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Abstract—Deep learning has achieved great success in many
fields, but they still lack theoretical understandings. Although
some recent theoretical and experimental results have investi-
gated the representation power of deep learning, little effort
has been devoted to analyzing the generalization ability of deep
learning. In this paper, we analyze deep neural networks from
a kernel perspective and use kernel methods to investigate
the effect of the implicit regularization introduced by gradient
descent on the generalization ability. Firstly, we argue that the
multi-layer nonlinear feature transformation in deep neural
networks is equivalent to a kernel feature mapping and analyze
our point from the perspective of the unique mathematical
advantages of kernel methods and the method of constructing
multi-layer kernel machines, respectively. Secondly, using the
representer theorem, we analyze the decision boundary of deep
neural networks and prove that the last hidden layers of deep
neural networks converge to nonlinear SVMs. Systematical
experiments demonstrate that the decision boundaries of neural
networks converge to those of nonlinear SVMs.

Keywords-deep neural network; kernel method; generaliza-
tion ability; gradient descent; decision boundary

I. INTRODUCTION

Recent work in machine learning has given a revival
of attention to deep learning due to the increase of data,
the enhancement of computing power and the progress of
learning algorithms. Deep learning technology has made
important advances in pattern recognition, computer vision,
natural language processing and other fields. Deep learning
is increasingly used to solve general artificial intelligence
problems such as inference and decision due to its powerful
capabilities. Deep neural networks, classical deep learning
models, are huge-dimensional and typically involve more
parameters than training samples, which presents challenges
in achieving good generalization. While a significant amount
of research has been dedicated to developing high-efficiency
and flexible deep learning machines [1] [2] with the state-
of-the-art performance on numerous datasets, deep networks
are however not understood theoretically [3] [4].

In parallel to the success of deep neural networks, the
nonlinear mapping introduced by kernel methods [5] shows
obvious computational advantages over deep architectures
in model training. The Reproducing Kernel Hilbert Space
(RKHS) implicitly defined by the kernel naturally introduces
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the prior knowledge about the learning problem [6]. Kernel
functions measure the similarity between two points in the
input distribution, and implicitly define the corresponding
feature mappings, which ensures the analysis of many
complex real-world problems in the kernel framework [7].
Therefore, it is naturally of interest to extend the elegance
of kernel methods to the analysis of deep neural networks.

As we all know, the generalization ability, i.e., the perfor-
mance of learning machines trained on certain datasets on
unseen data, of learning machines is an important question
of theoretical research in machine learning. Empirical risk
minimization is a typical learning strategy for dealing with
the generalization, which suggests finding the function that
minimizes the empirical loss. There are many mathematical
measures of hypothesis space complexity that yield general-
ization error bounds, such as VC dimensions, Rademacher
complexity, cover numbers, etc. [8]. Regularization is also
a typical method to improve the generalization ability of
learning machines, which avoids overfitting by limiting the
complexity of the model. However, through experimental re-
sults, Zhang et al. [3] showed that the traditional generaliza-
tion error analysis based on VC dimensions and Rademacher
complexity cannot explain the phenomenon that deep neural
networks are heavily over-parametrized but still have good
generalization. Moreover, the implicit regularization, which
limits the amount of computation for better performance,
introduced by gradient-based optimization is largely respon-
sible for good generalization performance, rather than the
explicit regularization [9]. All these approaches attempt to
find a good trade-off between the representation ability
and the complexity of models, which leads to the learning
machine with better generalization ability.

In this paper, we analyze deep neural networks from a
kernel perspective and use kernel methods to investigate
the generalization ability of deep neural networks, or more
precisely, to investigate the effect of the implicit regu-
larization introduced by gradient descent (GD) algorithm
on generalization ability. Firstly, we argue that the multi-
layer nonlinear feature transformation in deep networks is
equivalent to a kernel feature mapping and analyze our
point of view from shallow networks and deep networks,
respectively. For the case of shallow networks, since kernel
machines can be interpreted as shallow networks naturally,



we illustrate the unique mathematical advantages of using
kernel methods to analyze neural networks from the elegance
of the representer theorem. For the case of deep networks,
we expound the rationality of using kernel methods to ana-
lyze deep neural networks from the method of constructing
multi-layer kernel machines (MKMs). Secondly, using the
representer theorem, we investigate the decision boundary of
deep neural networks, then we propose the theorem that the
last hidden layers of neural networks converge to nonlinear
SVMs. Finally, we conduct experiments on classification
tasks and demonstrate that the decision boundaries of neural
networks converge to those of nonlinear SVMs on three
simulated datasets. We also evaluate the performance of fully
connected neural networks compared with nonlinear SVMs
and analyze the experimental results in detail.

II. RELATED WORK

Recently, there have been more and more research try
to use kernel methods to analyze deep learning, and have
produced several meaningful theoretical results. Meanwhile,
a number of deep kernels and MKMs have been proposed
to link kernel methods with deep learning. We review the
related work of kernel methods for deep learning in terms
of theory and method respectively.

The theoretical research of kernel methods for deep
learning mainly includes the representer theorem for deep
learning and the generalization theory of deep neural net-
works from a kernel perspective. Belkin et al. [4] illus-
trated the importance of the representer theorem for the
theoretical research of deep learning from the perspective of
inductive bias. Bohn et al. [10] established the relationship
between the representer theorem and MKMs. In terms of
the generalization theory, Bietti et al. [2] proposed to use
RKHS norm to regularize deep neural networks from the
perspective of regularization. Suzuki et al. [11] defined the
corresponding RKHS for each layer of the deep network
and derived generalization error bounds. Li et al. [12]
investigated generalization from the perspective of implicit
regularization of optimization algorithms. Besides, Kornblith
et al. [13] introduced centralized kernel alignment (CKA) as
a similarity index to measure the relationship between repre-
sentations in networks. Montavon et al. [14] investigated the
layer-wise evolution of the representation for deep networks
in RKHS. Nevertheless, there is still a lack of new theory
for kernel methods to analyze deep learning [4].

Moreover, some methods have been proposed to introduce
kernels into deep learning and further construct deep kernels
even MKMs. Cho et al. [15] designed MKMs based on Arc-
cosine kernels which can also be used for Gaussian processes
(GP). Hazan et al. [16] introduced stochastic kernels which
are derived from GP and encode the information of two
infinite layers, Lee et al. [17] further derived GP kernels
that can effectively mimic deep neural networks. Mairal et
al. [18] used reproducing kernels to encode the invariance

of image representations, they devised convolution kernels
and constructed convolution kernel networks (CKNs), they
[19] also suggested improving CKNs with supervision and
produced a new convolutional neural network. Furthermore,
Wang et al. [1] constructed SVM-based deep stacking
networks. Xue et al. [20] proposed deep spectral kernel
networks based on inverse Fourier transform. However, these
methods are frequently difficult to generalize.

III. PROBLEM STATEMENT

We have no strict requirements for the input data and
network architecture. The last hidden layer of the network
and the output layer are fully connected, which is the
common case. Given a dataset {(xn, yn) , n = 1, . . . , N},
where xn ∈ Rd and yn ∈ {−1, 1} for binary classification,
yn ∈ {1, 2, . . . ,K} for multi-class classification. We denote
the data matrix as X ∈ Rd×N .

Let the number of layers of the network be l, excluding the
output layer. For binary classification, let f(x; θ) : Rd →
{−1, 1} be the function defined by the network, θ is the
parameter set of the network. The transformation of the first
l − 1 layers can be written as φ(x) = h(x;σ), σ is the
parameter set of the first l−1 layers. Therefore, φ(x) is the
input of the l-th layer in the network.

The form of minimizing the empirical loss is as follows:

L(θ) =

N∑
n=1

` (f (xn; θ) , yn) ,

where `(·) is the loss function, e.g., logistic loss, exponential
loss, sigmoidal loss and cross-entropy loss.

For exponential loss, the empirical loss is

L(θ) =

N∑
n=1

e−ynf(xn;θ). (1)

The goal of optimization is θ = arg minθ L(θ).
We use gradient descent (GD) algorithm to minimize (1)

with a constant learning rate η, and the iterative step is that
θ(t) = θ(t− 1)− η∇L (θ(t− 1)).

IV. MAIN RESULTS

In this section, We first argue that the multi-layer non-
linear feature transformation in deep networks is equivalent
to a kernel feature mapping and analyze our point for the
case of shallow networks and deep networks in detail, re-
spectively. Subsequently, we propose the decision boundary
convergence theorem by the representer theorem.

A. Nonlinear transformation in Deep Networks v.s. Kernel
Feature Mapping

Deep learning is widely used to solve representation
learning problems in machine learning because of deep ar-
chitectures. At present, the models used in deep learning are
mainly neural networks. Deep architectures learn complex



mappings of inputs through multi-layer nonlinear transfor-
mations [21]. They involve complex nonlinear optimization
and many heuristics, this makes them usually difficult to
train. In parallel to deep networks, kernel methods offer
an elegant framework to analyze data representation. SVMs
learn nonlinear classifiers through “kernel trick”, they are
trained by solving simple quadratic programming problems.
In recent years, a considerable amount of work has shown
that kernel methods also benefit from the advantages of deep
networks [15] [19] [1]. Therefore, we argue that the multi-
layer nonlinear feature transformation in deep networks is
equivalent to a kernel feature mapping. We will analyze our
point in detail.

For the case of shallow networks, by large numbers of
experiments, [4] has shown that kernel machines perform
very well on many datasets even in the presence of label
noise, which also indicates that kernel machines also have
strong generalization performance comparable to deep net-
works. As a matter of fact, kernel machines can be regarded
as the two-layer neural networks with a fixed first layer, so it
is natural to use kernel methods to analyze neural networks.

Furthermore, we can use various mathematical analysis
techniques to analyze kernel machines analytically due to
the elegance of the kernel framework. More generally, the
well-known representer theorem, which is the important
theory for analyzing kernel methods, shows that for the
general loss function and regularization, the optimal solution
of the optimization problem can be expressed as a linear
combination of kernel functions.

Given a dataset {(xn, yn) , n = 1, . . . , N} drawn inde-
pendently from a probability distribution P on X×Y , where
X ⊂ Rd and Y ⊂ R. Let H := H(X ,Y) be a Reproducing
Kernel Hilbert Space of real-value functions on X . The
minimal norm interpolant is

f∗ := arg min
f∈H

‖f‖H such that f (xi) = yi ∀i = 1, . . . , N.

The classical representer theorem [22] shows that the mini-
mum norm solution in RKHS can be written as a finite linear
combination of kernel functions {K (x1, ·) , . . . ,K (xn, ·)},
namely

f∗(x) =

N∑
i=1

α∗iK (xi,x) ,

where K : Rd × Rd → R denotes the kernel function
of H and α∗i ∈ R, i = 1, . . . , N are the corresponding
coefficients. We can compute α∗i = (α∗1, . . . , α

∗
N )> by

solving the following formula

Kα∗ = y,

where K is the kernel matrix, y = (y1, . . . , yN )>. The
kernel matrix K is invertible if the kernel K is positive
definite. As such, compared with neural networks, the rep-
resenter theorem ensures the minimum norm solution of

kernel machines can be computed analytically. This unique
and elegant mathematical property is an important reason
that we use kernel methods to analyze neural networks. Our
theoretical analysis for deep networks is also closely related
to the representer theorem.

For the case of deep neural networks, we can also
construct corresponding MKMs which benefit from deep
architectures. The kernel function produces an implicit fea-
ture map x 7→ φ(x) and computes the inner product in the
induced RKHS. Although the mapping of a kernel function
is implicit, we can avoid the limitation and directly construct
MKMs by combining nonlinear mappings in a composite
way:

Kl (x,x′) =
〈
φl
(
φl−1

(
· · ·φ1(x)

))
, φl
(
φl−1

(
· · ·φ1 (x′)

))〉
,

where Kl denotes the l-layer MKMs, φl denotes the l-th
layer kernel mapping. We can further write Kl as:

Kl (x,x′) =
〈
Φl(x),Φl (x′)

〉
,

where the l-th layer kernel mapping is:

Φl(x) = φl
(
φl−1

(
· · ·φl(x)

))
.

The motivation is very intuitive, since the kernel function
can simulate the computation in a single hidden layer neural
network, then the composite mapping can mimic the compu-
tation in a deep neural network. Moreover, [10] studied the
representer theorem of deep kernel learning. There are also
some research related to deep kernels, such as [15] [20] [17]
[18]. All these work illustrate that it is feasible to construct
MKMs comparable to deep networks.

For the case of shallow networks and deep networks,
we analyze our point from the perspective of the unique
mathematical advantages of kernel methods and the method
of constructing MKMs, respectively. Subsequently, We will
analyze the convergence between the decision boundaries of
deep neural networks and those of nonlinear SVMs in the
RKHS induced by the multi-layer nonlinear transformation
of deep networks.

B. Theoretical Results

According to our point of view, the multi-layer nonlinear
feature transformation in deep networks is equivalent to a
kernel feature mapping. Consequently, a kernel mapping
equivalent to the transformation of the first l − 1 layers
exists and can be found. When emphasizing the l-th layer,
the neural network is transformed into minimizing a logistic
regression problem using GD in RKHS, and the input data
of the logistic regression problem is the transformed output
of the first l−1 layers, which is the feature vector in RKHS,
i.e., Φ = [φ(x1), φ(x2), . . . , φ(xn)] ∈ Rp×N , φ(xn) ∈ H.
Then the form of experience loss is transformed as follows:

L(γ) =

N∑
n=1

`
(
ynγ

>φ(xn)
)
,



where γ is the weight vector of l-th layer, γ ∈ H. We
assume that ∀n : yn = 1 without loss of generality (we can
re-define ynφ(xn) as φ(xn)).

According to the reproducibility of kernel functions, i.e.,

f(x) = f(·) ·K(·,x), K(x, z) = K(·,x) ·K(·, z),

and the representer theorem, i.e.,

f(·) =

N∑
i=1

αiK(·,xi),

where x, z ∈ X , αi ∈ R, i = 1, 2, . . . , N . For the weight
vector of the l-th layer, we have

γ =

N∑
i=1

ξiK(·, φ(xi)).

For this reason, the GD update for γ in RKHS is different
from the common case in Euclidean space, but for the sake
of simplicity, we take γ as a whole and do not expand it,
which does not affect the final result, see [23]. The iterative
steps of γ are as follows:

γ(t) = γ(t− 1)− η
N∑
n=1

`′(γ(t− 1)>φ(xn))φ(xn). (2)

[24] investigated linearly separable logistic regression
problems and showed that:

Lemma 1. For a linearly separable logistic regression prob-
lem and β-smooth decreasing loss function, i.e., its deriva-
tive is β-Lipshitz, whose weight vector is w ∈ Rd. Let w(t)
be the iterates of gradient descent with η < 2β−1σ−2max(X)
and any starting point w(0), where σmax(X) is the maximal
singular value of the data matrix X ∈ Rd×N . We have: (1)
limt→∞ L(w(t)) = 0, (2) limt→∞ ‖w(t)‖ = ∞, and (3)
∀n : limt→∞w(t)>xn =∞.

The direction of w(t) converges to the solution of the
hard margin SVM.

Lemma 2. For any linearly separable dataset (except for
measuring zero) and any β-smooth decreasing loss function
with an exponential tail (the loss function is bounded by two
exponential functions), any step size η < 2β−1σ−2max(X) and
any starting point w(0), the gradient descent will behave as:

w(t) = ŵ log t+ ρ(t),

where ŵ is the L2 max margin vector:

ŵ = arg min
w∈Rd

‖w‖2 s.t. w>xn ≥ 1,

the residual is bounded and grows at most as ‖ρ(t)‖ =
O(log log(t)), and so

lim
t→∞

w(t)

‖w(t)‖
=

ŵ

‖ŵ‖
.

For l-layer neural networks, we argue that the nonlinear
transformation of the first l − 1 layers is equivalent to a
kernel mapping, furthermore, the kernel mapping exists and
can be found. Then we have the following main result:

Theorem 1. Let X be the data matrix, γ be the weight
vector of the last hidden layer. For any neural network
for binary classification, any β-smooth decreasing loss
function with an exponential tail, small enough step size
η < 2β−1σ−2max(X) and any start point γ(0), the direction
of the neural network’s last hidden layer converges:

lim
t→∞

γ(t)

‖γ(t)‖
=

Ŵ

‖Ŵ‖
,

where Ŵ is the maximum margin solution to nonlinear
SVM:

Ŵ = arg min
W∈Rp×1

‖W‖2

subject to
N∑
i=1

Wφ(xn) ≥ 1, (3)

where φ(xn) is the re-defined input of the last hidden
layer, φ(·) is the implicitly introduced mapping of the kernel
function K(x,x′) = 〈φ(x), φ(x′)〉.

Remark 1. The kernel function implicitly yields a kernel
feature mapping x 7→ φ(x), the mapped feature vector is
consistent with the result of the nonlinear feature transfor-
mation of the first l − 1 layers in deep networks, as we
argued previously. Since φ(x) is the feature vector in RKHS
induced by the kernel function, it can be seen from (3) that
Ŵ is the weight of the nonlinear SVM. Theorem 1 shows
that when t→∞, the direction of the neural network’s last
hidden layer converges to that of the nonlinear SVM, i.e.,
the decision boundary of the neural network converges to
that of the nonlinear SVM.

For multi-classification cases, we can consider the gen-
eralization of the logistic loss, i.e., cross-entropy loss, even
exponential multi-classification loss to extend our theorem,
and we can get a similar result. The elaborate proof of
Theorem 1 is shown in Appendix.

V. EXPERIMENTS

In this section, we experimentally demonstrate that the
decision boundaries of neural networks converge to those of
nonlinear SVMs. We also evaluate the performance of fully
connected neural networks compared with several nonlinear
SVMs with commonly used kernel functions, and analyze
the experimental results.

A. Experimental Setup

We mainly conduct experiments on three simulated 2D
datasets. One dataset is linearly separable, the rest ones are
non-linearly separable. The size of each dataset is 6000.



(a) Cluster (b) Decision boundary of NN on Cluster (c) Decision boundary of SVM on Cluster

(d) Moons (e) Decision boundary of NN on Moons (f) Decision boundary of SVM on Moons

(g) Fan (h) Decision boundary of NN on Fan (i) Decision boundary of SVM on Fan

Figure 1. Results on three simulated 2D datasets. The first column illustrates the distribution of simulated datasets. The coordinates indicate locations
of data points. The second and third columns show the decision boundaries of the last hidden layers of neural networks (NNs) and nonlinear SVMs,
respectively. The intersection of background colors is the decision boundary. The locations of data points in the feature space have been changed after
nonlinear feature transformation, so the coordinates have also been scaled. The cyan dots are test data which are predicted to be of the same class as the
yellow training data, the magenta stars are test data which are predicted to be of the same class as the blue training data.

According to the priori knowledge, common kernel functions
are all used to train nonlinear SVMs, mainly including
the linear kernel, polynomial kernel, Gaussian kernel, and
Laplace kernel. We selected the best result for comparison
with neural networks. We used a 4-layer fully connected neu-
ral network with 2500 nodes in the middle fully connected
layer for all experiments, Cross-entropy loss is applied to the
loss function and ReLU is applied to the activation function
in the neural network. The neural network is optimized by
GD. The accuracy is chosen as the evaluation criteria for
classification tasks, which reflect the average performance.

Since the feature vectors in RKHS may be infinite-
dimensional, in experiments, we can use KPCA to obtain
the feature vectors after kernel mapping and select several

leading components of the kernel feature space to compute
the decision boundary of nonlinear SVMs.

B. Datasets

We systematically validate our theoretical results and
evaluate the performance of neural networks and nonlinear
SVMs on classification tasks. The three simulated datasets
used for experiments include Cluster, Moons, and Fan,
where Cluster dataset is linearly separable, Moons and
Fan datasets are non-linearly separable, which are shown
in Fig. 1. Each dataset contains 6000 randomly generated
training data, they are yellow dots and blue stars in Fig. 1.
The test data are uniformly sampled across the whole space
with the size of 600, they are cyan dots and magenta stars



Table I
CLASSIFICATION ACCURACY OF NEURAL NETWORKS AND NONLINEAR

SVMS ON SIMULATED DATASETS

Dataset Neural Networks Nonlinear SVMs
Cluster 100% 100%
Round 99.35% 96.17%
Fan 99.83% 98.27%

in Fig. 1. The yellow and cyan dots have the same label, the
blue and magenta stars share the same label as well.

C. Experimental Results

Experimental results are shown in Fig. 1 and Table I.
The first column of Fig. 1 illustrates the distribution of
simulated datasets. The coordinates indicate locations of data
points. The second column shows the decision boundaries
of the last hidden layers of neural networks. The third
column demonstrates the decision boundaries of nonlinear
SVMs. The intersection of background colors is the decision
boundary. The locations of data points in the feature space
have been changed after nonlinear feature transformation,
so the coordinates have also been scaled. The cyan dots are
test data which are predicted to be of the same classification
as the yellow training data, the magenta stars are test data
which are predicted to be of the same classification as the
blue training data.

Table I illustrates the classification accuracy of neural
networks and nonlinear SVMs on three simulated datasets.
It can be seen that they both perform well on the linearly
separable dataset, and nonlinear SVMs are slightly inferior
to neural networks on nonlinearly separable datasets.

D. Experimental Analysis

Since our experiments are designed to verify that the
decision boundaries of neural networks converge to those
of nonlinear SVMs, the classification accuracy is merely
used as a reference to demonstrate the relationship between
the multi-layer nonlinear transformation of neural networks
and the kernel feature mapping under the similar accuracy.
We have reason to believe that the classification accuracy
of nonlinear SVMs can be improved through multiple k-
ernel fusion or using multi-layer (deep) kernels which are
constructed by the method we have shown above or even
using the general form of spectral kernels in [20] and other
various deep kernels [15] [20] [17] [18], so that the kernel
feature mapping will be closer to the multi-layer nonlinear
transformation of deep networks, then the decision boundary
convergence theorem we proposed will be more valid.

On the one hand, our experimental results illustrate the ra-
tionality of using kernel methods to analyze deep networks.
The unique advantages of kernel methods in generalization
ability and the mathematical analysis make it easier to
analyze than deep networks, which also prompted us to use
kernel methods to further investigate deep networks.

On the other hand, we cannot ignore the classification
accuracy. The higher classification accuracy of neural net-
works motivates us to design better (deep) kernel functions
and (multi-layer) kernel machines. The poor performance of
nonlinear SVMs does not mean that kernel machines are
not as good as neural networks, the performance of kernel
machines on specific tasks may not be the same, as stated
by “No Free Lunch Theorem”. Besides, kernel methods have
unique advantages that deep networks cannot reach in terms
of generalization and interpretability [25].

VI. CONCLUSION

We analyze deep neural networks from a kernel perspec-
tive and use kernel methods to investigate the effect of
the implicit regularization introduced by gradient descent
on generalization ability. We argue that the multi-layer
nonlinear feature transformation in deep neural networks is
equivalent to a kernel feature mapping and analyze our point
of view in the case of shallow and deep neural networks,
respectively. Furthermore, using the representer theorem, we
prove that the last hidden layers of deep neural network-
s converge to nonlinear SVMs. Systematical experiments
demonstrate that the decision boundaries of neural networks
converge to those of nonlinear SVMs as well.

Our theoretical result will inspire us to further develop
new kernel theories to analyze the generalization of deep
neural networks in the RKHS induced by the designed
kernel and explore the construction of deep kernels. This
will also drive us to design new deep kernel algorithms in
combination with deep learning to further construct end-to-
end MKMs with performance comparable to deep neural
networks.
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APPENDIX

In this section, we give the whole proof for Theorem 1.

PROOF OF THEOREM 1
Proof: For the l-th layer of the neural network, since the

nonlinear transformation of the first l−1 layers is equivalent
to a kernel mapping, the input of the l-th layer, i.e., Φ =
[φ(x1), φ(x2), . . . , φ(xn)] ∈ Rp×N , is the feature vector
in Reproducing Kernel Hilbert Space, Φ ⊂ H. Hence, the
dataset {φ(xn), yn}Nn=1 is linearly separable, i.e., ∃γ′ such
that ∀n : γ′

>
φ(xn) > 0.

For simplicity, we first use the exponential loss function
to analyze the asymptotic behavior of the weight γ in
RKHS during gradient descent. However, our proof process
is based on β-smooth decreasing loss function instead of the
exponential loss function, which ensures that our theorem
holds for any β-smooth decreasing loss function, including
logistic loss, exponential loss, cross-entropy loss, and so on.



If limt→∞ γ(t)/‖γ(t)‖ exists and converges to a certain
value γ∗, we can denote γ(t) = g(t)γ∗+ρ(t), where g(t)→
∞, limt→∞ ρ(t)/g(t) = 0, ∀n : γ∗

>φ(xn) > 0. The form
of the negative gradient is as follows:

−∇L(γ) =

N∑
n=1

exp
(
−γ(t)>φ(xn)

)
φ(xn)

=

N∑
n=1

exp
(
−g(t)γ∗

>φ(xn)
)

exp
(
−ρ(t)>φ(xn)

)
φ(xn).

(4)

Since ∀n : γ∗
>φ(xn) > 0 and g(t)→∞, it can be seen

from (4) that only those samples which maximize exponents
will be useful for the gradient, i.e., the samples that minimize
the value of γ∗>φ(xn), and these samples are the support
vectors.

As the number of iterations increases, ‖γ(t)‖ → ∞,
−∇L(γ) will become a linear combination of support
vectors, γ∗ will be dominated by these gradients, thus
γ∗ will also become a non-negative linear combination
of support vectors. We scale γ∗ and denote it as Ŵ =
γ∗/

(
minn γ∗

>φ(xn)
)
, then we have

Ŵ =

N∑
n=1

αnφ(xn),

∀n : αn ≥ 0, Ŵ>φ(xn) = 1,

αn = 0, Ŵ>φ(xn) > 1. (5)

Since φ(x) is the data after kernel mapping, so (5) is
the KKT condition of the nonlinear SVM, and Ŵ is its
corresponding solution. In addition, we can denote γ(t) =
Ŵ log t+ ρ(t).

We then need to prove the existence of the limit of
γ(t)/‖γ(t)‖ and bound the residual term ρ(t), so as to show
the effect of non-support vectors on gradients.

First of all, we define

r(t) = γ(t)− Ŵ log t− W̃

for any γ(t), where Ŵ is the maximum margin solution
to nonlinear SVM, W̃ = limt→∞ ρ(t) and W̃ is unique.
We denote S ∈ Rd×S as a subset of X, whose columns
are support vectors and S is the number of support vectors.
Furthermore, we denote

θ = min
xn /∈S

Ŵ>φ(xn) > 1

and define P1 ∈ Rd×d as the orthogonal projection matrix
to the subspace spanned by support vectors, P2 = I − P1

as the complementary projection.
Since ρ(t) = r(t) + W̃, as long as we prove that ‖r(t)‖

is bounded, then ρ(t) is bounded. To prove this, we need
the following lemmas [24]:

Lemma 3. Let L(w) be a β-smooth non-negative objective.
If η < 2β−1, then, for any w(0) with the gradient descent
iterative steps:

w(t+ 1) = w(t)− η∇L(w(t)),

we have that
∑∞
u=0 ‖∇L(w(u))‖2 < ∞ and therefore

limt→∞ ‖∇L(w(t))‖2 = 0.

Lemma 4. ∃C1, t1,∀t > t1, we have

(r(t+ 1)− r(t))>r(t) ≤ C1t
−min(θ,−1−1.5µ+,−1−0.5µ−).

In addition, ∀ε1 > 0, t > t2, ∃C2, t2, if ‖P1r(t)‖ ≥ ε1, then
we have the following formula:

(r(t+ 1)− r(t))>r(t) ≤ −C2t
−1 < 0,

where C1, C2, t1, t2, ε1, µ+, µ− are all positive constants
and independent of t.

Then, we will bound the following equation:

‖r(t+ 1)‖2

=‖r(t+ 1)− r(t)‖2 + 2(r(t+ 1)− r(t))>r(t) + ‖r(t)‖2.
(6)

We will bound the terms of the equation separately.
According to (2) and the following formulas:

∀x > 0 : x ≥ log(1 + x) > 0,

log(t+ 1)− log(t) ≈ 1

t
,

`′(u) ≤ 0,Ŵ>φ(xn) ≥ 1,

we have

Ŵ>∇L(γ(t)) =

N∑
n=1

`′
(
γ(t)

>
φ(xn)

)
Ŵ>φ(xn) ≤ 0,

so

‖r(t+ 1)− r(t)‖2

=‖γ(t+ 1)− Ŵ log(t+ 1)− W̃ − γ(t) + Ŵ log(t) + W̃‖2

=‖ − η∇L(γ(t))− Ŵ[log(t+ 1)− log(t)]‖2

=η2‖∇L(γ(t))‖2 + 2ηŴ>∇L(γ(t))[log(t+ 1)− log(t)]+

‖Ŵ‖2 (log(t+ 1)− log(t))
2

≤η2‖∇L(γ(t))‖2 + ‖Ŵ‖2 1

t2
. (7)

According to Lemma 3, we have

‖∇L(γ(t))‖2 = o(1),

∞∑
t=0

‖∇L(γ(t))‖2 <∞. (8)

Since 1
t2 is convergent, substituting (8) into (7), we know

that ∃C0 ∈ R:

‖r(t+ 1)− r(t)‖2 = o(1),
∞∑
t=0

‖r(t+ 1)− r(t)‖2 = C0 <∞, (9)



which means that ∀ε0, ∃t0 such that

∀t > t0 : |‖r(t+ 1)‖ − ‖r(t)‖| < ε0.

For the second term in (6), according to Lemma 4, we
know that ∃C1, t1, ∀t > t1:

(r(t+ 1)− r(t))>r(t)

≤C1t
−min(θ,−1−1.5µ+,−1−0.5µ−), (10)

where θ = minxn /∈S Ŵ>φ(xn) > 1.
Substituting (9) and (10) into (6), we know that ‖r(t +

1)‖2 − ‖r(t)‖2 is bounded, then

‖r(t)‖2 − ‖r (t1)‖2 =

t−1∑
u=t1

(
‖r(u+ 1)‖2 − ‖r(u)‖2

)
≤C0 + 2

t−1∑
u=t1

C1u
−min(θ,−1−1.5µ+,−1−0.5µ−)

is bounded. Hence, ‖r(t)‖ is bounded. So far, we have
completed the proof.
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