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ABSTRACT

Temporal graphs are commonly employed as conceptual models for capturing
time-evolving interactions in real-world systems. Representation learning on such
non-Euclidean data typically depends on aggregating information from neighbors,
and the presence of temporal dynamics further complicates this process. However,
neighbors often contain noisy information in practice, making the unreliable prop-
agation of knowledge and may even lead to the model failure. Although existing
methods employ adaptive spatiotemporal neighbor sampling strategies or tempo-
ral dependency modeling frameworks to enhance model robustness, their con-
strained sampling scope limits handling of severe noise and long-term dependen-
cies. This limitation can be attributed to a fundamental cause: neglecting global
evolution inherently overlooks the temporal regularities encoded in continuous
dynamics. To address this, we propose the Temporal Graph Thumbnail (TGT),
encapsulating a temporal graph’s global evolutionary skeleton as a thumbnail
to characterize temporal regularities and enhance model robustness. Specifically,
we model the thumbnail by leveraging von Neumann graph entropy and node
mutual information to extract essential evolutionary skeleton from the raw tem-
poral graph, and subsequently use it to guide optimization for model learning.
In addition to rigorous theoretical derivation, extensive experiments demonstrate
that TGT achieves superior capability and robustness compared to baselines, par-
ticularly in rapidly evolving and noisy environments. The code is available at
https://anonymous.4open.science/r/TGT-BDF2.

1 INTRODUCTION

Temporal graphs arise naturally in a wide range of real-world domains, including transportation
systems (Zhao et al., 2019; Yu et al., 2018; Li et al., 2018; Guo et al., 2019), recommendation
systems (Xiang et al., 2010; Fan et al., 2021), and social networks (Deng et al., 2019; Tang et al.,
2009). Representation learning on non-Euclidean structures is already difficult, and the temporal
variation of node features and graph topology makes it even more complex (Gravina & Bacciu,
2024). Most studies on temporal graph representation extend the message aggregation and passing
mechanisms (Gilmer et al., 2017) from static graph learning to dynamic settings. Some studies
address temporal dynamics by slicing graphs into discrete snapshots and analyzing them as time
series (Seo et al., 2018; Li et al., 2018; Bai et al., 2021), while others model temporal changes in a
continuous, online fashion (Micheli & Tortorella, 2022; da Xu et al., 2020; Rossi et al., 2020).

However, real-world data are often noisy, posing substantial challenges to model robustness and
generalization. For illustration, consider a Q&A forum where user posts are modeled as nodes
and user interactions are edges. There are various sources of noise in this social network tempo-
ral graph, including off-topic information in an answer, incorrect associations between answers and
unrelated questions, and message disorder caused by network latency. Since context for representa-
tion is captured by aggregating spatiotemporal neighbor information along the topology, redundant
or erroneous node features, spurious or obsolete edges, and incorrectly recorded timestamps can
significantly degrade context quality, thus weakening the representation quality (Hou et al., 2020).
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Several robust representation approaches have been developed to combat noise in temporal graph
learning. These studies can be broadly categorized into two main directions: a) neighbor sam-
pling adaptation. Adjusting spatiotemporal neighbor sampling improves the reliability of aggre-
gated messages by reducing the influence of noisy or unreliable neighbors. For instance, Li et al.
(2024a) conceptualizes the neighbor update as a sequence decision problem and employs reinforce-
ment learning to address it effectively. Chen et al. (2018) models the propagation of noise as a
Markov chain and proposes a greedy algorithm to rewire edges for neighbor sampling. b) historical
information assistance. By capturing consistent patterns in historical interactions, temporal mod-
eling reduces sensitivity to transient noise or irregular events, thereby improving model robustness.
Zhang et al. (2022) mitigates spatiotemporal distribution shifts by making full use of invariant his-
torical patterns observed across sequences, while Yuan et al. (2024) derives consensual conditions
for temporal information and devise information bottleneck to capture temporal correlations.

However, these approaches remain limited by their constrained sampling scope, restricting their
ability to handle denser noises and capture long-term temporal dependencies. Specifically, Lee et al.
(2024) observed experimentally that models relying on neighbor or historical information struggled
with long-term dependencies, leading to larger errors. Sankar et al. (2020) shows that when both
neighbor and historical information become unreliable, the quality of the learned embeddings can
significantly deteriorate. We attribute these limitations to two main factors. a) lack of global evo-
lution modeling. Existing methods adopt a narrow scope of neighbor sampling, overlooking the
useful information from global evolution. When local information is insufficient to resist the noise
interference, model performance degrades significantly. b) absence of effective constraints for de-
noising. Excessive denoising can distort critical information, while insufficient processing leaves
residual noises. In the absence of constraints, striking a balance between the two becomes difficult.

To this end, we introduce the Temporal Graph Thumbnail (TGT) framework, which characterizes
the global evolutionary skeleton of temporal graphs as a thumbnail and employs it as an optimiza-
tion constraint to guide effective compression and denoising of representations, improving both the
capability and robustness of the model. Similar to a video cover, which uses a single image to sum-
marize the video’s content, we extract a static graph, akin to a snapshot, to encapsulate the evolution-
ary information of the temporal graph into its thumbnail. Specifically, TGT addresses the afore-
mentioned challenges by addressing two key research questions: (i) How to model a thumbnail
from the temporal graph that effectively serves as its skeleton with the global evolution features, and
(ii) how to design effective constraints based on the thumbnail to guide robust learning process.

In our TGT framework, we design a thumbnail modeling approach that derives the conditional like-
lihood estimation of the thumbnail under the raw temporal graph. It characterizes structural evo-
lution grounded in von Neumann graph entropy and captures node feature evolution using sequential
node mutual information through the Donsker-Varadhan representation. Based on the thumbnail,
we further derive effective constraints for representation learning that approximates the mutual in-
formation bounds between the data, tasks, and thumbnail, effectively balancing robustness and
expressiveness. Our contributions can be summarized as follows:

•We model the thumbnail for temporal graphs that captures their global evolution features through
online computation of von Neumann entropy and alignment with node feature mutual information.

•We formulate optimization constraints based on the evolutionary information embedded in the
thumbnail, guiding the learning process to enhance model capability and robustness.

• We conduct comprehensive empirical evaluations across multiple benchmark datasets. The
results demonstrate that TGT achieves statistically significant improvements in performance com-
pared to baselines. The results highlight the effectiveness of our method characterized by substantial
evolution constraint, as well as its robustness in handling systematic noise.

2 PROBLEM STATEMENT

2.1 THUMBNAIL OF GRAPH SEQUENCE

We aim to mine a specific graph that captures the evolutionary skeleton of a temporal graph, en-
capsulating the global evolution features of the graph sequence. Considering a temporal graph
G = {Gi}Ti=1 characterized by a historical sequence of snapshots ( notably, TGT focuses primarily
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on discrete-time dynamic graphs), our method models a static thumbnail GT = {VGT
, EGT

},
which is designed to distill and encapsulate the essential evolutionary information of the entire
temporal process within G. The corresponding adjacency matrix M is composed of Mαβ = 1 if
(α, β) ∈ EGT , and Mαβ = 0 otherwise. Based on sufficient temporal correlations, we construct a
set of assignment matrices, denoted as S = {S1, S2, . . . , ST }, which map V i in Gi to VGT

via the
function F . siaα in Si denotes the mapping from node a in Gi to node α in GT at timestamp i.

siaα =

{
1 if F(via) = α,

0 otherwise.
(1)

To estimate the evolution of the graph sequence G, the posterior probability P (G | GT ,S) can be
formulated as a probability distribution function in aggregate (Han et al., 2015). Due to the tempo-
ral relationship between snapshots, the joint distribution cannot be simply computed by multiplying
independent distributions. Instead, we model the joint probability as a weighted conditional distri-
bution over each snapshot and thumbnail, parameterized by learnable coefficients Bi

a.

P (G | GT ,S) =
∏

Gi∈G

[
P
(
Gi | GT , S

i
)]

=
∏

Gi∈G

 ∏
a∈V i

∑
α∈VGT

Ki
a exp

µ
∑
b∈V i

∑
β∈VGT

Ai
abMαβS

i
bβ

 ,

where µ = ln
1− Pe

Pe
, Ki

a = P
|V i|·|VGT

|
e Bi

a.

(2)

Pe is the probability of a matching error between observed graph vertices and the corresponding
vertices in thumbnail, while Bi

a is the sampled probability computed at time step i based on the
feature xia of vertex a (Han et al., 2015) (more details for Eq. 2 in appendix A.2). The aforemen-
tioned conditional likelihood estimation is applicable to both directed and undirected graphs and
provides an effective representation of the temporal graph G, assuming the thumbnail is accurate.

2.2 REPRESENTATION LEARNING WITH THUMBNAIL

The problem we examine involves a temporal graph G, where the graph stream comprises snapshots
Gt at each timestamp t, up to a maximum timestamp T . Each snapshot Gt = {V t, Et} consists
of vertices V t = {vt1, · · · , vtn} of size n and edges Et ⊆ V t × V t of size m at timestamp t.The
vertices V t possess k-dimensional features represented by Xt ∈ Rn×k. The adjacency matrix
At = {aij}n×n is defined such that atij = 1 if (i, j) ∈ Et and atij = 0 otherwise. We aim to
input the temporal graph G and utilize the node features X1:T along with the topological structure
A1:T to derive the node embedding ZT+1 ∈ Rn×k for the subsequent time step, thereby facilitating
downstream tasks. We aim to develop the robust representation ZT+1, particularly under conditions
where node and structural features are sparse, unreliable, or perturbed. To meet these requirements,
the representation should adhere to the principle of minimal sufficiency (Tishby & Zaslavsky, 2015):

IBZ = argmin
Z
{−I(Y;Z) + βI(G;Z)}, (3)

where β is the Lagrange multiplier to balance the two mutual information I . During optimization,
the mutual information between Z and the target label Y is maximized to enhance the representa-
tion capability of the model, while the mutual information between Z and the input data G is con-
strained to improve the model’s robustness. By instantiating the intermediate constraint Z through
the thumbnail (as shown in Eq. 8), we effectively capture the evolution of topological depen-
dencies in historical graph sequences, thereby improving representation quality and robustness for
downstream tasks such as node classification and link prediction.

3 TEMPORAL GRAPH THUMBNAIL

In this section, we introduce our Temporal Graph Thumbnail in detail. Our framework consists of
two components: (i) an approach for modeling the thumbnail that effectively captures global
evolutionary features, and (ii) the optimization constraints for representation learning guided by the
thumbnail. Finally, we instantiate training and inference processes to illustrate the full pipeline.

3
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3.1 THUMBNAIL MODELING FROM TEMPORAL GRAPH

Existing methods fail to capture global evolutionary features, primarily due to the absence of an ex-
plicit model that characterizes the core evolutionary backbone underlying temporal graph sequences
(Liu et al., 2023). This oversight weakens the temporal coherence between individual snapshots and
the sequence as a whole, rendering such methods less robust to real-world perturbations. To this end,
network entropy has become a widely adopted tool to characterize the structural dynamics of com-
plex systems (Anand et al., 2014). Among various forms of network entropy, von Neumann graph
entropy (VNGE) exhibits distinctive mathematical properties that make it well-suited for modeling
the thumbnail (The reasons for choosing VNGE are detailed in the appendix A.1.3).

Inspired by VNGE’s ability to coherently track temporal topological changes (Huang et al., 2023a)
and encode evolving structural features (Liu et al., 2022; Alstott et al., 2015), we characterize the
structural evolution by analyzing the mutual information between the thumbnail GT and the
temporal graph G = {G1, . . . , GT } from the perspective of VNGE. We start by preparing the ap-
proximation HV N , adapted from Ye et al. (2014), to characterize structural evolution.

HV N = 1− 1

|VGT
|
− 1

2|VGT
|2

{
−

∑
(α,β)∈EGT 1

1

doutβ doutα

+
∑

(α,β)∈EGT

(
dinα

dinβ d
out2
α

+
1

doutβ doutα

)}
,

where dinα =
∑

γ∈VGT

Mγα, doutα =
∑

γ∈VGT

Mαγ .

(4)
The set EGT 1

represents the asymmetric directed edges of GT , where EGT 1
= {(u, v) | (u, v) ∈

EGT
and (v, u) /∈ EGT

}. Given the intrinsic interdependence in the evolutionary process, snapshots
are not independent. Thus, Bi is a learnable probability weight that quantifies the probabilistic
contribution of the snapshot Gi, corresponding to the parameter Ki and Bi as defined in Eq. 2
(proof in appendix A.2 and A.3.1).

Is(GT ;G) = HV N (GT )−
∑
Gi∈G

BiHV N (GT |Gi). (5)

Then, we use F to convert the non-Euclidean graph sequence G into vertex embeddings of
thumbnail. We employ Donsker-Varadhan representation to derive an estimator for mutual infor-
mation IDV between G and GT (Belghazi et al., 2018) (proof in appendix A.3.2).

IDV (GT ;G) = sup
f∈F

(
EP [f(VG)]− logEQ

[
ef(VG)

])
. (6)

We integrate Is(GT ;G), which characterizes the evolution of the topological structure, with
IDV (GT ;G), which reflects the evolution of node features, to maximize the mutual information
between the thumbnail and the raw temporal graph. This objective guides the learning of the
mapping F and the coupling weights Bi, as part of definition of the thumbnail in Eq. 1 and 2.

3.2 THUMBNAIL-GUIDED REPRESENTATION CONSTRAINTS

Existing representation methods are limited in their ability to model the global evolution inherent in
temporal graphs, and they neglect the memory patterns and logical dependencies embedded within
global temporal changes. With the guidance of the thumbnail, we formulate optimization con-
straints that leverage global evolutionary information to enhance representation learning.

Based on local dependency assumption for static graphs, we extend it to temporal graphs.

Assumption 1 Given the relevant data from neighbors within a certain distance range (k-hop) and
time range (∆t) for vertex v in temporal graph G, v depends only on these spatiotemporal neighbors
Nk,∆t(v) and is independent of data from the rest of graph:

P (xtv|G1:t) = P (xtv|Gt−∆t:t
Nk,∆t(v)

). (7)

Under this premise, we derive the variational bound of the mutual information. Constrained by the
thumbnail GT , we refine the temporal graph G the principle of minimal sufficiency (Tishby &
Zaslavsky, 2015):

GT IB = argmin
GT

{−I(Y;GT ) + βI(G;GT )}. (8)

4
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Our objective is to employ the thumbnail GT as a bottleneck constraint to minimize redundancy
in the original data while preserving sufficient evolutionary information to prevent distortion from
excessive compression. Minimality is achieved by minimizing the upper bound of mutual informa-
tion I(G;GT ) to compress the redundancy of G. Sufficiency is achieved by maximizing the lower
bound of mutual information I(Y;GT ) to capture essential features of G.

Upper Bound of I(G;GT ) Inspired by GIB (Wu et al., 2020), we extend the variational approx-
imation to the mutual information between the thumbnail and the original data, termed the
Thumbnail Bottleneck (TB) constraint. Specifically, SGT X

, SGT A
⊂ [L] is the index sequence of

the temporal graph snapshot, L is the temporal graph time span. To enable tractable optimization,
we introduce a variational distribution Q(·) to approximate the true posterior P(·).

I(G;GT ) ≤ I(G; {Z(l)
GT X
}l∈SGT X

∪ {Z(l)
GT A
}l∈SGT A

) ≤
∑

l∈SGT X

TB(l)
GT X

+
∑

l∈SGT A

TB(l)
GT A

,

where TB(l)
GT A

= E

[
log

P(Z(l)
GT A
|A, Z(l−1)

GT A
)

Q(Z
(l)
GT A

)

]
,TB(l)

GT X
= E

[
log

P(Z(l)
GT X
|Z(l−1)

GT X
, Z

(l)
GT A

)

Q(Z
(l)
GT X

)

]
,

(9)
Z

(l)
GT X

and Z(l)
GT A

are GT ’s embeddings that capture temporal evolution information. This helps resist
perturbation attacks that violate inherent evolutionary patterns (proof in appendix A.3.3).

Lower Bound of I(Y;GT ) The variational lower bound of I(X;GT ) follows the approximation:

I(Y;GT ) ≥ 1 + EP (Y,GT )[log
P
(
Y|(Z(l)

GT X
, Z

(l)
GT X

)
)

Q(Y)
]− EP (Y)[

EP (GT )P
(
Y|(Z(l)

GT X
, Z

(l)
GT X

)
)

Q(Y)
].

(10)
Z

(l)
GT X

and Z(l)
GT A

are determined in Eq. 1. In practice, reparameterizing the probability distribution
function P proves beneficial by exploiting prior data on the conditional probability distribution. This
approach eliminates learning a mapping between GT and Y, which requires instead the learning of
an approximate probability distribution Q(Y) in a typically lower-dimensional vector space (proof
in appendix A.3.4).

3.3 INSTANTIATION OF TRAINING AND INFERENCE

We instantiate the previously introduced probability distributions and elaborate on the detailed
pipeline of the framework. We illustrate the process using link prediction as an example, with
the full pipeline presented as pseudocode in the appendix A.1.4.

Thumbnail Modeling For the thumbnail modeling, we adopt the mutual information alignment
method to design the loss function as follows:

Levolution = − (Is(GT ;G) + IDV (GT ;G)) . (11)

The two terms in the formula are composed of Eq. 5 and Eq. 6 respectively.We define Gi in Eq.
5 as a graph snapshot within the temporal neighborhood [t − ∆t, t], with the neighborhood size
configurable as a hyperparameter. Furthermore, F in Eq. 6 is specified as neural network layers
composed of learnable parameters.

Instantiation of I(G;GT ) To instantiate the node feature term TB(l)
GT X

as defined in Eq. 9, we set

Q(Z
(l)
GT X

) to a mixture of Gaussians, expressed as
∑m

k=1 πkΦ(µq,k, σ
2
q,k). Here, πk, µq,k and σq,k

are learnable parameters. We set P(Z(l)
GT X
|Z(l−1)

GT X
, Z

(l)
GT A

) as Φ(Z(l)
GT X

;µp, σ
2
p), and then:

TB(t)
GT X

=̇
∑
v∈V t

(
Φ(Z

(t)
GT X

;µp, σ
2
p)−

m∑
k=1

Φ(µq,k, σ
2
q,k)

)
. (12)
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For structural term TB(l)
GT A

as defined in Eq. 9, we similarly set Q(Z
(l)
GT A

) as Bernoulli distribu-
tion, Bernoulli(ϕ), where ϕ is a hyperparameter. Neighbor information is then aggregated by sam-
pling from this Bernoulli distribution. The generative distribution P(Z(l)

GT A
|A, Z(l−1)

GT A
) is similarly

Bernoulli, with sampling probability αp computed from the node embeddings.

TB(t)
GT A

=̇DKL(Bernoulli(α
t
p) || Bernoulli(ϕ)) = (1− αt

p) log
1− αt

p

1− ϕ
+ αp log

αt
p

ϕ
. (13)

Instantiation of I(Y;GT ) Instantiating Eq. 10 depends on the downstream task. For instance, in
link prediction the likelihood term P

(
Y | Z(L)

GT X
, Z

(L)
GT A

)
is modeled as a categorical distribution,

where Q(Y) denotes the empirical distribution of ground truth links. During optimization, the final
expected joint likelihood term converges toward unity, effectively canceling the constant offset.

I(Y;GT )=̇
1

N

N∑
i=1

log
[
Categorical(Y|Z(l)

GT X
)
]
=: −LCE(wout · ZGT X

,Y), (14)

wout denotes the weights of the downstream classifier. During optimization, this component refers
to the calculation of cross-entropy loss, where N represents the number of training samples.

In summary, the mutual information loss function for bottleneck constraints imposed by the
thumbnail is as follows, where SA, SX are the index sets satisfying Assumption 1.

LB = −I(Y;GT ) + βI(G;GT )=̇− I(Y;GT ) + β

[∑
t∈SA

TB(t)
GT A

+
∑
t∈SX

TB(t)
GT X

]
. (15)

The overall training objectives of the proposed model can be reformulated as follows:
L = LB + λ · Levolution, (16)

where λ is the hyperparameter of the Lagrange multiplier. We adopt the Graph Attention Network
(Veličković et al., 2018) as the backbone framework, meaning both F in Eq. 6 and Pe in Eq. 2 are
GAT-based encoders. The probability Bt

a in Eq. 2 is derived by transforming node a’s encoding at
time t through a feedforward layer with a softmax. Therefore, according to Eq. 2, we can predict
global evolution using the thumbnail GT , which is compressed by graph sequence G.

4 EXPERIMENTS

We employ link prediction as a downstream task to assess the capability and robustness of TGT com-
pared to established baselines. Specifically, we aim to address the following research questions: Q1
(Fundamental Capability): How does TGT compare with SOTA methods in terms of fundamental
capability? Ans 1. Q2 (Robustness): How robust is TGT under various types of perturbations or
noise against other baselines? Ans 2.1, 2.2, 2.3. Q3 (Effectiveness of the Thumbnail): How ef-
fective is the thumbnail in modeling evolution? Ans 3.1. Why is von Neumann Graph Entropy
(VNGE) chosen for modeling thumbnail? Ans 3.2. Q4 (Contribution of Constraints): How do
the constraints guided by the thumbnail contribute to enhancing the model’s robustness? Ans 4..

4.1 EXPERIMENTAL SETUPS

Table 1: Details of datasets for ex-
periments.

Dataset Bitcoin MathOverflow MOOC
Nodes 9,664 24,818 7,047
Edges 59,778 506,550 411,749
Timespan 1903 days 2350 days 30 days
Link Type Homogeneous 3 5
Evolution 18.7 45.78 13724.97Frequency
Avg. Snap. nodes 7,034 21,683 7,047
Avg. Snap. edges 51,363 207,581 81,749
Snap. span 60 days 20 days 12 hours

Datasets We conduct experiments on the link prediction
task on three widely-used datasets. MathOverflow is a forum
question-answer relationship data (Paranjape et al., 2017); Bit-
coin dataset is a user transaction relationship data consisting
of transaction records (Kumar et al., 2016; 2018); the MOOC
dataset represents the actions taken by users on a popular
MOOC platform (Kumar et al., 2019). More detailed informa-
tion is shown in Table 1. Evolution Frequency refers to how
often the graph evolves per day. Avg. Snap.nodes/edges rep-
resents the average number of nodes/edges in each snapshot,
where the snap time span refers to the temporal scale at which
the graph is chronologically split. Datasets of varying scales and evolution frequencies covering
most real-world tasks. Detailed descriptions of the datasets are provided in appendix A.4.
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Table 2: Inductive link predication performance on the Bitcoin, MathOverflow and MOOC datasets
under clean settings.

Model Bitcoin MathOverflow MOOC
AUC AP AUC AP AUC AP

Dynamic
GNNs
(DGNNs)

EvolveGCN 67.59±0.3 63.38±0.2 75.59±0.2 72.73±0.4 72.35±0.3 73.59±0.2
JODIE 74.47±0.3 75.50±0.4 67.06±1.2 66.32±0.6 73.19±0.7 71.78±0.9
DyREP 70.43±0.5 69.79±0.4 63.50±0.5 63.37±0.6 81.36±0.1 78.35±0.3
TGN 69.36±1.1 72.09±0.7 64.50±0.6 65.88±0.6 79.36±1.0 78.96±0.5

Robust
Gener-
alized
DGNNs

DIDA 73.57±0.3 71.27±0.4 74.37±0.4 75.24±0.3 89.84±0.5 88.49±0.4
GIB+LSTM 70.79±0.5 69.73±0.4 77.52±0.3 75.03±0.7 92.34±0.3 93.29±0.5
DGIB 72.99±1.3 73.24±0.6 80.29±0.3 79.99±0.5 93.06±0.1 93.11±0.3

TGT(ours) 91.41±0.2 91.01±0.3 82.38±0.6 81.17±0.4 95.42±0.4 94.56±0.7

Baselines We selected baselines from dual perspectives to demonstrate the effectiveness of TGT.
Among temporal graph representation methods, we selected four superior methods. TGN (Rossi
et al., 2020) is a framework for representation learning on streaming temporal graphs; JODIE (Ku-
mar et al., 2019) learns node interaction relationships using RNNs; DyREP (Trivedi et al., 2019) en-
codes nodes by modeling temporal point processes at dual scales; EvolveGCN (Pareja et al., 2020)
captures graph sequence dynamics by evolving GCN parameters. Among robustness and bottleneck
constraint, we selected three methods. DIDA (Zhang et al., 2022) leverages robust and generalized
prediction patterns on temporal graph representation; GIB (Wu et al., 2020) computes the informa-
tion bottleneck of graph snapshots, with LSTM adapted for dynamic scenes; DGIB (Yuan et al.,
2024) imposes history constraints on the information bottleneck to obtain representations.

Data Perturbation To verify TGT’s robustness , we adopted adversarial attacks on training data
in multiple aspects. a) Feature Interference: To assess the robustness of TGT under untargeted
attacks, we introduce random Gaussian noise to node features and apply varying perturbation in-
tensities (controlled by noise amplitude). b) Structural Interference: For topological attacks, we
employ the Nettack (Zügner et al., 2018) to perform adversarial edge perturbations (e.g. deletion or
negative sampling), specifically targeting substructures that maximize prediction loss in the proxy
model. c) Temporal Interference: To evaluate TGT’s stability and robust representation capabili-
ties under temporal disruptions, we disrupt the chronological order of graph snapshots by randomly
permuting them, simulating interference with the underlying temporal evolution dynamics (For more
detailed information of attack settings, please refer to the appendix A.5).

4.2 EFFECTIVENESS EXPERIMENT

To address Q1, we conducted comprehensive experimental analyses on three distinct datasets, and
subsequently compared the results with established baselines to rigorously demonstrate the superior
performance of TGT. Implementation details of TGT are provided in appendix A.6. In the effec-
tiveness experiment, we employed a clean data setting without any data interference and utilized
inductive link prediction as the downstream task for the evaluation of representations. Drawing
upon the original data, we conducted negative sampling by selecting 10% of the total edges to facil-
itate the training of the link prediction task. After repeating the experiments three times, the average
and range of the results are presented in the Table 2.

Ans 1. TGT consistently outperforms the baselines in fundamental representation capability across
all three datasets, with its advantages particularly pronounced in scenarios with sparse neighbor in-
formation. By analyzing the datasets and the experimental results, it is evident that TGT exhibits
significant advantages in the Bitcoin dataset. Specifically, its AUC and AP values have improved
by 16. 94% and 15. 51%, respectively, compared to the runner-up. This improvement suggests that
TGT can capture data features more effectively and demonstrate superior generalization capabilities.
On MathOverflow, where social network interaction noise is prevalent, Robust Generalized DGNNs
significantly outperform DGNNs. Furthermore, on the MOOC dataset, characterized by frequent
evolutionary changes, TGT displays a clear performance edge. These results demonstrate the ef-
fectiveness of TGT’s design, which leverages von Neumann entropy to constrain the information
bottleneck associated with global structural evolution.
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Table 3: Robustness results (AUC) on Bitcoin, MathOverflow and MOOC datasets with data pertur-
bation at different levels.

Dataset Model Clean Feature Interference Structure Interference Temporal Interference
10% 20% 50% 5% 10% 20% n = 1 n = 2 n = 5

Bitcoin

EvolveGCN 67.59±0.3 62.74±0.3 56.77±0.2 54.24±0.2 64.01±0.3 60.37±0.4 55.89±0.3 65.47±0.3 63.12±0.3 54.37±0.4
JODIE 74.47±0.3 69.28±0.1 61.10±0.3 53.32±0.4 70.33±0.2 66.82±0.3 60.57±0.3 71.54±0.8 69.79±0.5 58.28±0.7
DyREP 70.43±0.5 64.91±0.3 61.25±0.3 56.63±0.2 69.98±0.8 63.79±0.7 58.60±0.5 69.43±0.8 65.84±0.5 57.33±0.7

TGN 69.36±1.1 67.34±0.6 62.31±0.4 59.06±1.3 66.61±0.5 62.18±0.6 58.73±0.5 68.46±0.8 66.92±0.7 61.74±0.8
DIDA 73.57±0.3 71.05±0.2 68.43±0.3 64.20±0.2 70.93±0.2 68.71±0.3 65.69±0.4 71.23±0.2 69.65±0.3 64.29±0.4

GIB+LSTM 70.79±0.3 69.26±0.3 63.73±0.5 58.37±0.3 68.61±0.5 65.09±0.3 62.93±0.2 69.15±0.3 67.17±0.6 63.41±0.8
DGIB 72.99±1.3 69.92±0.6 63.63±0.5 60.78±0.7 70.13±0.3 65.84±0.6 59.13±0.4 71.27±0.5 68.44±0.7 62.53±0.6
TGT 91.41±0.2 89.43±0.5 86.23±0.4 80.62±0.4 89.83±0.6 85.00±0.5 80.95±0.7 90.78±0.5 88.14±0.6 85.64±0.3

MathOverflow

EvolveGCN 75.59±0.2 67.22±0.3 61.14±0.3 54.79±0.2 66.68±0.5 63.11±0.4 55.23±0.3 69.39±0.3 67.90±0.3 56.63±0.5
JODIE 67.06±1.2 63.23±0.3 59.56±0.3 51.92±0.2 64.71±0.4 59.13±0.3 53.19±0.3 66.34±0.3 63.93±0.2 55.37±0.3
DyREP 63.50±0.5 59.13±0.3 53.32±0.6 54.17±0.7 60.19±0.2 56.59±0.2 53.26±0.3 61.71±0.4 60.07±0.2 53.33±0.5

TGN 64.50±0.6 61.22±0.3 58.96±0.3 55.14±0.4 59.49±0.2 56.23±0.3 53.97±0.3 61.40±0.3 60.36±0.5 55.23±0.7
DIDA 74.37±0.4 70.95±0.1 68.63±0.1 63.98±0.1 73.48±0.2 70.47±0.3 67.03±0.4 73.57±0.2 69.09±0.1 65.44±0.5

GIB+LSTM 77.52±0.3 73.24±0.1 69.38±0.6 63.07±0.7 75.83±0.3 68.37±0.6 63.21±0.8 75.73±0.8 71.14±0.5 63.33±0.8
DGIB 80.29±0.3 78.54±0.2 73.63±0.5 68.98±0.3 77.87±0.2 74.47±0.3 70.43±0.3 79.66±0.2 77.75±0.3 70.24±0.5
TGT 82.38±0.6 79.22±0.3 74.37±0.3 71.42±0.2 80.01±0.3 77.74±0.3 75.93±0.7 81.57±0.2 80.71±0.5 76.37±0.4

MOOC

EvolveGCN 72.35±0.3 66.23±0.4 62.37±0.2 54.72±0.2 68.83±0.1 59.29±0.1 52.31±0.2 66.98±0.3 62.57±0.2 55.93±0.2
JODIE 73.19±0.7 63.15±0.2 55.36±0.2 53.71±0.4 69.15±0.4 61.42±0.2 57.34±0.4 70.69±0.2 63.25±0.3 58.59±0.4
DyREP 81.36±0.1 74.60±0.2 66.77±0.2 60.52±0.3 76.43±0.2 68.31±0.3 59.74±0.3 78.56±0.6 65.39±0.5 59.37±0.5

TGN 79.36±1.0 73.63±0.4 68.41±0.3 60.03±0.3 75.31±0.2 69.27±0.2 61.33±0.3 78.29±0.7 72.68±0.8 63.53±1.1
DIDA 89.84±0.5 79.73±0.1 73.62±0.3 64.01±0.3 84.48±0.2 71.47±0.3 61.03±0.4 86.53±0.2 82.79±0.3 73.66±0.2

GIB+LSTM 92.34±0.3 73.21±0.3 65.25±0.3 63.67±0.2 86.05±0.2 82.64±0.4 74.37±0.3 89.95±0.7 85.76±0.4 69.68±0.7
DGIB 93.06±0.1 84.35±0.1 75.24±0.2 63.32±0.3 87.75±0.1 84.27±0.7 79.69±0.3 91.53±0.2 85.36±0.3 70.32±0.6
TGT 95.42±0.4 88.73±0.2 80.79±0.1 71.68±0.3 90.43±0.3 86.16±0.5 81.82±0.3 92.61±0.2 89.53±0.7 84.01±0.6

4.3 ROBUSTNESS EXPERIMENT

To address Q2, we evaluate the robustness of the model through data perturbation. Following the
experimental settings outlined in the preceding subsection, we intentionally injected anomalies into
the training dataset and conducted a series of experiments to evaluate the model’s robustness along
three distinct dimensions: node features, topological structures, and temporal correlations. After
repeating three times, the average and range of the results are shown in Table 3.

Feature Interference Ans 2.1. TGT can effectively resist feature interference with different
noise levels. Gaussian noise perturbation of node features significantly diminishes the performance
of ordinary DGNNs. Comparatively, robust generalized DGNNs exhibited superior performance.
Given limited node features in Bitcoin and MathOverflow datasets, DIDA, GIB+LSTM, and DGIB
maintained efficacy, yet their robustness lagged significantly behind TGT on the MOOC dataset.
TGT employs thumbnail to establish feature’s constraint (Eq. 12) and thoroughly filters noise,
thereby enhancing the model’s robustness during optimization.

Structure Interference Ans 2.2. TGT demonstrates strong robustness against structural-level
noise, maintaining stable performance under structural perturbations. Structural perturbations im-
pact all baselines evenly, and structural noise is equally applied to neighboring samples across
methods. Under interference, continuous DGNNs (e.g., TGN, DyREP) excel at online processing
of abnormal edges, demonstrating enhanced robustness. TGT employs thumbnail to establish
structure constraint (Eq. 13), effectively mitigating the interference of abnormal edges in crucial
topological relationships between modeling nodes. As defined in Eq. 4, the von Neumann entropy
captures richer topological information by inherently encoding structural dependencies, which pro-
vides TGT with a distinct advantage over existing SOTA robustness methods.

Temporal Interference Ans 2.3. TGT exhibits strong robustness against temporal interference,
with consistently superior performance compared to baselines. Temporal perturbations significantly
impact evolving patterns in temporal graphs. The robustness evaluation results across different
datasets are presented in Fig. 1. On the slowly evolving Bitcoin dataset, temporal interference
minimally affects each method, with accuracy decline primarily attributed to feature and topology
redundancy stemming from nodes and edges. In the MathOverflow dataset with extensive evolution,
redundant historical information impedes model accuracy improvement. In the rapidly evolving
MOOC dataset, temporal noise presents a more formidable challenge to the robustness of the model.
EvolveGCN, for evolution modeling, is highly sensitive to temporal interference. DIDA, designed
for data distribution shifts, excels in anti-interference. TGT demonstrates competitive performance
across three datasets. TGT utilizes von Neumann entropy to model graph evolution trajectory(Eq.
5) enables effective representation generation despite severe temporal correlation disturbances.
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Figure 1: The accuracy curves of the algorithms after being subjected to different degrees of tempo-
ral interference on three datasets. By constraining the evolution process using von Neumann entropy,
TGT is more resistant to temporal interference.

4.4 ABLATION STUDY

To address Q3, we choose to use normalized node degree instead of von Neumann entropy in Eq. 11
as the baseline of ablation as W/O VNGE.We also added an ablation control without thumbnail
W/O T, where the term Is(GT ;G) in Eq. 11 is set to zero entirely. Ans 3.1. The thumbnail is es-
sential for guiding the denoising process, removing this component leads to substantial degradation
in the model’s fundamental accuracy and robustness. As shown in Fig. 2, the dataset shows obvious
differentiation of ablation effects, which is helpful to analyze the effectiveness of thumbnail.
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Figure 2: Robust performance of TGT on temporal interference on various datasets under different
temporal evolution constraint ablations

With thumbnail’s guidance, the model outperforms the setting that ignores evolution, whether
using basic node degree information or the proposed VNGE. Ans 3.2. The VNGE-based evolution
modeling significantly outperforms the one using other methods, demonstrating the effectiveness
of our core innovation. It is confirmed by the detailed ablation in the appendix A.7. To address
Q4, we conduct extensive ablation experiments to verify the roles of derived constraints (Eqs. 12
and 13). Ans 4. Each Thumbnail-based constraint contributes to the fundamental capabilities
and robustness of the model, confirmed in appendix A.8. Furthermore, we conduct hyperparameter
sensitivity experiments on the Lagrangian coefficients. The results are shown in the appendix A.9.

5 CONCLUSION

In this paper, we introduce a novel framework called Temporal Graph Thumbnail (TGT). By mod-
eling the thumbnail from raw graph sequence based on von Neumann graph entropy and the
mutual information of node features, we characterize the evolution skeleton of the temporal graphs
to capture the global evolutionary information. Moreover, the thumbnail serves as an interme-
diary, establishing a bottleneck constraint between the original data and the target task to enhance
the model’s representation over critical information. Experiments validate TGT’s superior robust-
ness and generalization compared to other methods. Limitations and future work: Although TGT
demonstrates stability on datasets with up to one million nodes, thumbnail modeling and real-time
von Neumann entropy computation incur additional computational overhead, restricting its scalabil-
ity to extremely large graphs. To address this, our future work will investigate pre-training strategies
for thumbnail modeling to amortize processing time and hardware costs, while exploring the use of
thumbnails as prompts in pre-trained temporal graph neural networks to improve model scalability.
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A APPENDIX

A.1 FREQUENTLY ASKED QUESTIONS (FAQS)

A.1.1 CODE AVAILABILITY

To promote transparency and reproducibility, we have included the source code of TGT, along with
training and evaluation scripts, in an anonymous repository 1. We have also included a copy of
this repository in the Supplementary Material. The archive also contains the running logs and the
hyperparamters for TGT (detailed TGT implementation in appendix A.6). The noise generation
methods we adopt are based on DeepRobust (Li et al., 2020) 2, with detailed attacks implementation
provided in appendix A.5. We warmly welcome other researchers to reproduce and extend our work.

A.1.2 WHAT ARE ADVANTAGES OF TGT?

TGT introduces three key advantages over existing methods for temporal graph representation,
specifically addressing their fundamental limitations through a tailored and principled design.

T଴

Snapshot

Tଵ Tଶ Tଷ Tସ

Thumbnail ்࣡

Update

Guidance

G଴ Gଵ Gଶ Gଷ Gସ

Figure 3: Visualization of the thumbnail modeling

Superior representation capability with thumbnail. Table 2 demonstrates that TGT consistently
achieves superior representation capability across various data scenarios. Compared with other base-
lines, TGT benefits from the additional global evolution information provided by the thumbnail,
leading to significantly improved representations. Notably, the advantage becomes even more pro-
nounced in scenarios characterized by high randomness and frequent evolution.

Enhanced robustness across various noise conditions. Table 3 provides strong evidence that
TGT exhibits robust performance against various types of noise. With the guidance of the
thumbnail constraints, TGT consistently outperforms baselines under different noise settings. In
particular, TGT demonstrates significantly more robust performance under temporal perturbations.

Solid and explainable theoretical foundations. We model the thumbnail by computing the
von Neumann entropy and mutual information of sequential node features, followed by a princi-
pled variational derivation of the representation optimization constraints. Logically complete and
rigorous derivations are provided in appendix to validate the theoretical soundness of the TGT. The
relevant lemmas and assumptions are well-established and broadly accepted in prior research.

To further illustrate thumbnail clearly, we visualized the modeling process as shown in the Fig.
3. The visualization clearly shows that the thumbnail preserves the persistent and high-frequency
structural patterns across time, while filtering out transient or noisy structures. Specially:

• Node connectivity patterns that recur across snapshots are retained with higher edge weights in
the thumbnail, indicating that GT successfully summarizes the stable evolutionary backbone.

• Ephemeral or low-consistency edges, which appear sporadically in individual snapshots, are
largely suppressed, demonstrating the denoising effect induced by the VNGE-based constraint.

1Our TGT: https://anonymous.4open.science/r/TGT-BDF2
2DeepRobust: https://github.com/DSE-MSU/DeepRobust
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As shown in Fig. 3, the thumbnail graph becomes progressively more coherent over iterations,
matching the theoretical goal of modeling the global evolution trajectory rather than any single
temporal slice. This visualization also confirms, in a human-interpretable way, that the thumbnail
effectively captures temporal regularities and structural evolution trends in the datasets, aligning
with the conceptual description in Method and Algorithm 1.

A.1.3 WHY VON NEUMANN ENTROPY? HOW ABOUT OTHER GRAPH ENTROPIES TO MODEL
THUMBNAIL?

The von Neumann entropy (VNGE) plays a crucial role in understanding the structural and topologi-
cal complexity of temporal graphs, as it effectively captures the information content in a manner that
aligns with the continuous evolution of time-varying networks (Passerini & Severini, 2009). While
other entropy measures, such as Gibbs entropy and Shannon entropy, can also capture structural
evolution to some extent (Bianconi, 2009), they are not suitable for continuous computation. These
methods typically rely on discrete snapshots, resulting in systemic information loss. More critically,
these graph entropy measures do not satisfy the subadditivity property (De Domenico & Biamonte,
2016), which poses a challenge when designing local mutual information coupling (as seen in the
second term of Eq. 5) because direct weighted accumulation for aggregation is not feasible. This
necessitates additional assumptions or more complex modeling approaches. In contrast, VNGE can
be computed online and, except in special cases (such as chain graphs or trivial graphs), satisfies
the subadditivity property (De Domenico & Biamonte, 2016), significantly simplifying the process
of capturing structural evolution. Given these considerations, we select VNGE over other graph
entropies as a more concise approach for capturing reliable structural evolution.

The robustness of TGT to temporal order disruption stems from the VNGE-based constraint
Is(GT ;G) (Eq. 5), which fundamentally captures the global structural distribution of snapshots
rather than their temporal order.

Specifically, the VNGE is defined over the normalized Laplacian spectrum(Appendix A.3.1), which
depends solely on the eigenvalue distribution of the graph. Thus, in constructing the temporal thumb-
nail GT , maximizing the mutual information between GT and the input sequence G promotes align-
ment of their spectral characteristics rather than merely aligning the temporal order of snapshots.

Since spectral quantities are permutation-invariant with respect to node or snapshot order, the
learned thumbnail inherently focuses on statistical patterns of structural evolution that remain stable
under temporal sequence shuffling (Braunstein et al., 2006). This means the model learns to retain
information about how structural complexity evolves (e.g., entropy growth, connectivity changes)
rather than the specific temporal sequence of local variations. Therefore, the VNGE-based mutual
information regularization provides a temporal-order-agnostic bottleneck, enabling TGT to maintain
robustness when snapshot order is permuted or partially corrupted.

Furthermore, as supported by the results in Table 5, TGT maintains consistent performance under
temporal perturbation attacks, demonstrating that the VNGE constraint guides the model toward
learning a temporal invariant summary that mitigates the impact of sequence tampering.

A.1.4 COMPUTATIONAL COMPLEXITY ANALYSIS

This section conducts a computational complexity analysis and gives future work directions for
improvement and optimization. The complete pipeline is summarized in Algorithm 1, with input
feature dimension d and hidden dimension d′. The time complexity can be decomposed as following:

• line 4: Computing the VNGE per Eq. 4 costs O(|EGT
|). During ∆t, obtaining Is requires:

O(∆t · |EGT
|).

• line 5-8: Sampling k spatiotemporal neighbors and applying GAT feature-projection layers incurs

O
(
∆t · k · (|VGT

| d d′ + |EGT
| d)
)
.
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Algorithm 1: Overall pipeline of TGT for link predication

Input: temporal graph G = {Gt}Tt=1; node features X1:T+1; number of neighbors to be sampled
k; element-wise nonlinear rectifier τ ; Hyperparameters λ, β,∆t;
Initialize: initialize all weights; set relative time encoding for each timestamp t; Zt

GT X

(0) ← X
for each timestamp t;
Output:representation ZT+1

X ; Predicted label ŶT+1 of next timestamp link occurrences.
1: Sample Nk,∆t(v) k-top closest spatiotemporal neighborhoods.
2: for layers l = 1, 2, . . . , L and v ∈ V1:T+1 do
3: for timestamp t in range[T+1] do
4: Is(GT ;G)← Eq. 5
5: Ẑ

t,(l−1)
GT X

← τ(Z
t,(l−1)
GT X

)W(l)

6: ϕ
t,(l)
υ,k ← σ{(Ẑt,(l−1)

v ∥Ẑ{t−∆t:t},(l−1)
u )W⊤

attention}u∈Nk,∆t(v);

7: Ẑ
t,(l)
A ← ∪v∈Vt{u ∈ Nk,∆t(v)|u∼Bernoulli(ϕt,(l)v,k )};

8: Z
t,(l)
GT X

← Σ(u,v)∈Ât,(l){Ẑt,(l−1)
GT X ,v }v∈Vt ;

9: IDV (GT ;G) = WF · Zt,(l)
GT X
− log exp(WF · Ẑ{t−∆t:t},(l−1)

u ) # Eq. 6

10: l
(t)
evolution = Is(GT ;G)− IDV (GT ;G) # Eq. 11

11: end for
12: GT ← σ(Z

(l)
X ∥Z

(l)
A )WF

13: ŶT+1 = Link predictor(GT ) # Eq. 2
14: LIB ← Eq. 15, Levolution ←

∑T
t=1(l

(t)
evolution)

15: L ← LIB + λ · Levolution

16: Update parameters by minimizing L and back-propagation.
17: end for

• line 9: The final projection step costs O
(
|VGT
| d d′ + |V {∆t}

G | d d′
)
, where |V {∆t}

G | is the num-
ber of nodes in the previous ∆t time of this temporal graph. Since the thumbnail’s node set is
no smaller than that of any single time window, we conservatively approximate the complexity as
O(2 |VGT

| d d′). Putting these together for an L-layer architecture yields the time complexity of

O
(
L ·∆t

(
|EGT

|+ k · (|VGT
| d d′ + |EGT

| d)
)
+ |VGT

| d d′
)
.

While TGT incurs extra cost for online VNGE computation, its total complexity is comparable
to leading temporal GNN baselines. Furthermore, because the thumbnail contains no more
nodes than the entire temporal graph and is typically much smaller, the effective constant in TGT’s
representation-learning complexity is reduced.

Table 4: Comparison of training time per epoch (s) with state-of-the-art baselines in robust tempo-
ral graph learning across multiple datasets.

Method Bitcoin MathOverflow MOOC tgbn-reddit tgbn-genre
DIDA 23.46 37.77 8.91 27.65 17.80
DGIB 1.37 5.53 2.56 1.57 1.71
TGN 0.78 0.86 0.74 0.68 0.71
TGT 2.26 4.42 3.34 2.73 1.68

As shown in Table 4, TGT can efficiently handle datasets with node and edge counts on the order
of hundreds of thousands.

We conducted additional experiments measuring the per epoch training time of TGT compared with
several baselines across five datasets (Bitcoin, MathOverflow, MOOC, tgbn-genre, and tgbn-reddit
(Huang et al., 2023b)). From the Table 4, we get:
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Time overhead TGT is only moderately slower than lightweight temporal GNNs (e.g., TGN). On
all datasets, TGT requires around 2–4 seconds per epoch, representing only a small overhead com-
pared to TGN (0.7–0.9s) despite the additional global evolutionary modeling. This overhead mainly
comes from computing the approximated trace term Tr(L̃2), which is efficiently computed using
sparse matrix multiplication and the low-rank Laplacian estimator described in Appendix A.3.1.

Although TGT incurs moderate additional cost due to the computation of VNGE (which depends
on node degrees in Eq. 4), the runtime remains close to lightweight TGNNs. MathOverflow appears
slower primarily because of its larger per-snapshot node count, while tgbn-reddit, despite larger
average snapshots, benefits from a lower-dimensional preprocessed degree matrix.

Nevertheless, TGT is significantly more efficient than robustness-oriented baselines (e.g., DIDA)
and still remains competitive with IB methods (e.g., DGIB). This indicates that our thumbnail-
guided constraints provide robustness without incurring excessive computational costs.

Memory footprint TGT remains comparable to baselines. Since TGT only stores:

• a static thumbnail graph GT (small number of nodes)

• low-rank Laplacian terms for VNGE approximation, the memory overhead remains negligible.

• node features for each snapshot.

These components together introduce negligible GPU memory overhead. In addition, since snap-
shot construction is entirely flexible with respect to temporal granularity, practitioners may adjust
the snapshot time scale according to available GPU memory, ensuring efficient resource utilization
on different hardware configurations.

In all our experiments, including the large-scale TGB datasets, TGT fits comfortably within 24GB
GPU memory (per RTX 3090 GPU), demonstrating that the method is memory-efficient and scal-
able in practice. Although VNGE introduces additional computation compared with purely local
aggregation models, the overhead is modest in practice, and TGT achieves a favorable balance be-
tween robustness, global-evolution modeling, and computational efficiency. The additional results
confirm that TGT is computationally practical even on large-scale datasets. For example, Math-
Overflow contains over 500,000 edges, and MOOC exceeds 400,000 (shown in Table 1). Since
the theoretical upper bound of TGT’s computational complexity scales linearly with the number of
edges across all snapshots, scaling to larger datasets (e.g., datasets with millions of nodes) can be
prohibitively time-consuming.

In our future work, we plan to explore pretraining-based approaches for thumbnail modeling, allow-
ing the computational overhead to be offloaded to the data preprocessing stage and thereby improv-
ing the scalability of the framework.

A.2 DETAILS FOR THUMBNAIL DEFINITION

The goal of the thumbnail is to summarize holistic evolutionary process features from discrete
snapshots in a sequence. To this end, we define the structure of the thumbnail and the node
correspondence between each snapshot in the sequence and the thumbnail, thereby obtaining the
posterior probability of the next-timestamp temporal graph state. Our derivation of the thumbnail
builds on widely recognized works (Luo & Hancock, 2001; Han et al., 2015).

Specifically, consider a temporal graph G represented as a sequence of length T : G =
{G1, . . . , GT }, where the i-th snapshot is Gi = {V i, Ei} with node set V i and edge set Ei. We
aim to determine a thumbnail GT = {VGT

, EGT
}, where VGT

is the node set, EGT
is the edge set,

and the adjacency matrix M satisfies:

Mαβ =

{
1 if (α, β) ∈ EGT

,

0 otherwise.
(17)
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We first consider a single snapshot Gi. For the adjacency matrix Ai of this snapshot:

Ai
ab =

{
1 if (a, b) ∈ Ei,

0 otherwise.
(18)

where a, b ∈ V i and α, β ∈ VGT
. For time step i, we define an assignment matrix Si with elements

siaα, which denotes the correspondence between node a in snapshotGi and node α in thumbnail:

siaα =

{
1 if F(via) = α,

0 otherwise.
(19)

where F denotes the mapping from snapshot Gi to the thumbnail. In this paper, we instantiate
F as a GAT network layer with trainable parameters, which is trained using a mutual information
alignment loss (see in Eq. 11). In practice, the assignment matrix we seek should maximize the
conditional likelihood of the observed snapshots given the available thumbnail:

Si = argmax
Si

P
(
Gi | GT , Si

)
. (20)

This is primarily based on the core idea that ”the correspondence matches assigned to the nodes of
the data graph are hidden variables which have arisen through a noisy observation process” (Luo
& Hancock, 2001). Following standard methods for constructing likelihood functions of mixture
distributions, we decompose the likelihood of the snapshot and sum over the corresponding nodes
in the thumbnail:

P
(
Gi | GT , Si

)
=
∏
a∈V i

∑
α∈VGT

p
(
xa | yα, Si

)
, (21)

xa denotes the embedding of node a in the snapshot Gi, while yα denotes the embedding of node α
in the thumbnail GT . P

(
xa | yα, Si

)
denotes the probability of these two under the assignment

matrix Si. This assumes that snapshot nodes are conditionally independent given the nodes of GT .
We define the model by specifying P

(
xa | yα, Si

)
through conditional probability:

P
(
xa | yα, Si

)
=
P
(
xa, yα, S

i
)

P (yα, Si)
. (22)

After applying the definitions and properties of conditional probability and performing some alge-
braic rearrangements (Luo & Hancock, 2001):

P
(
xa | yα, Si

)
=

{∏
b∈V i

∏
β∈VGT

P(xa|yα,sibβ)P(yα|sibβ)P(s
i
bβ)

P (xα,yα)

}
P (xa, yα){∏

b∈V i

∏
β∈VGT

P(yα|sibβ)P(sibβ)
P (yα)

}
P (yα)

=

[
1

P (xa | yα)

]|V i|×|VGT |−1 ∏
b∈V i

∏
β∈VGT

P
(
xa | yα, sibβ

)
.

(23)

Given that the snapshot node xa is conditionally independent of the thumbnail node yα unless a
correspondence siaα exists, we get P (xa | yα) = P (xa). we can simplify the above equation to:

P
(
xa | yα, Si

)
= Bi

a

∏
b∈V i

∏
β∈VGT

P (xa | yα, sbβ) , where Bi
a =

[
1

P (xa)

]|V i|×|VGT |−1

. (24)

Modeling a stable thumbnail requires more stable node information, and nodes that appear briefly
may contribute less to the thumbnail modeling. To address this, our TGT introduces a weighting
coefficient inversely proportional to the node frequency across snapshots within the time window,
enabling tailored handling of transient or non-persistent nodes throughout the sequence.

Specifically, we implement the design described in Eq. 24. Taking newly added nodes as an exam-
ple, if xa is a new node, the probability P (xa) in the denominator of Bi

a is small (as newly added
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nodes have a low frequency of occurrence in the input snapshots). Its impact on P (xa|yα, sbβ) (the
thumbnail mapping function) is amplified due to the multiplicative relationship in Eq. 24, thereby
enhancing the feature capture of transient or non-persistent nodes by the thumbnail.

To test for edge-consistency, we make use of an indicator that verifies if snapshot nodes a, b ∈ V i

correspond to valid edges in GT . Formally:

Ai
abMαβs

i
bβ =

{
1 if (a, b) ∈ Ei and (α, β) ∈ EGT

and F(b) = β

0 otherwise.
(25)

When the edge (a, b) ∈ Ei can be matched to a thumbnail edge (α, β) ∈ EGT
via the node

correspondence F(a) = α and F(b) = β, the indicator function takes the value 1; otherwise, it is 0.
To model the probabilistic relationship between snapshots and the thumbnail using a Bernoulli
distribution with error probability Pe, we define:

P
(
xa | yα, sibβ

)
= (1− Pe)

Ai
abMαβs

i
bβ P

1−Ai
abMαβs

i
bβ

e . (26)

Substituting Eq. 26 into Eq. 24, and then substituting the resulting expression into Eq. 21, we derive
the likelihood function for a single snapshot:

P
(
Gi | GH , Si

)
=
∏
a∈V i

∑
α∈VGT

Ki
a exp

µ ∑
b∈V i

∑
β∈VGT

Ai
abMαβs

i
bβ

 ,
where µ = ln

1− Pe

Pe
, Ki

a = P
|V i|×|VGT |
e Bi

a.

(27)

For the entire graph sequence G = {G1, . . . , GT }, we aggregate the likelihood functions of indi-
vidual snapshots following the approach of Han et al. (2015), where S = {S1, . . . , ST } denotes the
sequence of assignment matrices and then get Eq. 2:

P (G | GT ,S) =
∏

Gi∈G

[
P
(
Gi | GT , S

i
)]

=
∏

Gi∈G

 ∏
a∈V i

∑
α∈VGT

Ki
a exp

µ
∑
b∈V i

∑
β∈VGT

Ai
abMαβS

i
bβ

 ,

where µ = ln
1− Pe

Pe
, Ki

a = P
|V i|·|VGT

|
e Bi

a.

A.3 PROOF FOR EQUATIONS

A.3.1 APPROXIMATION OF HV N (EQ. 4)

We initiate by providing a improved version of the approximation method for the von Neumann
entropy of directed graphs from Ye et al. (2014). Initially, we define the von Neumann entropy,
which can be derived from the normalized Laplacian spectrum, as outlined here:

HV N (G) = −Tr(P logP ) = −
|V |∑
i=1

λi
|V |

log
λi
|V |

, (28)

where λ1, . . . , λ|V | denote the eigenvalues of the combinatorial Laplacian matrix, P represents the
transition matrix with elements Puv = 1

dout
u

if (u, v) is in the edge set E of graph G, and Puv = 0

otherwise. By scaling the normalized Laplacian matrix by the reciprocal of its trace, one obtains a

density matrix given by L̂
|V | . The eigenvalues of this density matrix are

(
λ̂1

|V | ,
λ̂2

|V | , . . . ,
λ̂|V |
|V |

)
. Con-

sequently, the von Neumann entropy of the density matrix associated with the normalized Laplacian
matrix of the graph is defined as follows:

HV N (G) = −
|V |∑
j=1

λ̂j
|V |

log
λ̂j
|V |

. (29)
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The von Neumann entropy mentioned above depends on the computation of the spectrum of the
normalized Laplacian, and hence, its computational complexity scales cubically with the number of
nodes. The Taylor expansion for the expression ln

(
λj

|V |

)
is given by:

ln

(
λj
|V |

)
=

(
λ̂j
|V |
− 1

)
− 1

2

(
λ̂j
|V |
− 1

)2

+
1

3

(
λ̂j
|V |
− 1

)3

− 1

4

(
λ̂j
|V |
− 1

)4

+ · · · . (30)

If we retain only the first term of the expansion and neglect the subsequent terms which contribute
insignificantly, ln

(
λ̂j

|V |

)
can be approximated by

(
λ̂j

|V | − 1
)

. Subsequently, the von Neumann en-

tropy SV N (G) can be approximated by the quadratic entropy
∑

j
λ̂j

|V |

(
1− λ̂j

|V |

)
, yielding:

HV N (G) = −
∑
j

λ̂j
|V |

ln
λ̂j
|V |
≃
∑
j

λ̂j
|V |

(
1− λ̂j
|V |

)
=

1

|V |
∑
j

λj −
1

|V |2
∑
j

λ2j . (31)

Using the fact that Tr[L̂k] =
∑

j λ̂
k
j , the quadratic entropy can be rewritten as:

HV N (G) =
Tr[L̂]

|V |
−

Tr
[
L̂2
]

|V |2
. (32)

The normalized Laplacian matrix L̂ has unit diagonal elements. For the trace of the normalized
Laplacian matrix we have:

Tr[L̂] = |V |. (33)

Similarly, for the trace of the square of the normalized Laplacian, we have:

Tr
[
L̂2

]
=Tr

[
I2 −

(
Φ1/2PΦ−1/2 +Φ−1/2PTΦ1/2

)
+

1

4

(
Φ1/2PΦ−1/2Φ1/2PΦ−1/2

+Φ1/2PΦ−1/2Φ−1/2PTΦ1/2 +Φ−1/2PTΦ1/2Φ1/2PΦ−1/2 +Φ−1/2PTΦ1/2Φ−1/2PTΦ1/2
)]

=Tr
[
I2
]
− Tr[P ]− Tr

[
PT

]
+

1

4

(
Tr

[
P 2]+Tr

[
PΦ−1PTΦ

]
+Tr

[
PTΦPΦ−1

]
+Tr

[
PT2

])
=|V |+ 1

2

(
Tr

[
P 2]+Tr

[
PΦ−1PTΦ

])
,

(34)
where Φ = diag(ϕ(1), ϕ(2), . . . ) , ϕ is the unique left eigenvector of P, and then: (details in Ye

et al. (2014))
ϕ(u)

ϕ(v)
=
dinu
dinv

. (35)

To continue the development we first partition the edgeset E into two disjoint subsets E1 and E2,
where E1 = {(u, v)|(u, v) ∈ E and (v, u) /∈ E}, E2 = {(u, v)|(u, v) ∈ E and (v, u) ∈ E}. Then
according to the definition of the transition matrix, we find:

Tr[P 2] =
∑
u∈V

∑
v∈V

PuvPvu =
∑

(u,v)∈E2

1

doutu doutv

,

Tr[PΦ−1PTΦ] =
∑
u∈V

∑
v∈V

P 2
uv

ϕ(u)

ϕ(v)
=

∑
(u,v)∈E

ϕ(u)

ϕ(v)dout2u

.

(36)

Substitute Eq. 36 into Eq. 34, then Substitute Eq. 33 and Eq. 34 into Eq. 32, we get Eq. 4:

HV N = 1− 1

|VGT
|
− 1

2|VGT
|2

{
−

∑
(α,β)∈EGT 1

1

doutβ doutα

+
∑

(α,β)∈EGT

(
dinα

dinβ d
out2
α

+
1

doutβ doutα

)}
,

where dinα =
∑

γ∈VGT

Mγα, doutα =
∑

γ∈VGT

Mαγ .
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Since the normalized Laplacian L̃ is sparse for most real-world graphs, Tr(L̃2) can be computed
without eigenvalue decomposition by exploiting sparsity (Eq. 3436-):

Tr(L̃2) =
∑
i,j

L̃2
ij =

∑
(u,v)∈EGT

w2
uv +

∑
u∈VGT

d2u. (37)

Both terms depend linearly on the number of edges, leading to O(|EGT
|) complexity per snap-

shot(Ye et al., 2014). During temporal aggregation, we process ∆t snapshots, thus the total com-
plexity of the evolutionary term becomes O(∆t · |EGT

|), which matches the asymptotic bound
stated in the paper. No strong assumptions are required, only the standard sparsity condition
|EGT

| ≪ |VGT
|2, which holds for most real-world dynamic graphs.

Furthermore, in practice, we pre-normalize edge weights and reuse cached degree matrices across
consecutive snapshots. This amortizes the per-snapshot cost and further reduces the effective run-
time, as validated by our empirical runtime profiling in Table 4.

A.3.2 DONSKER-VARADHAN ESTIMATOR FOR MUTUAL INFORMATION (EQ. 6)

To prove Eq. 6, we need to show:

Is(GT ;G) = sup
f∈F

(
EP [f(VG)]− logEQ

[
ef(VG)

])
.

which is equivalent to proving:

DKL(P ∥ Q) ≥ EP [T ]− log(EQ[e
T ]) =

∑
i

piti − log
∑
i

qie
ti . (38)

To find the extremum of Eq. 38, we take the derivative with respect to tj and set it equal to zero:

∂ [
∑

i piti − log
∑

i qie
ti ]

∂tj
= 0

→ pj −
qje

tj∑
i qie

ti
= 0

→ pj
∑
i

qie
ti = qje

tj

→ tj = log
pj
qj

+ log
∑
i

qie
ti .

(39)

Let α = log
∑
i

qie
ti , and substitute tj into ti:∑

i

piti − log
∑
i

qie
ti =

∑
i

piti − log
∑
i

qie
ti

=
∑
i

pi

(
log

pj
qj

+ α

)
− log

∑
i

qie
log

(
pj
qj

+α
)

=
∑
i

pi

(
log

pj
qj

+ α

)
− log

∑
i

eαqi
pj
qj

=
∑
i

(
pi log

pj
qj

)
+ α− α− log

∑
i

qi
pj
qj

=
∑
i

(
pi log

pj
qj

)
+ α− α− log 1

=
∑
i

pi log
pj
qj

= DKL(p∥q).

(40)

Thus, the inequality Eq. 6 becomes an equality at the extreme value. When substituting f(VG) for
T in Eq. 38, the equality holds.
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A.3.3 UPPER BOUND OF I(G;GT ) (EQ. 9)

For any groups of indices L, SGT X
, SGT A

⊂ [L] such that G ⊥ Z(L)
GT X
|{Z(l)

GT X
}l∈SX

∪{Z(l)
GT A
}l∈SA

,

and for any probabilistic distributions Q(Z
(l)
GT X

), l ∈ SGT X
, and Q(Z

(l)
GT A

), l ∈ SGT A
,

I(G;GT ) ≤ I(G; {Z(l)
GT X
}l∈SGT X

∪ {Z(l)
GT A
}l∈SGT A

) ≤
∑

l∈SGT X

IB(l)
GT X

+
∑

l∈SGT A

IB(l)
GT A

,

where IB(l)
GT A

= E

[
log

P(Z(l)
GT A
|A, Z(l−1)

GT A
)

Q(Z
(l)
GT A

)

]
, IB(l)

GT X
= E

[
log

P(Z(l)
GT X
|Z(l−1)

GT X
, Z

(l)
GT A

)

Q(Z
(l)
GT X

)

]
.

By assumption 1, G ⊥ Z(L)
GT X

| {Z(l)
GT X
}l∈SX

∪{Z(l)
GT A
}l∈SA

ensures that the left side of the inequal-
ity holds. As the second inequality, under Assumption 1, we define an order ≺ on the set of random
variables {Z(l)

GT X
}l∈SGT X

∪ {Z(l)
A }l∈SGT A

as follows:

1. For distinct timestamps l and l’, Z(l)
GT X

, Z
(l)
GT A
≺ Z(l′)

GT X
, Z

(l′)
GT A

.

2. For a given timestamp l, Z(l)
GT A
≺ Z(l)

GT X
.

Subsequently, we define a sequence of sets based on this order.

H
(l)
GT A

= {Z(l1)
GT X

, Z
(l2)
GT A
|l1 < l, l2 < l, l1 ∈ SGT X

, l2 ∈ SGT A
},

H
(l)
GT X

= {Z(l1)
GT X

, Z
(l2)
GT A
|l1 < l, l2 ≤ l, l1 ∈ SGT X

, l2 ∈ SGT A
}.

We may decompose I(G; {Z(l)
GT X
}l∈SGT X

∪ {Z(l)
GT A
}l∈SGT A

) with respect to this order.

I(G; {Z(l)
GT X
}l∈SGT X

∪ {Z(l)
GT A
}l∈SGT A

) =
∑

l∈SGT A

I(G;Z(l)
GT A
|H(l)

GT A
) +

∑
l∈SGT X

I(G;Z(l)
GT X
|H(l)

GT X
).

(41)

Similar to Wu et al. (2020), we obtain upper bounds for I(G;Z(l)
GT A

| H(l)
GT A

) and I(G;Z(l)
GT X

|
H

(l)
GT X

).

I(G;Z(l)
GT A
|H(l)

GT A
)≤I(G, Z(l−1)

GT X
;Z

(l)
GT A
|H(l)

GT A
)

=I(Z
(l−1)
GT X

, A;Z
(l)
GT A
|H(l)

GT A
)

≤I(Z(l−1)
GT X

, A;Z
(l)
GT A

)

=IB(l)
GT A
− KL(P(Z(l)

GT A
)||Q(Z

(l)
GT A

)) ≤ IB(l)
GT A

(42)

I(G;Z(l)
GT X
|H(l)

GT X
)≤I(G, Z(l−1)

GT X
, Z

(l)
GT A

;Z
(l)
GT X
|H(l)

GT X
)

=I(Z
(l−1)
GT X

, Z
(l)
GT A

;Z
(l)
GT X
|H(l)

GT X
)

≤I(Z(l−1)
GT X

, Z
(l)
GT A

;Z
(l)
GT X

)

=IB(l)
GT X
− KL(P(Z(l)

GT X
)||Q(Z

(l)
GT X

)) ≤ IB(l)
GT X

(43)

In summary, the proof of Eq. 9 is complete.

A.3.4 LOWER BOUND OF I(Y;GT ) (EQ. 10)

We apply the Nguyen, Wainright and Jordan’s bound to prove the equation (Nguyen et al., 2010):

Lemma 1 Given any two X1 and X2 and any permutation invariant function g, we have the varia-
tional lower bound of I(X1;X2):

I(X1, X2) ≥ E [g(X1, X2)]− EP(X1)P(X2) [exp(g(X1, X2)− 1)] .
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We substitute g
(
Y,Z

(l)
GT X

)
= 1 + log

∏
v∈VN(v)

P
(
Yv|Z(l)

GT X
,Z

(l)
GT A

)
Q(Y ) and obtain Eq. 10:

I(Y;GT ) ≥ 1 + EP (Y,GT )[log
P (Y|(Z(l)

GT X
, Z

(l)
GT A

))

Q(Y)
]− EP (Y)[

EP (GT )P (Y|(Z
(l)
GT X

, Z
(l)
GT A

))

Q(Y)
].

A.4 DETAILS FOR DATASETS

In this section, we provide detailed information on the three datasets used in the experiment. When
selecting datasets, we consider multiple dimensions including time span, graph density, and evo-
lution frequency. Since the TGT framework focuses on global evolutionary features, we prioritize
datasets with high dynamic evolution frequencies in temporal graphs during our selection process.
Additionally, under similar evolution frequencies and time granularity, we favor datasets with fewer
nodes per snapshot. Such datasets exhibit greater randomness under the same perturbation ratio,
enabling a more effective validation of the model’s robustness advantages in stochastic settings.
Following these dataset selection criteria, we choose Bitcoin, MathOverflow, and MOOC for the
main experiments and supplementary analytical ablation (see Table 1).

Bitcoin Bitcoin is a cryptocurrency to trade anonymously over the web. Due to anonymity, there is
counterpart risk, which has lead to the emergence of several exchanges where Bitcoin users rate the
level of trust they have in others. We integrate the data from the two trading platforms Bitcoin-OTC
and Bitcoin-Alpha into a time series dataset Bitcoin. Both these exchanges allow users to rate others
on a scale of -10 to +10 (excluding 0). According to guidelines, a rating of -10 should be given to
fraudsters while at the other end of the spectrum, +10 means ”you trust him as you trust yourself”.
The other rating values have intermediate meanings. We assign two-dimensional features to nodes,
which represent the trust and trustworthiness level, respectively, and sum up the rating of users.

MathOverflow MathOverflow is a temporal network of user interactions on the Stack Exchange
website Math Overflow. Nodes represent users, and edges represent question-answer relationships.
Three distinct types of interactions are modeled by directed edges (u, v, t), where:

• user u answers user v’s question at time t;

• user u comments on user v’s question at time t;

• user u comments on user v’s answer at time t.

While constructing adjacency relations based on triplets, we assign six-dimensional features to
nodes, statistically capturing the counts of: questions posted, answers provided, comments on ques-
tions, questions commented on, comments on answers, and answers commented on. We use these
features to build a temporal graph for experimental purposes.

MOOC The MOOC dataset represents user behavior on a popular MOOC platform, modeled as
a directed temporal network. Nodes represent users and course activities (targets), while edges
represent user actions on these targets. Each action is annotated with attributes and a timestamp,
where timestamps are normalized to start from timestamp 0. The dataset is directed, temporal, and
attributed. Additionally, each action includes a binary label indicating whether the user withdrew
from the course after this action—i.e., whether this was the user’s final interaction with the platform.

For snapshot partitioning of a dataset, we follow these two principles.

• Chronological order. We divide the dynamic graph strictly by chronological order to avoid any
missing or overlapping temporal intervals. This ensures that temporal dependencies are preserved
as faithfully as possible. Because different intervals naturally contain varying numbers of nodes and
edges, the node/edge counts reported in Table 1 reflect the average snapshot scale after segmen-
tation. Presenting the average scale helps provide an intuitive sense of computational complexity.

• Handling extreme variations in temporal activity. In datasets with highly uneven temporal
activity (e.g., MathOverflow), directly segmenting by time may produce snapshots that are either
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extremely sparse or extremely dense. To address this, we follow chronological segmentation but en-
force reasonable lower and upper bounds on snapshot size by merging overly small adjacent snap-
shots or splitting overly large ones. This adjustment maintains strict temporal continuity (no overlap,
no omission) while ensuring more stable computation and memory usage across snapshots.

A.5 DETAILS FOR ADVERSARIAL ATTACK EXPERIMENT

Node Features To introduce perturbations to node features, we add Gaussian noise r · ϵ, where
the interference amplitude r is set as the average of the maximum values of each node feature, and
ϵ ∼ N (0, 1). Specifically, we randomly select 10%, 20%, and 50% of nodes in each dataset to
simulate increasing levels of interference, gradually escalating the perturbation intensity.

Topology Structure To perturb the topological structure, we employ Nettack (Zügner et al., 2018),
a proxy-model-based adversarial attack method that iteratively selects graph substructures with the
highest impact on prediction loss as perturbation targets. This approach greedily identifies edges or
node pairs whose modification most significantly affects the proxy model’s gradient calculations,
then applies perturbations such as edge deletion or negative sampling based on their impact on the
optimization process. Specifically, Nettack simulates increasing perturbation severity by selecting
the top 5%, 10%, and 20% of edges ranked by their influence on prediction loss, progressively
intensifying structural disturbances to evaluate model robustness.

Temporal Evolution To perturb the temporal evolution dynamics, we disrupt the modeling of
underlying temporal dependencies by randomly permuting snapshots within the sequence. Specifi-
cally, we randomly select and replace a snapshot with another from a different time step within the
same sequence, thereby introducing inconsistencies in the chronological order. Across all datasets,
we apply such temporal perturbations 1, 2, and 5 times to simulate increasing levels of disruption,
allowing us to evaluate how model performance degrades with progressively stronger interference
in the temporal continuity.

In addition to the untargeted interference mentioned above, we also conducted a detailed investiga-
tion and selected five targeted attack methods to interfere with our data, and used this to verify the
robustness of TGT.

• Nettack(Zügner et al., 2018): Nettack is a pioneering white-box adversarial attack for graph neu-
ral networks (GNNs), which perturbs graph structure and node features to misclassify target nodes
while ensuring imperceptibility via preserving key graph properties; it adopts a simplified linearized
GCN as the surrogate model for computational efficiency, leverages gradient-guided greedy selec-
tion to iteratively apply impactful modifications, and exhibits notable efficiency, generalizability
across GNN architectures, and robustness to partial graph knowledge.

• FGA(Chen et al., 2019): Fast Gradient Attack (FGA) is a white-box adversarial attack for network
embedding, which perturbs graph structure via link rewiring to degrade the performance of down-
stream tasks; it leverages gradient information of pairwise nodes to select the most impactful node
pairs, and exhibits strong generalizability across multiple network embedding methods as well as
high efficiency with minimal link modifications.

• SGA(Li et al., 2021): SGA is an adversarial attack for large-scale graphs, which perturbs structure
(edge additions/deletions) to degrade downstream task performance; it adopts scalable strategies
(e.g., sampling) for large-graph adaptability, leverages lightweight gradient-guided perturbation se-
lection, and features strong scalability, high efficiency, and minimal imperceptible modifications.

• PRBCD(Geisler et al., 2021): Projected Randomized Block Coordinate Descent (PRBCD) is an
adversarial attack for large-scale GNNs, which solely perturbs the adjacency matrix to degrade clas-
sification performance; it adopts randomized block coordinate descent with continuous relaxation
of discrete 0,1 adjacency entries, leverages gradient optimization for efficient perturbation selection,
and supports both evasion and poisoning attacks with strong scalability and low memory overhead.
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• GOttack(Alom et al., 2025): Gottack is a universal adversarial attack for GNNs, which perturbs
graph structure via topology-aware graph orbits learning to boost misclassification rates; it narrows
the search space with orbit-based selection, and features high efficiency, strong cross-architecture
generalizability, and subtle effective perturbations.

A.6 DETAILS FOR IMPLEMENTATION

The complete process of TGT in the link prediction task is shown in algorithm 1. We implemented
TGT utilizing GAT (Veličković et al., 2018), incorporating a 2-layered, 2-headed attention mecha-
nism for facilitating message passing and aggregation processes. The hidden dimension is 64.

In our experimental setup, we sampled neighbors with a size of k = 20 and constrained the spa-
tiotemporal neighborhood to encompass ∆t = 5 snapshots. Neighbor sampling was conducted
according to the Bernoulli distribution, guided by attention weights. The Adam optimizer was em-
ployed, with an initial learning rate of 0.001, and the training process was iterated 1000 epochs
with early stop. To ensure the robustness of our results, all experiments were conducted using three
distinct random seeds: 0, 1, and 2. We reported the average performance and standard deviation
derived from these repetitions. All the above experiments are conducted on two NVIDIA GeForce
RTX 3090 GPUs with 24GB of memory each.

A.7 ADDITIONAL ABLATION EXPERIMENT ON THUMBNAIL BASED ON VNGE

To validate the efficacy of the thumbnail’s evolutionary constraints, which is implemented
through the von Neumann Graph Entropy (VNGE), we conducted supplementary experiments on
noise-perturbed datasets, serving as a complement to the results presented in Fig. 2.

Table 5: Ablation study on holistic continuous evolutionary characteristics results (AUC) on datasets
with data perturbation at different levels.

Dataset Model Clean Feature Interference Structure Interference Temporal Interference
10% 20% 50% 5% 10% 20% n = 1 n = 2 n = 5

Bitcoin

w/o thumbnail 73.04±0.6 67.73±0.2 61.82±0.3 56.12±0.3 69.77±0.5 62.87±0.3 57.51±0.3 64.21±0.3 59.61±0.4 55.34±0.3
w/o T 89.56±0.2 83.45±0.3 74.31±0.2 66.20±0.4 83.26±0.3 79.67±0.3 68.37±0.2 84.73±0.2 80.04±0.3 71.06±0.2

w/o VNGE 86.91±0.5 80.17±0.3 75.46±0.4 69.73±0.2 82.55±0.3 78.04±0.3 72.42±0.3 83.79±0.2 81.54±0.5 74.37±0.3
TGT 91.41±0.2 89.43±0.5 86.23±0.4 80.62±0.4 89.83±0.6 85.00±0.5 80.95±0.7 90.78±0.5 88.14±0.6 85.64±0.3

MathOverflow

w/o thumbnail 76.11±0.3 74.24±0.2 68.41±0.3 60.21±0.4 72.70±0.5 68.29±0.3 60.54±0.3 70.32±0.3 62.47±0.5 56.36±0.7
w/o T 80.35±0.3 75.52±0.3 71.43±0.3 65.52±0.3 77.13±0.3 73.31±0.3 68.74±0.5 76.39±0.4 73.30±0.3 64.27±0.3

w/o VNGE 80.29±0.3 77.34±0.3 71.46±0.3 67.98±0.3 77.43±0.4 74.67±0.3 71.49±0.2 78.61±0.3 76.07±0.3 69.83±0.2
TGT 82.38±0.6 79.22±0.3 74.37±0.3 71.42±0.2 80.01±0.3 77.74±0.3 75.93±0.7 81.57±0.2 80.71±0.5 76.37±0.4

MOOC

w/o thumbnail 86.47±0.3 83.63±0.1 74.94±0.3 61.34±0.5 83.34±0.3 72.61±0.4 60.25±0.2 81.06±0.4 76.34±0.4 69.71±0.7
w/o T 90.78±0.3 85.32±0.2 72.78±0.4 60.23±0.3 86.54±0.3 81.17±0.3 73.54±0.2 85.21±0.2 78.55±0.4 69.49±0.5

w/o VNGE 92.03±0.2 86.73±0.2 77.35±0.4 66.27±0.3 89.58±0.4 84.90±0.5 77.31±0.3 84.19±0.2 79.41±0.3 70.59±0.4
TGT 95.42±0.4 88.73±0.2 80.79±0.1 71.68±0.3 90.43±0.3 86.16±0.5 81.82±0.3 92.61±0.2 89.53±0.7 84.01±0.6

To construct the ablation baseline w/o VNGE, we selected normalized node degrees from Eq. 11
as a substitute for the von Neumann entropy. We also added an ablation control w/o T, where the
term Is(GT ;G) in Eq. 11 is set to zero entirely, and a further ablation setting w/o thumbnail that
completely discards the construction of thumbnail from Eq. 11.

As shown in Table 5, the construction of the thumbnail plays a critical role in the model’s rep-
resentational capability and robustness. Even when structural information is excluded in the w/o
T ablation (where the thumbnail is determined solely by node features from Eq. 6), the model
still improves its representation of temporal graphs using node-level information compared with
w/o thumbnail. In contrast to naive alternatives for incorporating evolutionary constraints, such as
normalized node degree (w/o VNGE), the thumbnail modeled via mutual information based on
VNGE (our proposed method) demonstrates significant advantages in both representational capabil-
ity and robustness. This confirms the effectiveness of the VNGE-based thumbnail in enhancing
the model’s ability to capture continuous evolutionary features while resisting perturbations.

A.8 ADDITIONAL RESULTS ON ABLATION STUDY

We conducted individual ablation studies on the three purposed components to investigate the spe-
cific contribution of each to the experimental outcomes. When the data set has not been disturbed,
the impact of each component on the experimental results is shown in Fig. 4:
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Figure 4: The figure shows the ablation experiment results on three datasets. Where T represents
the evolution constraint (Eq. 11), A represents the structure mutual information (Eq. 13), and X
represents the feature mutual information (Eq. 12)

A.8.1 FEATURE MUTUAL INFORMATION

After setting the feature mutual information (Eq. 12) to 0, we repeated the robustness test of feature
interference on the three datasets. The results are shown in Fig. 5. Without the feature mutual
information, the model’s robustness to feature interference drops significantly.
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Figure 5: The figure shows the experimental results after the node features on the three data sets
were perturbed to different degrees.

A.8.2 STRUCTURE MUTUAL INFORMATION

With the structure mutual information (Eq. 13) set to zero, we conducted a repeated robustness
assessment of structure interference across the three datasets, shown in Fig. 6. Compared with
feature mutual information, structure mutual information has less impact on clean data, but its impact
on the robustness of the model is more obvious.
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Figure 6: The figure shows the experimental results after the topology on the three data sets were
perturbed to different degrees.
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A.8.3 ABLATION ON BACKBONE

In this section, we mainly design experiments and discuss the impact of the encoder’s backbone net-
work configuration on TGT performance. The backbone corresponds to Lines 6–8 of Algorithm 1
in Appendix A.1.4, where the encoder is applied. Although GAT is adopted in the main paper owing
to its capacity to model node-specific contributions to the thumbnail through attention mechanisms,
the TGT framework itself is backbone-agnostic.

Table 6: The results under clean data and three types of perturbations on Bitcoin dataset.

Backbone Clean Feature Interference Structure Interference Temporal Interference
10% 20% 50% 5% 10% 20% n = 1 n = 2 n = 5

GCN 90.86 88.93 86.89 81.73 89.66 85.27 78.13 89.24 86.05 82.75
GIN 91.44 90.24 84.52 79.87 87.72 85.33 81.02 89.90 88.31 84.13

GAT (Default) 91.41 89.43 86.23 80.62 89.83 85.00 80.95 90.78 88.14 85.64

To elaborate on this flexibility, we have implemented two additional TGT variants with alternative
encoders such as GCN (Kipf, 2016) and GIN (Xu et al., 2018). We repeat the experiments on the
Bitcoin dataset by replacing the backbone and obtain the results shown in Table 6.

These results demonstrate two points: (i) TGT’s performance is stable across different backbones.
The changes in node encoder architecture have only minor influence on clean-data accuracy and ro-
bustness under perturbations. (ii) GAT performs slightly better, which is expected because the atten-
tion mechanism naturally aligns with the design of TGT. It allows different nodes in each snapshot
to contribute unequally to thumbnail, reflecting our motivation to capture heterogeneous importance.

In summary, while GAT is a strong and intuitive choice for TGT, the framework does not rely on a
specific backbone architecture and can be instantiated using standard GNNs such as GCN and GIN
with comparable performance.

A.9 HYPERPARAMETER SENSITIVITY EXPERIMENTS OF TGT

We performed hyperparameter sensitivity analyzes on the Lagrangian coefficients defined in Eq. 15
and Eq. 16, examining their impact on robustness behavior and optimization of temporal evolution.
We choose to conduct experiments on the MOOC dataset, which has the most edge data and the
fastest evolution speed.

The impact of Hyperparameter setting on thumbnail In this section, we primarily design ex-
periments and discuss the impact of hyperparameter settings on thumbnail modeling, and further
provide suggestions on the parameter selection methods for Lagrangian hyperparameters.

λ serves to specify the constraint strength exerted by the thumbnail over the encoding process. To
clarify this relationship, we have supplemented with experimental analyses on the number of thumb-
nail nodes as a function of λ. Different choices of λ indirectly influence the thumbnail size, yet the
thumbnail size remains close to the average number of nodes (and edges) across snapshots. This, in
turn, ensures the two terms are of the same order of magnitude during gradient computation, thus
validating the rationality of confining λ’s value range to 10.

Regarding the two terms balanced by β (Eq. 15): the TB term is computed via snapshot node sam-
pling, while the downstream task mutual information is calculated using thumbnail nodes. Table 7
confirms that the two terms are of the same order of magnitude, thus justifying the rationality of
setting β’s value range within 10.

Unfortunately, tuning these two hyperparameters is an empirical process, as changes in data sce-
narios and specific requirements directly influence their optimal values. In practice, we recommend
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Table 7: Thumbnail statistics under different λ settings.

Dataset Thumbnail λ Snapshot Avg.
0.1 0.5 1 2 5

Bitcoin nodes 6,954 6,844 7,019 7,090 7,051 7,034
edges 47,558 48,880 47,558 47,969 52,982 51,363

MathOverflow nodes 20,474 19,965 23,376 22,371 24,105 21,683
edges 160,491 262,295 315,105 417,491 478,325 207,581

MOOC nodes 6,120 6,264 6,275 6,152 6,340 7,047
edges 53,552 56,628 63,415 61,074 68,068 81,749

conducting a small number of warm-up training runs for hyperparameter search, thereby achieving
more reliable hyperparameter selection.

Specifically, during the pre-training phase, we estimate the noise level of the input sequence via
the variance of von Neumann graph entropy across consecutive snapshots, denoted as Var(H(Gt)).
This value is correlated with structural volatility, and we scale α proportionally to this variance:

α = α0 ·
Var(H(Gt))

Var(H(Gt)) + ϵ
. (44)

This guarantees that α is increased solely when the graph sequence undergoes unstable evolution.
During the process of α’s gradual increase, we select the value that delivers acceptable performance
under the clean setting as the appropriate hyperparameter value.

Compression Balance Parameter of TGT The compression balance parameter β of
thumbnail in Eq. 15 controls the trade-off between preserving relevant information and com-
pressing redundant details in the learned representation. We set β to values including 0.001, 0.01,
0.1, 0.5, and 1, systematically increasing the compression strength to evaluate the robustness of the
model under the compression constraints based on thumbnail.

Table 8: Robustness results (AUC) on MOOC with different β in TGT.

β Clean Feature Interference Structure Interference
10% 20% 50% 5% 10% 20%

0.001 95.01 85.35 77.74 68.18 87.98 83.56 78.08
0.01 94.35 86.57 78.91 70.46 91.23 85.71 79.68
0.1 95.42 88.73 80.79 71.68 90.43 86.16 81.82
0.5 92.47 87.84 82.16 76.89 89.51 86.95 83.62
1 90.81 89.05 83.27 79.38 89.70 87.67 82.98
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Figure 7: The results after the temporal perturbation on the MOOC with different β settings.

The robustness results for node feature and structure perturbations are presented in Table 8. When
β is small, model performance degrades more significantly with increasing interference. As β in-
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creases, while performance on clean data slightly declines, the model’s interference resistance im-
proves substantially. Practically, setting β requires balancing robustness against the capability to
represent clean data effectively, reflecting a critical trade-off in the framework’s design.

We performed the same experiment under temporal interference and observed consistent results, as
shown in Fig. 7, demonstrating that the optimization objectives TBGT X

, TBGT A
in Eq. 15 leverage

the thumbnail GT , which encodes rich continuous evolutionary features, as a compression con-
straint. This approach prevents the disconnection between the temporal graph’s holistic evolutionary
continuity and discrete snapshot features (e.g., nodes, topology), thereby enabling more coherent and
robust model performance across perturbation. Finally we set β = 0.1 in other experiment.

Evolutionary Constraint Parameter of TGT The evolution parameter α in Eq. 16 governs the
strength of temporal continuity enforced by the thumbnail, guiding the model to preserve coher-
ent evolution patterns across time while filtering out noise and irrelevant transitions. We set α to 0.1,
0.5, 1, 2, 5 to gradually enhance the strength of the continuity temporal constraint.

Table 9: Robustness results (AUC) on MOOC datasets with different α in TGT.

α Clean Feature Interference Structure Interference
10% 20% 50% 5% 10% 20%

0.1 94.37 87.21 76.54 66.63 89.80 85.45 79.77
0.5 95.02 87.77 74.51 67.06 91.43 87.91 80.36
1 95.42 88.73 80.79 71.68 90.43 86.16 81.82
2 89.61 84.63 80.72 71.23 86.32 82.35 78.43
5 87.26 83.52 79.40 69.33 84.77 80.59 77.81
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Figure 8: The results after the temporal perturbation on the MOOC with different β settings.

Table 9 indicates that under untargeted feature perturbations, the robustness improvement from con-
straining the model with the von Neumann entropy, which captures topological evolution, is rela-
tively modest. By contrast, during structural attacks, increasing the parameter α reduces the mag-
nitude of performance degradation caused by perturbations. This trend is particularly evident in the
temporal perturbation experiment results visualized in Fig. 8. Notably, as α increases, the encoding
of node features becomes sparser, leading to degraded performance on clean data. After synthesiz-
ing these experimental results, we ultimately set α = 1 as the optimal value to balance robustness
and clean-data representation.

Window Size setting of TGT Regarding the time window size mentioned in Appendix A.6, we
supplement the ablation experiment results on Bitcoin dataset. Interference settings are based on
the most severe settings for each type of interference in the Table 3 (Feature 50%, structure 20%,
temporal n=5).

Notably, unduly small window sizes result in inadequate thumbnail modeling, thereby degrading
representation quality. For window sizes larger than 5, the model’s performance exhibits negligible
fluctuations. This confirms that the neighborhood relationships determined by window size exert a
certain influence on the thumbnail. TGT exhibits strong adaptability to this hyperparameter.
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Table 10: The ablation experiment results (AUC) with different window sizes.

Window Size Clean Interference
Feature Structure Temporal

1 75.38 65.41 65.27 70.80
3 84.79 72.76 74.75 77.47
5 (baseline) 91.41 80.62 80.95 85.64
7 92.52 79.03 80.70 86.20
9 90.55 81.37 84.70 85.93

A.10 ADDITIONAL EXPERIMENT ON SIMILAR WORKS

Numerous approaches have leveraged the information bottleneck to compress raw data for robust-
ness (Wu et al., 2020; Sun et al., 2022; Yu et al., 2021b;a). Some works have also attempted to adapt
information bottleneck theory to temporal graphs for robustness (Yuan et al., 2024). In contrast to
these related studies, which focus on achieving information compression, TGT prioritizes summariz-
ing a reliable continuous evolutionary skeleton for temporal graph sequences as thumbnail. TGT
is the first to integrate global evolution via the von Neumann entropy, characterizing the evolution-
ary backbone of temporal graphs. By imposing compression constraints through the thumbnail,
it avoids excessive compression that causes information loss or insufficient compression that leaves
noise redundancy, striking a balance between essential feature retention and disturbance resilience.

To further establish TGT’s superiority, we compare it against methods which perform information
bottleneck on temporal graphs and conduct supplementary experiments to validate its distinct ad-
vantages. We additionally selected two temporal datasets, Collab and Yelp. These datasets contain
richer features but exhibit relatively lower evolution frequencies compared to our primary choices.

• Collab is an academic collaboration dataset containing papers published between 1990 and
2005. Nodes represent authors, while edges represent co-authorships. Each edge includes domain
information such as ”data mining,” ”database,” ”medical informatics,” ”theory,” and ”visualization,”
based on the field of the co-authored publication. Node features are processed using word2vec
(Mikolov et al., 2013), and edges are encoded via one-hot encoding.

• Yelp is a forum dataset containing business information, including attributes such as reviews,
photos, check-ins, business hours, parking availability, and ambiance. We define users and busi-
nesses as nodes and review actions as edges, processing node features with word2vec similarly to
the Collab. We sample interactions from five major business categories, Pizza, American (New)
Food, Coffee & Tea, Sushi Bars, and Fast Food, spanning from January 2019 to December 2020.

Table 11: Robustness results (AUC) on Collab and Yelp datasets with different data perturbation.

Dataset Model Clean Feature Interference Structure Interference Temporal Interference
10% 20% 50% 5% 10% 20% n = 1 n = 2 n = 5

Collab
GIB+LSTM 91.36±0.2 80.73±0.2 72.27±0.3 61.73±0.3 85.75±0.2 76.51±0.4 71.22±0.2 84.07±0.3 74.34±0.3 60.23±0.4

DGIB 92.17±0.2 78.95±0.3 73.72±0.3 64.18±0.6 87.47±0.1 80.73±0.2 74.43±0.3 83.32±0.2 80.73±0.2 59.46±0.5
TGT 93.41±0.3 90.26±0.3 85.06±0.3 74.92±0.3 91.19±0.4 85.07±0.2 78.72±0.4 84.42±0.3 82.31±0.2 73.11±0.3

Yelp
GIB+LSTM 77.52±0.4 71.71±0.2 62.63±0.2 54.76±0.5 75.41±0.2 72.56±0.4 65.31±0.2 74.02±0.3 68.34±0.3 57.26±0.7

DGIB 76.88±0.2 71.54±0.4 67.34±0.5 62.98±0.4 75.27±0.4 74.51±0.2 73.43±0.3 75.39±0.3 72.11±0.3 65.22±0.6
TGT 80.17±0.3 76.05±0.2 69.37±0.3 62.53±0.3 78.76±0.2 75.66±0.1 73.57±0.2 79.79±0.2 76.37±0.3 72.02±0.3

Our selected comparison baselines are DGIB (Yuan et al., 2024) and GIB (Wu et al., 2020) com-
bined with an LSTM model, where GIB first generates discrete snapshot representations and the
LSTM subsequently captures temporal dependencies. Experiments shows the superiority of TGT.

A.11 SUPPLEMENTARY EXPERIMENTS UNDER DIFFERENT DOWNSTREAM TASKS

To verify the robustness of the temporal node representations learned by TGT, we conduct additional
experiments on two representative downstream tasks. Specifically, we evaluate TGT on node classi-
fication and dynamic node property prediction. These experiments further demonstrate the model’s
robustness and its ability to generalize across diverse tasks.
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Table 12: Node classification performance (AUC) under clean and perturbed settings on Reddit
and MOOC datasets.

Dataset Method Clean Interference
Feature Structure Temporal

Reddit

EvolveGCN 56.4 48.6 51.7 51.8
JODIE 59.9 51.6 51.4 50.1
DyREP 63.2 54.5 57.6 52.4

TGN 67.2 53.1 58.1 53.5
DIDA 58.2 49.0 54.3 49.7

GIB+LSTM 59.9 54.7 53.1 51.6
DGIB 61.3 55.7 54.6 52.0

TGT (ours) 64.6 58.3 59.0 57.3

MOOC

EvolveGCN 67.3 54.6 54.9 53.8
JODIE 68.5 53.7 56.5 55.4
DyREP 63.4 50.3 55.8 53.6

TGN 64.4 53.1 54.6 51.7
DIDA 56.7 53.7 54.9 53.0

GIB+LSTM 59.1 51.2 54.7 52.3
DGIB 61.3 54.7 55.2 53.1

TGT (ours) 66.4 60.3 62.6 61.4

A.11.1 SUPPLEMENTARY EXPERIMENT ON NODE CLASSIFICATION

To demonstrate that TGT produces general-purpose temporal node representations that transfer to
other downstream tasks, we expanded our evaluation to a node classification task on both the Red-
dit dataset (Kumar et al., 2019) and the MOOC dataset used in the main paper. The supplementary
Reddit dataset is as follows:

• Reddit: A subreddit-focused sharing/discussion platform. We build the temporal dataset Red-
dit from public sources (SNAP’s 2046 subreddit monthly networks, Pushshift.io timestamped com-
ments). It is a directed temporal attributed network with subreddit hyperlinks (timestamps, sentiment
polarity, post text attributes), featuring two core interactions: direct user replies and linear comment
chains (less than 3 intermediates). Interactions have a valence score (upvotes – downvotes); node
features (3D): activity (total comments), interaction quality (avg. valence), community participa-
tion (joined subreddits), derived from historical stats. One-month snapshot: 1k active subreddits,
10k users, 672k+ interactions; post texts encoded as LIWC features; labels from ban records (366
labeled nodes); task: binary node classification (banned/unbanned).

The results are reported in Table 12. Interference settings are based on the most severe settings for
each type of interference in the Table 3 (Feature 50%, structure 20%, temporal n=5).

Under clean settings, TGT achieves competitive AUCs, comparable to or better than strong temporal
baselines (e.g., TGN, DyREP). Under severe feature interference (50% Gaussian corruption), TGT
retains substantially higher performance than most baselines (next best typically in the low-50s),
demonstrating superior denoising ability.Under structural interference and temporal interference,
TGT consistently outperforms alternatives by meaningful margins.

These results show that the thumbnail provides a robust evolution skeleton that helps not only
link prediction but also node-level classification. Intuitively, by encoding persistent evolutionary
skeletons, TGT yields embeddings that (i) suppress transient/noisy signals that hurt classification
under corruption, and (ii) preserve long-term structural cues that are predictive for node labels.

A.11.2 SUPPLEMENTARY EXPERIMENT ON TARGETED ATTACKS WITH EXTRA BASELINES

To further measure the robustness of our TGT under more severe noise conditions, we conducted
experiments on a wider range of noise data. We implemented Nettack, FGA, and SGA using Deep-
Robust3, set the attack intensity n perturbations to 20% of the average number of nodes, and im-

3DeepRobust: https://github.com/DSE-MSU/DeepRobust
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plemented these five attack methods using the official code of PRBCD4 and GOttack5 (details of
attack methods in Appendix A.5).

Table 13: Link prediction performance(AUC) comparison under untargeted and targeted attacks.

Dataset Method Clean Untargeted Interference Targeted Attacks
Feat.(20%) Struct.(20%) Temp.(n=5) Nettack FGA SGA PRBCD GOttack

Bitcoin

EvolveGCN 67.59±0.3 56.77±0.2 55.89±0.3 54.37±0.4 55.99±0.2 47.67±0.6 52.08±0.4 49.70±0.7 51.08±0.2
JODIE 74.47±0.3 61.10±0.3 60.57±0.3 58.28±0.7 54.28±0.4 55.24±0.3 58.00±0.6 53.34±0.6 48.54±0.3
DyREP 70.43±0.5 61.25±0.3 58.60±0.5 57.33±0.7 53.44±0.7 54.09±0.7 55.71±0.3 53.71±1.1 49.95±0.5
TGN 69.36±1.1 62.31±0.4 58.73±0.5 61.74±0.8 52.17±1.0 54.71±0.3 54.92±0.8 52.18±0.2 50.70±0.7
DIDA 73.57±0.3 68.43±0.3 65.69±0.4 64.29±0.4 62.29±0.5 64.15±0.9 63.43±0.6 59.85±1.0 60.50±0.4
GIB+LSTM 70.79±0.3 63.73±0.5 62.93±0.2 63.41±0.8 60.19±0.5 59.43±0.4 61.27±0.3 61.89±0.4 57.89±0.7
DGIB 72.99±1.3 63.63±0.5 59.13±0.4 62.53±0.6 62.87±0.4 63.04±0.3 62.53±0.7 60.65±0.4 58.81±0.3
Edgebank 62.27±0.7 54.38±0.9 52.96±1.3 53.12±1.1 51.53±0.8 50.47±0.5 52.26±0.4 50.14±0.6 47.45±0.6
DYGFormer 87.91±0.6 74.60±0.3 75.11±0.5 73.76±0.7 70.34±0.3 72.93±0.7 71.64±0.7 69.61±0.9 64.22±1.0
TPNet 93.10±1.3 80.17±0.7 80.13±0.4 77.67±0.9 69.27±1.1 70.10±1.3 69.48±0.5 67.90±0.6 66.37±1.1
TGT 91.41±0.2 86.23±0.4 80.95±0.7 85.64±0.3 82.11±0.5 81.24±0.3 80.32±0.9 78.24±0.4 75.78±0.7

MathOverflow

EvolveGCN 75.59±0.2 61.14±0.3 55.23±0.3 56.63±0.5 53.16±0.4 50.13±0.6 52.33±0.7 52.53±0.7 50.81±0.6
JODIE 67.06±1.2 59.56±0.3 53.19±0.3 55.37±0.3 54.04±0.4 53.67±0.3 52.72±0.5 51.11±0.7 50.07±0.4
DyREP 63.50±0.5 53.32±0.6 53.26±0.3 53.33±0.5 52.73±0.7 50.45±0.4 50.94±0.9 49.83±0.4 49.80±0.8
TGN 64.50±0.6 58.96±0.3 53.97±0.3 55.23±0.7 53.22±0.5 53.26±0.3 53.34±0.4 50.31±0.7 50.89±0.5
DIDA 74.37±0.4 68.63±0.1 67.03±0.4 65.44±0.5 60.93±0.7 61.26±0.5 60.64±0.8 58.01±0.3 58.54±1.0
GIB+LSTM 77.52±0.3 69.38±0.6 63.21±0.8 62.33±0.8 58.43±0.3 57.12±0.6 60.44±0.3 56.64±0.4 55.64±0.5
DGIB 80.29±0.3 73.63±0.5 70.43±0.3 70.24±0.5 63.22±0.7 65.41±1.2 62.04±0.3 63.71±1.0 60.33±0.4
Edgebank 62.43±0.7 55.07±0.4 54.11±0.3 53.70±0.7 51.78±0.2 51.43±0.6 50.79±0.9 49.62±0.8 47.95±0.3
DYGFormer 83.67±0.5 69.79±0.3 67.74±0.5 67.81±1.1 56.74±0.3 53.01±0.4 60.71±1.1 51.66±0.9 50.71±0.4
TPNet 78.43±1.1 63.39±0.2 64.03±0.5 62.86±0.3 54.72±0.4 51.19±0.6 57.78±0.7 52.27±0.4 47.10±1.2
TGT 82.38±0.6 74.37±0.3 75.93±0.7 76.37±0.4 70.46±0.5 69.33±0.8 65.59±0.4 66.50±0.5 61.17±1.4

MOOC

EvolveGCN 72.35±0.3 62.37±0.2 52.31±0.2 55.93±0.2 52.10±0.8 49.51±0.3 51.25±0.7 50.55±0.3 48.92±0.4
JODIE 73.19±0.7 55.36±0.2 57.34±0.4 58.59±0.4 56.95±0.4 55.02±0.4 53.69±0.3 52.23±0.7 51.69±0.3
DyREP 81.36±0.1 66.77±0.2 59.74±0.3 59.37±0.5 57.10±0.8 55.42±0.3 54.83±0.4 52.64±0.5 51.02±1.0
TGN 79.36±1.0 68.41±0.3 61.33±0.3 63.53±1.1 59.60±0.7 61.65±0.3 58.93±0.7 54.77±0.3 53.87±0.5
DIDA 89.84±0.5 73.62±0.3 61.03±0.4 73.66±0.2 63.26±0.4 64.76±0.5 64.13±0.3 63.24±0.7 61.38±0.4
GIB+LSTM 92.34±0.3 65.25±0.3 74.37±0.3 69.68±0.7 66.94±0.3 68.58±0.4 65.79±0.4 63.13±0.5 64.33±1.1
DGIB 93.06±0.1 75.24±0.2 79.69±0.3 70.32±0.6 74.31±0.9 71.14±0.5 70.51±0.7 68.69±0.4 66.03±0.7
Edgebank 86.14±0.7 65.23±0.7 62.31±1.1 61.52±0.9 60.71±0.3 59.75±0.7 60.32±0.4 60.78±0.5 59.64±0.3
DYGFormer 94.13±1.2 77.24±0.5 75.55±0.3 72.06±0.5 69.07±0.5 70.07±0.4 67.37±0.7 66.28±1.5 63.41±0.8
TPNet 96.45±0.7 73.16±1.3 77.25±0.4 74.17±0.3 73.66±0.7 72.96±1.2 67.47±0.6 65.73±0.3 64.73±0.3
TGT 95.42±0.4 80.79±0.1 81.82±0.3 84.01±0.6 80.33±0.3 78.11±0.4 81.38±0.7 77.65±0.6 78.60±0.4

In addition, we supplemented three more advanced baselines that outperform in clean data setting,
thus more comprehensively validating the superiority of TGT. Edgebank (Poursafaei et al., 2022) is
a memorization-based baseline for dynamic link prediction, which leverages temporal edge reoccur-
rence patterns to enhance evaluation rigor and exposes the flaw of easy negative sampling in existing
protocols, featuring strong performance across settings. DYGFormer (Yu et al., 2023) is a dynamic
graph learning framework integrating a novel architecture and a unified library, enabling efficient
modeling of temporal dependencies and achieving strong generalization across diverse dynamic
graph tasks. TPNet (Lu et al., 2024) is a temporal link prediction model that boosts performance via
temporal walk matrix projection, enabling effective modeling of temporal dependencies.

To verify the reliability of our TGT, we generated the noisy datasets to conduct inductive link pre-
diction experiments. The results in Table 13 consistently show that TGT achieves the highest per-
formance under every targeted attack across all datasets. For instance, on Bitcoin, TGT reaches
82.11 under Nettack and 78.24 under PRBCD, whereas strong baselines such as DGIB and DYG-
Former fall 5–15 points lower. Similar trends hold on MathOverflow, where TGT maintains 70.46
under Nettack, substantially outperforming the next-best baselines. These results demonstrate that
TGT does not merely resist mild perturbations but remains robust under attacks that specifically tar-
get influential nodes or edges associated with link prediction, indicating that its thumbnail-guided
global evolution modeling prevents overreliance on vulnerable local structures.

Combined with its strong performance under untargeted feature, structural, and temporal interfer-
ence, these findings provide direct and comprehensive evidence that TGT delivers outperforming
robustness even against the most advanced targeted attack strategies.

4PRBCD: https://github.com/sigeisler/robustness_of_gnns_at_scale
5GOttack: https://github.com/cakcora/GOttack
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A.11.3 SUPPLEMENTARY EXPERIMENT ON NODE PROPERTY PREDICTION

To further validate TGT’s robustness and generalization ability across additional downstream tasks,
we conducted supplementary experiments following thorough research: we selected the large-scale
tgbn-genre and tgbn-reddit datasets(details in Table 14) from the TGB (Huang et al., 2023b) for
node property prediction, and adopted TGB’s standardized task metrics. This design effectively sup-
plements the verification of TGT’s cross-task adaptability while demonstrating its superiority.

Table 14: Details of TGB datasets for experiment on node property prediction.

Dataset nodes edges Steps snap. nodes snap. edge
tgbn-genre 1,505 17,858,395 133,758 1307 78,345
tgbn-reddit 11,766 27,174,118 21,889,537 6843 440,603

• Tgbn-genre: Tgbn-genre dataset is a bipartite weighted user-music genre interaction network
(based on listening behavior). Nodes are users and genres; edges denote time-stamped user-genre
listens, with weights as song-genre percentage contributions. It is built by cross-referencing LastFM-
song-listens (1k users, 1-month song listens) and Million-Song Dataset (song genre weights). Re-
tained genres meet two criteria: more than 10% song weight and 1k dataset occurrences. Genre
names are cross-checked to eliminate typos.

• Tgbn-reddit: Tgbn-reddit dataset is a user-subreddit interaction network (users and subreddits
as nodes, edges indicating time-stamped user posts on subreddits) spanning 2005–2019, with the
prediction task of ranking the subreddits a user will interact with most in the next week.

We processed the data using the same perturbation methods as employed in the experiments detailed
in Appendix A.11.2, with NDCG@10 adopted as the evaluation metric. This setup aims to verify
whether the methods’ predictions of class importance align with the ordering of the ground truth.

The results are shown in Table 15. Specifically, while strong baselines such as TGN, DGIB,
and DYGFormer suffer noticeable degradation under perturbations, TGT maintains the highest
NDCG@10 across all untargeted and targeted attacks on TGBN-genre (0.354/0.345/0.342 un-
der structural, temporal, and Nettack attacks respectively, far above TGN’s 0.311/0.325/0.259). Re-
garding node property prediction robustness, both TGBN results show that the thumbnail-guided
global evolution modeling provides stable ranking consistency even under aggressive adversar-
ial conditions. For example, on TGBN-reddit, TGT achieves 0.243 under Nettack, outperforming
all baselines by significant margins (the best baseline is approximately 0.231).

These observations confirm that TGT’s core mechanism, using a VNGE-constrained thumbnail to
encode long-term structural regularities, yields node representations that are not only scalable (con-
firmed in Table 4) but also substantially more resistant to perturbations.

A.12 RELATED WORK

Temporal graph representation learning

In temporal graph representation learning, representations are derived from spatiotemporal neighbor
info via message passing and aggregation based on topology. For instances, some approaches utilize
recurrent neural networks (RNNs) to learn dynamic embeddings in temporal interactions (Kumar
et al., 2019; Pareja et al., 2020; Han et al., 2020). Alternatively, other methods rely on attention
mechanism to update neighbors (Rossi et al., 2020; Trivedi et al., 2019). Furthermore, numerous
scholarly investigations have focused on model’s robustness and generalizability. Zhang et al. (2022)
integrates a disentangled spatiotemporal attention network with intervention and regularization to
improve representation quality under distribution shifts. Zhu et al. (2019) boosts robustness by
injecting random noise. There are also some attempts to fuzzy the adjacency matrix (Wu et al.,
2019; Entezari et al., 2020). Other methods also consider the evolutionary trajectory of tempo-
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Table 15: Node property prediction performance (NDCG@10) under clean and perturbed settings
on Tgbn-genre and Tgbn-reddit.

Dataset Method Untarget Interference Target Attacks

Clean Feat. Struct. Temp. Nettack FGA SGA PRBCD GOttack

Tgbn-genre

EvolveGCN 0.343 0.321 0.316 0.305 0.296 0.253 0.287 0.277 0.262
DyREP 0.351 0.317 0.301 0.288 0.240 0.267 0.237 0.207 0.192
TGN 0.367 0.323 0.311 0.325 0.259 0.274 0.236 0.246 0.219
DGIB 0.332 0.311 0.307 0.303 0.277 0.278 0.263 0.303 0.293
DYGFormer 0.365 0.306 0.291 0.280 0.247 0.231 0.275 0.252 0.209
TGT 0.363 0.348 0.354 0.345 0.342 0.314 0.319 0.307 0.313

Tgbn-reddit

EvolveGCN 0.310 0.291 0.276 0.297 0.201 0.210 0.207 0.197 0.182
DyREP 0.312 0.288 0.278 0.263 0.231 0.227 0.210 0.183 0.193
TGN 0.315 0.285 0.277 0.271 0.206 0.217 0.224 0.201 0.196
DGIB 0.304 0.269 0.265 0.261 0.223 0.227 0.216 0.211 0.187
DYGFormer 0.316 0.279 0.271 0.234 0.200 0.204 0.198 0.161 0.183
TGT 0.313 0.289 0.280 0.278 0.243 0.246 0.231 0.221 0.210

ral graph in representation learning. Shamsi et al. (2024)combining topological data analysis with
recurrent neural networks to effectively predict the evolution. Wang et al. (2025) models both tem-
poral interaction trajectories and semantic edge types in a continuous-time dynamic heterogeneous
GNN, enabling richer representations of complex evolving graphs. Yao et al. (2022) builds a hier-
archical spatial graph via a quadtree and uses graph attention to model long-term dependencies in
trajectories, enabling efficient and accurate similarity computation, especially for long trajectories.
Li et al. (2024b) introduces a mutual evolution framework with a predictive module and an un-
learning module co-training to improve unlearning efficacy and efficiency in graph neural networks
while preserving prediction performance. The above works illustrate the importance of modeling
the evolution and demonstrate the value of this research question. However, none of these methods
mentioned above focus on robustness; when data is disturbed, the modeling of evolutionary trajecto-
ries may be inaccurate. To address the lack of theoretical support for generalizability and robustness
in previous research, we derive an solution to enhance model interpretability.

Von Neumann entropy in graph evolution

For a quantum system with density matrix ρ, the von Neumann entropy (VNGE) is SV N =
−Tr(ρlogρ). ρ describes a mixed state system consisting of pure quantum states |ψ⟩, each with
probability pi, defined as ρ =

∑T
i=1 pi|ψi⟩⟨ψi|, where T is the number of pure states. SV N plays

a crucial role in the quantum measurement process, and can calculate the expectation of the mea-
surable quantity. Braunstein interpreted the scaled regularized Laplacian as a density operator, en-
abling VNGE for graph characterization (Braunstein et al., 2006). Subsequent research revealed that
its measurement is pivotal in comprehending network system structure and topological complexity
(De Domenico et al., 2015). For instance, it aids in depicting quantum statistics in topological net-
works (Passerini & Severini, 2009) and assessing graph irregularity (Passerini & Severini, 2008).
Liu et al. (2018) used VNGE to study dynamic genomes universal patterns, extending its use in
dynamic cases. Then Huang et al. (2023a) designed an attention network considering VNGE for
evolutionary feature extraction. We combine VGNE to set evolutionary constraints so that the latent
Hinge graph can summarize more coherent temporal change characteristics.

Information bottleneck in graph

Alemi et al. (2016) applies variational estimation and integrates the information bottleneck theory
(IB) (Tishby et al., 2000) to enhance robustness and generalizability in deep representation learning.
Wu et al. (2020) formulated a hypothesis for transforming graphs into IID data, and subsequently
derives an IB optimization tailored to discrete structures. Methods such as Seo et al. (2024) and Sun
et al. (2022) each offer distinct solutions for extracting the IB objectives from static graph data. Yu
et al. (2021b; 2022; 2021a) have also demonstrated the remarkable performance of IB in discovering
key information and inducing important substructures. Yuan et al. (2024) first attempts to extend IB
to temporal graphs. Chen et al. (2024) investigated the application of the IB in the extrapolation of
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temporal knowledge graphs. However, these methods overlook graph evolution, as IB constraints are
limited to middle latent variables. By leveraging the VNGE to characterize continuous evolutionary
features, our TGT can access richer evolutionary information, which significantly enhances its abil-
ity to resist interference under perturbed conditions. Furthermore, we integrate temporal evolution
via VGNE to capture entire sequence. The results are presented in Table 11.

A.13 LIMITATIONS AND FUTURE WORK

The main limitation of TGT is the scalable problem caused by the additional introduction of
thumbnail characterization. Since the theoretical upper bound of TGT’s computational com-
plexity scales linearly with the number of nodes and edges across all graph snapshots (as shown in
appendix A.1.4), scaling to larger datasets (e.g., datasets with millions of nodes) can be prohibitively
time-consuming. While TGT demonstrates strong robustness under a wide range of feature, struc-
ture, and temporal perturbations, as well as various targeted attacks, we acknowledge that our re-
liance on a thumbnail-based architectural design may introduce new vulnerabilities under adaptive
attacks specifically crafted to target the thumbnail. For example, an adversary could attack (i) the
thumbnail structure via ontology-level perturbation, or (ii) the bottleneck constraint by designing
gradient-aligned manipulations to weaken the VNGE-based regularization. These are meaningful
and challenging scenarios that we agree deserve deeper investigation.

In our future work, we plan to explore pretraining-based approaches for thumbnail modeling, allow-
ing the computational overhead to be offloaded to the pre-training stage and thereby improving the
scalability. We will also explore the usage of thumbnail as a prompt, aiming to further improve
the model’s capability and enable the injection of external prior knowledge.

A.14 BOARDER IMPACT

This paper aims to advance the field of graph learning by proposing a robust representation method
for temporal graphs.Our TGT framework inherently resists noise during representation learning,
offering robustness against the ubiquitous real-world data noise and potential adversarial attacks
such as data poisoning. This capability has positive social implications by enhancing the reliability
and trustworthiness of machine learning applications in critical domains. Furthermore, we anticipate
that our work will not pose direct social or ethical negative impacts.

A.15 THE USAGE OF LLM

LLM was employed exclusively for writing assistance, including grammar correction, spelling ver-
ification, and text polishing, without contributing in any other way to our work.
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