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Text Box

VT-PLUG

Mask

Keypoint

VT-PLUG:    A man taking a 
picture of an elephant with a 
camera.

USER:   Please describe the image in more 
details.

VT-PLUG:     In the image,a man is taking a 
picture  of  an elephant with a camera.   The 
elephant is standing on a dirt road,  and  the 
man  is positioned  on  the  left  side  of  the 
scene.  Another man is standing on the right 
side of the road,also observing the elephant.
       There are two people in the scene,  one 
taking a picture and the other observing.The 
elephant is the main focus of the image, 
standing in the middle of the road.

USER:    Describe the main 
features of the image. VT-PLUG:   Person (box[0]<REF> 

[1]<REF> [2]<REF> [3]<REF> 
[4]<REF> [5]<REF> [6]<REF>).

USER:   Detect objects in this image.

USER:    Can you provide a description of the 
image and give a box of the girl sitting by car?

VT-PLUG:   A woman sitting on the ground next to a 
                           Truck (box[0]<REF>).

USER:  Please detect the person 
marked with the red point <region>.

USER:    Segment all objects in this image.

VT-PLUG:   Bear (mask[0]<REF> 
[1]<REF>[2]<REF>).

USER:   Describe the image and segment the big bear. 

USER:   Please help me segment the bear 
in the scribbled <area> of the image.

VT-PLUG:   The image showcases a group of bears, 
including  bear-1 (mask[0]<REF>), standing in grass. 

Keypoint

VT-PLUG:   Person  
(keypoint[0]<REF> [1]<REF>).

USER:  Help me detect the keypoints 
of all the people in image.

USER:   Please help me to detect 
the  keypoints  of  the  man  in the 
<box>  area of the image.

Figure 1: Overview of Visual Tasks Supported by VT-PLUG. VT-PLUG supports user-provided
visual inputs such as points, boxes, scribbles, and masks, while enabling the decoding of visual
contents into formats like boxes, keypoints, and masks. The combination of these input and output
formats facilitates a wide range of visual tasks.

ABSTRACT

Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot
capabilities across diverse vision-language tasks after training on mega-scale
datasets. However, dense prediction tasks, such as semantic segmentation and
keypoint detection, pose significant challenges for MLLMs when represented
solely as text outputs. These challenges often necessitate task-specific visual de-
coders, leading to the underutilization of MLLMs’ multi-task potential. In this
work, we propose VT-PLUG, a novel framework that leverages modular visual
components as scalable plugins for a variety of visual applications. During the
joint training of vision-language tasks with varying prediction densities, we pro-
pose a Visual Decoding Chain-of-Thought (VD-CoT) mechanism to prevent
task conflicts. VD-CoT requires the model to predict the current task’s recogni-
tion entities, decoding unit type, and other specific details, while also providing
learnable queries for precise decoding. Additionally, we construct Visual-Task
Instruction Following Dataset (VT-Instruct), a large-scale multi-task dataset
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containing over 100 million multimodal dialogue samples across 25 task types.
Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts
such as point, box, scribble, and mask, and generates outputs composed of text
and visual units like box, keypoint, depth and mask. The combination of different
visual prompts and visual units generates a wide variety of task types, expanding
the applicability of VT-PLUG significantly. The source code, dataset and demo
will be released at https://anonymous.4open.science/r/VT-PLUG.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) demonstrate excellent performance in tasks such
as visual question answering and scene understanding (Liu et al., 2024; Alayrac et al., 2022; Tai
et al., 2024). Despite these achievements, typical MLLMs primarily understand input and generate
responses with text, which limits their ability to perform fine-grained visual localization. As a
result, they struggle to make significant contributions in real-world applications such as autonomous
driving, robotics, and medical diagnosis.

In this work, we introduce VT-PLUG, a novel framework that utilizes modular visual components
as scalable plugins for visual tasks with varying degrees of prediction density. To support common
visual tasks, we designed Visual Prompt (VPT) encoding plugins alongside point, box, mask, and
keypoint decoding plugins. These various visual plugins can be combined to tackle complex mul-
timodal tasks or easily extend to new visual applications. For instance, the VPT encoding plugin
can pair with different decoding plugins to generate visual decoding units for diverse user interac-
tion modes. A combination of box and keypoint plugins also enables efficient multi-person pose
estimation. As shown in Table 1, compared to existing MLLMs which focus on fine-grained vi-
sual localization and understanding, VT-PLUG offers greater flexibility and can accomplish a wider
variety of visual tasks.

VT-PLUG utilizes tokens generated by MLLMs as learnable queries for decoding. Therefore, we
propose the Visual Decoding Chain-of-Thought (VD-CoT), which requires the model to output
special tokens for VT-PLUG decoding, as well as other task-related information during the genera-
tion process. VD-CoT decomposes the response generation process into two stages: Visual CoT and
Decoding Triplets. During the Visual CoT stage, the model extracts the categories and quantities
of visual entities to be decoded based on the image and prompt information, and determines the
corresponding decoding types. In the Decoding Triplets stage, visual-related decoding information
is divided into three types: Phrase, Unit, and <REF>, forming multiple triplets. Phrase rep-
resents the category of visual entities, Unit indicates the decoding type, and <REF> corresponds
to the learnable queries for VT-PLUG. Since the <REF> token appears at the end, it effectively
leverages relevant information from the previously generated content.

Table 1: Comparisons of recent MLLMs and their capabilities in performing downstream tasks.
Visual

Understanding
Referring

Expression
Interactive

Grounding (IG)
Grounded Conversation

Generation (GCG)
Open Vocabulary

Identification
Model End-End

Model
Extend
-ability VQA Caption RES REC REG Mask Box Mask Box OVS OVD

Keypoint
Detection

LLaVA (Liu et al., 2024) " - " " - - - - - - - - - -
BuboGPT (Zhao et al., 2023) - - " " - " - - - - " - - -
Kosmos-2 (Peng et al., 2023) " - " " - " " - - - " - - -
Shikra (Chen et al., 2023b) " - " " - " " - - - " - - -
MiniGPT-v2 (Chen et al., 2023a) " - " " - " " - - - " - - -
NExT-Chat (Zhang et al., 2023a) " - " " " " " - - " " - - -
Ferret (You et al., 2023) " - " " - " " - " - " - - -
SHPINX (Lin et al., 2023) - " " " - " - - - " " - - "

LLaVA-Plus (Liu et al., 2023c) " " " " " - - - - - - " - -
LISA (Lai et al., 2024) " - " " " - - - - - - - - -
Osprey (Yuan et al., 2024) " - " " - - " - - - - - - -
GLaMM (Rasheed et al., 2024) " - " " " - " - - " - - - -
PixelLM (Xu et al., 2024) " - " " " - - - - " - - - -
PSALM (Zhang et al., 2024b) " - " " " - " " " - - " - -
GroundHOG (Zhang et al., 2024a) " - " " " " " - - " - - - -
F-LLM (Wu et al., 2024) " - " " " - - - - " - - - -
VITRON (Fei et al., 2024) - " " " " - " - - - - - - -
VT-PLUG (Ours) " " " " " " " " " " " " " "

To enhance the diversity of vision-language tasks, we propose Visual-Task Instruction Follow-
ing Dataset (VT-Instruct), a multimodal dataset specifically designed to support a wide range of
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tasks, including Visual Understanding, Referring Expressions, Interactive Grounding (IG), Open-
Vocabulary Identification, Grounded Conversation Generation (GCG), Keypoint Detection and
Depth Estimation. VT-Instruct consists of more than 100 million high-quality multimodal dialogue
samples, primarily derived from publicly available datasets such as LAION-5B (Schuhmann et al.,
2022), SA-1B (Kirillov et al., 2023), COCO (Lin et al., 2014), GRIT (Peng et al., 2023), etc. Each
sample is enhanced with thoughtfully crafted prompt templates with multimodal inputs (e.g. images,
texts, points, boxes, scribbles and masks) to facilitate instruction following and diverse outputs (e.g.
texts, boxes, keypoints, depth and masks) for different downstream tasks.

The contributions of this work can be summarized as follows:

• VT-PLUG: We propose a novel visual multi-task training framework that includes four
meta-plugins designed to handle diverse visual content. These plugins can be combined to
support various composite tasks and serve as the foundation for creating new visual plugins.

• VD-CoT: We propose a visual information generation method, Visual Decoding Chain-
of-Thought (VD-CoT), for unified instruction tuning. VD-CoT provides VT-PLUG with
learnable queries for visual unit decoding, along with essential auxiliary information, such
as visual content descriptions and decoding unit types.

• VT-Instruct: We present a large-scale multi-task dataset containing 100 million multi-
modal dialogue samples across 25 task types, which supports a comprehensive understand-
ing and decoding of visual units across various degrees of prediction density.

• Quantitative experiments demonstrate that our VT-PLUG outperforms current MLLMs
across multiple tasks. Specifically, VT-PLUG surpasses Osprey (Yuan et al., 2024) by
2.5 in CIDEr for Referring Expression Generation (REG), outperforms GLaMM (Rasheed
et al., 2024) by 8.2% in Recall for the Grounded Conversation Generation (GCG), and ex-
ceeds PSALM (Zhang et al., 2024b) by 2.8% in mAPS for Open-Vocabulary Segmentation.

2 RELATED WORKS

Numerous studies have attempted to enhance the robust scene understanding capabilities of MLLMs,
guiding models to achieve precise localization of identified objects. Pix2Seq (Chen et al., 2021)
leverages the model’s autoregressive generation capability to express bounding boxes and class la-
bels as sequences of discrete tokens. Shikra (Chen et al., 2023b) constructs an appropriate visual
supervision fine-tuning dataset, where the model needs to perform inductive analysis in the form of
Chain-of-Thought (CoT) before answering complex questions, and subsequently outputs bounding
boxes in text form to complete the visual grounding task.

LLaVa-Plus (Liu et al., 2023c) constructs an instruction-following dataset that includes a large num-
ber of samples for using task-specific models as tools. The model, after supervised fine-tuning, can
leverage various task-specific models to accomplish tasks such as visual grounding and referring seg-
mentation. LISA (Lai et al., 2024) adopts SAM (Kirillov et al., 2023) as the mask decoder, where
MLLM generates learnable special tokens as prompts for SAM, producing fine-grained segmenta-
tion results. PSALM (Zhang et al., 2024b) divides the input for open-vocabulary segmentation tasks
into instruction prompts, condition prompts, and discrete mask tokens, decoding the output mask
tokens to obtain segmentation results aligned with the prompt content.

Unlike the existing research on visual fine-grained localization, our VT-PLUG is designed with four
distinct meta-plugins that eliminate the need for additional task-specific models, ensuring overall
consistency and accuracy.

3 UNIFIED INSTRUCTION TUNING FOR VISUAL UNIT DECODING

In general vision-language multimodal tasks, diverse user prompt inputs and visual unit outputs can
extend the application of MLLMs to real-world scenarios. In Section 3.1, we introduce the Visual
Decoding Chain-of-Thought (VD-CoT), an instruction tunning approach designed to integrate var-
ious vision-language unit decoding tasks. In Section 3.2, we present Visual-Task Instruction Fol-
lowing Dataset (VT-Instruct), a large-scale visual multi-task dataset that combines different visual
prompts as inputs and visual units as outputs.
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Figure 2: An Example of VD-CoT Applied to the Grounded Conversation Generation (GCG)
Task. VD-CoT consists of two steps: Visual CoT for analyzing the visual content and Decoding
Triplets for generating the decoding information triplet. The answer is generated synchronously
with the triplet, and the special tokens have been simplified in the example.

Figure 3: Example of VT-Instruct Dataset by Using the Automated Data Construction Pipeline.
Our VT-Instruct dataset contains seven distinct downstream tasks, including Visual Understanding,
Referring Expression, Interactive Grounding, Grounded Conversation Generation, Open-Vocabulary
Identification and Depth Estimation.

3.1 VD-COT

The decoding process of visual units requires essential information, including the description of
visual entities, the type of unit, and the current decoding token. We add special tokens to the vo-
cabulary of the MLLM to encode or mark the aforementioned content. The description of the visual
object is denoted with Phrase, the decoding type is marked using Unit, and the token that requires
further decoding is denoted with <REF>.

VD-CoT divides the answer generation process into two steps: visual CoT and decoding triplet. As
shown in Figure 2, in visual CoT step, the model considers the visual entities to be decoded, the
number of instances, and the type of decoding required for the current task. As for decoding triplet,
it is generated simultaneously with the answer. For each <REF> token used for decoding, the model
produces a Phrase-Unit-<REF> triplet. The answer content shown in the example omits the
extra special tokens for better visualization.
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VT-Instruct
(100M, 25 Tasks)
Visual-Task Instruction

Following Dataset

VQA 1%

Caption 13%

REC 23%

RES 3%

REG 21%

IG-Box 3%

IG-Mask 3%

GCG-box 13%

GCG-Mask 3%
OVD 30%

OVS 3%

IG-Keypoint0.4%
Depth 0.1%

Keypoint 0.1%

Text Complexity

Visual Unit Density
MaskDepthKeypointBoxPoint

Caption

VQA

REC RES

REG
IG-Box IG-MaskIG-Keypoint

GCG-Box GCG-Mask

OVD OVSKeypoint Detection

Depth
Estimation

Visual Understanding

Referring Expression

Interactive Grounding
Open-Vocabulary Identification

Grounded Conversation Generation (GCG)

Keypoint Detection

Depth Estimation

Figure 4: Data Distribution Map. VT-
Instruct comprises four output units—box,
keypoint, depth, and mask—paired with either
low (phrases) or high (sentences) text com-
plexity, with different visual prompts unified
under the same task for clarity.

Figure 5: Architecture of Visual Plugins.
Benefiting from the Phrase-Unit-<REF>
triplet, where each <REF> token has a unique
corresponding phrase and unit, thus ensuring
the consistency of visual entities recognition
and visual units decoding processes.

3.2 VT-INSTRUCT

Multi-task Instruction Following Dataset. We construct the VT-Instruct dataset, which com-
prises over 100 million dialogue samples featuring multimodal input-output pairs. These pairs en-
compass various combinations of output units, ranging from low to high visual density, including
Point, Box, Keypoint, Depth, and Mask, combined with either low or high text complex-
ity. VT-Instruct supports a wide range of tasks, facilitating both vision-language and dense pre-
diction tasks, such as Visual Understanding, Referring Expression, Interactive Grounding, Open-
Vocabulary Identification, Grounded Conversation Generation, Keypoint Detection and Depth Es-
timation (see Figure 4). Visual Understanding task includes Image Captioning and Visual Ques-
tion Answering (VQA). Referring Expression tasks cover Referring Expression Comprehension
(REC), Referring Expression Segmentation (RES), and Referring Expression Generation (REG). In-
teractive Grounding (IG) contains interactive detection (IG-box), segmentation (IG-mask) and key-
points generation(IG-keypoint). Open-Vocabulary Identification includes Open-Vocabulary Detec-
tion (OVD) and Open-Vocabulary Segmentation (OVS). Grounded Conversation Generation (GCG)
could be divided into GCG-box and GCG-mask. The details of definition for each task will be
presented in Appendix A.1.

VT-Instruct Construction Pipeline. For each downstream task, we (i) first construct a specific
system instruction and (ii) generate over 150 task-specific prompt templates using GPT-4, randomly
selecting them to construct user prompts, then (iii) we modify existing dataset annotations to con-
struct a unified answering format following the rule of VD-CoT (Section 3.1), creating multi-turn
conversations featuring a system-prompt-answer combination. Figure 3 illustrates an example of an
image created using our automated pipeline, designed to support multiple downstream tasks.

5
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VT-PLUG

Visual Prompt 

Encoder Plugin

Multimodal Large Language Model

Box 

Decoder

Keypoint 

Decoder

Mask 

Decoder

Fine-Grained 

Visual Encoder

visual units decoding plugins

Describe the main features of the image.

Provide a description of the image and include the coordinates for each mentioned object.

Can you segment the capybara?

Provide a description of the image and illustrate the keypoints for individuals.

Please tell me what animal is in the region.

text

region

image

units

Visual Feats
text token

phrase token

unit token

ref token

This image displays a brown capybara seated on a sandy ground.

The image shows a small monkey (box [0]) standing on the head of a large capybara (box [0]) .

Sure, here is the capybara (mask [0]) .

An elderly woman (keypoint [0]) holds a capybara and strokes its head while sitting on a sofa.

It is a capybara. The capybara is the world's largest living rodent, native to South America.

text

Triplets

Optional 

Decoder

Figure 6: The Framework of VT-PLUG. The overall architecture consists of an MLLM, Conv-
Encoder, VPT-Encoder, and Visual Units Decoders. The Conv-Encoder is responsible for generating
multi-scale visual features, the VPT-Encoder encodes different forms of input, and the Visual Units
Decoders flexibly support task-specific selections.

4 UNIFIED FRAMEWORK FOR VISUAL TASK PLUGINS INTEGRATION

4.1 PRELIMINARY

MLLMs often lack the capability to output visual units such as boxes, keypoints, and masks. To
expand their applicability in real-world visual tasks, it is typically necessary to implement targeted
designs for different visual tasks. Common decoding approaches for visual units can be categorized
into three main types.

Decode Visual Units as Sequence. The most straightforward solution leverages the text gener-
ation capabilities of MLLM to produce visual localization results in textual format (Chen et al.,
2023b; 2021). This approach does not require structural modifications to the MLLM. It simply
necessitates the preparation of suitable supervised fine-tuning data to effectively generate the local-
ization coordinates of visual targets. However, due to the constraints of textual output, their models
struggle with dense prediction tasks such as keypoint detection, segmentation, and depth estimation.

Decode Visual Units with Agent Tools. Another approach involves using the MLLM as an agent
to coordinate task-specific models, enabling accurate localization of visual targets (Liu et al., 2023c).
In this case, MLLM outputs textual descriptions of recognized content and scheduling results, which
can be utilized by downstream visual tools. However, since the final visual units is derived from the
tool models, there may be a gap between the MLLM’s understanding and the final output.

Decode Visual Units with Learnable Queries. Using the tokens output by the MLLM as learn-
able queries input into task-specific decoders is the most widely adopted visual decoding strategy
(Rasheed et al., 2024; Lai et al., 2024). Directly decoding MLLM output tokens enables an end-to-
end training process, allowing the visual decoder to share the visual fetures with the MLLM, thereby
maintaining consistency at the feature level and achieving high accuracy and coherence. However,
different types of decoding units (such as boxes, masks, and keypoints) require distinct visual infor-
mation, resulting in significant variations in the data formats needed during supervised fine-tuning.
Most research typically focuses on designing for a single decoding unit, making it challenging to
integrate various decoding tasks into a unified instruction tuning framework.

6
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4.2 VT-PLUG FRAMEWORK

Our VT-PLUG implements end-to-end unified training for multiple visual tasks, containing four
meta-plugins to support the combination of various visual prompts and decode units. As shown in
Figure 6, the VT-PLUG framework consists of four main components:

1. Fundamental MLLM: An Llava-like (Liu et al., 2023b) MLLM, with CLIP-ViT (Rad-
ford et al., 2021) as the visual encoder and Vicuna-7B (Zheng et al., 2023) as the LLM
component.

2. Fine-Grained Visual Encoder: CLIP-ViT (Radford et al., 2021) focuses on encoding
global image features, whereas visual units decoding tasks typically rely more heavily on
local image features. To address this, we use CLIP-ConvNeXt (Cherti et al., 2023) for
secondary image encoding, functioning as a visual feature pyramid encoder. In practice,
we exclude the final layer of features encoded by CLIP-ConvNeXt and concatenate the re-
maining features with those from CLIP-ViT. By utilizing these two distinct visual encoders,
we achieve an effective fusion of global and local image features representating.

3. Visual Prompts Encoder Plugin: We define user inputs such as points, boxes, scribbles
and masks as Visual Prompts (VPT) and propose a novel VPT-Encoder plugin to encode
these elements.

4. Visual Units Decoder Plugins: We propose three different decoding plugins to handle the
decoding of boxes, keypoints, and masks.

As described in Section 3.1, when handling visual tasks, VT-PLUG performs a VD-CoT process
based on the input prompts, analyzing the decoding content, decode unit, and decode target to form
a Phrase-Unit-<REF> triplet. All <REF> tokens are extracted from the triplets, arranged in
sequence, and used as learnable queries, which are then decoded by the visual decode plugins.

Figure 5 illustrates the architecture of our proposed visual plugins. The Visual Prompt Encoder
plugin performs mask embedding for input regions. Unlike similar works that perform mask pooling
on regions, our approach additionally incorporates position embedding to enhance the positional
information of visual prompt features. The Visual Unit Decoding plugins adhere to the DETR
framework (Carion et al., 2020). Since MLLMs can directly output classification results in the form
of phrases in triplets, we eliminate the class predictor. Specifically, the box decoder is implemented
as in DETR, while the mask decoder is implemented as in MaskFormer (Cheng et al., 2021). For
the keypoint decoder, we develop a query expansion module after the box queries decoder. This
module concatenates each query with a learnable vector initialized to zero and feeds the resulting
representation into the subsequent queries decoder to predict the coordinates of the keypoints.

For the multi-target decoding process (i.e., a single Phrase corresponding to multiple <REF>
instances), we employ the Group Hungarian Matcher (Carion et al., 2020). In the VT-PLUG setting,
REF tokens are annotated in one-to-one correspondence with units, and we can achieve perfect
matching by executing the Hungarian algorithm within each phrase group.

5 EXPERIMENTS

We conduct quantitative evaluations of our VT-PLUG across the following tasks details in Sec-
tion 5.1: (i) Visual Understanding, (ii) Referring Expression, (iii) Interactive Grounding, (iv) Open-
Vocabulary Identification, (v) Grounded Conversation Generation (GCG). Then, we perform abla-
tion studies to evaluate the effectiveness of the key elements in our approach in Section 5.2. The
training details of our VT-PLUG are presented in Appendix A.3

5.1 QUANTITATIVE RESULTS

Visual Understanding. We first present quantitative comparisons on zero-shot image caption-
ing tasks using the prompt “<image> Please describe the image in detail” on
the Flickr30k validation dataset (Plummer et al., 2015). For the VQA tasks, we employ the
prompt “Please take a look at the image <image> and promptly provide

7
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Table 2: Comparing VT-PLUG with other MLLMs on VQA and Image Captioning.
Task Datasets VT-PLUG Shikra FM-80B FM-9B Kosmos-2 Kosmos-1 Flamingo-9B Ferret-7B

VQAv2dev 77.34 77.36 56.3 51.8 45.6 46.7 51.8 -
VQAv2std 77.42 77.51 - - - - - -VQA
OK-VQA 62.39 47.16 50.6 44.7 - 45.9 - -

Caption Flickr30k 85.25 73.9 67.2 61.5 66.7 65.2 61.5 74.8

Table 3: Object hallucination benchmark in three POPE (Li et al., 2023) evaluation settings.

Sampling Metrics VT-PLUG Osprey Ferret Shikra LLaVA
-1.5

Instruct
-BLIP MiniGPT4 MM-GPT mPLUG

-Owl
Accuracy 87.63 89.47 90.24 86.90 88.73 88.57 79.67 50.10 53.97
Precision 97.98 93.40 97.72 94.40 88.89 84.09 78.24 50.05 52.07
Recall 77.60 84.93 83.00 79.26 88.53 95.13 82.20 100.00 99.60
F1 Score 86.61 88.97 89.76 86.19 88.71 89.27 80.17 66.71 68.39

Random

Yes(%) 40.82 45.47 43.78 43.26 49.80 56.57 52.53 99.90 95.63
Accuracy 86.27 87.83 84.90 83.97 85.83 82.77 69.73 50.00 50.90
Precision 93.94 89.94 88.24 87.55 83.91 76.27 65.86 50.00 50.46
Recall 77.53 85.20 80.53 79.20 88.67 95.13 81.93 100.00 99.40
F1 Score 84.95 87.50 84.21 83.16 86.22 84.66 73.02 66.67 66.94

Popular

Yes(%) 41.27 47.37 45.63 45.23 52.83 62.37 62.20 100.00 98.57
Accuracy 84.97 85.33 82.36 83.10 72.10 65.17 79.20 50.00 50.67
Precision 90.75 85.43 83.60 85.60 74.69 65.13 61.19 50.00 50.34
Recall 77.87 85.20 80.53 59.60 88.34 95.13 82.93 100.00 90.33
F1 Score 83.82 85.31 82.00 82.49 80.94 77.32 70.42 66.67 66.82

Adversarial

Yes(%) 42.90 49.87 48.18 46.50 59.14 73.03 67.77 100.00 98.67

an answer for <question>” on the VQAv2-dev, VQAv2-std (Antol et al., 2015), and OK-
VQA (Marino et al., 2019) test datasets. We report overall accuracy for the VQA tasks and the CIDEr
score for the image captioning task. The comparison results are summarized in Table 2, where our
VT-PLUG achieves the best performance on the image captioning task with a CIDEr score of 85.25
and on the OK-VQA test dataset with 62.39% accuracy, while demonstrating competitive perfor-
mance on the VQAv2 test dataset, comparable to Shikra (Chen et al., 2023b). Additionally, we
employ the POPE benchmark (Li et al., 2023) to evaluate hallucination performance in VT-PLUG
in Table 3. In each case, VT-PLUG achieves the highest precision, outperforming other MLLMs.

Table 4: Evaluation results for referring expression tasks, including RES and REC. “w/o pretrained”
indicates whether the segmentation model used a pretrained backbone for the RES task, while"in-
dicates that the model was trained from scratch. ZS denotes that the result was obtained in a zero-
shot setting, while FT indicates the model was finetuned on the RefCOCO training dataset.

RefCOCO RefCOCO+ RefCOCOgTask Model w/o
pretrained Test-A Test-B Val Test-A Test-B Val Test Val

MCN 64.2 59.7 62.4 55.0 44.7 50.6 49.4 49.2
VLT 70.5 65.2 67.5 61.0 50.1 56.3 57.7 55.0
CRIS 73.2 66.1 70.5 68.1 53.7 62.3 60.4 59.9
LAVT 75.8 68.8 72.7 68.4 55.1 62.1 62.1 61.2
RELA 76.5 70.2 73.8 71.0 57.7 66.0 66.0 65.0

X-Decoder - - - - - - - 64.6
SEEM - - - - - - - 65.7
LISA 76.5 71.1 74.1 67.4 56.5 62.4 68.5 66.4

VT-PLUG(ZS) " 71.6 57.5 65.6 63.8 48.1 59.3 62.1 58.4

RES
(cIOU)

VT-PLUG(FT) " 73.4 63.9 69.0 70.8 56.2 63.2 65.8 65.0
OFA-L - 83.7 76.4 76.4 76.0 61.8 68.3 67.6 80.0

MAttNet - 80.4 69.3 80.0 70.3 56.0 64.9 67.0 76.4
Kosmos-2 - 57.4 47.3 52.3 50.7 42.2 45.5 61.7 60.6

Shikra - 90.6 80.2 87.0 87.4 72.1 81.6 82.2 82.3
Ferret - 91.4 82.5 87.5 87.4 73.1 80.8 84.8 83.9

NeXT-Chat - 90.0 77.9 85.5 84.5 68.0 77.2 79.8 80.1
VT-PLUG(ZS) - 90.7 78.5 85.2 86.0 67.2 77.0 80.0 80.2

REC
(IOU>0.5)

VT-PLUG(FT) - 92.5 82.3 88.3 88.3 73.7 81.7 83.0 83.1
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Referring Expression. For the Referring Expression Segmentation (RES) task, we evalu-
ate VT-PLUG on the RefCOCO, RefCOCO+, and RefCOCOg test and validation datasets
by calculating the cumulative IOU (cIOU) as proposed by Liu et al. (2023a), using
the prompt “Provide a segmentation mask for <referring expression> in
the picture <image>.” Our VT-PLUG, trained from scratch, achieves results in both zero-
shot and fine-tuned settings that are comparable to recent methods like LISA (Lai et al., 2024), which
utilized pretrained backbones such as SAM (see Table 4). For the Referring Expression Compre-
hension (REC) task, we use the prompt “What are the coordinates of <referring
expression> in the image<image>?” and compare our VT-PLUG with current MLLMs
capable of generating referring boxes based on specific prompts in both zero-shot and fine-tuned
settings. The metric used for REC evaluation is ACC@0.5. As shown in Table 4, VT-PLUG demon-
strates superior performance in the REC task compared to other MLLMs. We evaluate Referring
Expression Generation (REG) using the prompt, “For the given image <image>, can
you provide a unique description of the area <mask>?” on the RefCOCOg
test dataset (Kazemzadeh et al., 2014). The evaluation metrics applied are Meteor and CIDEr, with
the results presented in Table 5. Our VT-PLUG demonstrates improved performance compared to
GLaMM (Rasheed et al., 2024) and Osprey (Yuan et al., 2024), while also showing robust zero-shot
capabilities.

Table 5: REG Evaluation on RefCOCOg.

Model Type Meteor CIDEr
GRIT Box 15.2 71.6

Kosmos-2 Box 14.1 62.3
GLaMM(FT) Box 16.2 105.0
Osprey(FT) Mask 16.6 108.3

VT-PLUG(ZS) Mask 15.8 98.1
VT-PLUG(FT) Mask 16.9 110.8

Table 6: Evaluation on COCO-interactive.

Model w/o
pretrained Scribble Box Mask

SAM-B " - 68.7 -
SAM-L " - 71.6 -

SEEM-B 44.0 42.1 65.0
PSALM 80.0 80.9 82.4

VT-PLUG " 60.2 73.7 77.5

Interactive Grounding. For this task, we evaluate using the prompt, “Please generate
a mask based on the region <region> in the image <image>.” where
<region> is replaced with visual prompts such as scribbles, boxes, or masks. The results
presented in Table 6 indicate that our VT-PLUG outperforms both SAM (Kirillov et al., 2023) and
SEEM-B (Zou et al., 2024) across the scribble, box, and mask settings, achieving performance
comparable to PSALM, which utilizes pretrained Swin-T and Mask2Former weights in these
configurations.

Table 7: VT-PLUG performance on Grounding Conversation Generation (GCG) task.
Val TestModel Dataset Type w/o

SAM CIDEr Meteor AP50 mIOU Recall CIDEr Meteor AP50 mIOU Recall
BuboGPT Mask 3.6 17.2 19.1 54.0 29.4 3.5 17.1 17.3 54.1 27.0
Kosmos-2 Mask 27.6 16.1 17.1 55.6 28.3 27.2 15.8 17.2 56.8 29.0

LISA Mask 33.9 13.0 25.2 62.0 36.3 32.2 12.9 24.8 61.7 35.5
GLaMM

GranDf

Mask 47.2 16.2 30.8 66.3 41.8 37.9 14.6 27.2 64.6 38.0
VT-PLUG Mask " 56.9 18.4 26.2 57.9 50.0 53.2 21.7 27.7 56.6 45.3
VT-PLUG Flickr30k Box - - - - - - 82.0 26.0 35.4 66.1 47.7

Grounded Conversation Generation (GCG). The Grounded Conversation Generation (GCG)
task consists of two components: GCG-mask and GCG-box. For the GCG-mask task, we fur-
ther finetune our VT-PLUG on the GranDf training dataset and evaluate its performance on the
GranDf validation and test splits, following the process outlined by Rasheed et al. (2024). We utilize
the prompt, “Describe the setting of the image <image> and offer masks
for each visible object.” for the GCG-mask evaluation. The results presented in Ta-
ble 7 demonstrate that our VT-PLUG outperforms current baseline methods, such as GLaMM, across
metrics including CIDEr, Meteor, AP50, and Recall. Additionally, we assess the GCG-box task us-
ing the Flickr30k test set with the prompt, “Please describe the image <image> and
detect relevant bounding boxes.” Due to the lack of available MLLMs for the GCG-
box task, we only report our zero-shot performance on this dataset.
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Table 8: Evaluation on open-vocabulary tasks.
Model Type Ade20k COCO

MaskCLIP SEG 6.0 -
ODISE SEG 14.4 -
SAN SEG 10.6 -

PSALM SEG 9.0 -
PSALM+LVIS SEG 13.9 -

VT-PLUG (mAPS) DET/SEG 16.7 26.7

Table 9: Ablation study on group matcher.
Visual Encoder Group Matcher cIoU

ConvNeXt + ViT 61.47
ConvNeXt + ViT " 62.49

Table 10: Comparison across visual en-
coder. [0,1,2,3] means we choose all four
feature layers from CLIP-ConvNeXt model,
-2 means we only choose CLIP-ViT sec-
ond last layer, [0,1,2,4] means we concate-
nate the first three feature layers from CLIP-
ConvNeXt and the output feature map from
CLIP-ViT.

Visual Encoder Size Feature
Dimension cIoU

ConvNeXt 320 [0,1,2,3] 41.94
ConvNeXt 336 [0,1,2,3] 46.08

ViT 336 -2 60.44
ConvNeXt + ViT 320 [0,1,2,4] 60.02
ConvNeXt + ViT 512 [0,1,2,4] 61.83

Open-Vocabulary Identification Our VT-PLUG not only excels in performing GCG tasks, sim-
ilar to current MLLMs (Rasheed et al., 2024; Chen et al., 2023b), but also demonstrates profi-
ciency in open-vocabulary identification tasks, including open-vocabulary segmentation and de-
tection with a simple prompt template: “Please detect bounding boxes (segment
objects) in the image<image>.” We calculate mAPS (detailed in Appendix A.2). For
the open-vocabulary segmentation task, we evaluate VT-PLUG on the ADE20k test dataset, and for
the open-vocabulary detection task, we assess its performance on the COCO2017 validation dataset.
The results for both tasks are presented in Table 8. Notably, VT-PLUG achieves strong performance
without any specialized design, outperforming other MLLMs (e.g., PSALM) and specialist mod-
els (e.g., SAN). Additionally, unlike other MLLMs, VT-PLUG also demonstrates the capability to
perform open-vocabulary object detection.

5.2 ABLATION STUDY

To evaluate the effectiveness of the core components of our framework, we conduct the following
ablation studies.

Choose of Group Matchers. To validate the effectiveness of our Group Hungarian Matcher, we
perform an ablation study on its usage in the mask decoder for the RES task, using the RefCOCOg
test dataset and cIoU as the evaluation metric. As shown in Table 9, applying the Group Hungarian
Matcher for loss computation yields a significantly better performance compared to configurations
without it, demonstrating its substantial impact on improving the overall accuracy.

Different Configuration of Visual Encoders. To investigate the effect of different configurations
of CLIP vision encoders, including CLIP-ConvNeXt and CLIP-ViT, along with variations in image
size and feature selection layers, we conduct experiments on the RES task using the RefCOCOg test
dataset. As shown in Table 10, VT-PLUG achieves the highest performance when concatenating the
CLIP-ConvNeXt and CLIP-ViT encoders with the setting of image size as 512×512.

6 LIMITATIONS AND CONCLUSION

In conclusion, this paper introduces a powerful and flexible visual multi-task learning framework,
alongside the construction of a large-scale vision-language multimodal instruction-tuning dataset.
This work effectively expands the applicability of MLLMs in real-world scenarios, and extensive
experiments validate its effectiveness. However, the focus of this work is limited to the problem of
visual units decoding, and it cannot yet effectively handle widely-used tasks such as image editing
and video understanding. Consequently, this work should be regarded as a foundational baseline for
visual units decoding.
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A APPENDIX

A.1 VT-INSTRUCT CONSTRUCTION

Table 11: Data statistics of VT-Instruct and actual use of dataset in the training process.
Task Original Dataset Construction Number Actual Use

Visual
Understanding

Caption COCO, GranD, GRIT 15,980,000 780,000
VQA VQAv2, LLaVA-Instruct 1,310,000 1,310,000

Referring Expression
REC RefCOCO, RefCOCO+, RefCOCOg,

GranD, GRIT 22,880,000 880,000

RES RefCOCO, RefCOCO+, RefCOCOg,
GranD 3,880,000 680,000

REG
RefCOCO, RefCOCO+, RefCOCOg,

GranD, GRIT, COCO-Interactive,
Osprey, Visual Genome, Visual7W

22,750,000 1,200,000

Interactive Grounding
IG-Box COCO-Interactive 3,200,000 120,000

IG-Mask COCO-Interactive 3,200,000 120,000
IG-Keypoint COCO 500,000 140,000

Grounded
Conversation Generation

GCG-box GRIT, GranD, Flickr30k-Entities 15,630,000 540,000

GCG-mask GranD, LLaVA-Grounding, PNG,
OpenPSG 4,000,000 450,000

Open-Vocabulary
Identification

OVD GranD, GRIT, COCO-REM 15,770,000 600,000

OVS GranD, COCO-REM, ADE20k,
Cityscapes 3,795,000 600,000

Keypoint Detection COCO 140,000 140,000
Depth Estimation Kitti, HRWSI, NYU 150,000 -

Definition of Each Downstream Task The Visual Understanding task includes Image Captioning
and Visual Question Answering (VQA), involving image-text inputs and text-only outputs. Re-
ferring Expression tasks cover Referring Expression Comprehension (REC), Referring Expression
Segmentation (RES), and Referring Expression Generation (REG). While REC and RES require
models to predict bounding boxes or masks in response to a query about a specific region in an
image, REG involves generating descriptive text from visual inputs like points, boxes, scribbles, or
masks. Interactive Grounding (IG) enables users to provide prompts via both text and interactive in-
puts (e.g., points, boxes, masks), allowing MLLMs to interpret and generate corresponding outputs.
Open-Vocabulary Identification focuses on localizing and segmenting objects from descriptive text,
even if the object categories were not part of the training data. Grounded Conversation Generation
(GCG) produces natural language responses interwoven with bounding boxes or masks, with the
GCG task further divided into GCG-box (bounding box outputs) and GCG-mask (mask outputs).

Dataset Construction Details For each task, we select a unique prompt-unit pair to develop task-
specific instructions. For example, visual understanding task encompasses Image Captioning and
Visual Question Answering (VQA), with image-text inputs and pure text outputs. To facilitate
MLLMs in comprehending image-level information and addressing diverse questions, we construct
conversations for visual understanding tasks using our proposed pipeline with the COCO (Lin et al.,
2014), GranD (Rasheed et al., 2024), GRIT (Peng et al., 2023), VQAv2 (Antol et al., 2015), and
LLaVA-instruct (Liu et al., 2023b) datasets, which collectively comprise over 15 million image-text
pairs featuring multi-turn conversations. Referring expression tasks include Referring Expression
Comprehension (REC), Referring Expression Segmentation (RES), and Referring Expression Gen-
eration (REG). The REC and RES tasks require the model to respond to a question or description
regarding a specific area in an image, predicting bounding boxes or masks. In contrast, the REG
task involves inputs such as points, boxes, scribbles, and masks, with the model expected to gen-
erate a descriptive response based on the visual prompts. We construct conversations for referring
expression task from refCOCO (Kazemzadeh et al., 2014), refCOCO+ (Kazemzadeh et al., 2014),
refCOCOg (Kazemzadeh et al., 2014), GranD (Rasheed et al., 2024), GRIT (Lin et al., 2014), Os-
prey (Yuan et al., 2024), Visual Genome (Krishna et al., 2017) datasets with more than 22 million
samples. Interactive grounding allows users to provide prompts through both text and interactive
elements, such as points, boxes, masks, or scribbles, enabling MLLMs to interpret these inputs and
generate corresponding outputs, including bounding boxes or masks. We constructed interactive
grounding samples using the COCO-interactive (Zhang et al., 2024b) dataset , which contains over
64 million examples. The open-vocabulary identification task focuses on localizing and segmenting
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objects in an image based on descriptive text prompts, even if the specific object categories were
not included in the model’s training data. To equip VT-PLUG with zero-shot capabilities for object
detection and segmentation—similar to traditional open-vocabulary detection models (e.g., YOLO-
World (Cheng et al., 2024)) and segmentation models (e.g., SAM (Kirillov et al., 2023)) — we
designed a multimodal conversation system using bounding boxes and masks annotations from the
GRIT (Peng et al., 2023), GranD (Rasheed et al., 2024), COCO-REM (Singh et al., 2024), ADE20k
(Zhou et al., 2017), and Cityscapes (Cordts et al., 2016) datasets, resulting in a corpus of over 20
million examples. Grounded conversation generation (GCG) aims to produce natural language re-
sponses interwoven with bounding boxes or object segmentation masks. The GCG task is divided
into GCG-box, which outputs bounding boxes, and GCG-mask, which outputs masks. We devel-
oped these tasks using datasets that include captions and phrases associated with bounding box or
mask annotations, such as Flickr30k-entities (Plummer et al., 2015), GranD (Rasheed et al., 2024),
GRIT (Peng et al., 2023), LLaVA-grounding (Zhang et al., 2023b), OpenPSG (Zhou et al., 2024),
and PNG (González et al., 2021), collectively comprising over 18 million annotations.

A.2 AP SIMILARITY (APS )

Instead of the calculating mAP as our evaluation metric for Open-Vocabulary Identification tasks,
we propose a new metric called mAP Similarity (APS) to evaluate our VT-PLUG performance.
For traditional open-vocabulary models, they typically predict classes with a logit score by their
classification head. However, instead of applying a classification head for each task, our VT-PLUG
leverages a large language model (LLM) to predict classes without generating any class logits. We
therefore compute the similarity score between VT-PLUG’s class predictions and all ground truth
class names. We then assign the class label based on the highest similarity, using this similarity
score in place of the traditional confidence score.

For the implementation of APS , we define the phrases predicted by the LLM as pi ∈
p1, p2, p3, . . . , pk, where k denotes the number of LLM predictions. The ground truth classes are
denoted as ci ∈ c1, c2, c3, . . . , cn, where n is the total number of ground truth classes for the dataset.
We first use the CLIP-Large-14-336 model to compute the text embeddings e, as shown in Equa-
tion (1). Next, we compute the cosine similarity score between each pi and ci as in Equation (2).
The class of our predicted phrase is assigned based on the maximum similarity score and its corre-
sponding index, which also serves as the logit score for the prediction.

epi
= CLIP(pi), eci = CLIP(ci). (1)

smax, idmax = max (Cosine Similarity(epi
, eci)). (2)

A.3 TRAINING DETAILS

The training process of VT-PLUG is conducted in three stages, during which both CLIP-ViT and
CLIP-ConvNeXt are frozen, with no parameter updates. We use eight NVIDIA A800-80GB GPUs
in all of our training processes and pick Vicuna-7B as our LLM, CLIP-large-14-336 and CLIP-
ConvNeXt-512 as our visual encoder. In the first stage, VT-PLUG adopts the same setting as Shikra,
freezing all model parameters except for the projector, aiming to achieve alignment of multimodal
data, we train the first stage for about 2 days with setting the lr to 1e − 5. In the second stage,
VT-PLUG is trained using the VT-Instruct data that we constructed as shown in Section 3.2, updat-
ing parameters for all modules except the keypoint decoder. The goal of this stage is to train the
LLM and various visual plugins using large-scale data, while the keypoint decoder is excluded from
training due to its strong correlation with the box decoder. In the third stage, VT-PLUG continues
training on the VT-Instruct dataset, updating all modules, with the keypoint decoder initialized with
the weights of the box decoder from the second stage. We set the lr to 2e− 6 in the second and third
stages. It took about 7 days to complete the whole training process.
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A.4 MULTI-TASKS RESULTS

User

User

User

User

User

User

Visual Understanding

VT-PLUG

Please describe the image in 
more details.

In the image, a man is sitting on a 
concrete block near the beach, 
enjoying the view of the ocean. He is 
wearing shorts and a white shirt, and 
he appears to be relaxing and taking 
in the scenery.

There are several other people in the 
scene, some of whom are standing 
near  the  beach,  while  others  are 
further away. A skateboard is visible 
on the ground, suggesting that the 
man might have been skateboarding 
before taking a break on the concrete 
block.

In the background, a boat can be 
seen floating on the water, adding to 
the beach atmosphere.

Describe the main features of the 
image.

A man sitting on a concrete block 
on the beach.

Where is the man ?

The man is sitting on a concrete 
block or cement slab at the beach.

Please give me  more details 
about image.

In the image, a large crowd of people 
is gathered in a grassy field, watching 
a dog perform an impressive trick. The 
dog is jumping high in the air, 
attempting to catch a frisbee. The 
crowd is captivated by the dog's skill 
and athleticism.

There are numerous people in the 
scene, with some standing closer to 
the dog and others further away. 
Some of the spectators are holding 
frisbees, likely waiting for their turn to 
throw them for the dog to catch. The 
atmosphere is lively and filled with 
excitement as the dog showcases its 
talent.

Tell me the main thing in the 
image.

A man and a dog playing with a 
frisbee in front of a crowd.

Where is the dog ?

The dog is in the air, jumping to 
catch a frisbee.

VT-PLUG

VT-PLUG

VT-PLUG

VT-PLUG

VT-PLUG

Figure 7: The Visual Understanding Results of VT-PLUG.
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User

User

User

Detection

GCG Detection

Detect objects in this image.

Person (box[0]<REF>  [1]<REF>  
[2]<REF>  [3]<REF>), boat (box 
[0]<REF>).

Help me detect the key objects in 
the picture.

Person (box [0]<REF>  [1]<REF>), 
dress (box [0]<REF>).

Can you provide a description of 
the image and include the 
coordinates [x0,y0,x1,y1] for each 
mentioned object?

Can you give me the main 
description of the image and the 
coordinates [x0,y0,x1,y1] of each 
mentioned object ?

A man (box [0]<REF>) is riding a 
horse (box[0]<REF>) in the snow.

Three man (box[0]<REF> 1]<REF> 
[2]<REF>)  are standing  in front of 
a table. 

VT-PLUG VT-PLUG

VT-PLUGVT-PLUG

User

Figure 8: The Detection Results of VT-PLUG.
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User

User User

VT-PLUG

Segmentation

GCG Segmentation

Segment objects in this image.

Cake (mask [0]<REF>), person 
(mask[0]<REF>[1]<REF> ),dining 
table(mask[0]<REF> ).

Help me segment objects in this 
image.

Person (mask[0]<REF> [1]<REF> 
[2]<REF>[3]<REF>), snow (mask 
[0]<REF>), truck (mask [0]<REF>), 
bag (box [0]<REF>). 

 Please explain what's happening 
in the photo and give masks for 
the items you reference.

A boy (mask [0]<REF>) and a girl 
(mask[0]<REF>) sitting on a stool 
in a park.

 Please tell me what's happening 
in the photo and give masks for 
the items.

Three children(mask[0]<REF> 
[1]<REF>[2]<REF>) playing in a 
field of flowers.

VT-PLUGVT-PLUG

VT-PLUG

User

Figure 9: The Segmentation Results of VT-PLUG.
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User
User

Please tell me what category is in 
the box <area> and fix the box.

Please locate the man in the image 
and give the bounding box.

Text as the Prompt Box as the Prompt

Grounding Detection

User User

Please tell me what animal is 
in the box <area>？

Please identify the position of 
bear in the image and give the 
bounding box coordinates.

Text as the Prompt Box as the Prompt

VT-PLUG VT-PLUG

VT-PLUG VT-PLUG

Figure 10: The Grounding Detection Results of VT-PLUG.
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UserUser

UserUser

VT-PLUG

VT-PLUG

VT-PLUG

VT-PLUG

Produce a detailed mask for the <area> 
indicated by box in the image.

Can you segment  player in the image 
and provide the masks for this class?

Text as the Prompt Box as the Prompt

Grounding Segmentation

Help me to segment the content of 
the area indicated by the two boxes
<area> in the image with masks?

Can you segment the middle 
bird?

Text as the Prompt Box as the Prompt

Figure 11: The Grounding Segmentation Results of VT-PLUG.
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