
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

UNCOVER UNDERLYING CORRESPONDENCE FOR
ROBUST MULTI-VIEW CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-view clustering (MVC) aims to group unlabeled data into semantically
meaningful clusters by leveraging cross-view consistency. However, real-world
datasets collected from the web often suffer from noisy correspondence (NC),
which breaks the consistency prior and results in unreliable alignments. In this
paper, we identify two critical forms of NC that particularly harm clustering: i)
category-level mismatch, where semantically consistent samples from the same
class are mistakenly treated as negatives; and ii) sample-level mismatch, where
collected cross-view pairs are misaligned and some samples may even lack any
valid counterpart. To address these challenges, we propose CorreGen, a genera-
tive framework that formulates noisy correspondence learning in MVC as maxi-
mum likelihood estimation over underlying cross-view correspondences. The ob-
jective is elegantly solved via an Expectation–Maximization algorithm: in the E-
step, soft correspondence distributions are inferred across views, capturing class-
level relations while adaptively down-weighting noisy or unalignable samples
through GMM-guided marginals; in the M-step, the embedding network is up-
dated to maximize the expected log-likelihood. Extensive experiments on both
synthetic and real-world noisy datasets demonstrate that our method significantly
improves clustering robustness. The code will be released upon acceptance.

1 INTRODUCTION

Describing the same object from multiple perspectives (Yan et al., 2021) or modalities (Sharma
et al., 2018), multi-view data have become increasingly prevalent in real-world applications. To
exploit such data, contrastive multi-view clustering (MVC) has emerged as a powerful unsupervised
paradigm (Qin et al., 2025b; Wang et al., 2025a). Relying on the consistency prior that views from
the same instance should be semantically aligned, contrastive MVC pulls positive pairs (i.e., views
of the same instance) closer while pushing negative pairs (i.e., views from different instances) apart
in the embedding space. Through this process, it could learn a shared embedding space across views
and group unlabeled samples into semantically meaningful clusters.

However, this prior is often difficult to satisfy. In practice, multi-view datasets are commonly con-
structed by crawling paired data from the web, such as images with their associated alt text (Wang
et al., 2015). This automatic process inevitably introduces the noisy correspondence (NC) prob-
lem (Huang et al., 2021), where cross-view pairs are incorrectly matched. Such noise undermines
the cross-view consistency prior and severely distorts the semantic structure of the learned embed-
ding space.

In this paper, we identify two major types of NC that are particularly harmful to clustering: i)
Category-level mismatch, where views from different modalities but belonging to the same class
are mistakenly treated as negatives by contrastive MVC methods, despite their underlying semantic
consistency; ii) Sample-level mismatch, which manifests in two scenarios: alignable mispairs, where
a sample is wrongly paired with a mismatched view despite having a correct counterpart elsewhere;
and unalignable samples, where no valid counterpart exists due to corruption, noise, or poor data
quality. Such issues are especially prevalent in web-collected data, where the pairwise noise rate can
exceed 20% (Sharma et al., 2018; Wang et al., 2015). Critically, manually verifying or cleaning these
correspondences is prohibitively expensive, underscoring the need for robust multi-view clustering
methods. To address NC, recent works (Qu et al., 2025) mainly adopt either pairwise reweighting

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A ripe red apple hanging 
on a tree branch.

Small red-green apples 
hanging on a tree.

A pet sitting inside on 
the green grass.

A bird !@Øü on the gro 
brigh #¿ ùe eyes, æç~!

I3

(a) Pairwise Reweighting (b) Pairwise Realignment (c) Correspondence Generation (Ours)

I1 I2 I4

T1 T2 T3 T4

I1 I2 I3 I4

T1 T2 T3 T4

I1 I2 I3 I4

T1 T2 T3 T4

T1 T2 T3 T4

I1 I2 I3 I4

Figure 1: (Top) Examples of multi-view data, including noisy pairs I4–T4. (Bottom) Illustration of
three paradigms for handling noisy correspondence, where green edges denote discovered corre-
spondences and red edges indicate potential but undiscovered ones. (a) Pairwise reweighting, which
applies robust contrastive losses to down-weight potentially noisy pairs during training but retains
the original correspondences unchanged; (b) Pairwise realignment, which reassigns each sample
to a more plausible cross-view counterpart; (c) Correspondence generation (Ours), which directly
uncovers latent correspondences and filters out noise.

or realignment strategies, as illustrated in Fig. 1. However, both approaches overlook category-level
semantics and unalignable samples, leading to suboptimal results in clustering.

In this paper, we shift from the existing discriminative contrastive objective to a generative one.
Specifically, we formulate noisy correspondence learning in MVC as a maximum likelihood es-
timation objective of the underlying joint distribution, in which the counterparts across views are
modeled as unobserved latent variables. Unlike previous methods (Wang et al., 2025b; Qin et al.,
2025a) that focus on verifying whether given positive or negative pairs are correctly aligned, our
formulation uncovers the underlying correspondences without heavily relying on pre-defined (po-
tentially noisy) pairs. By maximizing the overall log-likelihood, we capture the semantic structure
in a principled and probabilistic manner.

To effectively optimize the proposed objective, we develop an Expectation-Maximization (EM)
based algorithm CorreGen. In the E-step, the goal is to infer a latent correspondence distribu-
tion across views. We first estimate the marginal likelihood of each sample by fitting a Gaussian
Mixture Model in the embedding space. Intuitively, this estimation assigns higher probabilities to
samples that lie in large and coherent clusters, while noisy or unalignable samples receive lower
probabilities. These marginals serve as constraints to solve an optimal transport formulation, yield-
ing a soft many-to-many assignment that captures category-level relationships across views. In the
M-step, the estimated correspondences are used to maximize the expected log-likelihood, updating
the embedding network such that semantically consistent pairs are assigned higher likelihoods. Iter-
ating between the two steps gradually uncovers reliable correspondences and refines robust cluster
representations. In summary, the contribution of our work can be summarized as follows:

• We identify and formalize two types of noisy correspondence in MVC: category-level
mismatch and sample-level mismatch, where both are prevalent in real-world multi-view
datasets and harmful to clustering.

• We propose CorreGen, a novel generative framework that models latent cross-view cor-
respondences through maximum likelihood estimation, solved elegantly via an EM algo-
rithm. Furthermore, we prove that the standard InfoNCE is a special case of our formulation
under specific assumptions.

• We introduce a principled E-step solution that jointly models category-level correspon-
dences and suppresses sample-level noise by leveraging GMM-guided marginals. Exten-
sive experiments on both synthetic and real-world noisy datasets validate the effectiveness
of our approach. Notably, our method achieves 10% accuracy improvements on the chal-
lenging UMPC-Food101 dataset (Wang et al., 2015).
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2 RELATED WORK

Robust Multi-view Clustering aims to handle imperfections that commonly occur in real-world
datasets. These imperfections can be broadly categorized into two types: i) Incomplete Multi-view
Problem (IMP) arises when some views are missing, resulting in incomplete cross-view informa-
tion. To mitigate this issue, recent methods adopt various completion-based strategies such as an-
chor learning (Liu et al., 2024), subspace learning (Zhang et al., 2024), or diffusion models (Zhang
et al., 2025). These approaches aim to impute the missing views and recover complete multi-view
representations; ii) Partially-view aligned Problem (PVP) occurs when the correspondences across
views are misaligned. For example, in multi-camera surveillance, images of the same person from
different cameras may be temporally asynchronous (Huang et al., 2020). To address this, He et al.
(2024) introduces a variational contrastive learning framework to realign unpaired data, while Yan
et al. (2025) designs a multi-stage strategy that iteratively updates cross-view correspondences for
unpaired data.

Although both PVP and NC address erroneous cross-view correspondences, the NC problem stud-
ied in this paper differs in two significant aspects. First, misalignments in NC are unobserved,
with no manually verified labels or alignment indicators available (Lee et al., 2018). Second, NC
encompasses not only instance-level mismatches, but also category-level misalignments and even
unalignable samples that lack valid counterparts across views.

Noisy Correspondence Learning was first introduced in cross-modal retrieval (Huang et al., 2021),
where mismatched image-text pairs are mistakenly treated as true positives. Recently, this problem
has garnered increasing attention across a range of domains, including video reasoning (Lin et al.,
2024), graph matching (Lin et al., 2023), person re-identification (Yang et al., 2022a) and multi-
view clustering (Sun et al., 2024; 2025). Existing solutions can be broadly categorized into two
groups: i) Reweighting-based methods (Yang et al., 2024) aim to reduce the impact of mismatched
pairs by assigning them lower weights during training. For example, Huang et al. (2021) adjusts the
margins in triplet contrastive loss to account for false positives; ii) Realignment-based methods (Lin
et al., 2024) attempt to reassign each sample to a more plausible counterpart across views, thereby
mitigating alignment errors.

Although existing methods achieve promising results, they mainly refine given positive pairs
while overlooking potential category-level correspondences, leading to suboptimal clustering per-
formance. Different from these discriminative approaches, we propose a generative objective for
noisy correspondence learning in MVC, which assigns higher likelihoods to semantically consistent
samples and uncovers latent correspondences. Notably, our optimization does not rely heavily on
off-the-shelf pairs, thereby mitigating the noisy correspondence problem from a new perspective.

3 METHOD

In this section, we first introduce the problem setting and formalize correspondence learning in
multi-view clustering (MVC) as a generative maximum likelihood estimation problem in Sec. 3.1.
To optimize this objective, we propose CorreGen, an EM-based framework in Sec. 3.2, and detail
its two steps in Sec. 3.2.1 and Sec. 3.2.2.

3.1 PROBLEM DEFINITION

Given a multi-view dataset {(x(1)
i , . . . ,x

(V )
i )}Ni=1 with N instances observed from V views, the

goal of MVC is to learn an encoder fθ that maps each view x
(v)
i into a shared embedding space,

i.e., z(v)
i = fθ(x

(v)
i ). Ideally, the distribution of these embeddings should form C well-separated

semantic clusters, such that traditional clustering algorithms (e.g., K-means (McQueen, 1967)) can
easily distinguish them.

To achieve this goal, recent contrastive MVC methods (Yang et al., 2023) pull positive pairs (i.e.,
views of the same instance) closer while pushing negative pairs (i.e., views from different instances)
apart in the embedding space. Formally, for any pair of views (v1, v2) with v1 ̸= v2, the positive
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and negative sets are defined as

P+
v1,v2 =

N⋃
i=1

{ (x(v1)
i , x

(v2)
i , t12ii = 1)}, P−

v1,v2
=

N⋃
i=1

N⋃
j=1,j ̸=i

{ (x(v1)
i , x

(v2)
j , t12ij = 0)}, (1)

where t12ij ∈ {0, 1} is an indicator variable that equals 1 if x
(v1)
i and x

(v2)
j belong to the same

instance, and 0 otherwise. Nevertheless, contrastive MVC essentially formulates an instance-level
discriminative task (Wu et al., 2018), which overlooks the intrinsic cluster structure of data. As a re-
sult, real-world multi-view datasets are particularly vulnerable to the noisy correspondence problem,
where the assumed cross-view alignment fails to hold. For clarity, we formalize its two manifesta-
tions, namely category-level mismatch and sample-level mismatch, as defined below.

Definition 1 (Category-level mismatch). Consider a cross-view pair (x(v1)
i ,x

(v2)
j , t12ij ), where t12ij ∈

{0, 1} denotes whether the pair is treated as positive or negative. Let c(v1)
i and c

(v2)
j be the oracle

class labels of x(v1)
i and x

(v2)
j , respectively. A category-level mismatch occurs if c(v1)

i = c
(v2)
j but

t12ij = 0, i.e., samples from the same semantic class are incorrectly assigned as a negative pair.

In other words, category-level mismatch occurs when semantically related instances are mistakenly
treated as negatives. Ideally, all cross-view pairs of samples from the same class should be regarded
as positives with t12ij = 1, rather than only those from the same instance.

Definition 2 (Sample-level mismatch). Consider a cross-view pair (x
(v1)
i ,x

(v2)
i , t12ii ), where c

(v1)
i

and c
(v2)
i denote the oracle class labels of x(v1)

i and x
(v2)
i , respectively. A sample-level mismatch

occurs if either i) c(v1)i ̸= c
(v2)
i , or ii) at least one of c(v1)

i or c(v2)i does not correspond to any valid
class. In both cases, the pair cannot be regarded as a valid positive correspondence.

Specifically, sample-level mismatch admits two scenarios: i) alignable mispaired: although the
constructed pair is incorrect, the sample x

(v1)
i still has a valid counterpart x(v2)

k in the other view.
This case often co-occurs with category-level mismatch; ii) unalignable mispaired: there is no valid
counterpart exists, e.g., the sample x

(v1)
i might be corrupted or purely noisy data.

These two types of complex noisy correspondence motivate a more fundamental question: can we
reduce the reliance on pre-defined pairs and instead directly model the intrinsic relationships that
couple different views? Building on this intuition, we adopt a generative formulation that maximizes
the marginal log-likelihood of the observed multi-view data (Bengio et al., 2013).

θ∗ = argmax
θ

V∑
v=1

N∑
i=1

log p(x
(v)
i ; θ), (2)

In multi-view clustering, each sample in one view may be associated with multiple counterparts in
another view. Since these associations are unknown a priori, we treat them as latent variables. By
aggregating over all unordered view pairs (vi, vj), the objective can be reformulated as:

θ∗ = argmax
θ

V∑
v1

N∑
i

V∑
v2

log

N∑
j

p(x
(v1)
i ,x

(v2)
j ; θ). (3)

Maximizing this marginal likelihood implicitly encourages the model to learn a meaningful joint
distribution p(x

(v1)
i ,x

(v2)
j ; θ). In particular, to maximize the inner summation over j, the param-

eters θ must assign higher joint probability to semantically consistent pairs, thereby revealing the
underlying cross-view correspondences in a probabilistic sense.

Compared with discriminative objectives, this generative formulation offers two key advantages: i)
it alleviates the heavy reliance on pre-defined positive and negative pairs, making it naturally ro-
bust to sample-level unmatchable cases; ii) it captures many-to-many probabilistic correspondences
across views, which better reflects the complex coupling of real-world multi-view data and mitigates
category-level mismatch. However, the nested summation in Eq. (3) makes direct optimization in-
tractable. To address this, we cast the objective into the Expectation–Maximization (EM) framework
and present the theoretical derivation in the next section.
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3.2 CORRESPONDENCE GENERATION VIA EXPECTATION–MAXIMIZATION

To simplify the derivation of the joint log-likelihood defined in Eq. (3), we first consider a subset of
the objective involving only two views:

θ∗ = argmax
θ

N∑
i=1

log

N∑
j=1

p(x
(v1)
i ,x

(v2)
j ; θ). (4)

Directly optimizing Eq. (4) is intractable due to the nested log-sum over latent variables. To address
this, we introduce an auxiliary distribution Q(x

(v2)
j ) over x(v2)

j such that
∑N

j=1 Q(x
(v2)
j ) = 1. This

allows us to derive a lower bound:
N∑
i=1

log

N∑
j=1

p(x
(v1)
i ,x

(v2)
j ; θ) =

N∑
i=1

log

N∑
j=1

Q(x
(v2)
j )

p(x
(v1)
i ,x

(v2)
j ; θ)

Q(x
(v2)
j )

, (5)

≥
N∑
i=1

N∑
j=1

Q(x
(v2)
j ) log

p(x
(v1)
i ,x

(v2)
j ; θ)

Q(x
(v2)
j )

, (6)

where the inequality follows from Jensen’s inequality. The bound becomes tight when Q(x
(v2)
j ) =

p(x
(v2)
j ;x

(v1)
i , θ), i.e., when the auxiliary distribution matches the posterior under the current pa-

rameters θt. Substituting this choice of Q into the bound gives:

θ∗ = argmax
θ

N∑
i

N∑
j

Q(x
(v2)
j ) log p(x

(v1)
i ,x

(v2)
j ; θ)−

N∑
i

N∑
j

Q(x
(v2)
j ) logQ(x

(v2)
j ) (7)

= argmax
θ

N∑
i

N∑
j

p(x
(v2)
j ;x

(v1)
i , θ(t)) log p(x

(v1)
i ,x

(v2)
j ; θ), (8)

where the entropy term−
∑N

i

∑N
j Q(x

(v2)
j ) logQ(x

(v2)
j ) is omitted since it is independent of θ. In

the E-step, we estimate the posterior distribution p(x
(v2)
j ;x

(v1)
i , θ(t)), which provides a soft assign-

ment of correspondences between samples across views. In the M-step, we maximize the weighted
log-likelihood in Eq. (8), updating the parameters θ guided by the correspondences inferred in the
E-step. By aggregating over all views, the above derivation naturally generalizes to multiple views.
Fig. 2 shows an overview of the above EM process and the details of the two steps will be discussed
in the next section.

3.2.1 E-STEP: ESTIMATING UNDERLYING CORRESPONDENCES

In the E-step, we estimate the posterior distribution of latent correspondences p(x
(v2)
j ;x

(v1)
i , θ(t))

under the current parameters θ(t):

p(x
(v2)
j ;x

(v1)
i , θ(t)) =

p(x
(v1)
i ,x

(v2)
j ; θ(t))

p(x
(v1)
i ; θ(t))

, (9)

which naturally decomposes the estimation into two parts, namely, the marginal distribution of indi-
vidual views and the joint distribution across views.

First, we estimate the joint distribution between views v1 and v2, represented as a matrix P ∈ RN×N
+

where each entry Pij = p(x
(v1)
i ,x

(v2)
j ; θ(t)). A good estimate of P should not only satisfy the

marginal constraints but also capture the semantic dependency between the two views. To this end,
we introduce a correlation function s(z

(v1)
i , z

(v2)
j ) (e.g. cosine similarity) to measure the semantic

correlations of a sample pair under the current parameters θ(t), with z
(v)
i = fθ(t)(x

(v)
i ). Then the

expected correlation is defined as

EP [s] =

N∑
i=1

N∑
j=1

Pij s(z
(v1)
i , z

(v2)
j ). (10)
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GMM	
Guide

Underlying	Correspondence	Estimation	

Virtual
Sample

Robust	Correspondence	Learning

E-step M-step

Guide

Figure 2: Overview of the CorreGen framework which operates via an EM procedure: the E-step in-
fers the underlying correspondence distribution using GMM-guided marginals and a virtual sample
mechanism to handle noise; the M-step subsequently utilizes these estimated soft correspondences
to guide the robust representation learning.

We then seek the optimal joint distribution by maximizing this expectation:

P ∗ = argmax
P∈Π(p(v1),p(v2))

EP [s]

s.t Π(p(v1),p(v2)) =
{
P ∈ RN×N

+

∣∣∣P1N = p(v1),P⊤1N = p(v2)
} (11)

where p(vi) is the marginal distribution vector for view vi, i.e., p(vi)
i = p(x

(vi)
i ; θ(t)). This formula-

tion ensures that the estimated joint distribution preserves the marginal constraints while assigning
higher probability mass to semantically correlated pairs. However, due to the sample-level un-
alignable problem, there may exist outliers whose joint probabilities with all other samples should
ideally be close to zero.

Virtual Sample for Partial Alignment. To handle the outliers and obtain a more realistic joint
distribution, we first introduce a virtual sample for each view to represent the outliers. Let ρ denote
the potential noise rate, which corresponds to the marginal probability mass of the virtual sample.
We then augment the joint distribution to P̃ ∈ R(N+1)×(N+1)

+ , ensuring that the total probability
mass assigned to outliers equals ρ. Formally, P̃ satisfies

P̃1N+1 = [p(v1); ρ], P̃⊤1N+1 = [p(v2); ρ], (12)

which enables the model to absorb unalignable or noisy samples into the virtual probability mass.

Recall from Eq. (9) that estimating the posterior probabilities require both the joint distribution
p(x

(v1)
i ,x

(v2)
j ; θ(t)) and the marginal distribution p(x

(v1)
i ; θ(t)). In the expectation formulation

Eq. (11), these marginals act as constraints on the feasible set of couplings Π(p(v1),p(v2)), which es-
sentially determines how many valid counterparts each sample can align with. Under category-level
mismatch, the number of valid counterparts is not uniform but depends on the size and structure
of its semantic class. Therefore, the marginal distribution should naturally reflect this variability:
samples from larger clusters or closer to cluster centers are assigned higher alignment mass, while
outliers receive lower probabilities.

GMM-guided Marginal Estimation. We assume that each sample is generated from a latent
semantic cluster, which can be approximated by an anisotropic Gaussian distribution x

(v)
i ∼

N (µc,Σc). Accordingly, we fit the embedding space of each view with a Gaussian Mixture Model
(GMM) and compute the posterior responsibility of each cluster for every sample. The marginal
probability is then estimated as

p(x
(v)
i ; θ(t)) =

mdi − 1

m− 1
· Nc

N
, (13)

di = exp

(
−ϵ

√
(z

(v)
i − µc)⊤Σ

−1
c (z

(v)
i − µc)

)
, (14)

where Nc is the number of samples assigned to cluster c by GMM, ϵ and m are shaping parameters.
Concretely, we first compute the Mahalanobis distance Eq. (14) between each sample and its cluster

6
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center, and map the result through an exponential kernel to obtain an assignment confidence di. This
confidence is further passed through a curve-shaping function mdi−1

m−1 , which amplifies the contrast
between high- and low-confidence samples: samples closer to the cluster center receive dispropor-
tionately higher weights, while distant ones are smoothly down-weighted rather than suppressed
abruptly. Finally, the re-scaled confidence is combined with the cluster proportion Nc/N to yield
the final probability to fill the marginal distribution in Eq. (11). In practice, we set ϵ = 0.1 and
m = 10, and apply a momentum update to stabilize training.

Proposition 1. Eq. (11) with virtual sample can be solved by an efficient scaling algorithm if adding
an entropy regularization λH(P̃ ), where λ is a regularization factor. Specifically, we derive the
optimal augmented joint distribution P̃ ∗ through the following iterations:

P̃ ∗ = Diag(u) exp(S̃/λ)Diag(v),

with iteration update u← p̃(v1)/(exp(S̃/λ)v), v ← p̃(v1)/(exp(S̃⊤/λ)u).
(15)

where u ∈ RN+1
+ , v ∈ RN+1

+ are two scaling vectors, p̃(vi) = [p(vi); ρ]. The extended correlation
matrix S̃ ∈ R(N+1)×(N+1) is constructed as:

S̃ =

[
S 0N×1

01×N A

]
(16)

where Sij = s(z
(v1)
i , z

(v2)
j ) and A is a constant. The optimal joint distribution estimation P ∗ is

obtained by discarding the last row and column of P̃ ∗, i.e., P ∗ = P̃ ∗
1:N,1:N . The proof is provided

in Appendix A.

3.2.2 M-STEP: ROBUST CORRESPONDENCE LEARNING

In the M-step, we maximize the overall log-likelihood of the observed data based on the esti-
mated posterior distribution. To make Eq. (8) tractable, we approximate the joint distribution
p(x

(v1)
i ,x

(v2)
j ; θ) by normalizing the similarity scores of embeddings in the latent space

p(x
(v1)
i ,x

(v2)
j ; θ) =

exp(s(z
(v1)
i , z

(v2)
j )/τ)∑N

m=1

∑N
n=1 exp(s(z

(v1)
m , z

(v2)
n )/τ)

(17)

where z(v)
i = fθ(x

(v)
i ) denotes the embedding of x(v)

i and τ is a temperature parameter. According
to Eq. (9), we compute the posterior using the optimal joint distribution P ∗ and marginals p(v1)

obtained in the E-step, defined as Qij = P ∗
ij/p

(v1)
i . Substituting this parameterization into Eq. (8),

the M-step objective becomes

θ∗ = argmax
θ

N∑
i=1

N∑
j=1

Qij log
exp(s(z

(v1)
i , z

(v2)
j )/τ)∑N

m=1

∑N
n=1 exp(s(z

(v1)
m , z

(v2)
n )/τ)

, (18)

where s(·, ·) denotes a correlation function. Unlike contrastive objectives that rely on manually
defined positive/negative pairs, this formulation leverages the soft correspondences P ∗ inferred in
the E-step, thereby mitigating the negative effects of noisy correspondence and enabling more robust
representation learning. Importantly, we find that the widely used InfoNCE loss can be unified into
our framework as a special case as stated below.

Proposition 2. If the marginal distribution p(x
(v)
i ; θ) is uniform and the posterior probability degen-

erates to p(x
(v2)
i ;x

(v1)
i , θ) = 1 (i.e., only paired cross-view samples are treated as valid positives),

then Eq. (8) reduces to the standard InfoNCE contrastive objective:

θ∗ = argmax
θ

N∑
i

log
exp(s(z

(v1)
i , z

(v2)
i )/τ)∑N

n=1 exp(s(z
(v1)
i , z

(v2)
n )/τ)

(19)

The proof is in Appendix B,
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Table 1: The clustering performance with different mismatch ratio (MR). The best results and second
best results are marked in bold and underline. All the results are the mean of five individual runs
with different random seeds.

MR Ratio Method Scene15 LandUse21 Caltech101 UMPC-Food101

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

0%

DCP 40.16 42.71 23.00 24.20 30.88 11.70 51.91 74.91 47.57 16.33 36.56 7.50
SURE 43.41 44.33 25.71 23.14 29.20 10.62 38.94 65.64 27.28 29.86 46.37 19.22
GCFAgg 33.58 32.91 16.76 23.48 26.75 10.80 34.27 55.57 19.98 16.12 30.03 6.55
CGCN 41.34 40.09 24.64 23.57 26.88 10.40 36.40 66.72 24.72 29.58 39.57 14.69
DIVIDE 44.57 45.98 28.43 32.50 39.44 18.16 62.20 83.30 50.50 36.20 57.92 27.72
CANDY 42.55 41.67 25.41 30.94 36.33 16.20 67.64 84.06 60.02 33.10 53.06 22.39
ROLL 47.61 48.71 30.86 29.43 33.78 15.24 17.83 42.75 13.43 23.65 47.22 16.43
Ours 50.25 48.92 32.87 32.87 39.52 18.54 68.52 84.45 63.45 49.77 58.36 35.73

20%

DCP 35.88 37.63 16.51 24.20 28.46 10.10 43.99 70.83 35.43 17.83 35.63 8.45
SURE 37.26 35.56 19.94 24.67 27.45 10.91 35.91 60.06 24.56 20.30 32.89 8.99
GCFAgg 33.11 27.64 15.29 23.86 23.30 9.11 28.90 47.47 13.81 11.28 19.48 2.94
CGCN 35.96 35.73 20.10 24.52 26.38 10.36 33.01 64.17 24.41 28.01 38.36 13.63
DIVIDE 41.91 40.16 24.84 30.89 35.93 16.21 55.65 70.72 50.92 31.41 51.21 22.70
CANDY 41.05 40.41 24.44 30.54 35.45 15.99 65.79 82.29 60.03 30.41 50.36 20.36
ROLL 44.86 46.96 28.71 29.33 33.11 15.16 20.39 46.44 15.03 21.26 43.05 13.73
Ours 48.04 47.36 30.75 32.26 38.76 17.83 68.01 84.23 62.78 46.76 55.22 32.46

50%

DCP 25.28 25.24 5.78 24.01 26.95 8.37 41.52 69.35 29.59 13.36 24.04 4.60
SURE 28.16 26.52 13.16 22.67 24.91 9.94 26.89 52.51 18.73 11.06 21.51 3.20
GCFAgg 21.07 11.26 5.14 24.48 22.56 8.92 22.16 36.65 8.89 6.70 11.02 0.80
CGCN 35.99 33.07 19.47 20.62 23.35 7.83 37.74 65.66 28.20 20.71 31.44 8.51
DIVIDE 39.67 36.47 22.69 29.75 33.17 15.23 38.81 59.18 33.03 25.21 44.47 16.00
CANDY 41.25 39.02 23.93 29.09 32.56 14.77 60.30 78.60 55.16 28.80 48.69 19.03
ROLL 42.41 44.49 26.43 28.65 32.81 15.01 18.57 43.50 13.68 20.97 38.54 11.89
Ours 45.07 44.97 27.87 32.03 37.98 17.84 66.60 83.61 62.38 42.57 51.79 27.29

80%

DCP 21.46 21.15 2.87 21.17 22.59 7.17 32.13 58.16 20.78 12.31 20.48 4.05
SURE 24.57 23.68 9.90 17.57 19.61 5.94 23.61 49.01 15.97 8.81 18.32 2.19
GCFAgg 11.53 3.08 0.90 17.38 15.17 4.44 16.61 32.57 5.78 3.58 6.90 0.14
CGCN 28.81 25.42 12.89 20.29 20.70 7.32 35.32 63.83 25.77 18.13 29.48 6.92
DIVIDE 35.90 32.95 19.63 28.56 31.74 14.32 27.42 53.68 21.56 24.78 42.98 15.63
CANDY 38.27 36.08 20.74 28.44 31.39 14.01 54.17 77.30 53.79 27.59 48.10 17.62
ROLL 37.62 38.27 21.19 25.67 28.42 11.96 20.83 45.58 13.97 19.39 39.68 13.52
Ours 40.96 41.74 24.74 31.52 37.21 17.75 64.74 82.77 61.78 43.00 53.03 27.12

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the effectiveness of our method in ad-
dressing both category-level and sample-level noisy correspondence. Our study is guided by the fol-
lowing research questions: Q1: Does our method outperform existing robust MVC approaches under
noisy correspondence (Section 4.2)? Q2: Can our method reliably uncover underlying category-
level correspondences across views (Section 4.3)? Q3: How does performance vary under different
levels of mismatch (Appendix D)? Q4: How sensitive is our method to hyperparameter choices
(Appendix E)? Q5: Are the proposed components crucial for the improvements (Appendix F)?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on four widely used datasets: Scene15 (Fei-Fei & Perona, 2005),
Caltech101 (Li et al., 2015), LandUse21 (Yang & Newsam, 2010), and UMPC-Food101 (Wang
et al., 2015). Notably, UMPC-Food101 contains images from 101 food categories paired with
recipes crawled from the web, which inevitably introduces substantial irrelevant or noisy informa-
tion. Representative examples of such noisy image–text pairs are provided in Appendix I.

Baselines. We compare CorreGen against seven state-of-the-art MVC methods, including DCP (Lin
et al., 2022), SURE (Yang et al., 2022b), GCFAgg (Yan et al., 2023), CGCN (Wang et al., 2024),
DIVIDE (Lu et al., 2024), CANDY (Guo et al., 2024), and ROLL (Sun et al., 2025). For fair
comparison, we apply a view realignment strategy to the learned representations following prior
studies (Guo et al., 2024; Sun et al., 2025), where realignment is consistently performed within
batches of 512 to ensure fair evaluation.

Implementation Details. CorreGen introduces a generative objective for MVC that can be seam-
lessly integrated into existing contrastive frameworks. We implement it on top of DIVIDE (Lu et al.,
2024) as the base model. More details are provided in Appendix C.
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(a) Warmup (10 epoch) (b) 100 epoch (c) 200 epoch (d) Ground Truth

Figure 3: Estimated posterior distributions over the course of training on the Caltech101 dataset.

Table 2: The clustering performance on four multi-view datasets with different Mismatch Rate (MR)
and Corruption Rate (CR).

Setting Method Scene15 LandUse21 Caltech101 UMPC-Food101

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

MR 0.2
CR 0.2

DCP 36.50 40.52 21.55 24.62 29.19 11.37 43.03 69.34 37.81 12.97 28.99 4.71
SURE 37.93 38.53 21.23 24.48 28.32 11.02 33.71 58.99 20.69 13.14 25.66 4.95
GCFAgg 29.59 26.33 14.22 24.29 25.13 10.70 28.57 45.65 14.21 8.89 17.07 2.11
CGCN 27.78 26.95 12.92 23.52 23.96 8.81 35.61 64.81 30.16 28.02 39.04 13.57
DIVIDE 36.05 36.18 20.22 29.30 34.69 15.13 56.13 73.31 53.82 29.01 49.69 20.92
CANDY 35.57 37.00 20.71 29.13 33.70 14.87 65.80 82.23 62.52 30.13 49.77 20.06
ROLL 36.13 36.76 17.99 23.15 24.28 8.39 16.50 40.44 12.16 18.51 39.78 11.63
Ours 41.23 41.43 25.05 31.13 37.36 17.00 67.12 84.45 64.13 45.97 54.66 31.36

MR 0.2
CR 0.5

DCP 34.31 37.70 19.55 17.95 22.13 5.96 36.98 63.14 32.46 7.36 17.71 1.58
SURE 34.05 35.32 18.37 20.05 23.20 7.40 32.18 58.49 20.47 11.19 25.69 4.19
GCFAgg 27.85 24.05 12.73 23.24 24.19 9.92 27.57 45.00 14.43 7.77 15.68 1.67
CGCN 28.36 31.46 16.32 22.24 25.04 9.61 35.83 76.99 41.69 24.07 35.01 10.17
DIVIDE 33.54 35.40 19.90 27.94 31.81 13.75 57.87 76.59 58.56 24.92 46.78 17.61
CANDY 31.24 34.08 19.00 24.72 28.03 11.27 62.57 81.52 55.76 25.00 47.27 17.36
ROLL 27.03 25.83 9.42 16.40 15.49 3.20 12.97 36.57 9.80 16.12 36.52 9.66
Ours 36.48 37.66 21.14 28.50 33.09 14.31 61.19 82.15 49.65 43.54 53.66 29.07

MR 0.5
CR 0.2

DCP 33.62 35.05 14.48 24.48 27.57 10.35 38.03 64.81 30.53 9.30 19.71 2.44
SURE 25.37 26.07 11.48 21.38 24.14 8.08 27.52 53.57 15.64 6.86 15.83 1.58
GCFAgg 24.26 13.31 6.45 22.00 19.02 7.77 23.83 38.62 10.43 5.24 9.64 0.57
CGCN 29.65 29.89 15.37 23.57 24.86 9.08 29.22 58.19 26.19 25.08 35.71 11.60
DIVIDE 32.88 32.87 18.08 29.00 32.49 14.37 43.98 61.51 37.87 23.04 43.28 14.71
CANDY 34.60 35.31 19.84 27.77 31.46 13.63 58.35 78.55 56.14 27.97 48.24 18.81
ROLL 35.23 35.79 18.54 23.34 23.99 8.83 14.78 38.46 11.07 17.54 35.48 9.67
Ours 39.54 39.55 23.12 31.20 36.25 16.92 66.87 84.15 67.31 38.84 50.09 24.98

MR 0.5
CR 0.5

DCP 26.35 31.84 13.42 18.52 23.32 7.40 32.34 58.43 21.55 5.19 10.86 0.54
SURE 26.91 28.73 12.06 19.57 21.18 6.60 25.90 54.83 18.07 7.00 17.28 1.77
GCFAgg 22.27 14.13 6.68 20.57 17.30 6.72 21.56 37.88 9.61 4.61 8.88 0.42
CGCN 27.27 30.11 14.68 19.67 22.51 7.38 33.15 59.86 24.95 20.74 32.53 8.41
DIVIDE 30.27 31.25 16.31 26.13 29.12 12.30 48.07 68.23 44.69 20.67 42.07 12.52
CANDY 29.44 32.67 17.09 24.08 27.21 11.01 51.28 75.16 41.70 24.70 46.58 17.19
ROLL 26.29 24.98 9.41 14.62 13.00 2.19 13.82 36.54 10.30 14.76 32.84 7.71
Ours 36.19 36.84 20.83 28.72 32.54 14.50 57.06 80.34 45.37 37.26 49.30 23.25

4.2 PERFORMANCE COMPARISION (Q1)

Since MVC is an unsupervised task, category-level correspondences depend on the underlying class
sizes and distributions, making category-level mismatch an intrinsic challenge rather than one that
can be explicitly specified. Therefore, in this section, we focus on evaluating model performance
under different sample-level mismatch settings, which include two cases: i) alignable mispairs,
caused by instance-level permutations across views; and ii) unalignable mispairs, caused by noisy
or corrupted samples. We control these two factors using the Mismatch Rate (MR) and Corruption
Rate (CR), with detailed construction described in Appendix C.

Table 1 reports results under different MR. Our method consistently achieves the best performance,
benefiting from its generative objective and robust correspondence discovery, which remain effec-
tive even with a few aligned pairs. Table 2 further evaluates scenarios with both alignable and
unalignable mismatches. While all baselines degrade severely as MR and CR increase, our method
maintains strong performance by jointly leveraging GMM-based marginals to down-weight noisy
samples and virtual samples to absorb unalignable ones, mitigating the influence of low-quality
pairs.
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4.3 POSTERIOR DISTRIBUTION VISUALIZATION (Q2)

We next investigate whether CorreGen can uncover the latent correspondences across views. On
Caltech101 with MR=0.2 and CR=0.0, we sample a mini-batch and estimate their posterior distri-
butions at different training stages, comparing them with the true category-level ground truth.

As shown in Fig. 3, the category-level correlations are weak in the early training phase. By mid-
training, the estimated posterior distributions already resemble the ground truth, and the gap further
narrows in the later stages. These results demonstrate that CorreGen progressively uncovers the
latent class-level correspondences, thereby effectively alleviating category-level mismatches.

5 CONCLUSION

In this paper, we propose a novel generative framework for multi-view clustering under the noisy
correspondence challenge. Unlike existing discriminative approaches that rely heavily on off-the-
shelf pairwise alignments, our method models cross-view dependencies by maximizing the joint
likelihood of observed data, thereby uncovering latent correspondences in a principled manner. Ex-
tensive experiments across multiple datasets demonstrate that our approach not only achieves supe-
rior clustering performance but also exhibits strong robustness to sample-level and category-level
mismatches. In the future, we plan to extend this framework to unpaired multi-modal learning and
apply it to cross-modal retrieval tasks with large-scale noisy data.
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APPENDIX

A EFFECIENT SOLVER FOR JOINT DISTRIBUTION ESTIMATION (PROOF OF
PROPOSITION 1)

In this section, we derive the efficient solver for Eq. (11) under the virtual-sample formulation, where
the marginals are augmented with a virtual probability mass ρ following Eq. (12):

p̃(vi) = [p(vi); ρ] = P̃1N+1. (20)

To incorporate virtual samples in the optimal transport problem, we construct an extended correla-
tion matrix S̃ following Chapel et al. (2020):

S̃ =

[
S 0N×1

01×N A

]
, (21)

where S ∈ RN×N
+ with Sij = s(z

(v1)
i , z

(v2)
j ), and A < min(Sij). Since the objective is to

maximize the expected correlation, assigning the smallest correlation value A to the virtual–virtual
interaction and setting all data-virtual correlation as 0, ensures the virtual samples do not introduce
a constant bias into the overall correlation score.

By adding an entropy regularization term H(P̃ ) = −
∑

i,j P̃ij log P̃ij , the optimization objective
can be formulated as:

argmax
P̃≥0

⟨P̃ , S̃⟩+ λH(P̃ ) s.t. P̃1 = p̃(v1), P̃⊤1 = p̃(v2), (22)

where λ > 0 is a regularization factor. The augmented objective function is strictly convex and
smooth. To derive the solution, we introduce the Lagrangian with dual multipliers α,β ∈ RN+1

enforcing the row and column constraints, respectively:

L(P̃ ,α,β) = ⟨P̃ , S̃⟩ − λ
∑
i,j

P̃ij log P̃ij +α⊤(p̃(v1) − P̃1
)
+ β⊤(p̃(v2) − P̃⊤1

)
. (23)

Taking the first-order optimality condition with respect to P̃ij , for any i, j, we have:

∂L
∂P̃ij

= S̃ij − λ(1 + log P̃ij)−αi − βj = 0. (24)

Rearranging the terms yields:

log P̃ij =
S̃ij −αi − βj

λ
− 1. (25)

By absorbing the constant terms into the scaling vectors, we obtain a multiplicative form of the
solution:

P̃ij = ũi exp(S̃ij/λ)ṽj , (26)
where ũi := exp(−αi/λ− 1/2) and ṽj := exp(−βj/λ− 1/2) are strictly positive scaling factors.
In matrix form, this is expressed as:

P̃ = Diag(ũ) exp(S̃/λ)Diag(ṽ). (27)

Imposing the marginal constraints P̃1 = p̃(v1) and P̃⊤1 = p̃(v2) leads to the following system:

Diag(ũ)
(
exp(S̃/λ)ṽ

)
= p̃(v1), Diag(ṽ)

(
exp(S̃⊤/λ)ũ

)
= p̃(v2). (28)

Solving these equations via fixed-point iteration results in the alternating Sinkhorn updates (Cuturi,
2013):

ũ← p̃(v1) ⊘
(
exp(S̃/λ)ṽ

)
, ṽ ← p̃(v2) ⊘

(
exp(S̃⊤/λ)ũ

)
, (29)

where ⊘ denotes element-wise division. By the Sinkhorn updates, the alternating scaling converges
to unique positive vectors (ũ, ṽ) that satisfy the predefined marginals. Consequently, the resulting
P̃ ∗ is the unique global maximizer of the entropy-regularized problem.

Finally, the optimal joint distribution P ∗ is obtained by discarding the last row and column of the
augmented matrix P̃ ∗, i.e., P ∗ = P̃ ∗

1:N,1:N .
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B CONTRASTIVE LEARNING AS A SPECIAL CASE OF CORRGEN (PROOF OF
PROPOSITION 2)

Starting from our generative objective in Eq. (8):

θ∗ = argmax
θ

N∑
i=1

N∑
j=1

p(x
(v2)
j ;x

(v1)
i , θ(t)) log p(x

(v1)
i ,x

(v2)
j ; θ). (30)

Under the assumption that the posterior collapses to p(x
(v2)
i ;x

(v1)
i , θ) = 1, the summation over j

reduces to

θ∗ = argmax
θ

N∑
i=1

log p(x
(v1)
i ,x

(v2)
i ; θ). (31)

Further decomposing the joint probability gives

p(x
(v1)
i ,x

(v2)
i ; θ) = p(x

(v2)
i ;x

(v1)
i , θ) p(x

(v1)
i ; θ). (32)

If the marginal p(x(v1)
i ; θ) is uniform, i.e., p(x(v1)

i ; θ) = 1
N , it contributes only a constant indepen-

dent of θ, which can be omitted. Thus, the objective simplifies to

θ∗ = argmax
θ

N∑
i=1

log p(x
(v2)
i ;x

(v1)
i , θ), (33)

After parameterizing the conditional probability with similarity in the embedding space, it yields
exactly the InfoNCE objective (He et al., 2020):

θ∗ = argmax
θ

N∑
i=1

log
exp(s(z

(v1)
i , z

(v2)
i )/τ)∑N

n=1 exp(s(z
(v1)
i , z

(v2)
n )/τ)

. (34)

C IMPLEMENTATION DETAILS

Implementation of CorreGen. CorreGen is implemented on top of DIVIDE (Lu et al., 2024).
Specifically, we replace the original contrastive objective in DIVIDE with our generative objective,
while retaining its feature extraction structure as the mapping function fθ. For the within-view con-
trastive module (i.e., between features and their momentum counterparts), we fuse the estimated
posterior matrix Q with the identity matrix I at a ratio of β = 0.5. For the cross-view learning
module, we directly use the estimated posterior matrix without modification. To ensure stable train-
ing, we initialize the EM algorithm with the identity matrix I as the posterior estimate in the first
few iterations, which serves as a warm start to avoid poor local optima. After this warmup phase,
we switch to the adaptive posterior estimation strategy described in our method, thereby uncovering
latent correspondences across views.

Training Setup. We implement CorreGen with PyTorch 2.1.2 and optimize it using the Adam
optimizer (Kingma & Ba, 2014) with the learning rate of 0.002. The batch size is set to 512 for
smaller datasets (e.g. Scene15, LandUse21) and 1024 for larger ones (e.g. Caltech101, UMPC-
Food101). All experiments are conducted on Ubuntu 20.04 with NVIDIA 3090 GPUs. We set
the maximum warmup phase to 50 epochs and train for a total of 200 epochs. The regularization
parameter λ = 0.03, and the noise rate for the virtual sample in Eq. (12) is set to ρ = 0.2 across all
experiments.

Datasets. We evaluate our method on four widely used multi-view benchmarks:

• Scene15 (Fei-Fei & Perona, 2005) contains 4,485 natural images spanning 15 scene cate-
gories, covering both indoor and outdoor scenarios. We extract two types of hand-crafted
features for each image, namely, PHOG and GIST descriptors.

• Caltech101 (Li et al., 2015) includes 8,677 images from 101 object categories. To form two
distinct views, we adopt deep representations obtained from DECAF and VGG19 networks,
consistent with Han et al. (2021).
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• LandUse-21 (Yang & Newsam, 2010) contains 2,100 satellite imagery samples in 21 cat-
egories. We follow Lin et al. (2022) to construct two views by extracting PHOG and LBP
descriptors.

• UMPC-Food101 (Wang et al., 2015) consists of paired food images and textual recipes,
with 60,000 samples for training and 20,000 samples for testing across 101 categories.
We use the test split for clustering evaluation. Visual features are extracted using a ViT(Wu
et al., 2020) pretrained on ImageNet, while textual features are obtained with BERT (Devlin
et al., 2018). Notably, the recipe descriptions often contain irrelevant or noisy information,
making UMPC-Food101 a realistic benchmark for studying noisy correspondence.

Simulation of sample-level mismatch. To evaluate robustness under different conditions, we sim-
ulate two types of sample-level mismatches: i) Alignable mismatch: a fraction of instances (each
with multiple views) are randomly permuted across views. The fraction is controlled by the Mis-
match Ratio (MR). ii) Unalignable mismatch: a fraction of view samples are corrupted with random
Gaussian noise, with the fraction defined as the Corruption Ratio (CR).

D PERFORMANCE VISUALIZATION WITH VARYING MR AND CR VALUE (Q3)

Previous comparisons in Section 4.2 focused on specific MR and CR values, which do not fully
reveal robustness across different mismatch levels. Here, we fix MR at two representative values
and vary CR continuously, visualizing clustering performance of CorreGen and four state-of-the-art
baselines to examine their robustness.

For evaluation, we re-align samples across views using a nearest-neighbor principle following Guo
et al. (2024); Sun et al. (2025). To quantify category-level consistency, we report the Category-level
Alignment Rate (CAR) (Yang et al., 2021), defined as

CAR = 1
N

N∑
i=1

δ
(
C(x

(v1)
i ), , C(x

(v2)
π(i))

)
, (35)

where C(·) is the oracle category label, π(i) is the re-aligned counterpart of x(v1)
i , and δ(·) is the

indicator function. As shown in Fig. 4, on UMPC-Food101, CorreGen demonstrates substantially
lower performance degradation as CR increases, consistently outperforming all baselines. Even
under severe mismatches (e.g., MR=0.5), CorreGen maintains a stable CAR score, highlighting its
ability to recover reliable category-level correspondences despite high noise.

E PARAMETERS ANALYSIS (Q4)

In this section, we provide a detailed sensitivity analysis of CorreGen using the Scene15 (Fei-Fei
& Perona, 2005) dataset under the setting (MR = 0.2, CR = 0.2). We focus on three critical
hyperparameters in the E-step: the pre-defined noise rate ρ, the number of Sinkhorn iterations t, and
the curve-shaping parameter m. To study potential interactions, we examine them in two pairwise
groups.

Pre-defined Noise Rate ρ and Curve-Shaping Parameter m. As shown in Fig. 5, the performance
remains stable across a wide range of ρ values. For m, the performance is consistently strong when
m ≤ 10, where the marginal probabilities remain moderately discriminative. As m grows larger,
the probability distribution becomes overly smoothed, leading to a slight decline in performance.

Pre-defined Noise Rate ρ and Sinkhorn Iterations t. Fig. 6 illustrates the clustering performance
of our method across a wide range of Sinkhorn iterations (t ∈ [10, 1000]) and pre-defined noise
rate (ρ ∈ [0.1, 0.5]). We observe that while increasing the number of iterations leads to a modest
performance gain, the method remains comparable even with a small number of iterations. This
stability is particularly advantageous as it preserves high computational efficiency without compro-
mising accuracy. Furthermore, when ρ is close to the underlying noise rate (e.g., 0.1-0.2), selecting
an appropriate number of iterations enables the model to achieve optimal performance.
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Figure 4: The clustering performance under varying CR value. Solid lines indicate results with
MR = 0.2, while dashed lines correspond to MR = 0.5. The CR values varies from 0.0 to 0.8.

(a) ACC (b) NMI (c) ARI

Figure 5: Parameters Analysis of Pre-defined noisy rate ρ and the curve-sharping parameter m.

F ABLATION STUDIES (Q5)

In this section, we conduct ablation studies on Scene15 and UMPC-Food101 to evaluate the ef-
fectiveness of each component. We also compare our method CorreGen with the standard In-
foNCE objective. Experiments are performed under two settings: (MR = 0.0,CR = 0.0) and
(MR = 0.2,CR = 0.2).

As shown in Table 3, the results lead to three key observations: i) On relatively clean datasets, the
effect of the Virtual Sample module is not significant, and using a smaller ρ may yield better results;
ii) The GMM-guided marginal estimation consistently enhances clustering accuracy by assigning
higher probabilities to informative samples, thereby improving joint distribution estimation. iii)
Training with vanilla InfoNCE fails to capture latent sample- and category-level correspondences,
resulting in significant performance degradation under noisy conditions.
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(a) ACC (b) NMI (c) ARI

Figure 6: Parameters Analysis of pre-defined noise rate ρ and Sinkhorn iterations t.

Table 3: Abaltion study of CorreGen on Scene15 and UMPC-Food101, where w/o denotes the
component is not adopted. “Virtual” refers to the Virtual Sample module, “Guide” refers to the
GMM-guided marginal estimation, and “Vanilla InfoNCE” denotes training with the standard con-
trastive objective.

Setting
MR=0.0, CR=0.0 MR=0.2, CR=0.2

Scene15 UMPC-Food101 Scene15 UMPC-Food101

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

CorreGen 50.25 48.92 32.87 49.77 58.36 35.73 41.78 41.67 25.50 45.97 54.66 31.36
w/o Virtual 49.44 48.38 32.15 49.45 59.22 36.65 41.10 41.12 24.77 44.01 53.92 30.36
w/o Guide 49.06 48.01 31.98 49.44 57.95 35.37 40.98 41.21 24.77 44.59 54.03 30.67
w/o Virtual & Guide 49.00 48.33 31.83 48.92 58.42 35.61 40.52 40.95 24.66 43.68 53.41 29.78

Vanilla InfoNCE 47.83 47.81 31.37 48.47 57.82 34.73 38.36 37.60 21.96 43.84 52.76 29.15

G CONVERGENCE ANALYSIS

In this section, we analyze the convergence behavior of CorreGen from both theoretical and empiri-
cal perspectives to demonstrate the training stability of our proposed framework.

Theoretical Analysis. In the two-view case, our optimization objective is the likelihood function:

L(θ) =
N∑
i=1

log

N∑
j=1

p(x
(v1)
i , x

(v2)
j ; θ). (36)

By introducing an auxiliary distribution Q(x
(v2)
j ) for each sample x

(v1)
i , we derive a lower bound

via Jensen’s inequality:

L(θ) ≥
∑
i

∑
j

Q(x
(v2)
j ) log

p(x
(v1)
i , x

(v2)
j ; θ)

Q(x
(v2)
j )

≜ B(Q, θ), (37)

which holds with equality when Q(x
(v2)
j ) = p(x

(v2)
j ;x

(v1)
i ; θ). In the E-step, we estimate

Q(t+1)(x
(v2)
j ) = p(x

(v2)
j ;x

(v1)
i ; θ(t)) to make the bound tight such that

L(θ(t)) = B(Q(t+1), θ(t)). (38)

Subsequently, the M-step updates θ to maximize this expected log-likelihood, ensuring
B(Q(t+1), θ(t+1)) ≥ B(Q(t+1), θ(t)). Combining these steps yields the following inequality chain,
proving that the likelihood is monotonically non-decreasing:

L(θ(t+1)) ≥ B(Q(t+1), θ(t+1)) ≥ B(Q(t+1), θ(t)) = L(θ(t)). (39)

Given that the likelihood function is bounded, this monotonicity guarantees the convergence of our
algorithm to a stationary point.
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Figure 7: Convergence analysis of CorreGen on the Scene15 dataset. The red dashed line indicates
the transition from the warmup phase to the EM optimization phase.

Empirical Verification. To empirically verify this stability, we tracked the training loss and clus-
tering performance on the Scene15 dataset over the training process. As our optimization performs
gradient descent on the negative expected log-likelihood, the loss naturally decreases as training
progresses. As illustrated in Fig. 7, the training process exhibits a clear and stable convergence pat-
tern. During the initial warm-up phase (epochs 0–20), the loss decreases rapidly while performance
metrics show a sharp increase. After the EM procedure is activated (marked by the red dashed line),
the loss continues to decline steadily. After approximately 150 epochs, both the objective function
and all evaluation metrics stabilize and reach a plateau, confirming that our objective has converged.

H ANALYSIS OF CATEGORY-LEVEL MISMATCH RATE

In this section, we first provide the mathematical formulation of the Category-level Mismatch Rate
(CMR). For a category c containing Nc samples, the total space of possible cross-view pairwise
interactions in this category is N2

c . According to Definition 1, the mismatch rate γc for category c is
calculated as:

γc = 1−
∑

i,j∈Catogory c I(ti,j = 1)

N2
c

= 1− Nc

N2
c

= 1− 1

Nc
, (40)

where tij denotes whether the pair (i, j) is an observed correspondence as defined in Definition 1,
and I(ti,j = 1) = Nc because each sample has exactly one observed correspondence in existing
datasets.

Specifically, for a dataset with C categories, CMR is defined as the average across categories:

CMR =
1

C

C∑
i=1

γi = 1− 1

C

C∑
i=1

1

Ni
. (41)

According to above formulation, Table 4 reports the CMR of datasets used in our experiments. The
results indicate that category-level mismatches are pervasive across datasets (consistently exceeding
98%), highlighting the necessity of uncovering latent correspondences beyond the limited off-the-
shelf pairs.

Furthermore, we analyze the behavior of this metric under a fixed data size N , i.e.,
∑C

i=1 Ni = N .
As Eq. (40) is strictly concave on (0,∞), applying Jensen’s Inequality for concave functions yields:

1

C

C∑
i=1

(
1− 1

Ni

)
≤ 1− 1

1
C

∑C
i=1 Ni

= 1− C

N
. (42)
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Table 4: The Category-level Mismatch Rate (CMR) for the datasets used in our experiments.

Dataset CMR (%)
Scene15 99.65
LandUse21 99.00
Caltech101 98.25
UMPC-Food101 99.53

Text Image Label

Apple Pie

The unincorporated community of  Pie Town, New Mexico  is named in honour of
the apple pie.  [  20  ]
##  See also  [  edit  ]
Food portal
  * Apfelstrudel (  apple strudel  ), an  Austrian  pie-like dish made with dough. 
  * Apple cake 
  * Apple cobbler 
  * Tarte Tatin  , a  French  variant on apple pie. 
##  References  [  edit  ]

baby back ribs

Why oh why did I not think of these?    I love Chicken Pot Pie, but have never
ever made it.  Weird, I know.  I don't know why I haven.

  * BBQ Pulled Pork - Slow Cooker Thursday
Hello everyone! To all of my American friends, Happy Thanksgiving to you!

Here in Canada we celebrate Thanksgiving in October, so for us...
  * Blueberry Maple Muffins

You've heard me say this before, but I love muffins.  They are such an easy
thing to eat when you've got a baby attached to your hi...

Watermark template. Powered by  Blogger  .
                         9:06 PM

                        ]: 2012-01-27T21:06:00-08:00

Latest Competitions
Kambrook Express Digital Pressure Cooker

    * Kambrook Express Digital Pressure Cooker 
    * Kenwood kMix Food Processor 

    * Messermeister Oliva Elité knives 
    * Win a trip to Italy! 

    * Win a family trip to the Gold Coast with Rio 2 
    * Win a trip to Croatia 

  * Magazine     * Meal Plans     * Experts     
* Features     * Social     * Subscribe 

#####  Good Food Good Times Series 1
In this series Barry Lewis from YouTube channel My Virgin Kitchen shows you

how to make some great recipes for the whole family - including naan bread
pizzas, spicy salmon burgers with pineapple and quinoa chilli chow!

####  Chef: The Videojug Team
###  You May Like

  * _ _
#####  Cook Beef Tenderloin

** Links: **   
Ruhlman's chicken-fried pork belly ceasar  

Filipino Pantry Chicken Caesar Salad  from Burnt Lumpia  
Chicken Caesar Salad  made with a buttermilk dressing, from Cafe Fernando  

Caesar Salad Club Sandwich  from Noble Pig  
Caesar Salad with Shrimp  from Lydia of The Perfect Pantry

Share on FacebookTweet34  |
Filed under  Crouton  ,  Garlic  ,  Romaine Lettuce  ,  Salad

###  Never miss a recipe!  (details)

beef carpaccio

beignets

caprese_salad

Figure 8: Examples of noisy image-text pair in UMPC-Food101 datasets.

The equality holds if and only if N1 = N2 = · · · = NC , when the dataset is perfectly balanced.
This inequality implies that balanced datasets will inherently exhibit a higher average category-level
mismatch rate compared to imbalanced or long-tailed datasets of the same size.

I IMAGE-TEXT PAIR EXAMPLE OF UMPC-FOOD101

UMPC-Food101 (Wang et al., 2015) is constructed by crawling food images with textual recipes col-
lected from the web. As shown in Fig. 8, the texts often contain irrelevant descriptions, hyperlinks,
or noisy information unrelated to the visual content, making it a realistic benchmark for studying
noisy correspondence in multi-view clustering.
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J THE USE OF LARGE LANGUAGE MODELS

In this paper, LLMs were used to refine the writing in the Introduction, Related Work, and Experi-
ments sections, as well as to verify the clarity of mathematical derivations.
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