

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEMPORAL GRAPH THUMBNAIL: ROBUST REPRESENTATION LEARNING WITH GLOBAL EVOLUTIONARY SKELETON

Anonymous authors

Paper under double-blind review

ABSTRACT

Temporal graphs are commonly employed as conceptual models for capturing time-evolving interactions in real-world systems. Representation learning on such non-Euclidean data typically depends on aggregating information from neighbors, and the presence of temporal dynamics further complicates this process. However, neighbors often contain noisy information in practice, making the unreliable propagation of knowledge and may even lead to the model failure. Although existing methods employ adaptive spatiotemporal neighbor sampling strategies or temporal dependency modeling frameworks to enhance model robustness, their constrained sampling scope limits handling of severe noise and long-term dependencies. This limitation can be attributed to a fundamental cause: neglecting global evolution inherently overlooks the temporal regularities encoded in continuous dynamics. To address this, we propose the **Temporal Graph Thumbnail (TGT)**, encapsulating a temporal graph’s global evolutionary skeleton as a `thumbnail` to characterize temporal regularities and enhance model robustness. Specifically, we model the `thumbnail` by leveraging von Neumann graph entropy and node mutual information to extract essential evolutionary skeleton from the raw temporal graph, and subsequently use it to guide optimization for model learning. In addition to rigorous theoretical derivation, extensive experiments demonstrate that TGT achieves superior capability and robustness compared to baselines, particularly in rapidly evolving and noisy environments. The code is available at <https://anonymous.4open.science/r/TGT-BDF2>.

1 INTRODUCTION

Temporal graphs arise naturally in a wide range of real-world domains, including transportation systems (Zhao et al., 2019; Yu et al., 2018; Li et al., 2018; Guo et al., 2019), recommendation systems (Xiang et al., 2010; Fan et al., 2021), and social networks (Deng et al., 2019; Tang et al., 2009). Representation learning on non-Euclidean structures is already difficult, and the temporal variation of node features and graph topology makes it even more complex (Gravina & Bacciu, 2024). Most studies on temporal graph representation extend the message aggregation and passing mechanisms (Gilmer et al., 2017) from static graph learning to dynamic settings. Some studies address temporal dynamics by slicing graphs into discrete snapshots and analyzing them as time series (Seo et al., 2018; Li et al., 2018; Bai et al., 2021), while others model temporal changes in a continuous, online fashion (Micheli & Tortorella, 2022; da Xu et al., 2020; Rossi et al., 2020).

However, real-world data are often noisy, posing substantial challenges to model robustness and generalization. For illustration, consider a Q&A forum where user posts are modeled as nodes and user interactions are edges. There are various sources of noise in this social network temporal graph, including off-topic information in an answer, incorrect associations between answers and unrelated questions, and message disorder caused by network latency. Since context for representation is captured by aggregating spatiotemporal neighbor information along the topology, redundant or erroneous node features, spurious or obsolete edges, and incorrectly recorded timestamps can significantly degrade context quality, thus weakening the representation quality (Hou et al., 2020).

Several robust representation approaches have been developed to combat noise in temporal graph learning. These studies can be broadly categorized into two main directions: **a) neighbor sampling adaptation.** Adjusting spatiotemporal neighbor sampling improves the reliability of aggregated messages by reducing the influence of noisy or unreliable neighbors. For instance, Li et al. (2024a) conceptualizes the neighbor update as a sequence decision problem and employs reinforcement learning to address it effectively. Chen et al. (2018) models the propagation of noise as a Markov chain and proposes a greedy algorithm to rewire edges for neighbor sampling. **b) historical information assistance.** By capturing consistent patterns in historical interactions, temporal modeling reduces sensitivity to transient noise or irregular events, thereby improving model robustness. Zhang et al. (2022) mitigates spatiotemporal distribution shifts by making full use of invariant historical patterns observed across sequences, while Yuan et al. (2024) derives consensual conditions for temporal information and devise information bottleneck to capture temporal correlations.

However, these approaches remain limited by their constrained sampling scope, restricting their ability to handle denser noises and capture long-term temporal dependencies. Specifically, Lee et al. (2024) observed experimentally that models relying on neighbor or historical information struggled with long-term dependencies, leading to larger errors. Sankar et al. (2020) shows that when both neighbor and historical information become unreliable, the quality of the learned embeddings can significantly deteriorate. We attribute these limitations to two main factors. **a) lack of global evolution modeling.** Existing methods adopt a narrow scope of neighbor sampling, overlooking the useful information from global evolution. When local information is insufficient to resist the noise interference, model performance degrades significantly. **b) absence of effective constraints for denoising.** Excessive denoising can distort critical information, while insufficient processing leaves residual noises. In the absence of constraints, striking a balance between the two becomes difficult.

To this end, we introduce the **Temporal Graph Thumbnail (TGT)** framework, which characterizes the global evolutionary skeleton of temporal graphs as a **thumbnail** and employs it as an optimization constraint to guide effective compression and denoising of representations, improving both the capability and robustness of the model. Similar to a video cover, which uses a single image to summarize the video’s content, we extract a static graph, akin to a snapshot, to encapsulate the evolutionary information of the temporal graph into its thumbnail. Specifically, TGT addresses the aforementioned challenges by addressing two key research questions: *(i)* How to model a thumbnail from the temporal graph that effectively serves as its skeleton with the global evolution features, and *(ii)* how to design effective constraints based on the thumbnail to guide robust learning process.

In our TGT framework, we design a thumbnail modeling approach that derives the conditional likelihood estimation of the thumbnail under the raw temporal graph. It characterizes structural evolution grounded in von Neumann graph entropy and captures node feature evolution using sequential node mutual information through the Donsker-Varadhan representation. Based on the thumbnail, we further derive effective constraints for representation learning that approximates the mutual information bounds between the data, tasks, and thumbnail, effectively balancing robustness and expressiveness. Our contributions can be summarized as follows:

- We **model the thumbnail** for temporal graphs that captures their global evolution features through online computation of von Neumann entropy and alignment with node feature mutual information.
- We **formulate optimization constraints** based on the evolutionary information embedded in the thumbnail, guiding the learning process to enhance model capability and robustness.
- We **conduct comprehensive empirical evaluations** across multiple benchmark datasets. The results demonstrate that TGT achieves statistically significant improvements in performance compared to baselines. The results highlight the effectiveness of our method characterized by substantial evolution constraint, as well as its robustness in handling systematic noise.

2 PROBLEM STATEMENT

2.1 THUMBNAIL OF GRAPH SEQUENCE

We aim to mine a specific graph that captures the evolutionary skeleton of a temporal graph, encapsulating the global evolution features of the graph sequence. Considering a temporal graph $\mathcal{G} = \{G^i\}_{i=1}^T$ characterized by a historical sequence of snapshots (notably, TGT focuses primarily

on discrete-time dynamic graphs), our method models a static thumbnail $\mathcal{G}_T = \{V_{\mathcal{G}_T}, E_{\mathcal{G}_T}\}$, which is designed to distill and encapsulate the essential evolutionary information of the entire temporal process within \mathcal{G} . The corresponding adjacency matrix \mathbf{M} is composed of $M_{\alpha\beta} = 1$ if $(\alpha, \beta) \in E_{\mathcal{G}_T}$, and $M_{\alpha\beta} = 0$ otherwise. Based on sufficient temporal correlations, we construct a set of assignment matrices, denoted as $\mathcal{S} = \{S^1, S^2, \dots, S^T\}$, which map V^i in G^i to $V_{\mathcal{G}_T}$ via the function \mathcal{F} . $s_{a\alpha}^i$ in S^i denotes the mapping from node a in G^i to node α in \mathcal{G}_T at timestamp i .

$$s_{a\alpha}^i = \begin{cases} 1 & \text{if } \mathcal{F}(v_a^i) = \alpha, \\ 0 & \text{otherwise.} \end{cases} \quad (1)$$

To estimate the evolution of the graph sequence \mathcal{G} , the posterior probability $P(\mathcal{G} | \mathcal{G}_T, \mathcal{S})$ can be formulated as a probability distribution function in aggregate (Han et al., 2015). Due to the temporal relationship between snapshots, the joint distribution cannot be simply computed by multiplying independent distributions. Instead, we model the joint probability as a weighted conditional distribution over each snapshot and thumbnail, parameterized by learnable coefficients B_a^i .

$$P(\mathcal{G} | \mathcal{G}_T, \mathcal{S}) = \prod_{G^i \in \mathcal{G}} \left[P(G^i | \mathcal{G}_T, S^i) \right] = \prod_{G^i \in \mathcal{G}} \left[\prod_{a \in V^i} \sum_{\alpha \in V_{\mathcal{G}_T}} K_a^i \exp \left(\mu \sum_{b \in V^i} \sum_{\beta \in V_{\mathcal{G}_T}} A_{ab}^i M_{\alpha\beta} S_{b\beta}^i \right) \right],$$

where $\mu = \ln \frac{1 - P_e}{P_e}$, $K_a^i = P_e^{|V^i| \cdot |V_{\mathcal{G}_T}|} B_a^i$.

(2)

P_e is the probability of a matching error between observed graph vertices and the corresponding vertices in thumbnail, while B_a^i is the sampled probability computed at time step i based on the feature x_a^i of vertex a (Han et al., 2015) (more details for Eq. 2 in appendix A.2). The aforementioned conditional likelihood estimation is applicable to both directed and undirected graphs and provides an effective representation of the temporal graph \mathcal{G} , assuming the thumbnail is accurate.

2.2 REPRESENTATION LEARNING WITH THUMBNAIL

The problem we examine involves a temporal graph \mathcal{G} , where the graph stream comprises snapshots G^t at each timestamp t , up to a maximum timestamp T . Each snapshot $G^t = \{V^t, E^t\}$ consists of vertices $V^t = \{v_1^t, \dots, v_n^t\}$ of size n and edges $E^t \subseteq V^t \times V^t$ of size m at timestamp t . The vertices V^t possess k -dimensional features represented by $\mathbf{X}^t \in \mathbb{R}^{n \times k}$. The adjacency matrix $\mathbf{A}^t = \{a_{ij}^t\}_{n \times n}$ is defined such that $a_{ij}^t = 1$ if $(i, j) \in E^t$ and $a_{ij}^t = 0$ otherwise. We aim to input the temporal graph \mathcal{G} and utilize the node features $\mathbf{X}^{1:T}$ along with the topological structure $\mathbf{A}^{1:T}$ to derive the node embedding $\mathbf{Z}^{T+1} \in \mathbb{R}^{n \times k}$ for the subsequent time step, thereby facilitating downstream tasks. We aim to develop the robust representation \mathbf{Z}^{T+1} , particularly under conditions where node and structural features are sparse, unreliable, or perturbed. To meet these requirements, the representation should adhere to the principle of *minimal sufficiency* (Tishby & Zaslavsky, 2015):

$$\mathbf{IB}_{\mathbf{Z}} = \arg \min_{\mathbf{Z}} \{-I(\mathbf{Y}; \mathbf{Z}) + \beta I(\mathcal{G}; \mathbf{Z})\}, \quad (3)$$

where β is the Lagrange multiplier to balance the two mutual information I . During optimization, the mutual information between \mathbf{Z} and the target label \mathbf{Y} is maximized to enhance the representation capability of the model, while the mutual information between \mathbf{Z} and the input data \mathcal{G} is constrained to improve the model's robustness. By instantiating the intermediate constraint Z through the thumbnail (as shown in Eq. 8), we effectively capture the evolution of topological dependencies in historical graph sequences, thereby improving representation quality and robustness for downstream tasks such as node classification and link prediction.

3 TEMPORAL GRAPH THUMBNAIL

In this section, we introduce our Temporal Graph Thumbnail in detail. Our framework consists of two components: *(i)* an approach for modeling the thumbnail that effectively captures global evolutionary features, and *(ii)* the optimization constraints for representation learning guided by the thumbnail. Finally, we instantiate training and inference processes to illustrate the full pipeline.

162 3.1 THUMBNAIL MODELING FROM TEMPORAL GRAPH
163

164 Existing methods fail to capture global evolutionary features, primarily due to the absence of an ex-
165 plicit model that characterizes the core evolutionary backbone underlying temporal graph sequences
166 (Liu et al., 2023). This oversight weakens the temporal coherence between individual snapshots and
167 the sequence as a whole, rendering such methods less robust to real-world perturbations. To this end,
168 network entropy has become a widely adopted tool to characterize the structural dynamics of com-
169 plex systems (Anand et al., 2014). Among various forms of network entropy, von Neumann graph
170 entropy (VNGE) exhibits distinctive mathematical properties that make it well-suited for modeling
171 the thumbnail (The reasons for choosing VNGE are detailed in the appendix A.1.3).
172

172 Inspired by VNGE’s ability to coherently track temporal topological changes (Huang et al., 2023a)
173 and encode evolving structural features (Liu et al., 2022; Alstott et al., 2015), we characterize the
174 structural evolution by analyzing the mutual information between the thumbnail \mathcal{G}_T and the
175 temporal graph $\mathcal{G} = \{G^1, \dots, G^T\}$ from the perspective of VNGE. We start by preparing the ap-
176 proximation H_{VN} , adapted from Ye et al. (2014), to characterize structural evolution.
177

$$177 \quad H_{VN} = 1 - \frac{1}{|V_{\mathcal{G}_T}|} - \frac{1}{2|V_{\mathcal{G}_T}|^2} \left\{ - \sum_{(\alpha, \beta) \in E_{\mathcal{G}_{T_1}}} \frac{1}{d_\beta^{\text{out}} d_\alpha^{\text{out}}} + \sum_{(\alpha, \beta) \in E_{\mathcal{G}_T}} \left(\frac{d_\alpha^{\text{in}}}{d_\beta^{\text{in}} d_\alpha^{\text{out}^2}} + \frac{1}{d_\beta^{\text{out}} d_\alpha^{\text{out}}} \right) \right\},$$

$$180 \quad \text{where } d_\alpha^{\text{in}} = \sum_{\gamma \in V_{\mathcal{G}_T}} M_{\gamma\alpha}, \quad d_\alpha^{\text{out}} = \sum_{\gamma \in V_{\mathcal{G}_T}} M_{\alpha\gamma}.$$

$$182 \quad (4)$$

183 The set $E_{\mathcal{G}_{T_1}}$ represents the asymmetric directed edges of \mathcal{G}_T , where $E_{\mathcal{G}_{T_1}} = \{(u, v) \mid (u, v) \in$
184 $E_{\mathcal{G}_T}$ and $(v, u) \notin E_{\mathcal{G}_T}\}$. Given the intrinsic interdependence in the evolutionary process, snapshots
185 are not independent. Thus, \mathbf{B}^i is a learnable probability weight that quantifies the probabilistic
186 contribution of the snapshot G^i , corresponding to the parameter \mathbf{K}^i and \mathbf{B}^i as defined in Eq. 2
187 (proof in appendix A.2 and A.3.1).
188

$$188 \quad I_s(\mathcal{G}_T; \mathcal{G}) = H_{VN}(\mathcal{G}_T) - \sum_{G^i \in \mathcal{G}} \mathbf{B}^i H_{VN}(\mathcal{G}_T | G^i). \quad (5)$$

$$189$$

190 Then, we use \mathcal{F} to convert the non-Euclidean graph sequence \mathcal{G} into vertex embeddings of
191 thumbnail. We employ Donsker-Varadhan representation to derive an estimator for mutual infor-
192 mation I_{DV} between \mathcal{G} and \mathcal{G}_T (Belghazi et al., 2018) (proof in appendix A.3.2).
193

$$193 \quad I_{DV}(\mathcal{G}_T; \mathcal{G}) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_P[f(V_{\mathcal{G}})] - \log \mathbb{E}_Q \left[e^{f(V_{\mathcal{G}})} \right] \right). \quad (6)$$

$$194$$

195 We integrate $I_s(\mathcal{G}_T; \mathcal{G})$, which characterizes the evolution of the **topological structure**, with
196 $I_{DV}(\mathcal{G}_T; \mathcal{G})$, which reflects the evolution of **node features**, to maximize the mutual information
197 between the thumbnail and the raw temporal graph. This objective guides the learning of the
198 mapping \mathcal{F} and the coupling weights \mathbf{B}^i , as part of definition of the thumbnail in Eq. 1 and 2.
199

200 3.2 THUMBNAIL-GUIDED REPRESENTATION CONSTRAINTS
201

202 Existing representation methods are limited in their ability to model the global evolution inherent in
203 temporal graphs, and they neglect the memory patterns and logical dependencies embedded within
204 global temporal changes. With the guidance of the thumbnail, we formulate optimization con-
205 straints that leverage global evolutionary information to enhance representation learning.
206

207 Based on local dependency assumption for static graphs, we extend it to temporal graphs.
208

209 **Assumption 1** *Given the relevant data from neighbors within a certain distance range (k -hop) and
210 time range (Δt) for vertex v in temporal graph \mathcal{G} , v depends only on these spatiotemporal neighbors
211 $\mathcal{N}_{k, \Delta t}(v)$ and is independent of data from the rest of graph:*
212

$$211 \quad P(x_v^t | \mathcal{G}^{1:t}) = P(x_v^t | \mathcal{G}_{\mathcal{N}_{k, \Delta t}(v)}^{t-\Delta t:t}). \quad (7)$$

$$212$$

213 Under this premise, we derive the variational bound of the mutual information. Constrained by the
214 thumbnail \mathcal{G}_T , we refine the temporal graph \mathcal{G} the principle of *minimal sufficiency* (Tishby &
215 Zaslavsky, 2015):
216

$$216 \quad \mathcal{G}_{TIB} = \arg \min_{\mathcal{G}_T} \{-I(\mathbf{Y}; \mathcal{G}_T) + \beta I(\mathcal{G}; \mathcal{G}_T)\}. \quad (8)$$

$$217$$

Our objective is to employ the thumbnail \mathcal{G}_T as a bottleneck constraint to minimize redundancy in the original data while preserving sufficient evolutionary information to prevent distortion from excessive compression. Minimality is achieved by minimizing the upper bound of mutual information $I(\mathcal{G}; \mathcal{G}_T)$ to compress the redundancy of \mathcal{G} . Sufficiency is achieved by maximizing the lower bound of mutual information $I(\mathbf{Y}; \mathcal{G}_T)$ to capture essential features of \mathcal{G} .

Upper Bound of $I(\mathcal{G}; \mathcal{G}_T)$ Inspired by GIB (Wu et al., 2020), we extend the variational approximation to the mutual information between the thumbnail and the original data, termed the Thumbnail Bottleneck (TB) constraint. Specifically, $S_{\mathcal{G}_{TX}}, S_{\mathcal{G}_{TA}} \subset [L]$ is the index sequence of the temporal graph snapshot, L is the temporal graph time span. To enable tractable optimization, we introduce a variational distribution $\mathbb{Q}(\cdot)$ to approximate the true posterior $\mathbb{P}(\cdot)$.

$$I(\mathcal{G}; \mathcal{G}_T) \leq I(\mathcal{G}; \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}) \leq \sum_{l \in S_{\mathcal{G}_{TX}}} \text{TB}_{\mathcal{G}_{TX}}^{(l)} + \sum_{l \in S_{\mathcal{G}_{TA}}} \text{TB}_{\mathcal{G}_{TA}}^{(l)},$$

where $\text{TB}_{\mathcal{G}_{TA}}^{(l)} = \mathbb{E} \left[\log \frac{\mathbb{P}(Z_{\mathcal{G}_{TA}}^{(l)} | \mathbf{A}, Z_{\mathcal{G}_{TA}}^{(l-1)})}{\mathbb{Q}(Z_{\mathcal{G}_{TA}}^{(l)})} \right]$, $\text{TB}_{\mathcal{G}_{TX}}^{(l)} = \mathbb{E} \left[\log \frac{\mathbb{P}(Z_{\mathcal{G}_{TX}}^{(l)} | Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)})}{\mathbb{Q}(Z_{\mathcal{G}_{TX}}^{(l)})} \right]$, (9)

$Z_{\mathcal{G}_{TX}}^{(l)}$ and $Z_{\mathcal{G}_{TA}}^{(l)}$ are \mathcal{G}_T 's embeddings that capture temporal evolution information. This helps resist perturbation attacks that violate inherent evolutionary patterns (proof in appendix A.3.3).

Lower Bound of $I(\mathbf{Y}; \mathcal{G}_T)$ The variational lower bound of $I(\mathbf{X}; \mathcal{G}_T)$ follows the approximation:

$$I(\mathbf{Y}; \mathcal{G}_T) \geq 1 + \mathbb{E}_{P(\mathbf{Y}, \mathcal{G}_T)} \left[\log \frac{P(\mathbf{Y} | (Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TX}}^{(l)}))}{Q(\mathbf{Y})} \right] - \mathbb{E}_{P(\mathbf{Y})} \left[\frac{\mathbb{E}_{P(\mathcal{G}_T)} P(\mathbf{Y} | (Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TX}}^{(l)}))}{Q(\mathbf{Y})} \right]. \quad (10)$$

$Z_{\mathcal{G}_{TX}}^{(l)}$ and $Z_{\mathcal{G}_{TA}}^{(l)}$ are determined in Eq. 1. In practice, reparameterizing the probability distribution function P proves beneficial by exploiting prior data on the conditional probability distribution. This approach eliminates learning a mapping between \mathcal{G}_T and \mathbf{Y} , which requires instead the learning of an approximate probability distribution $Q(\mathbf{Y})$ in a typically lower-dimensional vector space (proof in appendix A.3.4).

3.3 INSTANTIATION OF TRAINING AND INFERENCE

We instantiate the previously introduced probability distributions and elaborate on the detailed pipeline of the framework. We illustrate the process using link prediction as an example, with the full pipeline presented as pseudocode in the appendix A.1.4.

Thumbnail Modeling For the thumbnail modeling, we adopt the mutual information alignment method to design the loss function as follows:

$$\mathcal{L}_{\text{evolution}} = -(I_s(\mathcal{G}_T; \mathcal{G}) + I_{\text{DV}}(\mathcal{G}_T; \mathcal{G})). \quad (11)$$

The two terms in the formula are composed of Eq. 5 and Eq. 6 respectively. We define G^i in Eq. 5 as a graph snapshot within the temporal neighborhood $[t - \Delta t, t]$, with the neighborhood size configurable as a hyperparameter. Furthermore, \mathcal{F} in Eq. 6 is specified as neural network layers composed of learnable parameters.

Instantiation of $I(\mathcal{G}; \mathcal{G}_T)$ To instantiate the node feature term $\text{TB}_{\mathcal{G}_{TX}}^{(l)}$ as defined in Eq. 9, we set $\mathbb{Q}(Z_{\mathcal{G}_{TX}}^{(l)})$ to a mixture of Gaussians, expressed as $\sum_{k=1}^m \pi_k \Phi(\mu_{q,k}, \sigma_{q,k}^2)$. Here, π_k , $\mu_{q,k}$ and $\sigma_{q,k}$ are learnable parameters. We set $\mathbb{P}(Z_{\mathcal{G}_{TX}}^{(l)} | Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)})$ as $\Phi(Z_{\mathcal{G}_{TX}}^{(l)}; \mu_p, \sigma_p^2)$, and then:

$$\text{TB}_{\mathcal{G}_{TX}}^{(t)} \doteq \sum_{v \in V^t} \left(\Phi(Z_{\mathcal{G}_{TX}}^{(t)}; \mu_p, \sigma_p^2) - \sum_{k=1}^m \Phi(\mu_{q,k}, \sigma_{q,k}^2) \right). \quad (12)$$

270 For structural term $\text{TB}_{\mathcal{G}_{TA}}^{(l)}$ as defined in Eq. 9, we similarly set $\mathbb{Q}(Z_{\mathcal{G}_{TA}}^{(l)})$ as Bernoulli distribution, Bernoulli(ϕ), where ϕ is a hyperparameter. Neighbor information is then aggregated by sampling from this Bernoulli distribution. The generative distribution $\mathbb{P}(Z_{\mathcal{G}_{TA}}^{(l)} | \mathbf{A}, Z_{\mathcal{G}_{TA}}^{(l-1)})$ is similarly Bernoulli, with sampling probability α_p computed from the node embeddings.

$$275 \quad \text{TB}_{\mathcal{G}_{TA}}^{(t)} \doteq D_{KL}(\text{Bernoulli}(\alpha_p^t) \parallel \text{Bernoulli}(\phi)) = (1 - \alpha_p^t) \log \frac{1 - \alpha_p^t}{1 - \phi} + \alpha_p^t \log \frac{\alpha_p^t}{\phi}. \quad (13)$$

277 **Instantiation of $I(\mathbf{Y}; \mathcal{G}_T)$** Instantiating Eq. 10 depends on the downstream task. For instance, in
278 link prediction the likelihood term $P(\mathbf{Y} | Z_{\mathcal{G}_{TX}}^{(L)}, Z_{\mathcal{G}_{TA}}^{(L)})$ is modeled as a categorical distribution,
279 where $Q(\mathbf{Y})$ denotes the empirical distribution of ground truth links. During optimization, the final
280 expected joint likelihood term converges toward unity, effectively canceling the constant offset.

$$282 \quad I(\mathbf{Y}; \mathcal{G}_T) \doteq \frac{1}{N} \sum_{i=1}^N \log \left[\text{Categorical}(\mathbf{Y} | Z_{\mathcal{G}_{TX}}^{(l)}) \right] =: -\mathcal{L}_{CE}(\mathbf{w}_{out} \cdot \mathbf{Z}_{\mathcal{G}_{TX}}, \mathbf{Y}), \quad (14)$$

284 \mathbf{w}_{out} denotes the weights of the downstream classifier. During optimization, this component refers
285 to the calculation of cross-entropy loss, where N represents the number of training samples.

287 In summary, the mutual information loss function for bottleneck constraints imposed by the
288 thumbnail is as follows, where S_A, S_X are the index sets satisfying Assumption 1.

$$289 \quad \mathcal{L}_B = -I(\mathbf{Y}; \mathcal{G}_T) + \beta I(\mathcal{G}; \mathcal{G}_T) \doteq -I(\mathbf{Y}; \mathcal{G}_T) + \beta \left[\sum_{t \in S_A} \text{TB}_{\mathcal{G}_{TA}}^{(t)} + \sum_{t \in S_X} \text{TB}_{\mathcal{G}_{TX}}^{(t)} \right]. \quad (15)$$

292 The overall training objectives of the proposed model can be reformulated as follows:

$$293 \quad \mathcal{L} = \mathcal{L}_B + \lambda \cdot \mathcal{L}_{evolution}, \quad (16)$$

294 where λ is the hyperparameter of the Lagrange multiplier. We adopt the Graph Attention Network
295 (Veličković et al., 2018) as the backbone framework, meaning both \mathcal{F} in Eq. 6 and P_e in Eq. 2 are
296 GAT-based encoders. The probability B_a^t in Eq. 2 is derived by transforming node a 's encoding at
297 time t through a feedforward layer with a softmax. Therefore, according to Eq. 2, we can predict
298 global evolution using the thumbnail \mathcal{G}_T , which is compressed by graph sequence \mathcal{G} .

300 4 EXPERIMENTS

302 We employ link prediction as a downstream task to assess the capability and robustness of TGT com-
303 pared to established baselines. Specifically, we aim to address the following research questions: **Q1**
304 (**Fundamental Capability**): How does TGT compare with SOTA methods in terms of fundamental
305 capability? Ans 1. **Q2 (Robustness)**: How robust is TGT under various types of perturbations or
306 noise against other baselines? Ans 2.1, 2.2, 2.3. **Q3 (Effectiveness of the Thumbnail)**: How ef-
307 fective is the thumbnail in modeling evolution? Ans 3.1. Why is von Neumann Graph Entropy
308 (VNGE) chosen for modeling thumbnail? Ans 3.2. **Q4 (Contribution of Constraints)**: How do
309 the constraints guided by the thumbnail contribute to enhancing the model's robustness? Ans 4..

310 4.1 EXPERIMENTAL SETUPS

312 **Datasets** We conduct experiments on the link prediction
313 task on three widely-used datasets. MathOverflow is a forum
314 question-answer relationship data (Paranjape et al., 2017); Bit-
315 coin dataset is a user transaction relationship data consisting
316 of transaction records (Kumar et al., 2016; 2018); the MOOC
317 dataset represents the actions taken by users on a popular
318 MOOC platform (Kumar et al., 2019). More detailed informa-
319 tion is shown in Table 1. *Evolution Frequency* refers to how
320 often the graph evolves per day. *Avg. Snap. nodes/edges* rep-
321 presents the average number of nodes/edges in each snapshot,
322 where the snap time span refers to the temporal scale at which
323 the graph is chronologically split. Datasets of varying scales and evolution frequencies covering
most real-world tasks. Detailed descriptions of the datasets are provided in appendix A.4.

324 Table 1: Details of datasets for ex-
325 periments.

Dataset	Bitcoin	MathOverflow	MOOC
Nodes	9,664	24,818	7,047
Edges	59,778	506,550	411,749
Timespan	1903 days	2350 days	30 days
Link Type	Homogeneous	3	5
Evolution Frequency	18.7	45.78	13724.97
Avg. Snap. nodes	7,034	21,683	7,047
Avg. Snap. edges	51,363	207,581	81,749
Snap. span	60 days	20 days	12 hours

324
325
326
327 Table 2: Inductive link predication performance on the Bitcoin, MathOverflow and MOOC datasets
328 under clean settings.
329
330
331
332
333
334
335
336

Model		Bitcoin		MathOverflow		MOOC	
		AUC	AP	AUC	AP	AUC	AP
<i>Dynamic GNNs (DGNNs)</i>	EvolveGCN	67.59±0.3	63.38±0.2	75.59±0.2	72.73±0.4	72.35±0.3	73.59±0.2
	JODIE	74.47±0.3	75.50±0.4	67.06±1.2	66.32±0.6	73.19±0.7	71.78±0.9
	DyREP	70.43±0.5	69.79±0.4	63.50±0.5	63.37±0.6	81.36±0.1	78.35±0.3
	TGN	69.36±1.1	72.09±0.7	64.50±0.6	65.88±0.6	79.36±1.0	78.96±0.5
<i>Robust Generalized DGNNs</i>	DIDA	73.57±0.3	71.27±0.4	74.37±0.4	75.24±0.3	89.84±0.5	88.49±0.4
	GIB+LSTM	70.79±0.5	69.73±0.4	77.52±0.3	75.03±0.7	92.34±0.3	93.29±0.5
	DGIB	72.99±1.3	73.24±0.6	80.29±0.3	79.99±0.5	93.06±0.1	93.11±0.3
	TGT(ours)	91.41±0.2	91.01±0.3	82.38±0.6	81.17±0.4	95.42±0.4	94.56±0.7

337 **Baselines** We selected baselines from dual perspectives to demonstrate the effectiveness of TGT.
 338 Among temporal graph representation methods, we selected four superior methods. TGN (Rossi
 339 et al., 2020) is a framework for representation learning on streaming temporal graphs; JODIE (Ku-
 340 mar et al., 2019) learns node interaction relationships using RNNs; DyREP (Trivedi et al., 2019) en-
 341 codes nodes by modeling temporal point processes at dual scales; EvolveGCN (Pareja et al., 2020)
 342 captures graph sequence dynamics by evolving GCN parameters. Among robustness and bottleneck
 343 constraint, we selected three methods. DIDA (Zhang et al., 2022) leverages robust and generalized
 344 prediction patterns on temporal graph representation; GIB (Wu et al., 2020) computes the informa-
 345 tion bottleneck of graph snapshots, with LSTM adapted for dynamic scenes; DGIB (Yuan et al.,
 346 2024) imposes history constraints on the information bottleneck to obtain representations.

347 **Data Perturbation** To verify TGT’s robustness, we adopted adversarial attacks on training data
 348 in multiple aspects. **a) Feature Interference:** To assess the robustness of TGT under untargeted
 349 attacks, we introduce random Gaussian noise to node features and apply varying perturbation in-
 350 tensities (controlled by noise amplitude). **b) Structural Interference:** For topological attacks, we
 351 employ the **Nettack** (Zügner et al., 2018) to perform adversarial edge perturbations (e.g. deletion or
 352 negative sampling), specifically targeting substructures that maximize prediction loss in the proxy
 353 model. **c) Temporal Interference:** To evaluate TGT’s stability and robust representation capabili-
 354 ties under temporal disruptions, we disrupt the chronological order of graph snapshots by randomly
 355 permuting them, simulating interference with the underlying temporal evolution dynamics (For more
 356 detailed information of attack settings, please refer to the appendix A.5).

357 4.2 EFFECTIVENESS EXPERIMENT

358 To address **Q1**, we conducted comprehensive experimental analyses on three distinct datasets, and
 359 subsequently compared the results with established baselines to rigorously demonstrate the superior
 360 performance of TGT. Implementation details of TGT are provided in appendix A.6. In the effec-
 361 tiveness experiment, we employed a clean data setting without any data interference and utilized
 362 inductive link prediction as the downstream task for the evaluation of representations. Drawing
 363 upon the original data, we conducted negative sampling by selecting 10% of the total edges to facil-
 364 itate the training of the link prediction task. After repeating the experiments three times, the average
 365 and range of the results are presented in the Table 2.

366 **Ans 1.** TGT consistently outperforms the baselines in fundamental representation capability across
 367 all three datasets, with its advantages particularly pronounced in scenarios with sparse neighbor in-
 368 formation. By analyzing the datasets and the experimental results, it is evident that TGT exhibits
 369 significant advantages in the Bitcoin dataset. Specifically, its AUC and AP values have improved
 370 by 16. 94% and 15. 51%, respectively, compared to the runner-up. This improvement suggests that
 371 TGT can capture data features more effectively and demonstrate superior generalization capabilities.
 372 On MathOverflow, where social network interaction noise is prevalent, *Robust Generalized DGNNs*
 373 significantly outperform *DGNNs*. Furthermore, on the MOOC dataset, characterized by frequent
 374 evolutionary changes, TGT displays a clear performance edge. These results demonstrate the ef-
 375 fectiveness of TGT’s design, which leverages von Neumann entropy to constrain the information
 376 bottleneck associated with global structural evolution.

378 Table 3: Robustness results (**AUC**) on Bitcoin, MathOverflow and MOOC datasets with data perturbation
379 at different levels.
380

381 Dataset	382 Model	383 Clean	384 Feature Interference			385 Structure Interference			386 Temporal Interference		
			387 10%	388 20%	389 50%	390 5%	391 10%	392 20%	393 $n=1$	394 $n=2$	395 $n=5$
382 Bitcoin	383 EvolveGCN	384 67.59 \pm 0.3	385 62.74 \pm 0.3	386 56.77 \pm 0.2	387 54.24 \pm 0.2	388 64.01 \pm 0.3	389 60.37 \pm 0.4	390 55.89 \pm 0.3	391 65.47 \pm 0.3	392 63.12 \pm 0.3	393 54.37 \pm 0.4
	383 JODIE	384 74.47 \pm 0.3	385 69.28 \pm 0.1	386 61.10 \pm 0.3	387 53.32 \pm 0.4	388 70.33 \pm 0.2	389 66.82 \pm 0.3	390 60.57 \pm 0.3	391 71.54 \pm 0.8	392 69.79 \pm 0.5	393 58.28 \pm 0.7
	383 DyREP	384 70.43 \pm 0.5	385 64.91 \pm 0.3	386 61.25 \pm 0.3	387 56.63 \pm 0.2	388 69.98 \pm 0.8	389 63.79 \pm 0.7	390 58.60 \pm 0.5	391 69.43 \pm 0.8	392 65.84 \pm 0.5	393 57.33 \pm 0.7
	383 TGN	384 69.36 \pm 1.1	385 67.34 \pm 0.6	386 62.31 \pm 0.4	387 59.06 \pm 1.3	388 66.61 \pm 0.5	389 62.18 \pm 0.6	390 58.73 \pm 0.5	391 68.46 \pm 0.8	392 66.92 \pm 0.7	393 61.74 \pm 0.8
	383 DIDA	384 73.57 \pm 0.3	385 71.05 \pm 0.2	386 68.43 \pm 0.3	387 64.20 \pm 0.2	388 70.93 \pm 0.2	389 68.71 \pm 0.3	390 65.69 \pm 0.4	391 71.23 \pm 0.2	392 69.65 \pm 0.3	393 64.29 \pm 0.4
	383 GIB+LSTM	384 70.79 \pm 0.3	385 69.26 \pm 0.3	386 63.73 \pm 0.5	387 58.37 \pm 0.3	388 68.61 \pm 0.5	389 65.09 \pm 0.3	390 62.93 \pm 0.2	391 69.15 \pm 0.3	392 67.17 \pm 0.6	393 63.41 \pm 0.8
	383 DGIB	384 72.99 \pm 1.3	385 69.92 \pm 0.6	386 63.63 \pm 0.5	387 60.78 \pm 0.7	388 70.13 \pm 0.3	389 65.84 \pm 0.6	390 59.13 \pm 0.4	391 71.27 \pm 0.5	392 68.44 \pm 0.7	393 62.53 \pm 0.6
387 MathOverflow	388 TGT	389 91.41\pm0.2	390 89.43\pm0.5	391 86.23\pm0.4	392 80.62\pm0.4	393 89.83\pm0.6	394 85.00\pm0.5	395 80.95\pm0.7	396 90.78\pm0.5	397 88.14\pm0.6	398 85.64\pm0.3
	388 EvolveGCN	389 75.59 \pm 0.2	390 67.22 \pm 0.3	391 61.14 \pm 0.3	392 54.79 \pm 0.2	393 66.68 \pm 0.5	394 63.11 \pm 0.4	395 55.23 \pm 0.3	396 69.39 \pm 0.3	397 67.90 \pm 0.3	398 56.63 \pm 0.5
	388 JODIE	389 67.06 \pm 1.2	390 63.23 \pm 0.3	391 59.56 \pm 0.3	392 51.92 \pm 0.2	393 64.71 \pm 0.4	394 59.13 \pm 0.3	395 53.19 \pm 0.3	396 66.34 \pm 0.3	397 63.93 \pm 0.2	398 55.37 \pm 0.3
	388 DyREP	389 63.50 \pm 0.5	390 59.13 \pm 0.3	391 53.32 \pm 0.6	392 54.17 \pm 0.7	393 60.19 \pm 0.2	394 56.59 \pm 0.2	395 53.26 \pm 0.3	396 61.71 \pm 0.4	397 60.07 \pm 0.2	398 53.33 \pm 0.5
	388 TGN	389 64.50 \pm 0.6	390 61.22 \pm 0.3	391 58.96 \pm 0.3	392 55.14 \pm 0.4	393 59.49 \pm 0.2	394 56.23 \pm 0.3	395 53.97 \pm 0.3	396 61.40 \pm 0.3	397 60.36 \pm 0.5	398 55.23 \pm 0.7
	388 DIDA	389 74.37 \pm 0.4	390 70.95 \pm 0.1	391 68.63 \pm 0.1	392 63.98 \pm 0.1	393 73.48 \pm 0.2	394 70.47 \pm 0.3	395 67.03 \pm 0.4	396 73.57 \pm 0.2	397 69.09 \pm 0.1	398 65.44 \pm 0.5
	388 GIB+LSTM	389 77.52 \pm 0.3	390 73.24 \pm 0.1	391 69.38 \pm 0.6	392 63.07 \pm 0.7	393 75.83 \pm 0.3	394 68.37 \pm 0.6	395 63.21 \pm 0.8	396 75.73 \pm 0.8	397 71.14 \pm 0.5	398 63.33 \pm 0.8
391 MOOC	392 DGIB	393 80.29 \pm 0.3	394 78.54 \pm 0.2	395 73.63 \pm 0.5	396 68.98 \pm 0.3	397 77.87 \pm 0.2	398 74.47 \pm 0.3	399 70.43 \pm 0.3	400 79.66 \pm 0.2	401 77.75 \pm 0.3	402 70.24 \pm 0.5
	392 TGT	393 82.38\pm0.6	394 79.22\pm0.3	395 74.37\pm0.3	396 71.42\pm0.2	397 80.01\pm0.3	398 77.74\pm0.3	399 75.93\pm0.3	400 81.57\pm0.2	401 80.71\pm0.5	402 76.37\pm0.4
	392 EvolveGCN	393 72.35 \pm 0.3	394 66.23 \pm 0.4	395 62.37 \pm 0.2	396 54.72 \pm 0.2	397 68.83 \pm 0.1	398 59.29 \pm 0.1	399 52.31 \pm 0.2	400 66.98 \pm 0.3	401 62.57 \pm 0.2	402 55.93 \pm 0.2
	392 JODIE	393 73.19 \pm 0.7	394 63.15 \pm 0.2	395 55.36 \pm 0.2	396 53.71 \pm 0.4	397 69.15 \pm 0.4	398 61.42 \pm 0.2	399 57.34 \pm 0.4	400 70.69 \pm 0.2	401 63.25 \pm 0.3	402 58.59 \pm 0.4
	392 DyREP	393 81.36 \pm 0.1	394 74.60 \pm 0.2	395 66.77 \pm 0.2	396 60.52 \pm 0.3	397 76.43 \pm 0.2	398 68.31 \pm 0.3	399 59.74 \pm 0.3	400 78.56 \pm 0.6	401 65.39 \pm 0.5	402 59.37 \pm 0.5
	392 TGN	393 79.36 \pm 1.0	394 73.63 \pm 0.4	395 68.41 \pm 0.3	396 60.03 \pm 0.3	397 75.31 \pm 0.2	398 69.27 \pm 0.2	399 61.33 \pm 0.3	400 78.29 \pm 0.7	401 72.68 \pm 0.8	402 63.53 \pm 1.1
	392 DIDA	393 89.84 \pm 0.5	394 79.73 \pm 0.1	395 73.62 \pm 0.3	396 64.01 \pm 0.3	397 84.48 \pm 0.2	398 71.47 \pm 0.3	399 61.03 \pm 0.4	400 86.53 \pm 0.2	401 82.79 \pm 0.3	402 73.66 \pm 0.2
393 MOOC	394 GIB+LSTM	395 92.34 \pm 0.3	396 73.21 \pm 0.3	397 65.25 \pm 0.3	398 63.67 \pm 0.2	399 68.05 \pm 0.2	400 82.64 \pm 0.4	401 74.37 \pm 0.3	402 89.95 \pm 0.7	403 85.76 \pm 0.4	404 69.68 \pm 0.7
	394 DGIB	395 93.06 \pm 0.1	396 84.35 \pm 0.1	397 75.24 \pm 0.2	398 63.32 \pm 0.3	399 87.75 \pm 0.1	400 84.27 \pm 0.7	401 79.69 \pm 0.3	402 91.53 \pm 0.2	403 85.36 \pm 0.3	404 70.32 \pm 0.6
	394 TGT	395 95.42\pm0.4	396 88.73\pm0.2	397 80.79\pm0.1	398 71.68\pm0.3	399 90.43\pm0.3	400 86.16\pm0.5	401 81.82\pm0.3	402 92.61\pm0.2	403 89.53\pm0.7	404 84.01\pm0.6

397 4.3 ROBUSTNESS EXPERIMENT
398399 To address **Q2**, we evaluate the robustness of the model through data perturbation. Following the
400 experimental settings outlined in the preceding subsection, we intentionally injected anomalies into
401 the training dataset and conducted a series of experiments to evaluate the model’s robustness along
402 three distinct dimensions: node features, topological structures, and temporal correlations. After
403 repeating three times, the average and range of the results are shown in Table 3.
404405 **Feature Interference** **Ans 2.1.** TGT can effectively resist feature interference with different
406 noise levels. Gaussian noise perturbation of node features significantly diminishes the performance
407 of ordinary DGNNs. Comparatively, robust generalized DGNNs exhibited superior performance.
408 Given limited node features in Bitcoin and MathOverflow datasets, DIDA, GIB+LSTM, and DGIB
409 maintained efficacy, yet their robustness lagged significantly behind TGT on the MOOC dataset.
410 TGT employs `thumbnail` to establish feature’s constraint (Eq. 12) and thoroughly filters noise,
411 thereby enhancing the model’s robustness during optimization.412 **Structure Interference** **Ans 2.2.** TGT demonstrates strong robustness against structural-level
413 noise, maintaining stable performance under structural perturbations. Structural perturbations im-
414 pact all baselines evenly, and structural noise is equally applied to neighboring samples across
415 methods. Under interference, continuous DGNNs (e.g., TGN, DyREP) excel at online processing
416 of abnormal edges, demonstrating enhanced robustness. TGT employs `thumbnail` to establish
417 structure constraint (Eq. 13), effectively mitigating the interference of abnormal edges in crucial
418 topological relationships between modeling nodes. As defined in Eq. 4, the von Neumann entropy
419 captures richer topological information by inherently encoding structural dependencies, which pro-
420 vides TGT with a distinct advantage over existing SOTA robustness methods.421 **Temporal Interference** **Ans 2.3.** TGT exhibits strong robustness against temporal interference,
422 with consistently superior performance compared to baselines. Temporal perturbations significantly
423 impact evolving patterns in temporal graphs. The robustness evaluation results across different
424 datasets are presented in Fig. 1. On the slowly evolving Bitcoin dataset, temporal interference
425 minimally affects each method, with accuracy decline primarily attributed to feature and topology
426 redundancy stemming from nodes and edges. In the MathOverflow dataset with extensive evolution,
427 redundant historical information impedes model accuracy improvement. In the rapidly evolving
428 MOOC dataset, temporal noise presents a more formidable challenge to the robustness of the model.
429 EvolveGCN, for evolution modeling, is highly sensitive to temporal interference. DIDA, designed
430 for data distribution shifts, excels in anti-interference. TGT demonstrates competitive performance
431 across three datasets. TGT utilizes von Neumann entropy to model graph evolution trajectory(Eq.
432 5) enables effective representation generation despite severe temporal correlation disturbances.

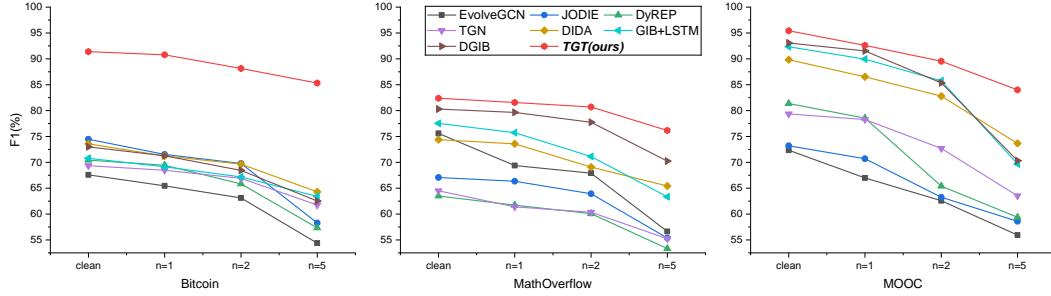


Figure 1: The accuracy curves of the algorithms after being subjected to different degrees of temporal interference on three datasets. By constraining the evolution process using von Neumann entropy, TGT is more resistant to temporal interference.

4.4 ABLATION STUDY

To address **Q3**, we choose to use normalized node degree instead of von Neumann entropy in Eq. 11 as the baseline of ablation as *W/O VNGE*. We also added an ablation control without thumbnail *W/O T*, where the term $I_s(\mathcal{G}_T; \mathcal{G})$ in Eq. 11 is set to zero entirely. **Ans 3.1.** The thumbnail is essential for guiding the denoising process, removing this component leads to substantial degradation in the model’s fundamental accuracy and robustness. As shown in Fig. 2, the dataset shows obvious differentiation of ablation effects, which is helpful to analyze the effectiveness of thumbnail.

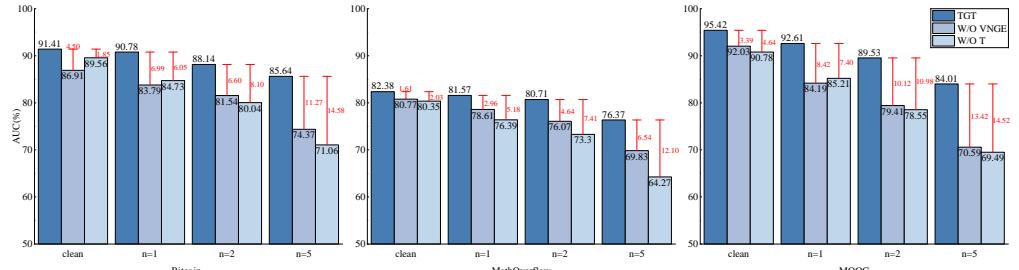


Figure 2: Robust performance of TGT on temporal interference on various datasets under different temporal evolution constraint ablations

With thumbnail’s guidance, the model outperforms the setting that ignores evolution, whether using basic node degree information or the proposed VNGE. **Ans 3.2.** The VNGE-based evolution modeling significantly outperforms the one using other methods, demonstrating the effectiveness of our core innovation. It is confirmed by the detailed ablation in the appendix A.7. To address **Q4**, we conduct extensive ablation experiments to verify the roles of derived constraints (Eqs. 12 and 13). **Ans 4.** Each Thumbnail-based constraint contributes to the fundamental capabilities and robustness of the model, confirmed in appendix A.8. Furthermore, we conduct hyperparameter sensitivity experiments on the Lagrangian coefficients. The results are shown in the appendix A.9.

5 CONCLUSION

In this paper, we introduce a novel framework called **Temporal Graph Thumbnail (TGT)**. By modeling the thumbnail from raw graph sequence based on von Neumann graph entropy and the mutual information of node features, we characterize the evolution skeleton of the temporal graphs to capture the global evolutionary information. Moreover, the thumbnail serves as an intermediary, establishing a bottleneck constraint between the original data and the target task to enhance the model’s representation over critical information. Experiments validate TGT’s superior robustness and generalization compared to other methods. **Limitations and future work:** Although TGT demonstrates stability on datasets with up to one million nodes, thumbnail modeling and real-time von Neumann entropy computation incur additional computational overhead, restricting its scalability to extremely large graphs. To address this, our future work will investigate pre-training strategies for thumbnail modeling to amortize processing time and hardware costs, while exploring the use of thumbnails as prompts in pre-trained temporal graph neural networks to improve model scalability.

486
487
ETHICS STATEMENT488
489
490
491
We have reviewed the ICLR Code of Ethics and have ensured full compliance with its guidelines,
particularly in terms of data privacy, transparency, and responsible computing practices. The datasets
used in the experiments include those in A.4 and A.10, which are widely used.492
493
REPRODUCIBILITY STATEMENT494
495
496
497
498
499
To facilitate replication and extension of our work, we provide comprehensive resources: the code is
given in Appendix A.1.1, dataset and preprocessing details in Appendix A.4, model hyperparameter
configurations in Appendix A.6, and complete derivations and theoretical proofs in Appendix A.3.
With the complete set of code, data, preprocessing details, hyperparameter settings, and theoretical
derivations provided, the reproducibility of our work is fully ensured.500
501
REFERENCES502
503
Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. *arXiv preprint arXiv:1612.00410*, 2016.504
505
506
507
Zulfikar Alom, Tran Gia Bao Ngo, Murat Kantacioglu, and Cuneyt Gurcan Akcora. Gottack:
Universal adversarial attacks on graph neural networks via graph orbits learning. In *The Thirteenth
International Conference on Learning Representations*, 2025.508
509
510
Jeff Alstott, Sinisa Pajevic, Ed Bullmore, and Dietmar Plenz. Opening bottlenecks on weighted
networks by local adaptation to cascade failures. *Journal of Complex Networks*, 3(4):552–565,
2015.511
512
513
Kartik Anand, Dmitri Krioukov, and Ginestra Bianconi. Entropy distribution and condensation in
random networks with a given degree distribution. *Physical Review E*, 89(6):062807, 2014.514
515
516
517
Jiandong Bai, Jiawei Zhu, Yujiao Song, Ling Zhao, Zhixiang Hou, Ronghua Du, and Haifeng Li.
A3t-gcn: Attention temporal graph convolutional network for traffic forecasting. *ISPRS Interna-
tional Journal of Geo-Information*, 10(7):485, 2021.518
519
520
Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua Bengio, Aaron
Courville, and Devon Hjelm. Mutual information neural estimation. In *International conference
on machine learning*, pp. 531–540. PMLR, 2018.521
522
523
Ginestra Bianconi. Entropy of network ensembles. *Physical Review E-Statistical, Nonlinear, and
Soft Matter Physics*, 79(3):036114, 2009.524
525
526
Samuel L Braunstein, Sibasish Ghosh, and Simone Severini. The laplacian of a graph as a density
matrix: a basic combinatorial approach to separability of mixed states. *Annals of Combinatorics*,
10:291–317, 2006.527
528
529
530
Kai Chen, Han Yu, Ye Wang, Xin Song, Xiaojuan Zhao, Yalong Xie, Liqun Gao, and Aiping Li.
Temporal knowledge graph extrapolation with subgraph information bottleneck. *Expert Systems
with Applications*, pp. 126226, 2024.531
532
533
Pin-Yu Chen, Lingfei Wu, Sijia Liu, and Indika Rajapakse. Fast incremental von neumann graph en-
tropy computation: Theory, algorithm, and applications. In *International Conference on Machine
Learning*, pp. 1091–1101. PMLR, 2019.534
535
536
537
Zhen Chen, Hanghang Tong, and Lei Ying. Realtime robustification of interdependent networks
under cascading attacks. In *2018 IEEE International Conference on Big Data (Big Data)*, pp.
1347–1356, 2018. doi: 10.1109/BigData.2018.8622022.538
539
da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, and kannan achan. Inductive representation
learning on temporal graphs. In *International Conference on Learning Representations (ICLR)*,
2020.

- 540 Manlio De Domenico and Jacob Biamonte. Spectral entropies as information-theoretic tools for
 541 complex network comparison. *Physical Review X*, 6(4):041062, 2016.
- 542
- 543 Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural reducibility
 544 of multilayer networks. *Nature communications*, 6(1):6864, 2015.
- 545
- 546 Songgaojun Deng, Huzefa Rangwala, and Yue Ning. Learning dynamic context graphs for pre-
 547 dicting social events. In *Proceedings of the 25th ACM SIGKDD International Conference on
 548 Knowledge Discovery & Data Mining*, pp. 1007–1016, 2019.
- 549
- 550 Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Papalexakis. All you
 551 need is low (rank) defending against adversarial attacks on graphs. In *Proceedings of the 13th
 552 international conference on web search and data mining*, pp. 169–177, 2020.
- 553
- 554 Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S Yu. Continuous-time
 555 sequential recommendation with temporal graph collaborative transformer. In *Proceedings of
 556 the 30th ACM international conference on information & knowledge management*, pp. 433–442,
 557 2021.
- 558
- 559 Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
 560 Günnemann. Robustness of graph neural networks at scale. *Advances in Neural Information
 561 Processing Systems*, 34:7637–7649, 2021.
- 562
- 563 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
 564 message passing for quantum chemistry. In *International conference on machine learning*, pp.
 565 1263–1272. PMLR, 2017.
- 566
- 567 Alessio Gravina and Davide Baciucca. Deep learning for dynamic graphs: models and benchmarks.
 568 *IEEE Transactions on Neural Networks and Learning Systems*, 2024.
- 569
- 570 Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
 571 temporal graph convolutional networks for traffic flow forecasting. In *Proceedings of the AAAI
 572 conference on artificial intelligence*, volume 33, pp. 922–929, 2019.
- 573
- 574 Haoyu Han, Mengdi Zhang, Min Hou, Fuzheng Zhang, Zhongyuan Wang, Enhong Chen, Hongwei
 575 Wang, Jianhui Ma, and Qi Liu. Stgcn: a spatial-temporal aware graph learning method for poi
 576 recommendation. In *2020 IEEE International Conference on Data Mining (ICDM)*, pp. 1052–
 577 1057. IEEE, 2020.
- 578
- 579 Lin Han, Richard C Wilson, and Edwin R Hancock. Generative graph prototypes from information
 580 theory. *IEEE transactions on pattern analysis and machine intelligence*, 37(10):2013–2027, 2015.
- 581
- 582 Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, and Ming-Chang
 583 Yang. Measuring and improving the use of graph information in graph neural networks. In
 584 *International Conference on Learning Representations*, 2020. URL <https://openreview.net/forum?id=rkeIIkHKvS>.
- 585
- 586 Qiyao Huang, Yingyue Zhang, Zhihong Zhang, and Edwin Hancock. Essen: improving evolution
 587 state estimation for temporal networks using von neumann entropy. *Advances in Neural Informa-
 588 tion Processing Systems*, 36:331–346, 2023a.
- 589
- 590 Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi,
 591 Jure Leskovec, Michael Bronstein, Guillaume Rabreau, and Reihaneh Rabbany. Temporal
 592 graph benchmark for machine learning on temporal graphs. *Advances in Neural Information
 593 Processing Systems*, 36:2056–2073, 2023b.
- 594
- 595 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint
 596 arXiv:1609.02907*, 2016.
- 597
- 598 Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos. Edge weight pre-
 599 diction in weighted signed networks. In *Data Mining (ICDM), 2016 IEEE 16th International
 600 Conference on*, pp. 221–230. IEEE, 2016.

- 594 Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and VS Subrahmanian. Rev2: Fraudulent user prediction in rating platforms. In *Proceedings of the Eleventh ACM*
 595 *International Conference on Web Search and Data Mining*, pp. 333–341. ACM, 2018.
- 596
- 597 Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal interaction networks. In *Proceedings of the 25th ACM SIGKDD international conference*
 598 *on knowledge discovery & data mining*, pp. 1269–1278, 2019.
- 599
- 600
- 601 Dongjin Lee, Juho Lee, and Kijung Shin. Spear and shield: adversarial attacks and defense methods
 602 for model-based link prediction on continuous-time dynamic graphs. In *Proceedings of the AAAI*
 603 *Conference on Artificial Intelligence*, volume 38, pp. 13374–13382, 2024.
- 604
- 605 Hanjie Li, Changsheng Li, Kaituo Feng, Ye Yuan, Guoren Wang, and Hongyuan Zha. Robust
 606 knowledge adaptation for dynamic graph neural networks. *IEEE Transactions on Knowledge and*
 607 *Data Engineering*, 2024a.
- 608
- 609 Jintang Li, Tao Xie, Liang Chen, Fenfang Xie, Xiangnan He, and Zibin Zheng. Adversarial attack on
 610 large scale graph. *IEEE Transactions on Knowledge and Data Engineering*, 35(1):82–95, 2021.
- 611
- 612 Xunkai Li, Yulin Zhao, Zhengyu Wu, Wentao Zhang, Rong-Hua Li, and Guoren Wang. Towards
 613 effective and general graph unlearning via mutual evolution. In *Proceedings of the AAAI Conference*
 614 *on Artificial Intelligence*, volume 38, pp. 13682–13690, 2024b.
- 615
- 616 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 617 work: Data-driven traffic forecasting. In *International Conference on Learning Representations*,
 618 2018.
- 619
- 620 Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial attacks
 621 and defenses. *arXiv preprint arXiv:2005.06149*, 2020.
- 622
- 623 Sijia Liu, Pin-Yu Chen, Alfred Hero, and Indika Rajapakse. Dynamic network analysis of the 4d
 624 nucleome. *bioRxiv*, pp. 268318, 2018.
- 625
- 626 Xuecheng Liu, Luoyi Fu, Xinbing Wang, and Chenghu Zhou. On the similarity between von neu-
 627 mann graph entropy and structural information: Interpretation, computation, and applications.
 628 *IEEE Transactions on Information Theory*, 68(4):2182–2202, 2022.
- 629
- 630 Zhaowei Liu, Dong Yang, Yingjie Wang, Mingjie Lu, and Ranran Li. Eggn: Graph structure learning
 631 based on evolutionary computation helps more in graph neural networks. *Applied Soft Computing*,
 632 135:110040, 2023.
- 633
- 634 Xiaodong Lu, Leilei Sun, Tongyu Zhu, and Weifeng Lv. Improving temporal link prediction via tem-
 635 poral walk matrix projection. *Advances in Neural Information Processing Systems*, 37:141153–
 636 141182, 2024.
- 637
- 638 Bin Luo and Edwin R. Hancock. Structural graph matching using the em algorithm and singular
 639 value decomposition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(10):
 640 1120–1136, 2001.
- 641
- 642 Alessio Micheli and Domenico Tortorella. Discrete-time dynamic graph echo state networks. *Neu-
 643 rocomputing*, 496:85–95, 2022.
- 644
- 645 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word represen-
 646 tations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.
- 647
- 648 XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals
 649 and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*,
 650 56(11):5847–5861, 2010.
- 651
- 652 Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In *Proceed-
 653 ings of the tenth ACM international conference on web search and data mining*, pp. 601–610,
 654 2017.

- 648 Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
 649 shi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional
 650 networks for dynamic graphs. In *Proceedings of the AAAI conference on artificial intelligence*,
 651 volume 34, pp. 5363–5370, 2020.
- 652 Filippo Passerini and Simone Severini. The von neumann entropy of networks. *arXiv preprint*
 653 *arXiv:0812.2597*, 2008.
- 654 Filippo Passerini and Simone Severini. Quantifying complexity in networks: the von neumann
 655 entropy. *International Journal of Agent Technologies and Systems (IJATS)*, 1(4):58–67, 2009.
- 656 Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better eval-
 657 uation for dynamic link prediction. *Advances in Neural Information Processing Systems*, 35:
 658 32928–32941, 2022.
- 659 Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
 660 Bronstein. Temporal graph networks for deep learning on dynamic graphs. In *ICML 2020 Work-
 661 shop on Graph Representation Learning*, 2020.
- 662 Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
 663 resentation learning on dynamic graphs via self-attention networks. In *Proceedings of the 13th
 664 international conference on web search and data mining*, pp. 519–527, 2020.
- 665 Sangwoo Seo, Sungwon Kim, and Chanyoung Park. Interpretable prototype-based graph informa-
 666 tion bottleneck. *Advances in Neural Information Processing Systems*, 36, 2024.
- 667 Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
 668 modeling with graph convolutional recurrent networks. In *Neural information processing: 25th
 669 international conference, ICONIP 2018, Siem Reap, Cambodia, December 13–16, 2018, proceed-
 670 ings, part I* 25, pp. 362–373. Springer, 2018.
- 671 Kiarash Shamsi, Farimah Poursafaei, Shenyang Huang, Bao Tran Gia Ngo, Baris Coskunuzer, and
 672 Cuneyt Gurcan Akcora. Graphpulse: Topological representations for temporal graph property
 673 prediction. In *The Twelfth International Conference on Learning Representations*, 2024.
- 674 Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu Philip. Graph
 675 structure learning with variational information bottleneck. In *Proceedings of the AAAI Conference
 676 on Artificial Intelligence*, volume 36, pp. 4165–4174, 2022.
- 677 John Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal distance metrics for social
 678 network analysis. In *Proceedings of the 2nd ACM workshop on Online social networks*, pp. 31–
 679 36, 2009.
- 680 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
 681 *2015 ieee information theory workshop (itw)*, pp. 1–5. IEEE, 2015.
- 682 Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. *arXiv*
 683 *preprint physics/0004057*, 2000.
- 684 Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning rep-
 685 resentations over dynamic graphs. In *International conference on learning representations*, 2019.
- 686 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 687 Bengio. Graph Attention Networks. *International Conference on Learning Representations*,
 688 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>. accepted as poster.
- 689 Xin Wang, Jiawei Jiang, Xiao Yan, and Qiang Huang. Tesa: A trajectory and semantic-aware
 690 dynamic heterogeneous graph neural network. In *Proceedings of the ACM on Web Conference*
 691 2025, pp. 1305–1315, 2025.
- 692 Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
 693 sarial examples for graph data: Deep insights into attack and defense. In *Proceedings of the
 694 Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 4816–
 695 4823. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi:
 696 10.24963/ijcai.2019/669. URL <https://doi.org/10.24963/ijcai.2019/669>.

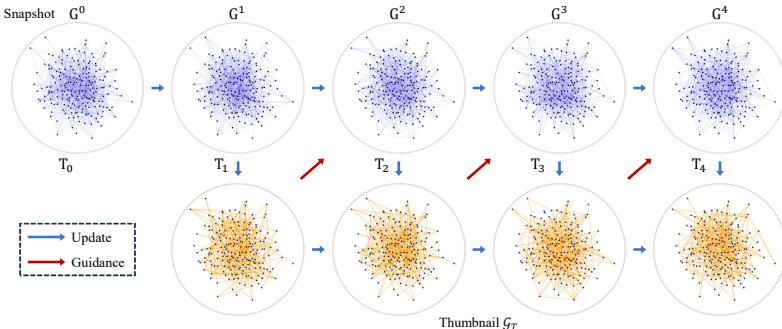
- 702 Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. *Advances in*
 703 *Neural Information Processing Systems*, 33:20437–20448, 2020.
 704
- 705 Liang Xiang, Quan Yuan, Shiwan Zhao, Li Chen, Xiatian Zhang, Qing Yang, and Jimeng Sun.
 706 Temporal recommendation on graphs via long-and short-term preference fusion. In *Proceedings*
 707 *of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining*,
 708 pp. 723–732, 2010.
 709
- 710 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 711 networks? *arXiv preprint arXiv:1810.00826*, 2018.
 712
- 713 Di Yao, Haonan Hu, Lun Du, Gao Cong, Shi Han, and Jingping Bi. Trajgat: A graph-based long-
 714 term dependency modeling approach for trajectory similarity computation. In *Proceedings of the*
 715 *28th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 2275–2285, 2022.
 716
- 717 Cheng Ye, Richard C Wilson, César H Comin, Luciano da F Costa, and Edwin R Hancock. Approx-
 718 imate von neumann entropy for directed graphs. *Physical Review E*, 89(5):052804, 2014.
 719
- 720 Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
 721 learning framework for traffic forecasting. In *Proceedings of the Twenty-Seventh International*
 722 *Joint Conference on Artificial Intelligence*, pp. 3634–3640. International Joint Conferences on
 723 Artificial Intelligence Organization, 2018.
 724
- 725 Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Recognizing predictive
 726 substructures with subgraph information bottleneck. *IEEE transactions on pattern analysis and*
 727 *machine intelligence*, 46(3):1650–1663, 2021a.
 728
- 729 Junchi Yu, Tingyang Xu, Yu Rong, Yatao Bian, Junzhou Huang, and Ran He. Graph information
 730 bottleneck for subgraph recognition. In *International Conference on Learning Representations*,
 731 2021b.
 732
- 733 Junchi Yu, Jie Cao, and Ran He. Improving subgraph recognition with variational graph informa-
 734 tion bottleneck. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 735 *Recognition*, pp. 19396–19405, 2022.
 736
- 737 Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. Towards better dynamic graph learning: New
 738 architecture and unified library. *Advances in Neural Information Processing Systems*, 36:67686–
 67700, 2023.
 739
- 740 Haonan Yuan, Qingyun Sun, Xingcheng Fu, Cheng Ji, and Jianxin Li. Dynamic graph information
 741 bottleneck. In *Proceedings of the ACM on Web Conference 2024*, pp. 469–480, 2024.
 742
- 743 Zeyang Zhang, Xin Wang, Ziwei Zhang, Haoyang Li, Zhou Qin, and Wenwu Zhu. Dynamic graph
 744 neural networks under spatio-temporal distribution shift. *Advances in neural information pro-*
 745 *cessing systems*, 35:6074–6089, 2022.
 746
- 747 Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn:
 748 A temporal graph convolutional network for traffic prediction. *IEEE transactions on intelligent*
 749 *transportation systems*, 21(9):3848–3858, 2019.
 750
- 751 Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
 752 against adversarial attacks. In *Proceedings of the 25th ACM SIGKDD international conference*
 753 *on knowledge discovery & data mining*, pp. 1399–1407, 2019.
 754
- 755 Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
 756 for graph data. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge*
 757 *discovery & data mining*, pp. 2847–2856, 2018.

756 **A APPENDIX**757 **A.1 FREQUENTLY ASKED QUESTIONS (FAQs)**759 **A.1.1 CODE AVAILABILITY**

760 To promote transparency and reproducibility, we have included the source code of TGT, along with
 761 training and evaluation scripts, in an anonymous repository ¹. We have also included a copy of
 762 this repository in the Supplementary Material. The archive also contains the running logs and the
 763 hyperparamters for TGT (detailed TGT implementation in appendix A.6). The noise generation
 764 methods we adopt are based on DeepRobust (Li et al., 2020) ², with detailed attacks implementation
 765 provided in appendix A.5. We warmly welcome other researchers to reproduce and extend our work.
 766

767 **A.1.2 WHAT ARE ADVANTAGES OF TGT?**

768 TGT introduces three key advantages over existing methods for temporal graph representation,
 769 specifically addressing their fundamental limitations through a tailored and principled design.
 770

771 **Figure 3: Visualization of the thumbnail modeling**

772 **Superior representation capability with thumbnail.** Table 2 demonstrates that TGT consistently
 773 achieves superior representation capability across various data scenarios. Compared with other base-
 774 lines, TGT benefits from the additional global evolution information provided by the thumbnail,
 775 leading to significantly improved representations. Notably, the advantage becomes even more pro-
 776 nounced in scenarios characterized by high randomness and frequent evolution.

777 **Enhanced robustness across various noise conditions.** Table 3 provides strong evidence that
 778 TGT exhibits robust performance against various types of noise. With the guidance of the
 779 thumbnail constraints, TGT consistently outperforms baselines under different noise settings. In
 780 particular, TGT demonstrates significantly more robust performance under temporal perturbations.

781 **Solid and explainable theoretical foundations.** We model the thumbnail by computing the
 782 von Neumann entropy and mutual information of sequential node features, followed by a prin-
 783 cipled variational derivation of the representation optimization constraints. Logically complete and
 784 rigorous derivations are provided in appendix to validate the theoretical soundness of the TGT. The
 785 relevant lemmas and assumptions are well-established and broadly accepted in prior research.

786 To further illustrate thumbnail clearly, we visualized the modeling process as shown in the Fig.
 787 3. The visualization clearly shows that the thumbnail preserves the persistent and high-frequency
 788 structural patterns across time, while filtering out transient or noisy structures. Specially:

- 789 • Node connectivity patterns that recur across snapshots are retained with higher edge weights in
 790 the thumbnail, indicating that \mathcal{G}_T successfully summarizes the stable evolutionary backbone.
- 800 • Ephemeral or low-consistency edges, which appear sporadically in individual snapshots, are
 801 largely suppressed, demonstrating the denoising effect induced by the VNGE-based constraint.

802 ¹Our TGT: <https://anonymous.4open.science/r/TGT-BDF2>

803 ²DeepRobust: <https://github.com/DSE-MSU/DeepRobust>

810 As shown in Fig. 3, the thumbnail graph becomes progressively more coherent over iterations,
 811 matching the theoretical goal of modeling the global evolution trajectory rather than any single
 812 temporal slice. This visualization also confirms, in a human-interpretable way, that the thumbnail
 813 effectively captures temporal regularities and structural evolution trends in the datasets, aligning
 814 with the conceptual description in Method and Algorithm 1.
 815

816 A.1.3 WHY VON NEUMANN ENTROPY? HOW ABOUT OTHER GRAPH ENTROPIES TO MODEL
 817 THUMBNAIL?

818 The von Neumann entropy (VNGE) plays a crucial role in understanding the structural and topological
 819 complexity of temporal graphs, as it effectively captures the information content in a manner that
 820 aligns with the continuous evolution of time-varying networks (Passerini & Severini, 2009). While
 821 other entropy measures, such as Gibbs entropy and Shannon entropy, can also capture structural
 822 evolution to some extent (Bianconi, 2009), they are not suitable for continuous computation. These
 823 methods typically rely on discrete snapshots, resulting in systemic information loss. More critically,
 824 these graph entropy measures do not satisfy the *subadditivity property* (De Domenico & Biamonte,
 825 2016), which poses a challenge when designing local mutual information coupling (as seen in the
 826 second term of Eq. 5) because direct weighted accumulation for aggregation is not feasible. This
 827 necessitates additional assumptions or more complex modeling approaches. In contrast, VNGE can
 828 be computed online and, except in special cases (such as chain graphs or trivial graphs), satisfies
 829 the *subadditivity property* (De Domenico & Biamonte, 2016), significantly simplifying the process
 830 of capturing structural evolution. Given these considerations, we select VNGE over other graph
 831 entropies as a more concise approach for capturing reliable structural evolution.

832 The robustness of TGT to temporal order disruption stems from the VNGE-based constraint
 833 $I_s(\mathcal{G}_T; \mathcal{G})$ (Eq. 5), which fundamentally captures the global structural distribution of snapshots
 834 rather than their temporal order.

835 Specifically, the VNGE is defined over the normalized Laplacian spectrum (Appendix A.3.1), which
 836 depends solely on the eigenvalue distribution of the graph. Thus, in constructing the temporal thumb-
 837 nail \mathcal{G}_T , maximizing the mutual information between \mathcal{G}_T and the input sequence \mathcal{G} promotes align-
 838 ment of their spectral characteristics rather than merely aligning the temporal order of snapshots.

839 Since spectral quantities are permutation-invariant with respect to node or snapshot order, the
 840 learned thumbnail inherently focuses on statistical patterns of structural evolution that remain stable
 841 under temporal sequence shuffling (Braunstein et al., 2006). This means the model learns to retain
 842 information about how structural complexity evolves (e.g., entropy growth, connectivity changes)
 843 rather than the specific temporal sequence of local variations. Therefore, the VNGE-based mutual
 844 information regularization provides a temporal-order-agnostic bottleneck, enabling TGT to maintain
 845 robustness when snapshot order is permuted or partially corrupted.

846 Furthermore, as supported by the results in Table 5, TGT maintains consistent performance under
 847 temporal perturbation attacks, demonstrating that the VNGE constraint guides the model toward
 848 learning a temporal invariant summary that mitigates the impact of sequence tampering.

849 A.1.4 COMPUTATIONAL COMPLEXITY ANALYSIS

850 This section conducts a **computational complexity analysis** and gives future work directions for
 851 improvement and optimization. The complete pipeline is summarized in Algorithm 1, with input
 852 feature dimension d and hidden dimension d' . The time complexity can be decomposed as following:

- 853 • **line 4:** Computing the VNGE per Eq. 4 costs $O(|E_{\mathcal{G}_T}|)$. During Δt , obtaining I_s requires:

$$854 O(\Delta t \cdot |E_{\mathcal{G}_T}|).$$

- 855 • **line 5-8:** Sampling k spatiotemporal neighbors and applying GAT feature-projection layers incurs

$$856 O(\Delta t \cdot k \cdot (|V_{\mathcal{G}_T}| \cdot d \cdot d' + |E_{\mathcal{G}_T}| \cdot d)).$$

Algorithm 1: Overall pipeline of **TGT** for link predication

Input: temporal graph $\mathcal{G} = \{G^t\}_{t=1}^T$; node features $\mathbf{X}^{1:T+1}$; number of neighbors to be sampled k ; element-wise nonlinear rectifier τ ; Hyperparameters $\lambda, \beta, \Delta t$;

Initialize: initialize all weights; set relative time encoding for each timestamp t ; $Z_{\mathcal{G}_{TX}}^t \stackrel{(0)}{\leftarrow} \mathbf{X}$ for each timestamp t ;

Output: representation \mathbf{Z}_X^{T+1} ; Predicted label $\hat{\mathbf{Y}}^{T+1}$ of next timestamp link occurrences.

1: Sample $\mathcal{N}_{k, \Delta t}(v)$ k -top closest spatiotemporal neighborhoods.

2: **for** layers $l = 1, 2, \dots, L$ **and** $v \in \mathcal{V}^{1:T+1}$ **do**

3: **for** timestamp t in range[T+1] **do**

4: $I_s(\mathcal{G}_T; \mathcal{G}) \leftarrow$ Eq. 5

5: $\hat{\mathbf{Z}}_{\mathcal{G}_{TX}}^{t, (l-1)} \leftarrow \tau(\mathbf{Z}_{\mathcal{G}_{TX}}^{t, (l-1)}) \mathbf{W}^{(l)}$

6: $\phi_{v, k}^{t, (l)} \leftarrow \sigma\{\hat{\mathbf{Z}}_v^{t, (l-1)} \| \hat{\mathbf{Z}}_u^{\{t-\Delta t: t\}, (l-1)}\} \mathbf{W}_{attention}^\top\}_{u \in \mathcal{N}_{k, \Delta t}(v)}$;

7: $\hat{\mathbf{Z}}_{\mathbf{A}}^{t, (l)} \leftarrow \cup_{v \in \mathcal{V}^t} \{u \in \mathcal{N}_{k, \Delta t}(v) | u \sim \text{Bernoulli}(\phi_{v, k}^{t, (l)})\}$;

8: $\mathbf{Z}_{\mathcal{G}_{TX}}^{t, (l)} \leftarrow \Sigma_{(u, v) \in \hat{\mathbf{A}}^{t, (l)}} \{\hat{\mathbf{Z}}_{\mathcal{G}_{TX}, v}^{t, (l-1)}\}_{v \in \mathcal{V}^t}$;

9: $I_{DV}(\mathcal{G}_T; \mathcal{G}) = \mathbf{W}_{\mathcal{F}} \cdot \mathbf{Z}_{\mathcal{G}_{TX}}^{t, (l)} - \log \exp(\mathbf{W}_{\mathcal{F}} \cdot \hat{\mathbf{Z}}_u^{\{t-\Delta t: t\}, (l-1)})$ # Eq. 6

10: $l_{evolution}^{(t)} = I_s(\mathcal{G}_T; \mathcal{G}) - I_{DV}(\mathcal{G}_T; \mathcal{G})$ # Eq. 11

11: **end for**

12: $\mathcal{G}_T \leftarrow \sigma(\mathbf{Z}_X^{(l)} \| \mathbf{Z}_{\mathbf{A}}^{(l)}) \mathbf{W}_{\mathcal{F}}$

13: $\hat{\mathbf{Y}}^{T+1} = \text{Link_predictor}(\mathcal{G}_T)$ # Eq. 2

14: $\mathcal{L}_{IB} \leftarrow$ Eq. 15, $\mathcal{L}_{evolution} \leftarrow \sum_{t=1}^T (l_{evolution}^{(t)})$

15: $\mathcal{L} \leftarrow \mathcal{L}_{IB} + \lambda \cdot \mathcal{L}_{evolution}$

16: Update parameters by minimizing \mathcal{L} and back-propagation.

17: **end for**

- **line 9:** The final projection step costs $O(|V_{G_T}| d d' + |V_{G}^{\{\Delta t\}}| d d')$, where $|V_{G}^{\{\Delta t\}}|$ is the number of nodes in the previous Δt time of this temporal graph. Since the thumbnail's node set is no smaller than that of any single time window, we conservatively approximate the complexity as $O(2|V_{G_T}| d d')$. Putting these together for an L -layer architecture yields the time complexity of

$$O\left(L \cdot \Delta t (|E_{\mathcal{G}_T}| + k \cdot (|V_{\mathcal{G}_T}| d d' + |E_{\mathcal{G}_T}| d)) + |V_{\mathcal{G}_T}| d d'\right).$$

While TGT incurs extra cost for online VNGE computation, its total complexity is comparable to leading temporal GNN baselines. Furthermore, because the thumbnail contains no more nodes than the entire temporal graph and is typically much smaller, the effective constant in TGT’s representation-learning complexity is reduced.

Table 4: Comparison of training time per epoch (s) with state-of-the-art baselines in robust temporal graph learning across multiple datasets.

Method	Bitcoin	MathOverflow	MOOC	tgbn-reddit	tgbn-genre
DIDA	23.46	37.77	8.91	27.65	17.80
DGIB	1.37	5.53	2.56	1.57	1.71
TGN	0.78	0.86	0.74	0.68	0.71
TGT	2.26	4.42	3.34	2.73	1.68

As shown in Table 4, TGT can efficiently handle datasets with node and edge counts on the order of hundreds of thousands.

We conducted additional experiments measuring the per epoch training time of TGT compared with several baselines across five datasets (Bitcoin, MathOverflow, MOOC, tgbn-genre, and tgbn-reddit (Huang et al., 2023b)). From the Table 4, we get:

918 **Time overhead** TGT is only moderately slower than lightweight temporal GNNs (e.g., TGN). On
 919 all datasets, TGT requires around 2–4 seconds per epoch, representing only a small overhead com-
 920 pared to TGN (0.7–0.9s) despite the additional global evolutionary modeling. This overhead mainly
 921 comes from computing the approximated trace term $\text{Tr}(\tilde{L}^2)$, which is efficiently computed using
 922 sparse matrix multiplication and the low-rank Laplacian estimator described in Appendix A.3.1.
 923

924 Although TGT incurs moderate additional cost due to the computation of VNGE (which depends
 925 on node degrees in Eq. 4), the runtime remains close to lightweight TGNs. MathOverflow appears
 926 slower primarily because of its larger per-snapshot node count, while tgbn-reddit, despite larger
 927 average snapshots, benefits from a lower-dimensional preprocessed degree matrix.
 928

929 Nevertheless, TGT is significantly more efficient than robustness-oriented baselines (e.g., DIDA)
 930 and still remains competitive with IB methods (e.g., DGIB). This indicates that our thumbnail-
 931 guided constraints provide robustness without incurring excessive computational costs.
 932

933 **Memory footprint** TGT remains comparable to baselines. Since TGT only stores:
 934

- 935 • a static thumbnail graph G_T (small number of nodes)
- 936 • low-rank Laplacian terms for VNGE approximation, the memory overhead remains negligible.
- 937 • node features for each snapshot.

938 These components together introduce negligible GPU memory overhead. In addition, since snap-
 939 shot construction is entirely flexible with respect to temporal granularity, practitioners may adjust
 940 the snapshot time scale according to available GPU memory, ensuring efficient resource utilization
 941 on different hardware configurations.
 942

943 In all our experiments, including the large-scale TGB datasets, TGT fits comfortably within **24GB**
 944 **GPU memory** (per RTX 3090 GPU), demonstrating that the method is memory-efficient and scal-
 945 able in practice. Although VNGE introduces additional computation compared with purely local
 946 aggregation models, the overhead is modest in practice, and TGT achieves a favorable balance be-
 947 tween robustness, global-evolution modeling, and computational efficiency. The additional results
 948 confirm that TGT is computationally practical even on large-scale datasets. For example, Math-
 949 Overflow contains over 500,000 edges, and MOOC exceeds 400,000 (shown in Table 1). Since
 950 the theoretical upper bound of TGT’s computational complexity scales linearly with the number of
 951 edges across all snapshots, scaling to larger datasets (e.g., datasets with millions of nodes) can be
 952 prohibitively time-consuming.
 953

954 In our future work, we plan to explore pretraining-based approaches for thumbnail modeling, allow-
 955 ing the computational overhead to be offloaded to the data preprocessing stage and thereby improv-
 956 ing the scalability of the framework.
 957

958 A.2 DETAILS FOR THUMBNAIL DEFINITION

959 The goal of the thumbnail is to summarize holistic evolutionary process features from discrete
 960 snapshots in a sequence. To this end, we define the structure of the thumbnail and the node
 961 correspondence between each snapshot in the sequence and the thumbnail, thereby obtaining the
 962 posterior probability of the next-timestamp temporal graph state. Our derivation of the thumbnail
 963 builds on widely recognized works (Luo & Hancock, 2001; Han et al., 2015).
 964

965 Specifically, consider a temporal graph \mathcal{G} represented as a sequence of length T : $\mathcal{G} =$
 966 $\{G^1, \dots, G^T\}$, where the i -th snapshot is $G^i = \{V^i, E^i\}$ with node set V^i and edge set E^i . We
 967 aim to determine a thumbnail $\mathcal{G}_T = \{V_{\mathcal{G}_T}, E_{\mathcal{G}_T}\}$, where $V_{\mathcal{G}_T}$ is the node set, $E_{\mathcal{G}_T}$ is the edge set,
 968 and the adjacency matrix M satisfies:
 969

$$970 M_{\alpha\beta} = \begin{cases} 1 & \text{if } (\alpha, \beta) \in E_{\mathcal{G}_T}, \\ 0 & \text{otherwise.} \end{cases} \quad (17)$$

972 We first consider a single snapshot G^i . For the adjacency matrix A^i of this snapshot:
 973

$$974 \quad 975 \quad A_{ab}^i = \begin{cases} 1 & \text{if } (a, b) \in E^i, \\ 0 & \text{otherwise.} \end{cases} \quad (18)$$

977 where $a, b \in V^i$ and $\alpha, \beta \in V_{\mathcal{G}_T}$. For time step i , we define an **assignment matrix** S^i with elements
 978 $s_{a\alpha}^i$, which denotes the correspondence between node a in snapshot G^i and node α in thumbnail:
 979

$$980 \quad 981 \quad s_{a\alpha}^i = \begin{cases} 1 & \text{if } \mathcal{F}(v_a^i) = \alpha, \\ 0 & \text{otherwise.} \end{cases} \quad (19)$$

982 where \mathcal{F} denotes the mapping from snapshot G^i to the thumbnail. In this paper, we instantiate
 983 \mathcal{F} as a GAT network layer with trainable parameters, which is trained using a mutual information
 984 alignment loss (see in Eq. 11). In practice, the assignment matrix we seek should maximize the
 985 conditional likelihood of the observed snapshots given the available thumbnail:
 986

$$987 \quad 988 \quad S^i = \arg \max_{S^i} P(G^i | \mathcal{G}_T, S^i). \quad (20)$$

989 This is primarily based on the core idea that "*the correspondence matches assigned to the nodes of
 990 the data graph are hidden variables which have arisen through a noisy observation process*" (Luo
 991 & Hancock, 2001). Following standard methods for constructing likelihood functions of mixture
 992 distributions, we decompose the likelihood of the snapshot and sum over the corresponding nodes
 993 in the thumbnail:
 994

$$995 \quad P(G^i | \mathcal{G}_T, S^i) = \prod_{a \in V^i} \sum_{\alpha \in V_{\mathcal{G}_T}} p(x_a | y_\alpha, S^i), \quad (21)$$

996 x_a denotes the embedding of node a in the snapshot G^i , while y_α denotes the embedding of node α
 997 in the thumbnail \mathcal{G}_T . $P(x_a | y_\alpha, S^i)$ denotes the probability of these two under the assignment
 998 matrix S^i . This assumes that snapshot nodes are conditionally independent given the nodes of \mathcal{G}_T .
 999 We define the model by specifying $P(x_a | y_\alpha, S^i)$ through conditional probability:
 1000

$$1001 \quad 1002 \quad P(x_a | y_\alpha, S^i) = \frac{P(x_a, y_\alpha, S^i)}{P(y_\alpha, S^i)}. \quad (22)$$

1003 After applying the definitions and properties of conditional probability and performing some alge-
 1004 braic rearrangements (Luo & Hancock, 2001):
 1005

$$1006 \quad 1007 \quad P(x_a | y_\alpha, S^i) = \frac{\left\{ \prod_{b \in V^i} \prod_{\beta \in V_{\mathcal{G}_T}} \frac{P(x_a | y_\alpha, s_{b\beta}^i) P(y_\alpha | s_{b\beta}^i) P(s_{b\beta}^i)}{P(x_\alpha, y_\alpha)} \right\} P(x_a, y_\alpha)}{\left\{ \prod_{b \in V^i} \prod_{\beta \in V_{\mathcal{G}_T}} \frac{P(y_\alpha | s_{b\beta}^i) P(s_{b\beta}^i)}{P(y_\alpha)} \right\} P(y_\alpha)} \\ 1008 \quad 1009 \quad = \left[\frac{1}{P(x_a | y_\alpha)} \right]^{|V^i| \times |V_{\mathcal{G}_T}| - 1} \prod_{b \in V^i} \prod_{\beta \in V_{\mathcal{G}_T}} P(x_a | y_\alpha, s_{b\beta}^i). \quad (23)$$

1010 Given that the snapshot node x_a is conditionally independent of the thumbnail node y_α unless a
 1011 correspondence $s_{a\alpha}^i$ exists, we get $P(x_a | y_\alpha) = P(x_a)$. we can simplify the above equation to:
 1012

$$1013 \quad P(x_a | y_\alpha, S^i) = B_a^i \prod_{b \in V^i} \prod_{\beta \in V_{\mathcal{G}_T}} P(x_a | y_\alpha, s_{b\beta}^i), \quad \text{where } B_a^i = \left[\frac{1}{P(x_a)} \right]^{|V^i| \times |V_{\mathcal{G}_T}| - 1}. \quad (24)$$

1014 Modeling a stable thumbnail requires more stable node information, and nodes that appear briefly
 1015 may contribute less to the thumbnail modeling. To address this, our TGT introduces a weighting
 1016 coefficient inversely proportional to the node frequency across snapshots within the time window,
 1017 enabling tailored handling of transient or non-persistent nodes throughout the sequence.
 1018

1019 Specifically, we implement the design described in Eq. 24. Taking newly added nodes as an exam-
 1020 ple, if x_a is a new node, the probability $P(x_a)$ in the denominator of B_a^i is small (as newly added
 1021

nodes have a low frequency of occurrence in the input snapshots). Its impact on $P(x_a|y_\alpha, s_{b\beta})$ (the thumbnail mapping function) is amplified due to the multiplicative relationship in Eq. 24, thereby enhancing the feature capture of transient or non-persistent nodes by the thumbnail.

To test for edge-consistency, we make use of an indicator that verifies if snapshot nodes $a, b \in V^i$ correspond to valid edges in \mathcal{G}_T . Formally:

$$A_{ab}^i M_{\alpha\beta} s_{b\beta}^i = \begin{cases} 1 & \text{if } (a, b) \in E^i \text{ and } (\alpha, \beta) \in E_{\mathcal{G}_T} \text{ and } \mathcal{F}(b) = \beta \\ 0 & \text{otherwise.} \end{cases} \quad (25)$$

When the edge $(a, b) \in E^i$ can be matched to a thumbnail edge $(\alpha, \beta) \in E_{\mathcal{G}_T}$ via the node correspondence $\mathcal{F}(a) = \alpha$ and $\mathcal{F}(b) = \beta$, the indicator function takes the value 1; otherwise, it is 0. To model the probabilistic relationship between snapshots and the thumbnail using a Bernoulli distribution with error probability P_e , we define:

$$P(x_a | y_\alpha, s_{b\beta}^i) = (1 - P_e)^{A_{ab}^i M_{\alpha\beta} s_{b\beta}^i} P_e^{1 - A_{ab}^i M_{\alpha\beta} s_{b\beta}^i}. \quad (26)$$

Substituting Eq. 26 into Eq. 24, and then substituting the resulting expression into Eq. 21, we derive the likelihood function for a single snapshot:

$$P(G^i | \mathcal{G}_H, S^i) = \prod_{a \in V^i} \sum_{\alpha \in V_{\mathcal{G}_T}} K_a^i \exp \left[\mu \sum_{b \in V^i} \sum_{\beta \in V_{\mathcal{G}_T}} A_{ab}^i M_{\alpha\beta} s_{b\beta}^i \right], \quad (27)$$

where $\mu = \ln \frac{1 - P_e}{P_e}$, $K_a^i = P_e^{|V^i| \times |V_{\mathcal{G}_T}|} B_a^i$.

For the entire graph sequence $\mathcal{G} = \{G^1, \dots, G^T\}$, we aggregate the likelihood functions of individual snapshots following the approach of Han et al. (2015), where $\mathcal{S} = \{S^1, \dots, S^T\}$ denotes the sequence of assignment matrices and then get Eq. 2:

$$P(\mathcal{G} | \mathcal{G}_T, \mathcal{S}) = \prod_{G^i \in \mathcal{G}} \left[P(G^i | \mathcal{G}_T, S^i) \right] = \prod_{G^i \in \mathcal{G}} \left[\prod_{a \in V^i} \sum_{\alpha \in V_{\mathcal{G}_T}} K_a^i \exp \left(\mu \sum_{b \in V^i} \sum_{\beta \in V_{\mathcal{G}_T}} A_{ab}^i M_{\alpha\beta} s_{b\beta}^i \right) \right],$$

where $\mu = \ln \frac{1 - P_e}{P_e}$, $K_a^i = P_e^{|V^i| \times |V_{\mathcal{G}_T}|} B_a^i$.

A.3 PROOF FOR EQUATIONS

A.3.1 APPROXIMATION OF H_{VN} (EQ. 4)

We initiate by providing a improved version of the approximation method for the von Neumann entropy of directed graphs from Ye et al. (2014). Initially, we define the von Neumann entropy, which can be derived from the normalized Laplacian spectrum, as outlined here:

$$H_{VN}(G) = -\text{Tr}(P \log P) = -\sum_{i=1}^{|V|} \frac{\lambda_i}{|V|} \log \frac{\lambda_i}{|V|}, \quad (28)$$

where $\lambda_1, \dots, \lambda_{|V|}$ denote the eigenvalues of the combinatorial Laplacian matrix, P represents the transition matrix with elements $P_{uv} = \frac{1}{d_u^{\text{out}}}$ if (u, v) is in the edge set E of graph G , and $P_{uv} = 0$ otherwise. By scaling the normalized Laplacian matrix by the reciprocal of its trace, one obtains a density matrix given by $\frac{\hat{L}}{|V|}$. The eigenvalues of this density matrix are $\left(\frac{\hat{\lambda}_1}{|V|}, \frac{\hat{\lambda}_2}{|V|}, \dots, \frac{\hat{\lambda}_{|V|}}{|V|} \right)$. Consequently, the von Neumann entropy of the density matrix associated with the normalized Laplacian matrix of the graph is defined as follows:

$$H_{VN}(G) = -\sum_{j=1}^{|V|} \frac{\hat{\lambda}_j}{|V|} \log \frac{\hat{\lambda}_j}{|V|}. \quad (29)$$

The von Neumann entropy mentioned above depends on the computation of the spectrum of the normalized Laplacian, and hence, its computational complexity scales cubically with the number of nodes. The Taylor expansion for the expression $\ln\left(\frac{\lambda_j}{|V|}\right)$ is given by:

$$\ln\left(\frac{\lambda_j}{|V|}\right) = \left(\frac{\hat{\lambda}_j}{|V|} - 1\right) - \frac{1}{2}\left(\frac{\hat{\lambda}_j}{|V|} - 1\right)^2 + \frac{1}{3}\left(\frac{\hat{\lambda}_j}{|V|} - 1\right)^3 - \frac{1}{4}\left(\frac{\hat{\lambda}_j}{|V|} - 1\right)^4 + \dots \quad (30)$$

If we retain only the first term of the expansion and neglect the subsequent terms which contribute insignificantly, $\ln\left(\frac{\hat{\lambda}_j}{|V|}\right)$ can be approximated by $\left(\frac{\hat{\lambda}_j}{|V|} - 1\right)$. Subsequently, the von Neumann entropy $S_{VN}(G)$ can be approximated by the quadratic entropy $\sum_j \frac{\hat{\lambda}_j}{|V|} \left(1 - \frac{\hat{\lambda}_j}{|V|}\right)$, yielding:

$$H_{VN}(G) = -\sum_j \frac{\hat{\lambda}_j}{|V|} \ln \frac{\hat{\lambda}_j}{|V|} \simeq \sum_j \frac{\hat{\lambda}_j}{|V|} \left(1 - \frac{\hat{\lambda}_j}{|V|}\right) = \frac{1}{|V|} \sum_j \lambda_j - \frac{1}{|V|^2} \sum_j \lambda_j^2. \quad (31)$$

Using the fact that $\text{Tr}[\hat{L}^k] = \sum_j \hat{\lambda}_j^k$, the quadratic entropy can be rewritten as:

$$H_{VN}(G) = \frac{\text{Tr}[\hat{L}]}{|V|} - \frac{\text{Tr}[\hat{L}^2]}{|V|^2}. \quad (32)$$

The normalized Laplacian matrix \hat{L} has unit diagonal elements. For the trace of the normalized Laplacian matrix we have:

$$\text{Tr}[\hat{L}] = |V|. \quad (33)$$

Similarly, for the trace of the square of the normalized Laplacian, we have:

$$\begin{aligned} \text{Tr}[\hat{L}^2] &= \text{Tr}\left[I^2 - \left(\Phi^{1/2}P\Phi^{-1/2} + \Phi^{-1/2}P^T\Phi^{1/2}\right) + \frac{1}{4}\left(\Phi^{1/2}P\Phi^{-1/2}\Phi^{1/2}P\Phi^{-1/2}\right. \right. \\ &\quad \left.\left. + \Phi^{1/2}P\Phi^{-1/2}\Phi^{-1/2}P^T\Phi^{1/2} + \Phi^{-1/2}P^T\Phi^{1/2}\Phi^{1/2}P\Phi^{-1/2} + \Phi^{-1/2}P^T\Phi^{1/2}\Phi^{-1/2}P^T\Phi^{1/2}\right)\right] \\ &= \text{Tr}[I^2] - \text{Tr}[P] - \text{Tr}[P^T] + \frac{1}{4}\left(\text{Tr}[P^2] + \text{Tr}[P\Phi^{-1}P^T\Phi] + \text{Tr}[P^T\Phi P\Phi^{-1}] + \text{Tr}[P^{T^2}]\right) \\ &= |V| + \frac{1}{2}\left(\text{Tr}[P^2] + \text{Tr}[P\Phi^{-1}P^T\Phi]\right), \end{aligned} \quad (34)$$

where $\Phi = \text{diag}(\phi(1), \phi(2), \dots)$, ϕ is the unique left eigenvector of P , and then: (details in Ye et al. (2014))

$$\frac{\phi(u)}{\phi(v)} = \frac{d_u^{in}}{d_v^{in}}. \quad (35)$$

To continue the development we first partition the edgeset E into two disjoint subsets E_1 and E_2 , where $E_1 = \{(u, v) | (u, v) \in E \text{ and } (v, u) \notin E\}$, $E_2 = \{(u, v) | (u, v) \in E \text{ and } (v, u) \in E\}$. Then according to the definition of the transition matrix, we find:

$$\begin{aligned} \text{Tr}[P^2] &= \sum_{u \in V} \sum_{v \in V} P_{uv} P_{vu} = \sum_{(u, v) \in E_2} \frac{1}{d_u^{out} d_v^{out}}, \\ \text{Tr}[P\Phi^{-1}P^T\Phi] &= \sum_{u \in V} \sum_{v \in V} P_{uv}^2 \frac{\phi(u)}{\phi(v)} = \sum_{(u, v) \in E} \frac{\phi(u)}{\phi(v) d_u^{out^2}}. \end{aligned} \quad (36)$$

Substitute Eq. 36 into Eq. 34, then Substitute Eq. 33 and Eq. 34 into Eq. 32, we get Eq. 4:

$$\begin{aligned} H_{VN} &= 1 - \frac{1}{|V_{G_T}|} - \frac{1}{2|V_{G_T}|^2} \left\{ - \sum_{(\alpha, \beta) \in E_{G_{T_1}}} \frac{1}{d_\beta^{out} d_\alpha^{out}} + \sum_{(\alpha, \beta) \in E_{G_T}} \left(\frac{d_\alpha^{in}}{d_\beta^{in} d_\alpha^{out^2}} + \frac{1}{d_\beta^{out} d_\alpha^{out}} \right) \right\}, \\ \text{where } d_\alpha^{in} &= \sum_{\gamma \in V_{G_T}} M_{\gamma\alpha}, \quad d_\alpha^{out} = \sum_{\gamma \in V_{G_T}} M_{\alpha\gamma}. \end{aligned}$$

1134 Since the normalized Laplacian \tilde{L} is sparse for most real-world graphs, $\text{Tr}(\tilde{L}^2)$ can be computed
 1135 without eigenvalue decomposition by exploiting sparsity (Eq. 3436-):
 1136

$$1137 \text{Tr}(\tilde{L}^2) = \sum_{i,j} \tilde{L}_{ij}^2 = \sum_{(u,v) \in E_{G_T}} w_{uv}^2 + \sum_{u \in V_{G_T}} d_u^2. \quad (37)$$

1141 Both terms depend linearly on the number of edges, leading to $O(|E_{G_T}|)$ complexity per snapshot (Ye et al., 2014). During temporal aggregation, we process Δt snapshots, thus the total complexity of the evolutionary term becomes $O(\Delta t \cdot |E_{G_T}|)$, which matches the asymptotic bound stated in the paper. No strong assumptions are required, only the standard sparsity condition $|E_{G_T}| \ll |V_{G_T}|^2$, which holds for most real-world dynamic graphs.

1142 Furthermore, in practice, we pre-normalize edge weights and reuse cached degree matrices across
 1143 consecutive snapshots. This amortizes the per-snapshot cost and further reduces the effective run-
 1144 time, as validated by our empirical runtime profiling in Table 4.

1145 A.3.2 DONSKER-VARADHAN ESTIMATOR FOR MUTUAL INFORMATION (EQ. 6)

1146 To prove Eq. 6, we need to show:

$$1147 I_s(\mathcal{G}_T; \mathcal{G}) = \sup_{f \in \mathcal{F}} \left(\mathbb{E}_P[f(V_{\mathcal{G}})] - \log \mathbb{E}_Q \left[e^{f(V_{\mathcal{G}})} \right] \right).$$

1148 which is equivalent to proving:

$$1149 D_{KL}(P \parallel Q) \geq \mathbb{E}_P[T] - \log(\mathbb{E}_Q[e^T]) = \sum_i p_i t_i - \log \sum_i q_i e^{t_i}. \quad (38)$$

1150 To find the extremum of Eq. 38, we take the derivative with respect to t_j and set it equal to zero:

$$1151 \frac{\partial \left[\sum_i p_i t_i - \log \sum_i q_i e^{t_i} \right]}{\partial t_j} = 0 \\ 1152 \rightarrow p_j - \frac{q_j e^{t_j}}{\sum_i q_i e^{t_i}} = 0 \\ 1153 \rightarrow p_j \sum_i q_i e^{t_i} = q_j e^{t_j} \\ 1154 \rightarrow t_j = \log \frac{p_j}{q_j} + \log \sum_i q_i e^{t_i}. \quad (39)$$

1155 Let $\alpha = \log \sum_i q_i e^{t_i}$, and substitute t_j into t_i :

$$1156 \sum_i p_i t_i - \log \sum_i q_i e^{t_i} = \sum_i p_i t_i - \log \sum_i q_i e^{t_i} \\ 1157 = \sum_i p_i \left(\log \frac{p_j}{q_j} + \alpha \right) - \log \sum_i q_i e^{\log \left(\frac{p_j}{q_j} + \alpha \right)} \\ 1158 = \sum_i p_i \left(\log \frac{p_j}{q_j} + \alpha \right) - \log \sum_i e^{\alpha} q_i \frac{p_j}{q_j} \\ 1159 = \sum_i \left(p_i \log \frac{p_j}{q_j} \right) + \alpha - \alpha - \log \sum_i q_i \frac{p_j}{q_j} \\ 1160 = \sum_i \left(p_i \log \frac{p_j}{q_j} \right) + \alpha - \alpha - \log 1 \\ 1161 = \sum_i p_i \log \frac{p_j}{q_j} = D_{KL}(p \parallel q). \quad (40)$$

1162 Thus, the inequality Eq. 6 becomes an equality at the extreme value. When substituting $f(V_{\mathcal{G}})$ for
 1163 T in Eq. 38, the equality holds.

1188 A.3.3 UPPER BOUND OF $I(\mathcal{G}; \mathcal{G}_T)$ (EQ. 9)
11891190 For any groups of indices $L, S_{\mathcal{G}_{TX}}, S_{\mathcal{G}_{TA}} \subset [L]$ such that $\mathcal{G} \perp Z_{\mathcal{G}_{TX}}^{(L)} | \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}$,
1191 and for any probabilistic distributions $\mathbb{Q}(Z_{\mathcal{G}_{TX}}^{(l)}), l \in S_{\mathcal{G}_{TX}}$, and $\mathbb{Q}(Z_{\mathcal{G}_{TA}}^{(l)}), l \in S_{\mathcal{G}_{TA}}$,
1192

1193

1194
$$I(\mathcal{G}; \mathcal{G}_T) \leq I(\mathcal{G}; \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}) \leq \sum_{l \in S_{\mathcal{G}_{TX}}} \text{IB}_{\mathcal{G}_{TX}}^{(l)} + \sum_{l \in S_{\mathcal{G}_{TA}}} \text{IB}_{\mathcal{G}_{TA}}^{(l)},$$

1195

1196

1197 where
$$\text{IB}_{\mathcal{G}_{TA}}^{(l)} = \mathbb{E} \left[\log \frac{\mathbb{P}(Z_{\mathcal{G}_{TA}}^{(l)} | \mathbf{A}, Z_{\mathcal{G}_{TA}}^{(l-1)})}{\mathbb{Q}(Z_{\mathcal{G}_{TA}}^{(l)})} \right], \text{IB}_{\mathcal{G}_{TX}}^{(l)} = \mathbb{E} \left[\log \frac{\mathbb{P}(Z_{\mathcal{G}_{TX}}^{(l)} | Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)})}{\mathbb{Q}(Z_{\mathcal{G}_{TX}}^{(l)})} \right].$$

1198

1199

1200 By assumption 1, $\mathcal{G} \perp Z_{\mathcal{G}_{TX}}^{(L)} | \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}$ ensures that the left side of the inequality
1201 holds. As the second inequality, under Assumption 1, we define an order \prec on the set of random
1202 variables $\{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}$ as follows:
1203

1204

- 1205 1. For distinct timestamps
- l
- and
- l'
- ,
- $Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TA}}^{(l)} \prec Z_{\mathcal{G}_{TX}}^{(l')}, Z_{\mathcal{G}_{TA}}^{(l')}$
- .
-
- 1206 2. For a given timestamp
- l
- ,
- $Z_{\mathcal{G}_{TA}}^{(l)} \prec Z_{\mathcal{G}_{TX}}^{(l)}$
- .
-
- 1207

1208

1209 Subsequently, we define a sequence of sets based on this order.
1210

1211

1212
$$H_{\mathcal{G}_{TA}}^{(l)} = \{Z_{\mathcal{G}_{TX}}^{(l_1)}, Z_{\mathcal{G}_{TA}}^{(l_2)} | l_1 < l, l_2 < l, l_1 \in S_{\mathcal{G}_{TX}}, l_2 \in S_{\mathcal{G}_{TA}}\},$$

1213
$$H_{\mathcal{G}_{TX}}^{(l)} = \{Z_{\mathcal{G}_{TX}}^{(l_1)}, Z_{\mathcal{G}_{TA}}^{(l_2)} | l_1 < l, l_2 \leq l, l_1 \in S_{\mathcal{G}_{TX}}, l_2 \in S_{\mathcal{G}_{TA}}\}.$$

1214

1215

1216 We may decompose $I(\mathcal{G}; \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}})$ with respect to this order.
1217

1218

1219
$$I(\mathcal{G}; \{Z_{\mathcal{G}_{TX}}^{(l)}\}_{l \in S_{\mathcal{G}_{TX}}} \cup \{Z_{\mathcal{G}_{TA}}^{(l)}\}_{l \in S_{\mathcal{G}_{TA}}}) = \sum_{l \in S_{\mathcal{G}_{TA}}} I(\mathcal{G}; Z_{\mathcal{G}_{TA}}^{(l)} | H_{\mathcal{G}_{TA}}^{(l)}) + \sum_{l \in S_{\mathcal{G}_{TX}}} I(\mathcal{G}; Z_{\mathcal{G}_{TX}}^{(l)} | H_{\mathcal{G}_{TX}}^{(l)}).$$

1220

1221

1222 Similar to Wu et al. (2020), we obtain upper bounds for $I(\mathcal{G}; Z_{\mathcal{G}_{TA}}^{(l)} | H_{\mathcal{G}_{TA}}^{(l)})$ and $I(\mathcal{G}; Z_{\mathcal{G}_{TX}}^{(l)} | H_{\mathcal{G}_{TX}}^{(l)})$.
1223

1224

1225
$$\begin{aligned} I(\mathcal{G}; Z_{\mathcal{G}_{TA}}^{(l)} | H_{\mathcal{G}_{TA}}^{(l)}) &\leq I(\mathcal{G}, Z_{\mathcal{G}_{TX}}^{(l-1)}; Z_{\mathcal{G}_{TA}}^{(l)} | H_{\mathcal{G}_{TA}}^{(l)}) \\ &= I(Z_{\mathcal{G}_{TX}}^{(l-1)}, A; Z_{\mathcal{G}_{TA}}^{(l)} | H_{\mathcal{G}_{TA}}^{(l)}) \\ &\leq I(Z_{\mathcal{G}_{TX}}^{(l-1)}, A; Z_{\mathcal{G}_{TA}}^{(l)}) \\ &= \text{IB}_{\mathcal{G}_{TA}}^{(l)} - \text{KL}(\mathbb{P}(Z_{\mathcal{G}_{TA}}^{(l)}) || \mathbb{Q}(Z_{\mathcal{G}_{TA}}^{(l)})) \leq \text{IB}_{\mathcal{G}_{TA}}^{(l)} \end{aligned} \tag{42}$$

1226

1227

1228
$$\begin{aligned} I(\mathcal{G}; Z_{\mathcal{G}_{TX}}^{(l)} | H_{\mathcal{G}_{TX}}^{(l)}) &\leq I(\mathcal{G}, Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)}; Z_{\mathcal{G}_{TX}}^{(l)} | H_{\mathcal{G}_{TX}}^{(l)}) \\ &= I(Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)}; Z_{\mathcal{G}_{TX}}^{(l)} | H_{\mathcal{G}_{TX}}^{(l)}) \\ &\leq I(Z_{\mathcal{G}_{TX}}^{(l-1)}, Z_{\mathcal{G}_{TA}}^{(l)}; Z_{\mathcal{G}_{TX}}^{(l)}) \\ &= \text{IB}_{\mathcal{G}_{TX}}^{(l)} - \text{KL}(\mathbb{P}(Z_{\mathcal{G}_{TX}}^{(l)}) || \mathbb{Q}(Z_{\mathcal{G}_{TX}}^{(l)})) \leq \text{IB}_{\mathcal{G}_{TX}}^{(l)} \end{aligned} \tag{43}$$

1229

1230

1231 In summary, the proof of Eq. 9 is complete.
1232

1233

1234 A.3.4 LOWER BOUND OF $I(\mathbf{Y}; \mathcal{G}_T)$ (EQ. 10)
1235

1236

1237 We apply the Nguyen, Wainright and Jordan's bound to prove the equation (Nguyen et al., 2010):
1238

1239

1240 **Lemma 1** Given any two X_1 and X_2 and any permutation invariant function g , we have the variational lower bound of $I(X_1; X_2)$:
1241

1242
$$I(X_1, X_2) \geq \mathbb{E}[g(X_1, X_2)] - \mathbb{E}_{\mathbb{P}(X_1)\mathbb{P}(X_2)}[\exp(g(X_1, X_2) - 1)].$$

1242
1243 We substitute $g\left(Y, Z_{\mathcal{G}_{TX}}^{(l)}\right) = 1 + \log \frac{\prod_{v \in V_{\mathcal{N}(v)}} P\left(Y_v | Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TA}}^{(l)}\right)}{Q(Y)}$ and obtain Eq. 10:
1244

1245 $I(\mathbf{Y}; \mathcal{G}_T) \geq 1 + \mathbb{E}_{P(\mathbf{Y}, \mathcal{G}_T)}[\log \frac{P(\mathbf{Y}|(Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TA}}^{(l)}))}{Q(\mathbf{Y})}] - \mathbb{E}_{P(\mathbf{Y})}[\frac{\mathbb{E}_{P(\mathcal{G}_T)} P(\mathbf{Y}|(Z_{\mathcal{G}_{TX}}^{(l)}, Z_{\mathcal{G}_{TA}}^{(l)}))}{Q(\mathbf{Y})}]$.
1246
1247

1248 A.4 DETAILS FOR DATASETS
1249

1250 In this section, we provide detailed information on the three datasets used in the experiment. When
1251 selecting datasets, we consider multiple dimensions including time span, graph density, and evo-
1252 lution frequency. Since the TGT framework focuses on global evolutionary features, we prioritize
1253 datasets with high dynamic evolution frequencies in temporal graphs during our selection process.
1254 Additionally, under similar evolution frequencies and time granularity, we favor datasets with fewer
1255 nodes per snapshot. Such datasets exhibit greater randomness under the same perturbation ratio,
1256 enabling a more effective validation of the model’s robustness advantages in stochastic settings.
1257 Following these dataset selection criteria, we choose **Bitcoin**, **MathOverflow**, and **MOOC** for the
1258 main experiments and supplementary analytical ablation (see Table 1).
1259

1260 **Bitcoin** Bitcoin is a cryptocurrency to trade anonymously over the web. Due to anonymity, there is
1261 counterpart risk, which has lead to the emergence of several exchanges where Bitcoin users rate the
1262 level of trust they have in others. We integrate the data from the two trading platforms Bitcoin-OTC
1263 and Bitcoin-Alpha into a time series dataset **Bitcoin**. Both these exchanges allow users to rate others
1264 on a scale of -10 to +10 (excluding 0). According to guidelines, a rating of -10 should be given to
1265 fraudsters while at the other end of the spectrum, +10 means “you trust him as you trust yourself”.
1266 The other rating values have intermediate meanings. We assign two-dimensional features to nodes,
1267 which represent the trust and trustworthiness level, respectively, and sum up the rating of users.
1268

1268 **MathOverflow** **MathOverflow** is a temporal network of user interactions on the Stack Exchange
1269 website Math Overflow. Nodes represent users, and edges represent question-answer relationships.
1270 Three distinct types of interactions are modeled by directed edges (u, v, t) , where:
1271

- 1272 • user u answers user v ’s question at time t ;
- 1273 • user u comments on user v ’s question at time t ;
- 1274 • user u comments on user v ’s answer at time t .

1275 While constructing adjacency relations based on triplets, we assign six-dimensional features to
1276 nodes, statistically capturing the counts of: questions posted, answers provided, comments on ques-
1277 tions, questions commented on, comments on answers, and answers commented on. We use these
1278 features to build a temporal graph for experimental purposes.
1279

1280 **MOOC** The **MOOC** dataset represents user behavior on a popular MOOC platform, modeled as
1281 a directed temporal network. Nodes represent users and course activities (targets), while edges
1282 represent user actions on these targets. Each action is annotated with attributes and a timestamp,
1283 where timestamps are normalized to start from timestamp 0. The dataset is directed, temporal, and
1284 attributed. Additionally, each action includes a binary label indicating whether the user withdrew
1285 from the course after this action—i.e., whether this was the user’s final interaction with the platform.
1286

1287 For snapshot partitioning of a dataset, we follow these two principles.

1288 • **Chronological order.** We divide the dynamic graph strictly by chronological order to avoid any
1289 missing or overlapping temporal intervals. This ensures that temporal dependencies are preserved
1290 as faithfully as possible. Because different intervals naturally contain varying numbers of nodes and
1291 edges, the node/edge counts reported in Table 1 reflect the **average** snapshot scale after segmen-
1292 tation. Presenting the average scale helps provide an intuitive sense of computational complexity.
1293

1294 • **Handling extreme variations in temporal activity.** In datasets with highly uneven temporal
1295 activity (e.g., MathOverflow), directly segmenting by time may produce snapshots that are either

1296 extremely sparse or extremely dense. To address this, we follow chronological segmentation but enforce reasonable lower and upper bounds on snapshot size by merging overly small adjacent snapshots or splitting overly large ones. This adjustment maintains strict temporal continuity (no overlap, 1297 no omission) while ensuring more stable computation and memory usage across snapshots. 1298
1299
1300

1301 A.5 DETAILS FOR ADVERSARIAL ATTACK EXPERIMENT

1302 **Node Features** To introduce perturbations to node features, we add Gaussian noise $r \cdot \epsilon$, where 1303 the interference amplitude r is set as the average of the maximum values of each node feature, and 1304 $\epsilon \sim \mathcal{N}(0, 1)$. Specifically, we randomly select 10%, 20%, and 50% of nodes in each dataset to 1305 simulate increasing levels of interference, gradually escalating the perturbation intensity. 1306
1307

1308 **Topology Structure** To perturb the topological structure, we employ Nettack (Zügner et al., 2018), 1309 a proxy-model-based adversarial attack method that iteratively selects graph substructures with the 1310 highest impact on prediction loss as perturbation targets. This approach greedily identifies edges or 1311 node pairs whose modification most significantly affects the proxy model’s gradient calculations, 1312 then applies perturbations such as edge deletion or negative sampling based on their impact on the 1313 optimization process. Specifically, Nettack simulates increasing perturbation severity by selecting 1314 the top 5%, 10%, and 20% of edges ranked by their influence on prediction loss, progressively 1315 intensifying structural disturbances to evaluate model robustness. 1316
1317

1318 **Temporal Evolution** To perturb the temporal evolution dynamics, we disrupt the modeling of 1319 underlying temporal dependencies by randomly permuting snapshots within the sequence. Specifically, 1320 we randomly select and replace a snapshot with another from a different time step within the 1321 same sequence, thereby introducing inconsistencies in the chronological order. Across all datasets, 1322 we apply such temporal perturbations 1, 2, and 5 times to simulate increasing levels of disruption, 1323 allowing us to evaluate how model performance degrades with progressively stronger interference 1324 in the temporal continuity.

1325 In addition to the untargeted interference mentioned above, we also conducted a detailed investigation 1326 and selected five targeted attack methods to interfere with our data, and used this to verify the 1327 robustness of TGT.

1328 • **Nettack**(Zügner et al., 2018): Nettack is a pioneering white-box adversarial attack for graph 1329 neural networks (GNNs), which perturbs graph structure and node features to misclassify target nodes 1330 while ensuring imperceptibility via preserving key graph properties; it adopts a simplified linearized 1331 GCN as the surrogate model for computational efficiency, leverages gradient-guided greedy selection 1332 to iteratively apply impactful modifications, and exhibits notable efficiency, generalizability 1333 across GNN architectures, and robustness to partial graph knowledge.

1334 • **FGA**(Chen et al., 2019): Fast Gradient Attack (FGA) is a white-box adversarial attack for network 1335 embedding, which perturbs graph structure via link rewiring to degrade the performance of down- 1336 stream tasks; it leverages gradient information of pairwise nodes to select the most impactful node 1337 pairs, and exhibits strong generalizability across multiple network embedding methods as well as 1338 high efficiency with minimal link modifications.

1339 • **SGA**(Li et al., 2021): SGA is an adversarial attack for large-scale graphs, which perturbs structure 1340 (edge additions/deletions) to degrade downstream task performance; it adopts scalable strategies 1341 (e.g., sampling) for large-graph adaptability, leverages lightweight gradient-guided perturbation 1342 selection, and features strong scalability, high efficiency, and minimal imperceptible modifications.

1343 • **PRBCD**(Geisler et al., 2021): Projected Randomized Block Coordinate Descent (PRBCD) is an 1344 adversarial attack for large-scale GNNs, which solely perturbs the adjacency matrix to degrade clas- 1345 sification performance; it adopts randomized block coordinate descent with continuous relaxation 1346 of discrete 0,1 adjacency entries, leverages gradient optimization for efficient perturbation selection, 1347 and supports both evasion and poisoning attacks with strong scalability and low memory overhead.

- 1350 • **G**ottack (Alom et al., 2025): Gottack is a universal adversarial attack for GNNs, which perturbs
 1351 graph structure via topology-aware graph orbits learning to boost misclassification rates; it narrows
 1352 the search space with orbit-based selection, and features high efficiency, strong cross-architecture
 1353 generalizability, and subtle effective perturbations.
 1354

1355 **A.6 DETAILS FOR IMPLEMENTATION**

1357 The complete process of TGT in the link prediction task is shown in algorithm 1. We implemented
 1358 TGT utilizing GAT (Veličković et al., 2018), incorporating a 2-layered, 2-headed attention mecha-
 1359 nism for facilitating message passing and aggregation processes. The hidden dimension is 64.
 1360

1361 In our experimental setup, we sampled neighbors with a size of $k = 20$ and constrained the spa-
 1362 tiotemporal neighborhood to encompass $\Delta t = 5$ snapshots. Neighbor sampling was conducted
 1363 according to the Bernoulli distribution, guided by attention weights. The Adam optimizer was em-
 1364 ployed, with an initial learning rate of 0.001, and the training process was iterated 1000 epochs
 1365 with early stop. To ensure the robustness of our results, all experiments were conducted using three
 1366 distinct random seeds: 0, 1, and 2. We reported the average performance and standard deviation
 1367 derived from these repetitions. All the above experiments are conducted on two NVIDIA GeForce
 1368 RTX 3090 GPUs with 24GB of memory each.
 1369

1370 **A.7 ADDITIONAL ABLATION EXPERIMENT ON THUMBNAIL BASED ON VNGE**

1371 To validate the efficacy of the thumbnail’s evolutionary constraints, which is implemented
 1372 through the von Neumann Graph Entropy (VNGE), we conducted supplementary experiments on
 1373 noise-perturbed datasets, serving as a complement to the results presented in Fig. 2.
 1374

1375 **Table 5: Ablation study on holistic continuous evolutionary characteristics results (AUC) on datasets**
 1376 **with data perturbation at different levels.**

Dataset	Model	Clean	Feature Interference			Structure Interference			Temporal Interference		
			10%	20%	50%	5%	10%	20%	$n = 1$	$n = 2$	$n = 5$
Bitcoin	w/o thumbnail	73.04 \pm 0.6	67.73 \pm 0.2	61.82 \pm 0.3	56.12 \pm 0.3	69.77 \pm 0.5	62.87 \pm 0.3	57.51 \pm 0.3	64.21 \pm 0.3	59.61 \pm 0.4	55.34 \pm 0.3
	w/o T	89.56 \pm 0.2	83.45 \pm 0.3	74.31 \pm 0.2	66.20 \pm 0.4	83.26 \pm 0.3	79.67 \pm 0.3	68.37 \pm 0.2	84.73 \pm 0.2	80.04 \pm 0.3	71.06 \pm 0.2
	w/o VNGE	86.91 \pm 0.5	80.17 \pm 0.3	75.46 \pm 0.4	69.73 \pm 0.2	82.55 \pm 0.3	78.04 \pm 0.3	72.42 \pm 0.3	83.79 \pm 0.2	81.54 \pm 0.5	74.37 \pm 0.3
	TGT	91.41 \pm 0.2	89.43\pm0.5	86.23\pm0.4	80.62\pm0.4	89.83\pm0.6	85.00\pm0.5	80.95\pm0.7	90.78\pm0.5	88.14\pm0.6	85.64\pm0.3
MathOverflow	w/o thumbnail	76.11 \pm 0.3	74.24 \pm 0.2	68.41 \pm 0.3	60.21 \pm 0.4	72.70 \pm 0.5	68.29 \pm 0.3	60.54 \pm 0.3	70.32 \pm 0.3	62.47 \pm 0.5	56.36 \pm 0.7
	w/o T	80.35 \pm 0.3	75.52 \pm 0.3	71.43 \pm 0.3	65.52 \pm 0.3	77.13 \pm 0.3	73.31 \pm 0.3	68.74 \pm 0.5	76.39 \pm 0.4	73.30 \pm 0.3	64.27 \pm 0.3
	w/o VNGE	80.29 \pm 0.3	77.34 \pm 0.3	71.46 \pm 0.3	67.98 \pm 0.3	77.43 \pm 0.4	74.67 \pm 0.3	71.49 \pm 0.2	78.61 \pm 0.3	76.07 \pm 0.3	69.83 \pm 0.2
	TGT	82.38\pm0.6	79.22\pm0.3	74.37\pm0.3	71.42\pm0.2	80.01\pm0.3	77.74\pm0.3	75.93\pm0.7	81.57\pm0.2	80.71\pm0.5	76.37\pm0.4
MOOC	w/o thumbnail	86.47 \pm 0.3	83.63 \pm 0.1	74.94 \pm 0.3	61.34 \pm 0.5	83.34 \pm 0.3	72.61 \pm 0.4	60.25 \pm 0.2	81.06 \pm 0.4	76.34 \pm 0.4	69.71 \pm 0.7
	w/o T	90.78 \pm 0.3	85.32 \pm 0.2	72.78 \pm 0.4	60.23 \pm 0.3	86.54 \pm 0.3	81.17 \pm 0.3	73.54 \pm 0.2	85.21 \pm 0.2	78.55 \pm 0.4	69.49 \pm 0.5
	w/o VNGE	92.03 \pm 0.2	86.73 \pm 0.2	77.35 \pm 0.4	66.27 \pm 0.3	89.58 \pm 0.4	84.90 \pm 0.5	77.31 \pm 0.3	84.19 \pm 0.2	79.41 \pm 0.3	70.59 \pm 0.4
	TGT	95.42\pm0.4	88.73\pm0.2	80.79\pm0.1	71.68\pm0.3	90.43\pm0.3	86.16\pm0.5	81.82\pm0.3	92.61\pm0.2	89.53\pm0.7	84.01\pm0.6

1386 To construct the ablation baseline *w/o VNGE*, we selected normalized node degrees from Eq. 11
 1387 as a substitute for the von Neumann entropy. We also added an ablation control *w/o T*, where the
 1388 term $I_s(\mathcal{G}_T; \mathcal{G})$ in Eq. 11 is set to zero entirely, and a further ablation setting *w/o thumbnail* that
 1389 completely discards the construction of thumbnail from Eq. 11.
 1390

1391 As shown in Table 5, the construction of the thumbnail plays a critical role in the model’s rep-
 1392 resentational capability and robustness. Even when structural information is excluded in the *w/o*
 1393 *T* ablation (where the thumbnail is determined solely by node features from Eq. 6), the model
 1394 still improves its representation of temporal graphs using node-level information compared with
 1395 *w/o thumbnail*. In contrast to naive alternatives for incorporating evolutionary constraints, such as
 1396 normalized node degree (*w/o VNGE*), the thumbnail modeled via mutual information based on
 1397 VNGE (our proposed method) demonstrates significant advantages in both representational capabili-
 1398 ty and robustness. This confirms the effectiveness of the VNGE-based thumbnail in enhancing
 1399 the model’s ability to capture continuous evolutionary features while resisting perturbations.
 1400

1401 **A.8 ADDITIONAL RESULTS ON ABLATION STUDY**

1402 We conducted individual ablation studies on the three purposed components to investigate the spe-
 1403 cific contribution of each to the experimental outcomes. When the data set has not been disturbed,
 1404 the impact of each component on the experimental results is shown in Fig. 4:

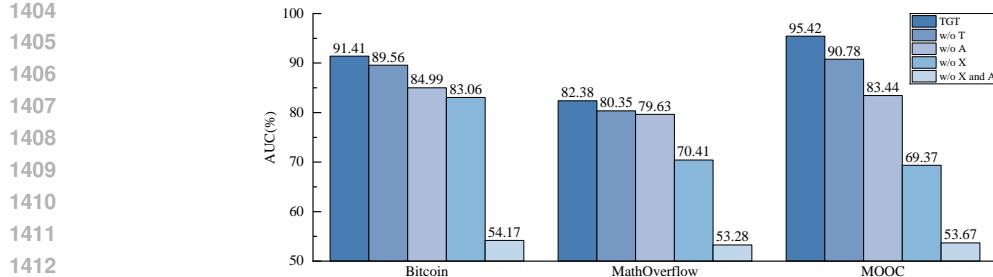


Figure 4: The figure shows the ablation experiment results on three datasets. Where T represents the evolution constraint (Eq. 11), A represents the structure mutual information (Eq. 13), and X represents the feature mutual information (Eq. 12)

A.8.1 FEATURE MUTUAL INFORMATION

After setting the feature mutual information (Eq. 12) to 0, we repeated the robustness test of feature interference on the three datasets. The results are shown in Fig. 5. Without the feature mutual information, the model’s robustness to feature interference drops significantly.

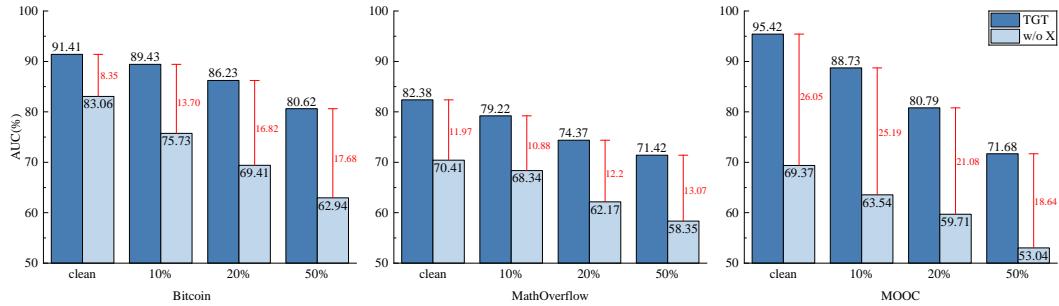


Figure 5: The figure shows the experimental results after the node features on the three data sets were perturbed to different degrees.

A.8.2 STRUCTURE MUTUAL INFORMATION

With the structure mutual information (Eq. 13) set to zero, we conducted a repeated robustness assessment of structure interference across the three datasets, shown in Fig. 6. Compared with feature mutual information, structure mutual information has less impact on clean data, but its impact on the robustness of the model is more obvious.

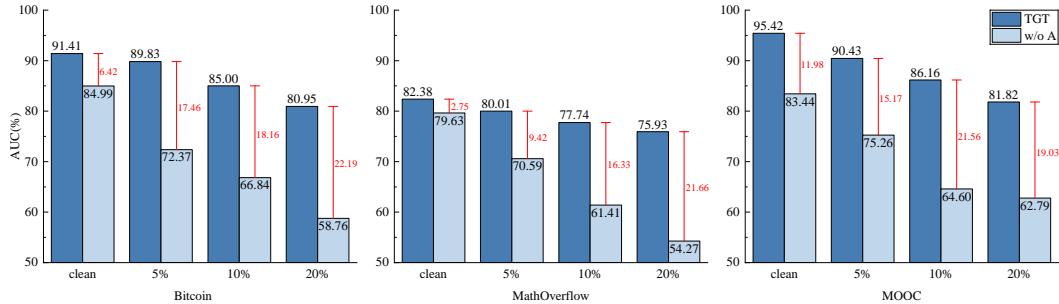


Figure 6: The figure shows the experimental results after the topology on the three data sets were perturbed to different degrees.

1458 A.8.3 ABLATION ON BACKBONE
1459

1460 In this section, we mainly design experiments and discuss the impact of the encoder’s backbone net-
1461 work configuration on TGT performance. The backbone corresponds to Lines 6–8 of Algorithm 1
1462 in Appendix A.1.4, where the encoder is applied. Although GAT is adopted in the main paper owing
1463 to its capacity to model node-specific contributions to the thumbnail through attention mechanisms,
1464 the TGT framework itself is backbone-agnostic.

1466 Table 6: The results under clean data and three types of perturbations on Bitcoin dataset.
1467

Backbone	Clean	Feature Interference			Structure Interference			Temporal Interference		
		10%	20%	50%	5%	10%	20%	$n = 1$	$n = 2$	$n = 5$
GCN	90.86	88.93	86.89	81.73	89.66	85.27	78.13	89.24	86.05	82.75
GIN	91.44	90.24	84.52	79.87	87.72	85.33	81.02	89.90	88.31	84.13
GAT (Default)	91.41	89.43	86.23	80.62	89.83	85.00	80.95	90.78	88.14	85.64

1474 To elaborate on this flexibility, we have implemented two additional TGT variants with alternative
1475 encoders such as GCN (Kipf, 2016) and GIN (Xu et al., 2018). We repeat the experiments on the
1476 Bitcoin dataset by replacing the backbone and obtain the results shown in Table 6.

1477 These results demonstrate two points: **(i)** TGT’s performance is stable across different backbones.
1478 The changes in node encoder architecture have only minor influence on clean-data accuracy and ro-
1479 bustness under perturbations. **(ii)** GAT performs slightly better, which is expected because the atten-
1480 tion mechanism naturally aligns with the design of TGT. It allows different nodes in each snapshot
1481 to contribute unequally to thumbnail, reflecting our motivation to capture heterogeneous importance.

1482
1483
1484 In summary, while GAT is a strong and intuitive choice for TGT, the framework does not rely on a
1485 specific backbone architecture and can be instantiated using standard GNNs such as GCN and GIN
1486 with comparable performance.

1488 A.9 HYPERPARAMETER SENSITIVITY EXPERIMENTS OF TGT
1489

1490 We performed hyperparameter sensitivity analyzes on the Lagrangian coefficients defined in Eq. 15
1491 and Eq. 16, examining their impact on robustness behavior and optimization of temporal evolution.
1492 We choose to conduct experiments on the MOOC dataset, which has the most edge data and the
1493 fastest evolution speed.

1494
1495 **The impact of Hyperparameter setting on thumbnail** In this section, we primarily design ex-
1496 periments and discuss the impact of hyperparameter settings on thumbnail modeling, and further
1497 provide suggestions on the parameter selection methods for Lagrangian hyperparameters.

1498
1499 λ serves to specify the constraint strength exerted by the thumbnail over the encoding process. To
1500 clarify this relationship, we have supplemented with experimental analyses on the number of thumb-
1501 nail nodes as a function of λ . Different choices of λ indirectly influence the thumbnail size, yet the
1502 thumbnail size remains close to the average number of nodes (and edges) across snapshots. This, in
1503 turn, ensures the two terms are of the same order of magnitude during gradient computation, thus
1504 validating the rationality of confining λ ’s value range to 10.

1505
1506 Regarding the two terms balanced by β (Eq. 15): the TB term is computed via snapshot node sam-
1507 pling, while the downstream task mutual information is calculated using thumbnail nodes. Table 7
1508 confirms that the two terms are of the same order of magnitude, thus justifying the rationality of
1509 setting β ’s value range within 10.

1510
1511 Unfortunately, tuning these two hyperparameters is an empirical process, as changes in data sce-
1512 narios and specific requirements directly influence their optimal values. In practice, we recommend

1512 Table 7: **Thumbnail statistics under different λ settings.**
1513

Dataset	Thumbnail	λ					Snapshot Avg.
		0.1	0.5	1	2	5	
Bitcoin	nodes	6,954	6,844	7,019	7,090	7,051	7,034
	edges	47,558	48,880	47,558	47,969	52,982	51,363
MathOverflow	nodes	20,474	19,965	23,376	22,371	24,105	21,683
	edges	160,491	262,295	315,105	417,491	478,325	207,581
MOOC	nodes	6,120	6,264	6,275	6,152	6,340	7,047
	edges	53,552	56,628	63,415	61,074	68,068	81,749

1522
1523 conducting a small number of warm-up training runs for hyperparameter search, thereby achieving
1524 more reliable hyperparameter selection.
1525

1526 Specifically, during the pre-training phase, we estimate the noise level of the input sequence via
1527 the variance of von Neumann graph entropy across consecutive snapshots, denoted as $\text{Var}(H(\mathcal{G}^t))$.
1528 This value is correlated with structural volatility, and we scale α proportionally to this variance:
1529

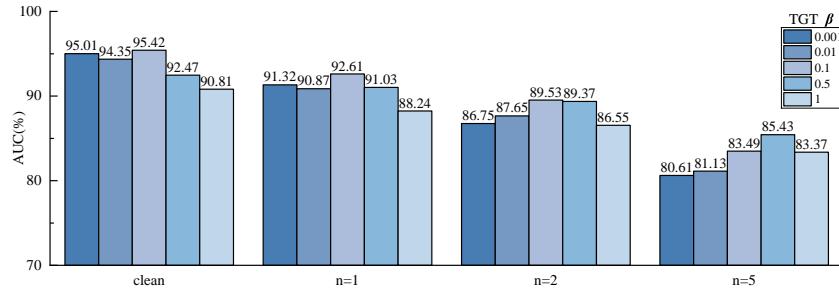
$$\alpha = \alpha_0 \cdot \frac{\text{Var}(H(\mathcal{G}^t))}{\text{Var}(H(\mathcal{G}^t)) + \epsilon}. \quad (44)$$

1530
1531 This guarantees that α is increased solely when the graph sequence undergoes unstable evolution.
1532 During the process of α 's gradual increase, we select the value that delivers acceptable performance
1533 under the clean setting as the appropriate hyperparameter value.
1534

1535 **Compression Balance Parameter of TGT** The compression balance parameter β of
1536 thumbnail in Eq. 15 controls the trade-off between preserving relevant information and
1537 compressing redundant details in the learned representation. We set β to values including 0.001, 0.01,
1538 0.1, 0.5, and 1, systematically increasing the compression strength to evaluate the robustness of the
1539 model under the compression constraints based on thumbnail.
1540

1541 Table 8: Robustness results (AUC) on MOOC with different β in TGT.
1542

β	Clean	Feature Interference			Structure Interference		
		10%	20%	50%	5%	10%	20%
0.001	95.01	85.35	77.74	68.18	87.98	83.56	78.08
0.01	94.35	86.57	78.91	70.46	91.23	85.71	79.68
0.1	95.42	88.73	80.79	71.68	90.43	86.16	81.82
0.5	92.47	87.84	82.16	76.89	89.51	86.95	83.62
1	90.81	89.05	83.27	79.38	89.70	87.67	82.98

Figure 7: The results after the temporal perturbation on the MOOC with different β settings.

1563
1564 The robustness results for node feature and structure perturbations are presented in Table 8. When
1565 β is small, model performance degrades more significantly with increasing interference. As β in-

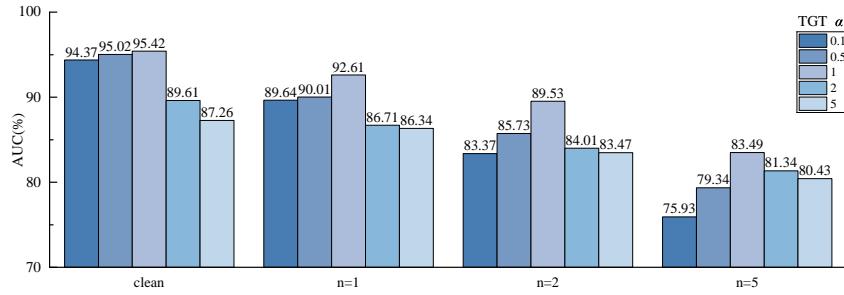
1566 creases, while performance on clean data slightly declines, the model’s interference resistance improves substantially. Practically, setting β requires balancing robustness against the capability to
 1567 represent clean data effectively, reflecting a critical trade-off in the framework’s design.
 1568

1569 We performed the same experiment under temporal interference and observed consistent results, as
 1570 shown in Fig. 7, demonstrating that the optimization objectives $TB_{G_{TX}}, TB_{G_{TA}}$ in Eq. 15 leverage
 1571 the thumbnail G_T , which encodes rich continuous evolutionary features, as a compression con-
 1572 straint. This approach prevents the disconnection between the temporal graph’s holistic evolutionary
 1573 continuity and discrete snapshot features (e.g., nodes, topology), thereby enabling more coherent and
 1574 robust model performance across perturbation. Finally we set $\beta = 0.1$ in other experiment.
 1575

1576 **Evolutionary Constraint Parameter of TGT** The evolution parameter α in Eq. 16 governs the
 1577 strength of temporal continuity enforced by the thumbnail, guiding the model to preserve coherent
 1578 evolution patterns across time while filtering out noise and irrelevant transitions. We set α to 0.1,
 1579 0.5, 1, 2, 5 to gradually enhance the strength of the continuity temporal constraint.
 1580

1581 Table 9: Robustness results (AUC) on MOOC datasets with different α in TGT.

α	Clean	Feature Interference			Structure Interference		
		10%	20%	50%	5%	10%	20%
0.1	94.37	87.21	76.54	66.63	89.80	85.45	79.77
0.5	95.02	87.77	74.51	67.06	91.43	87.91	80.36
1	95.42	88.73	80.79	71.68	90.43	86.16	81.82
2	89.61	84.63	80.72	71.23	86.32	82.35	78.43
5	87.26	83.52	79.40	69.33	84.77	80.59	77.81



1602 Figure 8: The results after the temporal perturbation on the MOOC with different β settings.
 1603

1604 Table 9 indicates that under untargeted feature perturbations, the robustness improvement from
 1605 constraining the model with the von Neumann entropy, which captures topological evolution, is rel-
 1606 atively modest. By contrast, during structural attacks, increasing the parameter α reduces the mag-
 1607 nitude of performance degradation caused by perturbations. This trend is particularly evident in the
 1608 temporal perturbation experiment results visualized in Fig. 8. Notably, as α increases, the encoding
 1609 of node features becomes sparser, leading to degraded performance on clean data. After synthesiz-
 1610 ing these experimental results, we ultimately set $\alpha = 1$ as the optimal value to balance robustness
 1611 and clean-data representation.
 1612

1613 **Window Size setting of TGT** Regarding the time window size mentioned in Appendix A.6, we
 1614 supplement the ablation experiment results on Bitcoin dataset. Interference settings are based on
 1615 the most severe settings for each type of interference in the Table 3 (Feature 50%, structure 20%,
 1616 temporal $n=5$).
 1617

1618 Notably, unduly small window sizes result in inadequate thumbnail modeling, thereby degrading
 1619 representation quality. For window sizes larger than 5, the model’s performance exhibits negligible
 1620 fluctuations. This confirms that the neighborhood relationships determined by window size exert a
 1621 certain influence on the thumbnail. TGT exhibits strong adaptability to this hyperparameter.
 1622

1620 Table 10: The ablation experiment results (AUC) with different window sizes.
1621

Window Size	Clean	Interference		
		Feature	Structure	Temporal
1	75.38	65.41	65.27	70.80
3	84.79	72.76	74.75	77.47
5 (baseline)	91.41	80.62	80.95	85.64
7	92.52	79.03	80.70	86.20
9	90.55	81.37	84.70	85.93

1630
1631 A.10 ADDITIONAL EXPERIMENT ON SIMILAR WORKS
1632

1633 Numerous approaches have leveraged the information bottleneck to compress raw data for robust-
1634 ness (Wu et al., 2020; Sun et al., 2022; Yu et al., 2021b;a). Some works have also attempted to adapt
1635 information bottleneck theory to temporal graphs for robustness (Yuan et al., 2024). In contrast to
1636 these related studies, which focus on achieving information compression, TGT prioritizes summariz-
1637 ing a reliable continuous evolutionary **skeleton** for temporal graph sequences as **thumbnail**. TGT
1638 is the first to integrate global evolution via the von Neumann entropy, characterizing the evolution-
1639 ary backbone of temporal graphs. By imposing compression constraints through the **thumbnail**,
1640 it avoids excessive compression that causes information loss or insufficient compression that leaves
1641 noise redundancy, striking a balance between essential feature retention and disturbance resilience.

1642 To further establish TGT’s superiority, we compare it against methods which perform information
1643 bottleneck on temporal graphs and conduct supplementary experiments to validate its distinct ad-
1644 vantages. We additionally selected two temporal datasets, **Collab** and **Yelp**. These datasets contain
1645 richer features but exhibit relatively lower evolution frequencies compared to our primary choices.

1646 • Collab is an academic collaboration dataset containing papers published between 1990 and
1647 2005. Nodes represent authors, while edges represent co-authorships. Each edge includes domain
1648 information such as “data mining,” “database,” “medical informatics,” “theory,” and “visualization,”
1649 based on the field of the co-authored publication. Node features are processed using word2vec
1650 (Mikolov et al., 2013), and edges are encoded via one-hot encoding.

1651 • Yelp is a forum dataset containing business information, including attributes such as reviews,
1652 photos, check-ins, business hours, parking availability, and ambiance. We define users and busi-
1653 nesses as nodes and review actions as edges, processing node features with word2vec similarly to
1654 the Collab. We sample interactions from five major business categories, *Pizza*, *American (New)*
1655 *Food*, *Coffee & Tea*, *Sushi Bars*, and *Fast Food*, spanning from January 2019 to December 2020.

1656 Table 11: Robustness results (AUC) on Collab and Yelp datasets with different data perturbation.
1657

Dataset	Model	Clean	Feature Interference			Structure Interference			Temporal Interference		
			10%	20%	50%	5%	10%	20%	$n = 1$	$n = 2$	$n = 5$
Collab	GIB+LSTM	91.36±0.2	80.73±0.2	72.27±0.3	61.73±0.3	85.75±0.2	76.51±0.4	71.22±0.2	84.07±0.3	74.34±0.3	60.23±0.4
	DGIB	92.17±0.2	78.95±0.3	73.72±0.3	64.18±0.6	87.47±0.1	80.73±0.2	74.43±0.3	83.32±0.2	80.73±0.2	59.46±0.5
	TGT	93.41±0.3	90.26±0.3	85.06±0.3	74.92±0.3	91.19±0.4	85.07±0.2	78.72±0.4	84.42±0.3	82.31±0.2	73.11±0.3
Yelp	GIB+LSTM	77.52±0.4	71.71±0.2	62.63±0.2	54.76±0.5	75.41±0.2	72.56±0.4	65.31±0.2	74.02±0.3	68.34±0.3	57.26±0.7
	DGIB	76.88±0.2	71.54±0.4	67.34±0.5	62.98±0.4	75.27±0.4	74.51±0.2	73.43±0.3	75.39±0.3	72.11±0.3	65.22±0.6
	TGT	80.17±0.3	76.05±0.2	69.37±0.3	62.53±0.3	78.76±0.2	75.66±0.1	73.57±0.2	79.79±0.2	76.37±0.3	72.02±0.3

1665 Our selected comparison baselines are **DGIB** (Yuan et al., 2024) and **GIB** (Wu et al., 2020) com-
1666 bined with an LSTM model, where GIB first generates discrete snapshot representations and the
1667 LSTM subsequently captures temporal dependencies. Experiments shows the superiority of TGT.

1668 A.11 SUPPLEMENTARY EXPERIMENTS UNDER DIFFERENT DOWNSTREAM TASKS
1669

1670 To verify the robustness of the temporal node representations learned by TGT, we conduct additional
1671 experiments on two representative downstream tasks. Specifically, we evaluate TGT on node classi-
1672 fication and dynamic node property prediction. These experiments further demonstrate the model’s
1673 robustness and its ability to generalize across diverse tasks.

1674 Table 12: Node classification performance (AUC) under clean and perturbed settings on Reddit
 1675 and MOOC datasets.

Dataset	Method	Clean	Interference		
			Feature	Structure	Temporal
Reddit	EvolveGCN	56.4	48.6	51.7	51.8
	JODIE	59.9	51.6	51.4	50.1
	DyREP	63.2	54.5	57.6	52.4
	TGN	67.2	53.1	58.1	53.5
	DIDA	58.2	49.0	54.3	49.7
	GIB+LSTM	59.9	54.7	53.1	51.6
	DGIB	61.3	55.7	54.6	52.0
	TGT (ours)	64.6	58.3	59.0	57.3
MOOC	EvolveGCN	67.3	54.6	54.9	53.8
	JODIE	68.5	53.7	56.5	55.4
	DyREP	63.4	50.3	55.8	53.6
	TGN	64.4	53.1	54.6	51.7
	DIDA	56.7	53.7	54.9	53.0
	GIB+LSTM	59.1	51.2	54.7	52.3
	DGIB	61.3	54.7	55.2	53.1
	TGT (ours)	66.4	60.3	62.6	61.4

A.11.1 SUPPLEMENTARY EXPERIMENT ON NODE CLASSIFICATION

To demonstrate that TGT produces general-purpose temporal node representations that transfer to other downstream tasks, we expanded our evaluation to a node classification task on both the Reddit dataset (Kumar et al., 2019) and the MOOC dataset used in the main paper. The supplementary Reddit dataset is as follows:

• **Reddit:** A subreddit-focused sharing/discussion platform. We build the temporal dataset **Reddit** from public sources (SNAP’s 2046 subreddit monthly networks, Pushshift.io timestamped comments). It is a directed temporal attributed network with subreddit hyperlinks (timestamps, sentiment polarity, post text attributes), featuring two core interactions: direct user replies and linear comment chains (less than 3 intermediates). Interactions have a valence score (upvotes – downvotes); node features (3D): activity (total comments), interaction quality (avg. valence), community participation (joined subreddits), derived from historical stats. One-month snapshot: 1k active subreddits, 10k users, 672k+ interactions; post texts encoded as LIWC features; labels from ban records (366 labeled nodes); task: binary node classification (banned/unbanned).

The results are reported in Table 12. Interference settings are based on the most severe settings for each type of interference in the Table 3 (Feature 50%, structure 20%, temporal $n=5$).

Under clean settings, TGT achieves competitive AUCs, comparable to or better than strong temporal baselines (e.g., TGN, DyREP). Under severe feature interference (50% Gaussian corruption), TGT retains substantially higher performance than most baselines (next best typically in the low-50s), demonstrating superior denoising ability. Under structural interference and temporal interference, TGT consistently outperforms alternatives by meaningful margins.

These results show that the thumbnail provides a robust evolution skeleton that helps not only link prediction but also node-level classification. Intuitively, by encoding persistent evolutionary skeletons, TGT yields embeddings that (i) suppress transient/noisy signals that hurt classification under corruption, and (ii) preserve long-term structural cues that are predictive for node labels.

A.11.2 SUPPLEMENTARY EXPERIMENT ON TARGETED ATTACKS WITH EXTRA BASELINES

To further measure the robustness of our TGT under more severe noise conditions, we conducted experiments on a wider range of noise data. We implemented **Nettack**, **FGA**, and **SGA** using DeepRobust³, set the attack intensity n_perturbations to 20% of the average number of nodes, and im-

³DeepRobust: <https://github.com/DSE-MSU/DeepRobust>

1728 implemented these five attack methods using the official code of **PRBCD**⁴ and **GOttack**⁵ (details of
 1729 attack methods in Appendix A.5).

1731
1732 Table 13: Link prediction performance(AUC) comparison under untargeted and targeted attacks.
1733

Dataset	Method	Clean	Untargeted Interference			Targeted Attacks				
			Feat.(20%)	Struct.(20%)	Temp.(n=5)	Nettack	FGA	SGA	PRBCD	GOttack
Bitcoin	EvolveGCN	67.59±0.3	56.77±0.2	55.89±0.3	54.37±0.4	55.99±0.2	47.67±0.6	52.08±0.4	49.70±0.7	51.08±0.2
	JODIE	74.47±0.3	61.10±0.3	60.57±0.3	58.28±0.7	54.28±0.4	55.24±0.3	58.00±0.6	53.34±0.6	48.54±0.3
	DyREP	70.43±0.5	61.25±0.3	58.60±0.5	57.33±0.7	53.44±0.7	54.09±0.7	55.71±0.3	53.71±1.1	49.95±0.5
	TGN	69.36±1.1	62.31±0.4	58.73±0.5	61.74±0.8	52.17±1.0	54.71±0.3	54.92±0.8	52.18±0.2	50.70±0.7
	DIDA	73.57±0.3	68.43±0.3	65.69±0.4	64.29±0.4	62.29±0.5	64.15±0.9	63.43±0.6	59.85±1.0	60.50±0.4
	GIB+LSTM	70.79±0.3	63.73±0.5	62.93±0.2	63.41±0.8	60.19±0.5	59.43±0.4	61.27±0.3	61.89±0.4	57.89±0.7
	DGIB	72.99±1.3	63.63±0.5	59.13±0.4	62.53±0.6	62.87±0.4	63.04±0.3	62.53±0.7	60.65±0.4	58.81±0.3
	Edgebank	62.27±0.7	54.38±0.9	52.96±1.3	53.12±1.1	51.53±0.8	50.47±0.5	52.26±0.4	50.14±0.6	47.45±0.6
	DYGFormer	87.91±0.6	74.60±0.3	75.11±0.5	73.76±0.7	70.34±0.3	72.93±0.7	71.64±0.7	69.61±0.9	64.22±1.0
TPNet	93.10±1.3	80.17±0.7	80.13±0.4	77.67±0.9	69.27±1.1	70.10±1.3	69.48±0.5	67.90±0.6	66.37±1.1	
	TGT	91.41±0.2	86.23±0.4	80.95±0.7	85.64±0.3	82.11±0.5	81.24±0.3	80.32±0.9	78.24±0.4	75.78±0.7
MathOverflow	EvolveGCN	75.59±0.2	61.14±0.3	55.23±0.3	56.63±0.5	53.16±0.4	50.13±0.6	52.33±0.7	52.53±0.7	50.81±0.6
	JODIE	67.06±1.2	59.56±0.3	53.19±0.3	55.37±0.3	54.04±0.4	53.67±0.3	52.72±0.5	51.11±0.7	50.07±0.4
	DyREP	63.50±0.5	53.32±0.6	53.26±0.3	53.33±0.5	52.73±0.7	50.45±0.4	50.94±0.9	49.83±0.4	49.80±0.8
	TGN	64.50±0.6	58.96±0.3	53.97±0.3	55.23±0.7	53.22±0.5	53.26±0.3	53.34±0.4	50.31±0.7	50.89±0.5
	DIDA	74.37±0.4	68.63±0.1	67.03±0.4	65.44±0.5	60.93±0.7	61.26±0.5	60.64±0.8	58.01±0.3	58.54±1.0
	GIB+LSTM	77.52±0.3	69.38±0.6	63.21±0.8	62.33±0.8	58.43±0.3	57.12±0.6	60.44±0.3	56.64±0.4	55.64±0.5
	DGIB	80.29±0.3	73.63±0.5	70.43±0.3	70.24±0.5	63.22±0.7	65.41±1.2	62.04±0.3	63.71±1.0	60.33±0.4
	Edgebank	62.43±0.7	55.07±0.4	54.11±0.3	53.70±0.7	51.78±0.2	51.43±0.6	50.79±0.9	49.62±0.8	47.95±0.3
	DYGFormer	83.67±0.5	69.79±0.3	67.74±0.5	67.81±1.1	56.74±0.3	53.01±0.4	60.71±1.1	51.66±0.9	50.71±0.4
TPNet	78.43±1.1	63.39±0.2	64.03±0.5	62.86±0.3	54.72±0.4	51.19±0.6	57.78±0.7	52.27±0.4	47.10±1.2	
	TGT	82.38±0.6	74.37±0.3	75.93±0.7	76.37±0.4	70.46±0.5	69.33±0.8	65.59±0.4	66.50±0.5	61.17±1.4
MOOC	EvolveGCN	72.35±0.3	62.37±0.2	52.31±0.2	55.93±0.2	52.10±0.8	49.51±0.3	51.25±0.7	50.55±0.3	48.92±0.4
	JODIE	73.19±0.7	55.36±0.2	57.34±0.4	58.59±0.4	56.95±0.4	55.02±0.4	53.69±0.3	52.23±0.7	51.69±0.3
	DyREP	81.36±0.1	66.77±0.2	59.74±0.3	59.37±0.5	57.10±0.8	55.42±0.3	54.83±0.4	52.64±0.5	51.02±1.0
	TGN	79.36±1.0	68.41±0.3	61.33±0.3	63.53±1.1	59.60±0.7	61.65±0.3	58.93±0.7	54.77±0.3	53.87±0.5
	DIDA	89.84±0.5	73.62±0.3	61.03±0.4	73.66±0.2	63.26±0.4	64.76±0.5	64.13±0.3	63.24±0.7	61.38±0.4
	GIB+LSTM	92.34±0.3	65.25±0.3	74.37±0.3	69.68±0.7	66.94±0.3	68.58±0.4	65.79±0.4	63.13±0.5	64.33±1.1
	DGIB	93.06±0.1	75.24±0.2	79.69±0.3	70.32±0.6	74.31±0.9	71.14±0.5	70.51±0.7	68.69±0.4	66.03±0.7
	Edgebank	86.14±0.7	65.23±0.7	62.31±1.1	61.52±0.9	60.71±0.3	59.75±0.7	60.32±0.4	60.78±0.5	59.64±0.3
	DYGFormer	94.13±1.2	77.24±0.5	75.55±0.3	72.06±0.5	69.07±0.5	70.07±0.4	67.37±0.7	66.28±1.5	63.41±0.8
TPNet	96.45±0.7	73.16±1.3	77.25±0.4	74.17±0.3	73.66±0.7	72.96±1.2	67.47±0.6	65.73±0.3	64.73±0.3	
	TGT	95.42±0.4	80.79±0.1	81.82±0.3	84.01±0.6	80.33±0.3	78.11±0.4	81.38±0.7	77.65±0.6	78.60±0.4

1755
 1756 In addition, we supplemented three more advanced baselines that outperform in clean data setting,
 1757 thus more comprehensively validating the superiority of TGT. **Edgebank** (Poursafaei et al., 2022) is
 1758 a memorization-based baseline for dynamic link prediction, which leverages temporal edge reoccurrence
 1759 patterns to enhance evaluation rigor and exposes the flaw of easy negative sampling in existing
 1760 protocols, featuring strong performance across settings. **DYGFormer** (Yu et al., 2023) is a dynamic
 1761 graph learning framework integrating a novel architecture and a unified library, enabling efficient
 1762 modeling of temporal dependencies and achieving strong generalization across diverse dynamic
 1763 graph tasks. **TPNet** (Lu et al., 2024) is a temporal link prediction model that boosts performance via
 1764 temporal walk matrix projection, enabling effective modeling of temporal dependencies.
 1765

1766 To verify the reliability of our TGT, we generated the noisy datasets to conduct inductive link pre-
 1767 diction experiments. The results in Table 13 consistently show that **TGT achieves the highest per-
 1768 formance under every targeted attack across all datasets**. For instance, on Bitcoin, TGT reaches
 1769 82.11 under Nettack and 78.24 under PRBCD, whereas strong baselines such as DGIB and DYG-
 1770 Former fall 5–15 points lower. Similar trends hold on MathOverflow, where TGT maintains 70.46
 1771 under Nettack, substantially outperforming the next-best baselines. These results demonstrate that
 1772 TGT does not merely resist mild perturbations but remains robust under attacks that specifically tar-
 1773 get influential nodes or edges associated with link prediction, indicating that **its thumbnail-guided**
 1774 **global evolution modeling prevents overreliance on vulnerable local structures**.
 1775

1776 Combined with its strong performance under untargeted feature, structural, and temporal inter-
 1777 ference, these findings provide direct and comprehensive evidence that TGT delivers outperforming
 1778 robustness even against the most advanced targeted attack strategies.
 1779

1780 ⁴PRBCD: https://github.com/sigeisler/robustness_of_gnns_at_scale

1781 ⁵GOttack: <https://github.com/cakcora/GOttack>

1782 A.11.3 SUPPLEMENTARY EXPERIMENT ON NODE PROPERTY PREDICTION
1783

1784 To further validate TGT’s robustness and generalization ability across additional downstream tasks,
1785 we conducted supplementary experiments following thorough research: we selected the large-scale
1786 tgbn-genre and tgbn-reddit datasets(details in Table 14) from the TGB (Huang et al., 2023b) for
1787 node property prediction, and adopted TGB’s standardized task metrics. This design effectively sup-
1788 plements the verification of TGT’s cross-task adaptability while demonstrating its superiority.
1789

1790 Table 14: Details of TGB datasets for experiment on node property prediction.
1791

Dataset	nodes	edges	Steps	snap. nodes	snap. edge
tgbn-genre	1,505	17,858,395	133,758	1307	78,345
tgbn-reddit	11,766	27,174,118	21,889,537	6843	440,603

1796 • **Tgbn-genre:** Tgbn-genre dataset is a bipartite weighted user-music genre interaction network
1797 (based on listening behavior). Nodes are users and genres; edges denote time-stamped user-genre
1798 listens, with weights as song-genre percentage contributions. It is built by cross-referencing LastFM-
1799 song-listens (1k users, 1-month song listens) and Million-Song Dataset (song genre weights). Re-
1800 tained genres meet two criteria: more than 10% song weight and 1k dataset occurrences. Genre
1801 names are cross-checked to eliminate typos.
1802

1803 • **Tgbn-reddit:** Tgbn-reddit dataset is a user-subreddit interaction network (users and subreddits
1804 as nodes, edges indicating time-stamped user posts on subreddits) spanning 2005–2019, with the
1805 prediction task of ranking the subreddits a user will interact with most in the next week.
1806

1807 We processed the data using the same perturbation methods as employed in the experiments detailed
1808 in Appendix A.11.2, with NDCG@10 adopted as the evaluation metric. This setup aims to verify
1809 whether the methods’ predictions of class importance align with the ordering of the ground truth.
1810

1811 The results are shown in Table 15. Specifically, while strong baselines such as TGN, DGB,
1812 and DYGFormer suffer noticeable degradation under perturbations, TGT maintains **the highest**
1813 **NDCG@10 across all untargeted and targeted attacks** on TGBN-genre (0.354/0.345/0.342 un-
1814 der structural, temporal, and Nettack attacks respectively, far above TGN’s 0.311/0.325/0.259). Re-
1815 garding node property prediction robustness, **both TGBN results show that the thumbnail-guided**
1816 **global evolution modeling provides stable ranking consistency even under aggressive adversar-**
1817 **ial conditions.** For example, on TGBN-reddit, TGT achieves 0.243 under Nettack, outperforming
1818 all baselines by significant margins (the best baseline is approximately 0.231).
1819

1820 These observations confirm that TGT’s core mechanism, using a VNGE-constrained thumbnail to
1821 encode long-term structural regularities, yields node representations that are not only scalable (con-
1822 firmed in Table 4) but also substantially more resistant to perturbations.
1823

1824 A.12 RELATED WORK
18251826 **Temporal graph representation learning**

1827 In temporal graph representation learning, representations are derived from spatiotemporal neighbor
1828 info via message passing and aggregation based on topology. For instances, some approaches utilize
1829 recurrent neural networks (RNNs) to learn dynamic embeddings in temporal interactions (Kumar
1830 et al., 2019; Pareja et al., 2020; Han et al., 2020). Alternatively, other methods rely on attention
1831 mechanism to update neighbors (Rossi et al., 2020; Trivedi et al., 2019). Furthermore, numerous
1832 scholarly investigations have focused on model’s robustness and generalizability. Zhang et al. (2022)
1833 integrates a disentangled spatiotemporal attention network with intervention and regularization to
1834 improve representation quality under distribution shifts. Zhu et al. (2019) boosts robustness by
1835 injecting random noise. There are also some attempts to fuzzy the adjacency matrix (Wu et al.,
2019; Entezari et al., 2020). Other methods also consider the evolutionary trajectory of tempo-

1836 Table 15: Node property prediction performance (NDCG@10) under clean and perturbed settings
 1837 on Tgbn-genre and Tgbn-reddit.

Dataset	Method	Untarget Interference				Target Attacks				
		Clean	Feat.	Struct.	Temp.	Nettack	FGA	SGA	PRBCD	GOttack
Tgbn-genre	EvolveGCN	0.343	0.321	0.316	0.305	0.296	0.253	0.287	0.277	0.262
	DyREP	0.351	0.317	0.301	0.288	0.240	0.267	0.237	0.207	0.192
	TGN	0.367	0.323	0.311	0.325	0.259	0.274	0.236	0.246	0.219
	DGIB	0.332	0.311	0.307	0.303	0.277	0.278	0.263	0.303	0.293
	DYGFormer	0.365	0.306	0.291	0.280	0.247	0.231	0.275	0.252	0.209
	TGT	0.363	0.348	0.354	0.345	0.342	0.314	0.319	0.307	0.313
Tgbn-reddit	EvolveGCN	0.310	0.291	0.276	0.297	0.201	0.210	0.207	0.197	0.182
	DyREP	0.312	0.288	0.278	0.263	0.231	0.227	0.210	0.183	0.193
	TGN	0.315	0.285	0.277	0.271	0.206	0.217	0.224	0.201	0.196
	DGIB	0.304	0.269	0.265	0.261	0.223	0.227	0.216	0.211	0.187
	DYGFormer	0.316	0.279	0.271	0.234	0.200	0.204	0.198	0.161	0.183
	TGT	0.313	0.289	0.280	0.278	0.243	0.246	0.231	0.221	0.210

1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022

1890 temporal knowledge graphs. However, these methods overlook graph evolution, as IB constraints are
 1891 limited to middle latent variables. By leveraging the VNGE to characterize continuous evolutionary
 1892 features, our TGT can access richer evolutionary information, which significantly enhances its abil-
 1893 ity to resist interference under perturbed conditions. Furthermore, we integrate temporal evolution
 1894 via VGNE to capture entire sequence. The results are presented in Table 11.
 1895

1896 A.13 LIMITATIONS AND FUTURE WORK

1897 The main limitation of TGT is the scalable problem caused by the additional introduction of
 1898 thumbnail characterization. Since the theoretical upper bound of TGT’s computational com-
 1899 plexity scales linearly with the number of nodes and edges across all graph snapshots (as shown in
 1900 appendix A.1.4), scaling to larger datasets (e.g., datasets with millions of nodes) can be prohibitively
 1901 time-consuming. While TGT demonstrates strong robustness under a wide range of feature, struc-
 1902 ture, and temporal perturbations, as well as various targeted attacks, we acknowledge that our re-
 1903 liance on a thumbnail-based architectural design may introduce new vulnerabilities under adaptive
 1904 attacks specifically crafted to target the thumbnail. For example, an adversary could attack **(i)** the
 1905 *thumbnail structure* via ontology-level perturbation, or **(ii)** the *bottleneck constraint* by designing
 1906 gradient-aligned manipulations to weaken the VNGE-based regularization. These are meaningful
 1907 and challenging scenarios that we agree deserve deeper investigation.
 1908

1909 In our future work, we plan to explore pretraining-based approaches for thumbnail modeling, allow-
 1910 ing the computational overhead to be offloaded to the pre-training stage and thereby improving the
 1911 scalability. We will also explore the usage of thumbnail as a prompt, aiming to further improve
 1912 the model’s capability and enable the injection of external prior knowledge.

1913 A.14 BORDER IMPACT

1914 This paper aims to advance the field of graph learning by proposing a robust representation method
 1915 for temporal graphs. Our TGT framework inherently resists noise during representation learning,
 1916 offering robustness against the ubiquitous real-world data noise and potential adversarial attacks
 1917 such as data poisoning. This capability has positive social implications by enhancing the reliability
 1918 and trustworthiness of machine learning applications in critical domains. Furthermore, we anticipate
 1919 that our work will not pose direct social or ethical negative impacts.
 1920

1921 A.15 THE USAGE OF LLM

1922 LLM was employed exclusively for writing assistance, including grammar correction, spelling ver-
 1923 ification, and text polishing, without contributing in any other way to our work.
 1924

1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943