct statistical comparison.

As illustrated in Figure 12, beneficial OOD actions exhibit a clearly right-shifted Q-value distribu-
tion, indicating that the actions identified as beneficial by our method correspond to regions where
the critic consistently predicts higher returns. In contrast, detrimental OOD actions predominantly
occupy the low-value region, with their Q-value distribution concentrated near the lower tail. The
critic assigns persistently low values to these actions, implying that they are unlikely to yield perfor-
mance gains and should therefore be suppressed during policy improvement.
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Figure 13: Sensitivity analysis of the dynamics model error.

C.6 ADDITIONAL SENSITIVITY ANALYSIS

C.6.1 DYNAMICS MODEL ERROR

To evaluate how the accuracy of the learned dynamics model influences the performance of OOD
action classification, we conduct an additional ablation study. Specifically, we pretrain the dynamics
model for 100k gradient steps and save the intermediate checkpoints at 10k and 20k steps. These
early-stage models exhibit substantially higher prediction error compared to the final checkpoint,
providing a controlled mechanism to examine the impact of model inaccuracies. In the subsequent
experiments, we replace the fully trained dynamics model with the selected checkpoint while keep-
ing all other components unchanged. We evaluate these variants on two halfcheetah datasets, with
the corresponding training curves illustrated in Figure 13.

Our results indicate that employing dynamics models derived from the early checkpoints consis-
tently deteriorates policy performance relative to the fully trained model. Furthermore, on the
halfcheetah-medium-replay-v2 dataset, we observe that when the dynamics model is poorly trained,
the performance may fall below that of the DOSER w/o AC and VC variant introduced in Section 4.3,
which intentionally excludes dynamics modeling. This finding highlights that if the dynamics model
fails to produce reliable next-state predictions, the resulting misclassification of OOD actions can be
more detrimental to overall performance than omitting OOD action classification entirely.

In addition, the observed performance gap between the early-stage and fully trained dynamics mod-
els provides further evidence regarding the model’s ability to generalize beyond the dataset support.
This indicates that the final checkpoint captures meaningful structural regularities of the environ-
ment rather than merely memorizing in-distribution transitions. As a result, a well-trained dynamics
model can provide sufficiently reliable predictions for moderate OOD actions, which is crucial for
the selective regularization mechanism of DOSER.

C.6.2 THE NUMBER OF CRITIC NETWORKS

In our main experiments, we employ four critic networks for Q-function learning. This design
choice follows the implementation of SVR, upon which our training pipeline is partially built. The
use of multiple critics has been shown to reduce overestimation bias and stabilize value learning. To
examine whether this choice confers any unintended advantage, we perform an additional ablation
in which DOSER is trained with only two critic networks while keeping all other components and
hyperparameters fixed. We evaluate both settings on the halfcheetah-medium-v2 and halfcheetah-
medium-replay-v2 datasets, the corresponding learning curves are presented in Figure 14.

Empirically, we observe that using two critics achieves comparable final performance to the four-
critic setting across both tasks, with only a slight difference within an acceptable range. This indi-
cates that DOSER does not rely on the increased critic ensemble size to obtain its performance gains.
While additional critics can enhance robustness during training, the core algorithmic contributions
of DOSER remain effective under the standard two-critic setup commonly used in offline RL.
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Figure 14: Sensitivity analysis of the number of critic networks.
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C.6.3 COMPENSATION TARGET WEIGHT η

We set the default value of the compensation target weight η to 0.9 in all main experiments. This
hyperparameter controls the weight of the target Q-value of beneficial OOD actions, a smaller η re-
duces the extent of compensation and makes DOSER more conservative. To evaluate the sensitivity
of DOSER to this hyperparameter, we conduct an ablation study by varying η ∈ {0.8, 1.0} while
keeping all other components unchanged.

As shown in Figure 15, DOSER maintains consistently stable performance across this range. How-
ever, when setting η = 1.0, we observe a slight degradation in performance on halfcheetah-medium-
replay-v2. This is primarily due to mild value overestimation introduced by fully adopting the target
Q-values of beneficial OOD actions without discounting. Overall, the default choice η = 0.9 effec-
tively mitigates such overestimation while still enabling meaningful policy improvement.

C.6.4 THE NUMBER OF SAMPLED IN-DISTRIBUTION ACTIONS N

In the OOD action classification stage, DOSER estimates the optimal in-distribution action by sam-
pling N candidate actions from the offline dataset and selecting the one with the highest Q-value as
the reference. To assess the robustness of DOSER to the chioce of N , we conduct experiments on
the halfcheetah tasks with N ∈ {5, 10, 20}.
The results in Figure 16 indicate that DOSER maintains strong performance across different values
of N . A larger N provides a more accurate approximation of the optimal ID action but comes
with increased computational cost, whereas a small N may introduce randomness in the estimation.
Since the optimal ID Q-value is used only to construct an optimistic Q-target that guides beneficial
OOD actions toward higher-value regions, DOSER does not rely heavily on the precise accuracy
of this estimate. Therefore, we choose N = 10 as a reasonable trade-off between computational
efficiency and estimation accuracy in our main experiments.
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Figure 16: Sensitivity analysis of the number of sampled in-distribution actions N .
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Figure 17: Sensitivity analysis of the value of Qmin.

C.6.5 Q-VALUE LOWER BOUND Qmin

DOSER employs a lower bound Qmin when penalizing detrimental OOD actions. In our main
experiments, this value is not treated as a tunable hyperparameter. Instead, it is derived directly from
the environment dynamics asQmin = Rmin

1−γ , which corresponds to the standard minimum achievable
return under the given discount factor γ. For the halfcheetah environment, setting γ to 0.99 yields
Qmin = −366. To further examine the impact of this parameter, we conduct an ablation study
in which Qmin is set to 0 while keeping all other components unchanged. This alternative setting
corresponds to a less conservative penalty on potentially detrimental OOD actions. We evaluate this
variant on the halfcheetah tasks, with the resulting learning curves reported in Figure 17.

The results show that replacing the original value of Qmin with 0 leads to performance degradation
across both datasets. This outcome can be attributed to the fact that a higher lower bound reduces
the penalization applied to detrimental OOD actions, thereby weakening the mechanism designed
to mitigate value overestimation. Nevertheless, even with this suboptimal setting, the overall perfor-
mance remains competitive with existing offline RL baselines.

C.7 ENSEMBLE-GUIDED GATING MECHANISM

We further introduce an ensemble-guided uncertainty gating mechanism on top of the learned dy-
namics model, which is designed to prevent unreliable next-state predictions from influencing the
classification of OOD actions. We construct an ensemble of K = 5 independently initialized dy-
namics models, each trained on the original offline dataset. For any state-action pair (s,a), the
ensemble produces multiple next-state predictions {ŝ′1, ŝ′2, . . . , ŝ′K}. We calculate the prediction
variance across ensemble members as a measure of epistemic uncertainty:

Var(ŝ′) =
1

K

K∑
k=1

∥ŝ′k − s̄′∥2 , where s̄′ =
1

K

K∑
k=1

ŝ′k (74)
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Figure 18: Comparison of DOSER with and without ensemble-guided gating.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

op
or

tio
n

ID Action Proportion

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Beneficial OOD Action Proportion

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Confident Action Proportion

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Pr

op
or

tio
n

OOD Action Proportion

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0
Detrimental OOD Action Proportion

0.0 0.2 0.4 0.6 0.8 1.0
Gradient Steps (×1e6)

0.0

0.2

0.4

0.6

0.8

1.0
Uncertain Action Proportion

halfcheetah-medium-replay-v2 halfcheetah-medium-v2

Figure 19: Proportions of different action types with ensemble-guided gating.

To determine whether a predicted next state is reliable, we estimate the empirical distribution of
these variances on the offline dataset and use the 99-th percentile as a reliability threshold τvar.
Only when the prediction variance for an OOD action falls below this threshold do we trust the
predicted next state and apply the value-based beneficial/detrimental classification; otherwise, the
action is conservatively categorized as detrimental.

However, Figure 18 demonstrates that incorporating this ensemble-guided gating mechanism into
DOSER brings no noticeable performance improvement in the halfcheetah environments. We further
analyze the action type proportions during training (Figure 19), defining confident actions as those
with prediction variance below the reliability threshold, and uncertain actions as those filtered out by
the gate. The results indicate that fewer than 5% of actions exceed the threshold and are consequently
filtered out.

This result again suggests that the pretrained dynamics model already generalizes reasonably well to
the moderately OOD regions. It is also possible that the chosen ensemble size of 5 is insufficient to
fully capture epistemic uncertainty, and larger or more expressive ensembles might provide stronger
gating effects. We leave the exploration of more sophisticated uncertainty quantification methods to
future work.
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Table 7: Additional performance comparison on Gym-MuJoCo expert and random datasets. We
report the mean and standard deviation over 4 seeds for DOSER.

Dataset BC BCQ BEAR DT AWAC OneStep TD3+BC CQL IQL DMG DOSER (Ours)

halfcheetah-e 92.9 89.9 92.7 87.7 81.7 88.2 96.7 96.3 95.0 95.9 95.4 ± 0.6
hopper-e 110.9 109.0 54.6 94.2 109.5 106.9 107.8 96.5 109.4 111.5 111.6 ± 0.5
walker2d-e 107.7 106.3 106.6 108.3 110.1 110.7 110.2 108.5 109.9 114.7 111.2 ± 0.3
halfcheetah-r 2.6 2.2 2.3 2.2 6.1 2.3 11.0 17.5 13.1 28.8 32.8 ± 1.5
hopper-r 4.1 7.8 3.9 5.4 9.2 5.6 8.5 7.9 7.9 20.4 31.2 ± 0.1
walker2d-r 1.2 4.9 12.8 2.2 0.2 6.9 1.6 5.1 5.4 4.8 3.5 ± 2.3

Average 53.2 53.4 45.5 50.0 52.8 53.4 56.0 55.3 56.8 62.7 64.9

C.8 ADDITIONAL EXPERIMENT RESULTS ON D4RL BENCHAMRK

To further validate DOSER’s performance across a wider range of dataset qualities, we conduct ad-
ditional experiments on the Gym-MuJoCo expert and random datasets, as shown in Table 7. Across
the expert datasets, DOSER achieves competitive performance relative to prior offline RL meth-
ods. More notably, on the random datasets, where the behavior data is highly suboptimal, DOSER
exhibits stronger performance, indicating its robustness under poor-quality offline data.

C.9 LEARNING CURVES

Learning curves on D4RL tasks are provided in Figure 20, Figure 21, and Figure 22. The curves
are averaged over 4 random seeds, with the shaded area representing the standard deviation across
seeds.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)
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Figure 20: Learning curves of the component ablation study on Gym-MuJoCo tasks.
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Figure 21: Learning curves on Adroit tasks.
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Figure 22: Learning curves on Gym-MuJoCo expert and random tasks.
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