
Under review as a conference paper at ICLR 2022

MULTI-LEVEL APPROACH TO ACCURATE AND
SCALABLE HYPERGRAPH EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many problems such as node classification and link prediction in network data
can be solved using graph embeddings, and a number of algorithms are known
for constructing such embeddings. However, it is difficult to use graphs to cap-
ture non-binary relations such as communities of nodes. These kinds of complex
relations are expressed more naturally as hypergraphs. While hypergraphs are
a generalization of graphs, state-of-the-art graph embedding techniques are not
adequate for solving prediction and classification tasks on large hypergraphs accu-
rately in reasonable time. In this paper, we introduce NetVec, a novel multi-level
framework for scalable unsupervised hypergraph embedding, which outperforms
state-of-the-art hypergraph embedding systems by up to 15% in accuracy. We also
show that NetVec is capable of generating high quality embeddings for real-world
hypergraphs with millions of nodes and hyperedges in only a couple of minutes
while existing hypergraph systems either fail for such large hypergraphs or may
take days to produce the embeddings.

1 INTRODUCTION

A hypergraph is a generalization of a graph in which an edge can connect any number of nodes.
Formally, a hypergraph H is a tuple (V,E) where V is the set of nodes and E is a set of nonempty
subsets of V called hyperedges. Nodes and hyperedges may have weights. Graphs are a special case
of hypergraphs in which each hyperedge connects exactly two nodes.

Figure 1a shows a hypergraph with 6 nodes and 3 hyperedges. The hyperedges are shown as colored
shapes around nodes. The degree of a hyperedge is the number of nodes it connects. In the figure,
hyperedge h2 connects nodes a, b and c, and it has a degree of three.

Hypergraphs arise in many application domains. For example, Giurgiu et al. (2019) model protein
interaction networks as hypergraphs; nodes in the hypergraph represent the proteins and hyperedges
represent protein complexes formed by interactions between multiple proteins. Piñero et al. (2019)
represent a disease genomics dataset as a hypergraph in which nodes represents genes and hyperedges
represent diseases associated with certain collections of genes. Algorithms for solving hypergraph
problems are then used to predict new protein complexes, and to predict that a cluster of genes is
associated with an as-yet undiscovered disease. Two hypergraph problems have been studied in the
literature: node classification and hyperedge prediction.

In classification problems on nodes, labels are given for a subset of the nodes, and the task is to
predict the most probable label for the unlabeled nodes. For example, in paper-authorship network,
an author can write multiple papers. We can show this network by a hypergraph where nodes are
papers and authors are hyperedges. Papers may be classified into different subjects. The task in this
application is to predict the subject of the given paper. In hyperedge prediction, the task is to predict
which set of nodes may form hyperedges. In many applications, hyperedges may have different
numbers of nodes, so hyperedge prediction algorithms should be general enough to handle sets of
nodes of different sizes.

1.1 HYPERGRAPH EMBEDDING

Bengio et al. (2013) show that one way to solve such prediction problems in graphs is to find an
embedding of the graph using representation learning. There is a rich literature on graph embedding

1

Under review as a conference paper at ICLR 2022

h3

a b c

d e f

h2h1

(a) A hypergraph

h2 h3

a b c d e f

h1

(b) Star expansion

Figure 1: Example hypergraph and the corresponding star expansion

methods that use a variety of techniques ranging from random walks [Perozzi et al. (2014); Tang
et al. (2015); Grover & Leskovec (2016)] to matrix factorization [Qiu et al. (2018)] and graph neural
networks [Hamilton et al. (2018); Xu et al. (2019)]. Graph embedding techniques can be extended to
hypergraphs in two ways but neither of them is satisfactory.

One approach is to represent the hypergraph as a graph by replacing each hyperedge with a clique
of edges connecting the vertices of that hyperedge, and then use graph embeddings to solve the
prediction problem. This approach has been explored by Feng et al. (2019) and Yadati et al. (2019).
However, the clique expansion is lossy because the hypergraph cannot be recovered from the clique
expansion in general. Kirkland (2017) show that this information loss persists even if the dual of the
hypergraph is considered.

Zien et al. (1999) show that another approach is to work with the star expansion of the hypergraph.
Given a hypergraph H=(V ,E) where V is the set of nodes, E is the set of hyperedges, we create
a bipartite graph H∗ = (V ∗, E∗) by (i) introducing a node ve for each hyperedge e ∈ E so in
final graph V ∗ = V ∪ E, and (ii) introducing an edge between a node u ∈ V and a hyperedge
node ve ∈ E if u ∈ e in the hypergraph. i.e., E∗ = (u, ve) : u ∈ e, e ∈ E. Figure 1(b) shows an
example. Unlike the clique expansion of a hypergraph, the star expansion is not lossy provided nodes
representing hyperedges are distinguished from nodes representing hypergraph nodes. However,
graph representation learning approaches do not distinguish between the two types of nodes in the
bipartite graph, which lowers accuracy for prediction problems as we show in this paper.

These problems motivated us to develop NetVec, a parallel multi-level framework for constructing
hypergraph embeddings, which allows us to perform hypergraph embedding in a much faster and
more scalable manner than existing methods. This multi-level framework differentiates between
nodes and hyperedges of a hypergraph, which helps to maintain the structure of the hypergraph
through successive levels of coarsening. We introduce a novel coarsening strategy that not only
reduces the size of a hypergraph but also utilizes the feature vectors of the nodes of a hypergraph.
This coarsening strategy can be combined with an iterative refinement algorithm described in this
paper, which can be used on its own to improve the quality of given hypergraph embedding.

We evaluate NetVec on a number of data sets for tasks such as node classification and hyperedge
prediction. Our experiments show that our multi-level framework can compute the embedding of
hypergraphs with millions of nodes and hyperedges in just a few minutes without loss of accuracy
in downstream tasks, while all existing hypergraph embedding techniques either fail to run on such
large inputs and or take days to complete. These results show that NetVec reduces the computation
time (and therefore the energy) required to generate embeddings of hypergraphs and graphs by orders
of magnitude without compromising on accuracy.

Our main technical contributions are summarized below.

• Unsupervised hypergraph embedding sytem: To the best of our knowledge, NetVec is
the first unsupervised hypergraph embedding system. The embeddings obtained from this
framework can be used in various downstream tasks such as hyperedge prediction and node
classification.

2

Under review as a conference paper at ICLR 2022

Figure 2: Multi-level embedding. Top left: original hypergraph. Top right: contracting nodes of a
hypergraph to create a coarser hypergraph. Bottom left: initial coarse embedding. Bottom right:

iterative refinement of node embeddings.

• High-quality embeddings: NetVec generates high-quality embeddings for hypergraphs.
We propose a novel algorithm to approximate a hypergraph with a smaller hypergraph that
utilizes the structure of the hypergraph as well as features of hypergraph nodes. We also
propose a refinement algorithm that can further improve the quality of the embeddings. This
results in a relative increase of the embedding accuracy over the prior works by up to 15%.

• Scalability: NetVec is the first hypergraph embedding approach that can generate embed-
dings of hypergraphs with millions of nodes and hyperedges. Our approach can significantly
reduce run time while producing a better accuracy than state-of-the-art techniques.

• Generality: The techniques used in NetVec can be used to improve the performance of
graph embedding systems as well.

The rest of this paper is organized as follows. Section 2 summarizes the related work. Section 3
introduces the NetVec model in detail. Section 4 presents experimental results. We conclude in
Section 5.

2 RELATED WORK

There is a large body of work on graph and hypergraph embedding techniques so we discuss only the
most closely related work.

2.1 NETWORK EMBEDDING

We divide these techniques into graph and hypergraph embedding techniques.

Graph embedding. There is a rich literature on graph embedding techniques. Approaches such as
Grover & Leskovec (2016), and Perozzi et al. (2014) use random walks to generate a corpus, and
apply a skip gram model on the corpus to generate the embedding. Edge reconstruction methods
such as Tang et al. (2015) generate an embedding of a network by preserving first-order and second-
order proximity. Graph neural network approaches such as Hamilton et al. (2018) collect feature
information from a node’s neighborhood, and the final embedding of a node is generated using
intermediate embeddings from its neighbors. A more recent work is Veličković et al. (2018), which
generates embeddings of a graph based on maximizing mutual information between local and global
information of a graph. Scaling graph embedding to large graphs is still an open problem.

Hypergraph embedding. There are relatively few efforts on hypergraph embedding that treat
hyperedges as first-class entities: in most existing techniques, the notion of a hyperedge is lost when
the hypergraph is replaced by a graph.

As mentioned above, one popular approach to hypergraph embedding [Zhou et al. (2007); Tu et al.
(2018b); Zhang et al. (2018); Feng et al. (2019)] is to convert the hypergraph to a graph and then use
a graph embedding technique. For example, each hyperedge can be replaced with a clique connecting

3

Under review as a conference paper at ICLR 2022

the nodes of that hyperedge to produce a graph representation. Other approaches such as Yadati et al.
(2019) use a graph convolution on a modified clique expansion technique where they choose what
edges to keep in the graph representation. While this method keeps more structure than methods
based on the clique expansion of a hypergraph, existing methods fail to scale to large networks.

2.2 MULTI-LEVEL EMBEDDING

Multilevel approaches attempt to improve the runtime and quality of existing embedding techniques.
This approach was first introduced for graphs in Bui & Jones (1993); Barnard & Simon (1993) and
later extended to graph embedding in Chen et al. (2017); Liang et al. (2020); Deng et al. (2020).
Multi-level graph embedding consists of three phases: coarsening, initial embedding, and refinement.
Coarsening: A coarsened graph G′ is created by merging pairs of nodes in input graph G. This
process is applied recursively to the coarser graph, creating a sequence of graphs. in which the
final graph is the coarsest graph that meets some termination criterion (e.g., its size is below some
threshold). Initial embedding: Any of the techniques discussed in Sections 2.1 can be used to
generate an initial embedding. Refinement: For graphs G′ and G, the embedding of G′ is projected
onto G and then refined, starting from the coarsest graph and finishing with the original graph. In
principle, the same approach can be adopted for hypergraphs. However, multilevel approaches for
hypergraphs have considered only hypergraph partitioning [Karypis et al. (1999); Devine et al. (2006);
Maleki et al. (2021)].

These limitations led us to design NetVec, which preserves the notion of hyperedges in the represen-
tation of the data, and scales to hypergraphs with millions of nodes and hyperedges.

3 METHODOLOGY

3.1 MULTI-LEVEL FRAMEWORK

Algorithm 1: NetVec

Input: Hypergraph H = (V,E); node feature matrix X ∈ RV×k; coarsening depth c; refinement
depth r; base embedding function f
Output: Vector representation hu, ∀u ∈ (V ∪ E)
H∗1 = (V ∗, E∗)← StarExpansion(H)
for i = 1 to c− 1 do
H∗i+1 = Coarsening(H∗i)

end for
hc ← f(H∗c) {h is the embedding}
for i = c− 1 to 1 do
hi(u)← hi+1(ũ),∀u ∈ ũ
for j = 1 to r do
hi ← Refinement(H∗i , hi)

end for
end for

Given a hypergraph H=(V ,E), the algorithms described in this paper use the star expansion of the
hypergraph and assign a vector representation hu for each u∈(V ∪E). Intuitively, these embeddings
attempt to preserve structural similarity in the hypergraph: if two hyperedges have many nodes in
common or if two nodes are in many of the same hyperedges, the algorithm attempts to assign the
two hyperedges/nodes to points that are close in the vector space. Embedding should also exploit
the transitivity property of similarity: if a and b are similar, and b and c are similar, we want the
embedding of a and c to be close to each other as well. Finally, if nodes have features, the embeddings
should also exploit functional similarity between nodes.

Figure 2 illustrates the high-level idea of multi-level hypergraph embedding. Pseudocode for NetVec
is given in Algorithm 1. This framework consists of three phases: (i) Coarsening, which iteratively
merges nodes of the hypergraph to shrink the size of the hypergraph until the hypergraph is small
enough that any network embedding algorithm can quickly obtain the embedding of the smallest

4

Under review as a conference paper at ICLR 2022

hypergraph; (ii) Initial embedding, in which a network embedding algorithm is used on the coarsest
hypergraph to generate the embedding, and (iii) Refinement, in which the embedding vectors of the
coarser hypergraph are projected onto a finer hypergraph and a refinement algorithm is used to refine
these embedding vectors. In the rest of this section, we describe these phases in more detail. NetVec
is a parallel implementation of the multilevel approach. For lack of space, we do not discuss the
issues that arise in implementing these phases in parallel.

3.1.1 COARSENING

Intuitively, coarsening finds nodes that are similar to each other and merges them to obtain a coarser
hypergraph. To obtain a high quality embedding, we need to explore both structural similarity and
functional similarity. The connectivity of nodes and hyperedges of a hypergraph determines structural
similarity while node features determine functional similarity.

The first step in coarsening a hypergraph is to find nodes that are similar to each other and merge
them. This is accomplished by “assigning” each node to one of its hyperedges, and then merging all
nodes {n1, n2, ..., nk} assigned to a given hyperedge to produce a node m of the coarser hypergraph.
We refer to m as the representative of node ni in the coarse hypergraph, and denote it as rep(ni). If all
nodes of a hyperedge hj are merged, we remove that hyperedge from the hypergraph. Otherwise, we
add the hyperedge to the next level and refer to it as rep(hj). If a node ni is contained in hyperedge
hj in the finer hypergraph and hj is present in the coarse hypergraph, then rep(ni) is made a member
of rep(hj).

If nodes of a hypergraph have features, this information can be used to find similar nodes and merge
them together. In a hypergraph with node features, the feature vector of a hyperedge is the mean
aggregation of the features of its nodes. In this scenario, the cosine similarity between a feature vector
of a hyperedge and a node is a good measure for assigning nodes to hyperedges. However, if the
hypergraph has no features, NetVec uses other measures such as weights or degrees of a hyperedge
to assign nodes to hyperedges. For example, if a node belongs to a hyperedge hj with weight wj

and degree dj , the “importance” of that node for that hyperedge can be estimated from the value of
wj/dj , and the node can be assigned to the hyperedge with the largest importance score.

Algorithm 3 in the appendix lists the pseudo-code of coarsening. K is a hyperparameter that
determines the number of levels of coarsening. At each level of coarsening, ComputeEdgeFeature
computes a feature vector for a hyperedge by finding the mean aggregation of the feature vectors of
its nodes. AssignHyperedge assigns each node v in the current hypergraph to a hyperedge c(v) as

defined as c(v) = argmaxe∈N (v)

f(e) · f(v)
|f(e)| · |f(v)|

where N (v) is the set of hyperedges that node v

belongs to, f(e) is the feature vector of hyperedge e and f(v) is the feature vector of node v. Nodes
that are assigned to the same hyperedge are merged together and the resulting node is added to the
coarse hypergraph. In case of a tie, NetVec chooses a hyperedge randomly. Figure 2 top left shows
the assignment of nodes to hyperedges. The figure in the top right shows the hypergraph after one
level of coarsening. Nodes with the same color are merged together and form a single node in the
coarser hypergraph. Hyperedges purple and green are removed from the hypergraph since all nodes
in these hypergraphs are merged together. Hyperedge blue, however, is not removed since it has
nodes that are merged in other hyperedges. A straightforward implementation has a time complexity
of O(|E∗| · |f |) for assigning nodes to hyperedges and O(|E∗|) for merging nodes and adding them
to the coarser hypergraph where |E∗| is the number of edges in the star expansion of the hypergraph,
and |f | is the size of the feature vector. So, the overall time complexity for each level of coarsening is
linear in the size of the bipartite representation of the hypergraph. A detailed algorithm for coarsening
is presented in the Appendix.

One important point about the coarsening algorithm is that it is cognizant of the fact that the bipartite
graph is the representation of a hypergraph, and it merges only nodes of the hypergraph to create
the coarser graph so that a coarser graph represents the original hypergraph. In particular, it
does not merge nodes in the star expansion that represent nodes and hyperedges in the hypergraph,
since this will destroy the structure of the hypergraph and the resulting structure will not be a good
approximation of the original hypergraph. The experiments in Section 4 show the importance of this.

5

Under review as a conference paper at ICLR 2022

Algorithm 2: Refinement

Input: Bipartite graph representation H∗ = (V ∗, E∗,W) of hypergraph H = (V,E,W),
vector representation zu for all u ∈ (V ∗), neighborhood function N (u), parameter ω, parameter
k for max iteration
Output: Refined vector representation hu, ∀u ∈ (V ∗)
z0u ← zu,∀u ∈ (V ∗)
iter = 0
while iter < k do

for u ∈ V ∗ do
z̃iu ←

∑
v∈N (u) wuvz

i−1
v /

∑
v∈N (u) wuv

ziu ← (1− ω)zi−1u + ωz̃iu
end for
iter += 1

end while
hu ← zku,∀u ∈ (V ∗)

3.1.2 INITIAL EMBEDDING

We coarsen the hypergraph until it is small enough that any unsupervised embedding method can
generate the embedding of the coarsest hypergraph in just a few seconds. We use the edgelist of the
coarsest bipartite graph as the input to this embedding method. The running time for computing this
initial embedding is reduced if the size of the coarsest graph is reduced.

3.1.3 REFINEMENT

The goal of this phase is to improve embeddings by performing a variation of Laplacian smoothing
[Taubin (1995)] that we call the refinement algorithm. The basic idea is to update the embedding of
each node u using a weighted average of its own embedding and the embeddings of its immediate
neighbors N (u). Intuitively, smoothing eliminates high-frequency noise in the embeddings and
improves the accuracy of downstream inference tasks. A simple iterative scheme for smoothing is
shown below:

z̃iu =
∑

v∈N (u)

(
wuv∑

v∈N (u) wuv
)zi−1v (1)

In this formula, ziu is the embedding of node u in iteration i, and wuv is the weight on the outgoing
edge from u to v; if there no weights in the input hypergraph, a value of 1 is used and the denominator
is the degree of node u. This iterative scheme can be improved by introducing a hyper-parameter
ω that determines the relative importance of the embeddings of the neighboring nodes versus the
embedding of the node itself, to obtain the following iterative scheme:

ziu = (1− ω)zi−1u + ωz̃iu (2)

The initial embeddings for the iterative scheme are generated as follows. For the coarsest graph,
they are generated as described in Section 3.1.2. For the other hypergraphs, if a set of nodes S in
hypergraph Hi−1 was merged to form a node n in the coarser hypergraph Hi, the embedding of n in
Hi is assigned to all the nodes of S in Hi−1.

Abstractly, this iterative scheme uses successive over-relaxation (SOR) with a parameter ω to solve
the linear system Lz = 0 where L is the Laplacian matrix of H∗, defined as (D −A) where D is the
diagonal matrix with diagonal elements duu equal to the degree of node u for unweighted graphs (for
weighted graphs, the sum of weights of outgoing edges), and A is the adjacency matrix of H∗. To
avoid oversmoothing, we do not compute the exact solution of this linear system but if we start with
a good initial embedding z0, a few iterations of the iterative scheme lead to significant gains in the
quality of the embedding, as we show experimentally in Section 4.

Algorithm 2 shows the psuedocode for refinement. The input to this algorithm is H∗, the bipartite
(star) representation of the hypergraph, zu, the initial embedding for each node and hyperedge,

6

Under review as a conference paper at ICLR 2022

and a relaxation parameter ω between 0 and 1. Embeddings of the hyperedges are updated using
the embeddings of the nodes, and the embeddings of nodes are updated using the embeddings of
hyperedges. Note that if u represents a hyperedge, N (u) is the set of nodes in that hyperedge, and if
u represents a node in the hypergraph, N (u) represents the set of hyperedges that u is contained in.
Each iteration of the refinement algorithm has a linear time complexity in the size of the bipartite
representation of the hypergraph.

Intuitively, the updates to the embeddings of nodes and hyperedges made by the relaxation algorithm
in each iteration exploit structural similarity. For example, if two hyperedges e1 and e2 have many
nodes in common, these nodes will bring the embeddings of e1 and e2 closer. Performing these
updates iteratively exploits transitivity of similarity. For instance, hyperedges a and c may not have
nodes in common but if each of them has many nodes in common with hyperedge b, the embeddings
of a and c will become closer after a few iterations.

4 EXPERIMENTS

NetVec provides an unsupervised method for representation learning for hypergraph. We show these
representations perform well for both node classification and hyperedge prediction. In contrast, prior
works such as HyperGCN and Hyper-SAGNN have been evaluated for one or the other of these tasks
but not both.

All experiments are done on a machine running CentOS 7 with 4 sockets of 14-core Intel Xeon
Gold 5120 CPUs at 2.2 GHz, and 187 GB of RAM. All the methods used in this study are parallel
implementations and we use the maximum number of cores available on the machine to run the
experiments. The embedding dimension is 128. For the multi-level approaches (MILE, GraphZoom,
and NetVec), the execution time is the sum of the CPU time for coarsening, initial embedding, and
refinement. For the rest of the baselines, we use the CPU time for hypergraph embedding.

Table 1: Datasets used for node classification

DATA SET NODES HYPEREDGES EDGES CLASSES FEATURES

CORA 1,434 2,708 9,572 7 1,433
CITESEER 1458 1,079 6,906 6 3703
PUBMED 3,840 7,963 69,258 3 500
DBLP 41,302 22,363 19,122 6 1425

4.1 NODE CLASSIFICATION

Given a hypergraph and node labels on a small subset of nodes, this task is to predict labels on the
remaining nodes. We used the standard hypergraph datasets from prior works, and these are listed in
Table 1. We observe 4% of node labels and predict the remaining 96%. To demonstrate that NetVec
produces high-quality results, we compare NetVec with state-of-the-art hypergraph embedding
approaches as well as a number of popular methods for multi-level graph embedding approaches. In
particular, we compare our results with HyperGCN[Yadati et al. (2019)], GraphZoom[Deng et al.
(2020)], MILE[Liang et al. (2020)], and node2vec[Grover & Leskovec (2016)]. For the multi-level
approaches, we use node2vec as the initial embedding method. We report the mean test accuracy
and standard deviation over 100 different train-test splits. More details of datasets and baselines are
available in Appendix. We optimize hyperparameters of all the baselines to achieve a better accuracy.

These are the main takeaways from Table 2:

• NetVec with two levels of coarsening generates the highest quality embeddings for the node
classification task.

• NetVec outperforms HyperGCN in terms of quality for all datasets by up to 15%.
• The refinement algorithm improves the quality of embeddings for all the datasets by up to

23%. This can be seen by comparing the statistics for NetVec without coarsening (l = 0)
with those for node2vec. The initial embedding for NetVec is obtained from node2vec, so
differences in the statistics arise entirely from the fact that NetVec performs refinement.

7

Under review as a conference paper at ICLR 2022

Table 2: Node classification. Accuracy in % and time in seconds. l is the number of coarsening
levels. 0 means without coarsening.

CORA CITESEER PUBMED DBLP
ACCURACY TIME ACCURACY TIME ACCURACY TIME ACCURACY TIME

NETVEC(l=0) 67.5 ±3. 5.2 59.1 ±1. 6.5 72.2 ±1. 15.1 72.4± .4 126.1
NETVEC(l=1) 67.0 ±3. 6.1 60.5± 1. 4.1 79.8±1. 15.9 77.7 ±.4 66.1
NETVEC(l=2) 67.7 ±3. 8.1 60.6 ± 1. 4.2 80.3±1. 17.1 78.5 ±.4 56.1
NODE2VEC 44.5 ±3. 3.1 51.1 ±1. 3.9 64.5± .2 13.1 67.1± .4 60.5
HYPERGCN 57.6 ±6. 15.1 54.1 ±10 12.7 64.3± 10 60.0 63.3± 10 480.7
MILE(l=2) 48.1 ±3. 10.2 21.2 ±1. 14.1 68.7± .2 30.0 - -
GRAPHZOOM(l=2) 60.1 ±3. 3.3 46.8 ±3. 3.2 74.9± .1 13.3 71.6± .5 60.0

• NetVec outperforms prior multi-level graph embedding approaches (MILE and GraphZoom)
for all the datasets by up to 39% for MILE and up to 14% for GraphZoom.

The coarsening algorithm in NetVec plays an important role in producing high-quality embeddings.
First, NetVec utilizes node features during coarsening. Second, by merging nodes that have at least
one hyperedge in common, NetVec ensures that nodes that are structurally similar end up having
similar embeddings. Finally, it allows the refinement algorithm to improve the quality of embeddings
successively in multiple coarse graphs. MILE was unable to generate embeddings for DBLP. For the
other hypergraphs, we believe that one reason that MILE does not perform as well is that it does not
utilize node features.

4.2 HYPEREDGE PREDICTION

In hyperedge prediction, we are given a hypergraph with a certain fraction of hyperedges removed,
and given a proposed hyperedge (i.e. a set of nodes) our goal is to predict if this is likely to be a
hyperedge or not. Formally, given a k-tuple of nodes (v1, v2, ..., vk), our goal is to predict if this
tuple is likely to be a hyperedge or not. We compare our method with the state-of-the-art hypergraph
method Hyper-SAGNN [Zhang et al. (2020)] on four datasets listed in Table 3, and with the graph
methods node2vec. We did not compare our method with other hypergraph methods such as DHNE
[Tu et al. (2018a)] since Hyper-SAGNN has shown its superior performance over these methods.
Finally, we study the scalability of NetVec on a large hypergraph (Friendster) and compare NetVec’s
accuracy and running time with that of MILE (Hyper-SAGNN, GraphZoom and node2vec failed to
generate results for Friendster).

To make a fair comparison, we used the same training and test data setups as Hyper-SAGNN (except
of course for Friendster, which Hyper-SAGNN could not run). For NetVec, we use two levels of
coarsening and two levels of refinement, and use node2vec for the initial embedding. We then use the
vector of the variances of each dimension of the embedding for hyperedge prediction. The intuition
is that if nodes are spread out (high variance in the embedding), then they probably do not form a
hyperedge whereas nodes that are close to each other are likely to constitute a hyperedge. We used
the same setting for node2vec. Hyper-SAGNN is based on a supervised method in which it learns a
function to map from embeddings of nodes to hyperedges for the hyperedge prediction task. We ran
it for 300 epochs and report the AUC.

Experimental results. Table 4 summarizes the hyperedge prediction results for NetVec, node2vec,
MILE, and Hyper-SAGNN. NetVec achieves the best AUC and running time compared to Hyper-
SAGNN. Hyper-SAGNN took almost a day for Wordnet whereas NetVec completed the task in less
than a minute. NetVec achieves better AUC compared to node2vec on all datasets except Drug while
it is always the fastest. A more detailed discussion of hyperedge prediction is in Appendix.

We also applied NetVec on the large hypergraph Friendster which has millions of nodes and hyperedge.
Since the hypergraph is large, we used five levels of coarsening and ten levels of refinement. The
only other baseline that was able to run Friendster was MILE with 15 levels of coarsening, and
it failed for smaller numbers of coarsening levels. It took MILE 8 hours to generate embeddings
for Friendster with the accuracy of 90.4 while it took NetVec only fifteen minutes to do the same

8

Under review as a conference paper at ICLR 2022

task with better accuracy (92.3%). Figure 3 compares MILE and NetVec in terms of accuracy for
different levels of coarsening for NetVec (for MILE, we used fifteen levels of coarsening). One reason
that MILE is slower than NetVec is that it uses GCN as refinement method. However, this requires
training a GCN model, which is very time consuming for large graphs or hypergraphs. The main
takeaway from Figure 3 is that, for a faster hypergraph embedding we have to use more levels of
coarsening. However, a large number of coarsening may reduce the accuracy. While this is a fact in
most multi-level approaches, Figure 3 shows that the loss of accuracy for NetVec is negligible and
we are able to get more than 13x speed up by using 5 levels of coarsening instead of 3 while loosing
less than 3% in accuracy. We perform a detailed ablation study on Friendster in the Appendix.

Table 3: Datasets used for hyperedge prediction.

NODES HYPEREDGES EDGES

GPS 221 437 1,436
MOVIELENS 17,100 46,413 47,957
DRUG 7,486 171,757 171,756
WORDNET 81,073 146,433 145,966
FRIENDSTER 7,458,099 1,616,918 37,783,346

Table 4: Area Under Curve (AUC) scores for hyperedge prediction. Time in seconds.

GPS MOVIELENS DRUG WORDNET FRIENDSTER
AUC TIME AUC TIME AUC TIME AUC TIME AUC TIME

NETVEC 94.5 1 94.8 6.4 96.5 295 93.0 43.4 93.2 897
HYPER-SAGNN 90.6 1800 90.8 11,160 95.9 39,540 87.7 82,800 - -
NODE2VEC 94.0 10 79.8 19 97.4 895 89.0 940 - -

Figure 3: Performance on Friendster

5 CONCLUSION

We describe NetVec, a multi-level hypergraph embedding framework, which can process hypergraphs
with millions of nodes and hyperedges in just a few minutes, producing high-quality embeddings
for node classification and hyperedge prediction. Our experimental results show that it significantly
outperforms multi-level graph embedding approaches such as MILE and GraphZoom in both accuracy
and running time (some of these approaches fail for the large datasets in our studies). We also
showed that our refinement algorithm can be used on its own to improve the quality of embeddings
for hypergraphs by up to 23%. Even though NetVec is an unsupervised method, it outperforms
supervised hyperedge prediction methods such as Hyper-SAGNN. In future work, we want to extend
NetVec to multi-relation hypergraphs.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Stephen Barnard and Horst Simon. A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems. pp. 711–718, 01 1993.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828, 2013. doi:
10.1109/TPAMI.2013.50.

T N Bui and C Jones. A heuristic for reducing fill-in in sparse matrix factorization. 12 1993.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation
learning for networks, 2017.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. Graphzoom: A
multi-level spectral approach for accurate and scalable graph embedding, 2020.

Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling, and Umit V. Catalyurek.
Parallel hypergraph partitioning for scientific computing. In Proceedings of the 20th International
Conference on Parallel and Distributed Processing, IPDPS’06, pp. 124–124, Washington, DC,
USA, 2006. IEEE Computer Society. ISBN 1-4244-0054-6. URL http://dl.acm.org/
citation.cfm?id=1898953.1899056.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks,
2019.

M Giurgiu, J Reinhard, B Brauner, I Dunger-Kaltenbach, G Fobo, G Frishman, C Montrone, and
A. Ruepp. CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucleic
Acids Research, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks, 2016.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs,
2018.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partition-
ing: Applications in vlsi domain. IEEE Trans. Very Large Scale Integr. Syst., 7(1):69–79, March
1999. ISSN 1063-8210.

Steve Kirkland. Two-mode networks exhibiting data loss. Journal of Complex Networks, 6(2):
297–316, 08 2017. ISSN 2051-1329. doi: 10.1093/comnet/cnx039. URL https://doi.org/
10.1093/comnet/cnx039.

Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. Mile: A multi-level framework for
scalable graph embedding, 2020.

Sepideh Maleki, Udit Agarwal, Martin Burtscher, and Keshav Pingali. Bipart: A parallel and
deterministic hypergraph partitioner. SIGPLAN Not., 2021. doi: 10.1145/3437801.3441611.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pp. 701–710, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2956-9. doi: 10.1145/2623330.2623732. URL http://doi.acm.org/10.1145/
2623330.2623732.

Janet Piñero, Juan Manuel Ramı́rez-Anguita, Josep Saüch-Pitarch, Francesco Ronzano, Emilio
Centeno, Ferran Sanz, and Laura I Furlong. The DisGeNET knowledge platform for disease
genomics: 2019 update. Nucleic Acids Research, 48(D1):D845–D855, 11 2019. ISSN 0305-1048.
doi: 10.1093/nar/gkz1021. URL https://doi.org/10.1093/nar/gkz1021.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization. Proceedings of the Eleventh ACM International Conference on Web Search
and Data Mining, Feb 2018. doi: 10.1145/3159652.3159706. URL http://dx.doi.org/
10.1145/3159652.3159706.

10

http://dl.acm.org/citation.cfm?id=1898953.1899056
http://dl.acm.org/citation.cfm?id=1898953.1899056
https://doi.org/10.1093/comnet/cnx039
https://doi.org/10.1093/comnet/cnx039
http://doi.acm.org/10.1145/2623330.2623732
http://doi.acm.org/10.1145/2623330.2623732
https://doi.org/10.1093/nar/gkz1021
http://dx.doi.org/10.1145/3159652.3159706
http://dx.doi.org/10.1145/3159652.3159706

Under review as a conference paper at ICLR 2022

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line. Proceedings of
the 24th International Conference on World Wide Web, May 2015. doi: 10.1145/2736277.2741093.
URL http://dx.doi.org/10.1145/2736277.2741093.

Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of the 22nd
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pp.
351–358, New York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014.
doi: 10.1145/218380.218473. URL https://doi.org/10.1145/218380.218473.

Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. Structural deep embedding for hyper-
networks, 2018a.

Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. Structural deep embedding for hyper-
networks, 2018b.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and Partha
Talukdar. Hypergcn: A new method of training graph convolutional networks on hypergraphs,
2019.

Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Predicting
hyperlinks in adjacency space. In AAAI, pp. 4430–4437, 2018.

Ruochi Zhang, Yuesong Zou, and Jian Ma. Hyper-SAGNN: a self-attention based graph neural
network for hypergraphs. In International Conference on Learning Representations (ICLR), 2020.

Denny Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clustering, classi-
fication, and embedding. In Advances in Neural Information Processing Systems 19: Proceedings
of the 2006 Conference, pp. 1601–1608. MIT Press, September 2007.

J. Y. Zien, M. D. F. Schlag, and P. K. Chan. Multilevel spectral hypergraph partitioning with arbitrary
vertex sizes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 18
(9):1389–1399, 1999. doi: 10.1109/43.784130.

11

http://dx.doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/218380.218473

Under review as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILS OF DATASETS

• Cora: a computer science publication citation network dataset. All documents cited by a
document are connected by a hyperedge. Each document is classified into one of seven
classes based on topic. Nodes not connected to any hyperedge, as well as hyperedges
containing only one node, were removed.

• Citeseer: scientific publications classified into six classes. All documents cited by a
document are connected by a hyperedge. Nodes not connected to any hyperedge, as well as
hyperedges containing only one node, were removed.

• Pubmed: scientific publications classified into three classes. All documents cited by a
document are connected by a hyperedge. Nodes not connected to any hyperedge, as well as
hyperedges containing only one node, were removed.

• DBLP: scientific publications classified into six classes. All documents co-authored by an
author are in one hyperedge.

• Friendster: a community network obtained from https://snap.stanford.edu/data/. It is an
on-line gaming network. Users can form a group on Friendster social network which other
members can then join. These user-defined groups are considered as communities. For
the social network, the induced subgraph of the nodes that either belong to at least one
community or are connected to other nodes that belong to at least one community are
considered too. Communities larger than 500 were removed.

A.2 DETAILS OF BASELINES

• Node2Vec: random-walk based method. It generates random walks by using a return
parameter p and an in-out parameter q. We set these parameters 1.0 and 1.0 respectively.
The length of random walk in this paper is 20, number of walks per node is 10, and the
context window size is 10.

• MILE: multi-level graph embedding framework. We use node2vec as its initial embedding
method. We used the default refinement technique, MD-gcn.

• GraphZoom: multi-level graph embedding framework. For the coarsening, we used simple.
We used node2vec for the initial embedding.

• HyperGCN: Given a hypergraph, HyperGCN approximates the hypergraph by a graph
where each hyperedge is approximated by a subgraph. A graph convolutional network
(GCN) is then run on the resulting graph. Since this method is not proposed for hyperedge
prediction, we do not consider them for this task. We used 200 epochs and learning rate of
0.01.

• Hyper-SAGNN: A self-attentionbased approach for hyperedge prediction. Since this
method is not proposed for node classification, we do not consider them for this task.
We used learning rate of 0.001 and 300 epochs.

A.3 COARSENING ALGORITHM

Algorithm 3 shows the detailed algorithm for coarsening.

A.4 ABLATION STUDY

In this section we perform an ablation study to understand the effectiveness of the major NetVec
kernels.

Table 5 shows the effect of different levels of refinement algorithm on node classification datasets.
Performing just 5 levels of refinement improves the quality of the initial embedding by up to 12%.
This table also shows that after about 100 iterations of refinement, the improvement in the quality of
the embedding stops.

12

Under review as a conference paper at ICLR 2022

Algorithm 3: Coarsening

Input: fineGraph G = (V,E), node feature matrix X ∈ RV×k,neighborhood function N (u),
depth K

Output: coarseGraph G′ = (V ′, E′), node feature matrix X ′ ∈ RV ′×k

for i = 1 to K do
for e ∈ E do

ComputeEdgeFeature(e)
end for
for v ∈ V do

AssignHyperedge(v)
end for
for e ∈ E do

M ← FindAssignedNodes(e)
m← Merge(M)
coarseGraph.addNode(m) # m is representative of each node in M
if |M | 6= |e| then

coarseGraph.addHedge(e) # representative of e
end if

end for
for v ∈ V do

for e ∈ N (v) do
if rep(e) exists then

coarseGraph.addEdge(rep(e),rep(v))
end if

end for
end for

end for

Table 5: Accuracy of NetVec at different numbers of refinement iterations for node classification
(REF-N is the number of iterations of refinement)

REF-N 0 5 30 40 50 60 70 80 90 100

CORA 44.5 58.9 65.6 66.5 66.9 67.2 67.4 67.6 67.7 67.7
CITESEER 51.1 56.1 59.4 59.9 60.1 60.2 60.4 60.5 60.6 60.6
PUBMED 64.5 76.6 79.5 79.9 80.1 80.2 80.4 80.5 80.5 80.5
DBLP 67.1 74.5 77.3 77.7 78.0 78.1 78.3 78.3 78.4 78.5

We study the behaviour of NetVec for the largest hypergraph Friendster. In Table 8 we can see
the effect of the coarsening on the size of the hypergraph as well as accuracy and running time.
Coarsening improves the running time by up to 10x while the accuracy roughly stays the same.

Table 6: Behavior of NetVec at different levels of coarsening on Friendster.
(COARSE-N is the number of levels of coarsening)

COARSE-N 3 5 6 7 8

HYPEREDGES 564,262 419,588 404,857 399,194 396,333
NODES 436,099 85,371 67,682 61,669 59,359
ACCURACY 95.8 93.2 92.7 92.3 92.3
TIME (SEC.) 11,972 897 512 492 475

Table7 shows the breakdown of time in different NetVec’s kernel. If the coarsest hypergraph is small,
most of the time spends in refinement while for large coarsest hypergraphs, the time is mostly spend
in initial embedding.

13

Under review as a conference paper at ICLR 2022

Table 7: Time break down for Friendster dataset for different levels of coarsening. Time in seconds.

COARSE-N 3 5 6 7 8

COARSENING 31 36 43 41 39
INITIAL EMBEDDING 11,760 600 120 51 29
REFINEMENT 181 261 261 349 406

Table 8: Hypergraph size at different coarsening level for dataset Friendster.
(COARSE-N is the number of levels of coarsening)

COARSE-N 1 2 3 4 5 6 7 8

HYPEREDGES 1,602,472 817,450 564,262 460,830 419,588 404,857 399,194 396,333
NODES 7,458,099 1,214,343 436,099 154,418 85,371 67,682 61,669 59,359

A.5 HYPEREDGE PREDICTION

For hyperedge prediction, we compare our result with the state-of-the-art hyperedge prediction
Hyper-SAGNN. We used the same datasets used in their paper. For this task, they randomly hide
20 percentage of existing hyperedges and use the rest of the hypergraph for training. The negative
samples are 5 times the amount of positive samples. We downloaded their code and datasets from
their GitHub repository. We used the encoder-based approach to generate the features. We ran
Hyper-SAGNN for 300 epochs. One noteworthy aspect of Hyper-SAGNN is that they use a different
set of negative samples for each epoch.

For NetVec, we first obtain the embedding of the hypergraphs with node2vec as the initial embedding
technique. We find the embedding of the hypergraph without seeing the hidden hyperedges. To train
our classifier, we used the same positive samples as Hyper-SAGNN. For negative samples however,
we used only the negative samples of a *single* epoch of Hyper-SAGNN. We note that NetVec is
able to obtain a high-quality embedding of the hypergraph with a smaller pool of negative samples
and still obtain good accuracy compared to Hyper-SAGNN. This reduces the time of training from
days to minutes as we showed in the main paper.

The results for node2vec in the main paper are also better than what was reported in the Hyper-
SAGNN paper. The reason is that in their paper, they use node2vec for predicting pairwise edges.
Then for each triplet, they have three probability scores. They used average operator to aggregate the
scores into one and calculate AUC based on this one score. We realized that if we find the variance
of each dimension and use that for training a classifier, the AUC would be much higher for node2vec
and that is what we have reported in the main paper.

For the dataset Friendster, we randomly hide 20% of existing hyperedges and use the rest of the
hypergraph to generate the embeddings for the nodes of the hypergraph and finally, use the variance
operator to report the AUC.

14

	Introduction
	Hypergraph Embedding

	Related Work
	Network Embedding
	Multi-level Embedding

	Methodology
	Multi-level Framework
	Coarsening
	Initial Embedding
	Refinement

	Experiments
	Node Classification
	Hyperedge Prediction

	Conclusion
	Appendix
	DETAILS OF DATASETS
	DETAILS OF BASELINES
	Coarsening Algorithm
	Ablation Study
	HYPEREDGE PREDICTION

