MADCAT: Combating Malware Detection Under Concept Drift
with Test-Time Adaptation

Eunjin Roh ' Yigitcan Kaya? Christopher Kruegel> Giovanni Vigna’? Sanghyun Hong '

Abstract

We present MADCAT (MAlware Detection under
Concept Drift through Adaptation during Test-
Time), a self-supervised approach designed to
address the concept drift problem in malware de-
tection. MADCAT employs an encoder-decoder
architecture and works by test-time training of the
encoder on a small, balanced subset of the test-
time data using a self-supervised objective. Dur-
ing test-time training, the model learns features
that are useful for detecting both previously seen
(old) data and newly arriving samples. We demon-
strate the effectiveness of MADCAT in continu-
ous Android malware detection settings. MAD-
CAT consistently outperforms baselines in detec-
tion performance at test-time. We also show the
synergy between MADCAT and prior approaches
in addressing concept drift in malware detection.

1 Introduction

Malware is any program that, when downloaded and exe-
cuted on a victim’s machine, exhibits malicious behavior—
such as privilege escalation, data exfiltration, or backdoor
injection (Sikorski & Honig, 2012; King et al., 2021; Severi
et al., 2021). In recent years, the volume of malware threats
has increased at an unprecedented scale, far exceeding what
analysts and security experts can address manually. As a
result, machine learning (ML) has emerged as a promising
and scalable solution for combating this ever-evolving threat
landscape (Sahin & Bahtiyar, 2021; Mohamad Arif et al.,
2021; Chaulagain et al., 2020; Yuan et al., 2020; Nataraj
etal., 2011; Arp et al., 2014). ML-based malware detectors
are trained on large collections of malicious and benign
samples, and then deployed in the wild to automatically
determine whether a suspicious program is malware or not.

!'Oregon State University, Corvallis, OR USA *University of
California, Santa Barbara, CA USA. Correspondence to: Eunjin
Roh <rohe@oregonstate.edu>.

Published at ICML 2025 Workshop on Test-Time Adaptation:
Putting Updates to the Test! (PUT), Vancouver, Canada. PMLR
267, 2025. Copyright 2025 by the author(s).

MADCAT F1 Scores with Baseline

¥ 071 —e— baseline(mean:0.7529)
-~ baseline Mean (0.7529)

—¥— MADCAT(mean:0.9281)

06 MADCAT Mean (0.9281)

—4— MADCAT with unbalanced MAE training(mean:0.8592)
- MADCAT with unbalanced MAE training Mean (0.8592)
051 _w— MADCAT with unbalanced TTT training(mean:0.8298)

MADCAT with unbalanced TTT training Mean (0.8298)

5 [y A9
o7 P P o

o o
&
O S

©
& &
NG

&7
A S 4

S

Figure 1: MADCAT Performance. MADCAT consistently
outperforms the baselines across all evaluation periods, ad-
dressing the concept drift in ML-based malware detection.

However, this emerging paradigm has faced resistance due
to a real-world challenge: concept drift (Schlimmer &
Granger, 1986)—the phenomenon where detectors, once
deployed in the wild, gradually become ineffective as the
characteristics of malware evolve over time (Chen et al.,
2023a;b). Most prior work addresses this issue with su-
pervised learning techniques that allow models to learn
new features useful for detecting emerging malware vari-
ants. This is typically achieved through re-training or fine-
tuning detection models on newly collected and labeled
datasets (Molina-Coronado et al., 2023; Chen et al., 2023a;
Li et al., 2025). While shown to be effective, these ap-
proaches rely on the availability of high-quality labels for
incoming future data—a requirement that is often difficult
to satisfy in real-world scenarios (Wu et al., 2023; Zhu et al.,
2020; Joyce et al., 2023).

Contributions. In this paper, we address the concept drift
problem through an orthogonal approach: self-supervised
learning. Instead of relying on detection models to extract
useful features from high-quality labeled data, our method
reduces the dependency on such supervision. Instead, it
focuses on learning robust representations that preserve gen-
eralization performance over time (Hendrycks et al., 2019),
even as malware evolves. Importantly, our approach is com-
plementary to supervised learning techniques—meaning it
can be combined with them to achieve synergistic benefits
when a small set of labeled future data is available.

To demonstrate the potential, we present MADCAT, a self-
supervised malware detector that performs test-time adapta-

MADCAT

MADCAT Framework

@ Train Encoder

R e Update
Encoder

Encoder

Classification

@ Train Decoder © - ® — nitial training
O -0 --> Test-time training

Decoder Classification

—1

@ Benign

© Train the Head

Classification
Head

Malware

Figure 2: MADCAT Workflow.

tion on future malware data using the masked autoencoder
(MAE) approach (Gandelsman et al., 2022). The MAE is
first trained to reconstruct samples in which a random subset
of the input has been masked. This form of self-supervision
encourages the encoder to learn representations (or features)
of both malware and benign samples that are robust to distri-
butional shifts over time. At test-time, MADCAT performs
fine-tuning of its encoder on future data.

We evaluate MADCAT on Android malware detection using
a dataset consisting of malware and benign applications col-
lected over a 7-year period. As summarized in Figure 1, our
method maintains the performance over time and shows a
better F1 score compared to the baseline approaches that rely
on supervised learning. Our evaluation also highlights the
MADCAT configurations that yield the best performance,
such as balancing the test-time data used for fine-tuning the
autoencoder. Moreover, we show that supervised learning
can serve as a strong complement to our approach, showing
performance synergy when combined with MADCAT. We
hope our work draws the attention of the test-time adapta-
tion community to malware detection and inspires future
research that integrates self-supervision.

2 Background and Related Work

Concept drift refers to the gradual change in the statis-
tical properties of data over time. It was first introduced
by Schlimmer & Granger (1986), and has since been fur-
ther studied in subsequent works aimed at identifying and
mitigating its effects (Tsymbal, 2004; Gama et al., 2014;
Moreno-Torres et al., 2012; Jordaney et al., 2017; Barbero
etal., 2022; Chen et al., 2023b;a; Li et al., 2025). In malware
detection, concept drift can significantly degrade model per-
formance as their static structure—such as their functions
and components—changes over time.

There has been progress in addressing concept drift in mal-
ware detection (Jordaney et al., 2017; Barbero et al., 2022).
The most recent works employ supervised learning. Chen
et al. (2023a) adopt active learning. They encourage the
encoder to map similar samples to nearby embeddings and
iteratively expand the training set by selecting the most
uncertain samples. The detector is then retrained on this

expanded dataset using ground-truth labels. Chen et al.
(2023Db) identified two types of concept drift—feature-space
drift and data-space drift—and found that data-space drift
has a substantial impact on detection performance. To ad-
dress this, they employ online learning based on pseudo-
labels. In contrast, MADCAT employs a self-supervised
strategy that operates using pseudo-labels.

Test-time adaptation is the process of adjusting a pre-
trained model to unlabeled target domain data at inference
time. It has emerged as a promising solution to mitigate per-
formance degradation caused by distributional shifts when
the traditional model only focuses on a limited distribution
for both training and testing (Liang et al., 2025).

Test-time training is a form of test-time adaptation that
fine-tunes a model during inference. The concept dates
back to Bottou & Vapnik (1992), but its first application to
modern computer vision tasks was introduced by Sun et al.
(2020), who proposed a self-supervised approach that up-
dates the model using a single unlabeled test sample. Since
then, several works have advanced test-time training tech-
niques across visual and textual domains (Gandelsman et al.,
2022; Wang et al., 2023; Hardt & Sun, 2024). However, few
studies have explored test-time adaptation for addressing
concept drift in malware detection.

Alam et al. (2024) is the most recent work to adopt the
concept of test-time training for addressing concept drift
in malware detection. They perform pseudo-labeling of
unlabeled test samples and fine-tune the classifier using
high-confidence pseudo-labeled data. However, as shown
in §4.3, this approach remains ineffective under long-term
concept drift (over a period of ~2 years), and notably, the
concept of self-supervision has not been leveraged.

MADCAT shows the effectiveness of using self-supervision
in malware detection for addressing concept drift, while also
forming a synergistic combination with pseudo-labeling.

3 MADCAT

Figure 2 shows the overall workflow of MADCAT. The
detector has two components: MAE for self-supervised test-
time training and a classification head for malware detection.

MADCAT

3.1 Initial (Training-time) Training

MADCAT first performs an initial training. During this
phase, a portion of the input features is randomly masked
based on a predefined masking ratio (0.0-0.9). The encoder
is trained to capture meaningful representations from the
partially masked input, while the decoder learns to recon-
struct the masked features. Once the MAE is trained, the
encoder is frozen. A separate classification head (detec-
tor) is then trained on the unmasked input data, using the
representations produced by the frozen encoder.

3.2 Test-time Adaptation with Self-supervision

Once deployed, MADCAT performs test-time adaptation
to combat concept drift. Because obtaining high-quality,
human-annotated labels for newly emerging malware at
test time is often impractical (Wu et al., 2023; Zhu et al.,
2020; Joyce et al., 2023), we adopt a self-supervised test-
time training approach proposed by He et al. (2022). At
test time, each new input sample is partially and randomly
masked and passed through the MAE. The encoder is then
fine-tuned by minimizing the reconstruction loss. After this
adaptation step, the updated encoder is paired with the pre-
trained classification head to perform malware detection.
This approach enables MADCAT to adapt to distributional
shifts in the data without requiring labeled test-time samples.

3.3 Handling Class Imbalance with Pseudo-Labeling

Prior work used highly imbalanced datasets, with benign
samples significantly outnumbering malware (Pendlebury
et al., 2019). This can lead the MAE to learn representations
of benign data, potentially limiting its ability to generalize
well to malware over time. To address this class imbal-
ance, we incorporate pseudo-labeling into MADCAT. These
pseudo-labels are generated by the base detection model,
and the encoder is updated during test-time on a rebalanced
dataset prior to classification. This strategy helps the model
maintain strong performance even under skewed data distri-
butions, without relying on any human-provided labels.

4 Evaluation

4.1 Experimental Setup

Datasets. We use APIGraph (Zhang et al., 2020), which
contains Drebin (Arp et al., 2014) features extracted from
Android APKs collected during 7 years (2012-2018). Data
from 2012-2014 is used for the initial training of the MAE
and the classification head. We split the dataset into 80%
for training and 20% for validation.

For test-time training, we use the data collected from 2015-
2018. To analyze the performance over time, we divided this
data by month. Each monthly dataset was further split into
70% for test-time training and 30% for validation. These
splits are separate from the initial training set and relatively

MADCAT F1 Score

—e— baseline(mean:0.7529)
—¥— MADCAT(mean:0.9281)

o7 o @
S A a4
O

S > A

Y e o
o7 T 0 &
S S

Yo

©7
K
3

Figure 3: MADCAT Performance. It maintains consistent
F1 scores, while the baseline shows gradual degradation.

small due to the fine-grained temporal division.

Since the benign dataset is much larger than the malicious
dataset (with a ratio of ~9:1), we randomly downsampled
the benign data to match the number of malicious ones.

Models. We utilize BinaryMLP, a classification model de-
signed for malware detection in recent work (Chen et al.,
2023a). We integrate the MAE (Gandelsman et al., 2022)
into BinaryMLP. For training, we use a learning rate of
0.003 and 800 epochs for the initial training of the MAE-
augmented BinaryMLP. Test-time training is performed for
a single step per sample. We use cross-entropy loss for
training both the MAE and the classification head.

Metrics. We employ two evaluation metrics: FI score
and detection accuracy. Our primary results are reported
using F1 scores, with the mean F1 score across all monthly
datasets provided in parentheses.

4.2 Effectiveness of MADCAT

Methodology. As a baseline, we trained the BinaryMLP
model (Chen et al., 2023a) on the 2012-2014 data without
the MAE module or test-time adaptation. This baseline
model remains fixed after initial training and is not updated
thereafter. The dataset for both initial training of MAE-
augmented BinaryMLP and test-time training is balanced
based on the ground truth labels. The default masking ratio
of MAE is set to 0.3. All models are evaluated on the
monthly-divided test dataset from 2015-2018.

Results. Figure 3 shows the performance of MADCAT
over time. We report the F1 score for each month, and the
detection accuracy over the entire period is shown in the
legends. We first show that the baseline model exhibits a
gradual decline in performance, indicating the presence of
concept drift. In contrast, MADCAT maintains consistent
performance, highlighting its robustness to concept drift in
the data. Across all cases, MADCAT achieves higher F1
scores than the baseline, demonstrating its effectiveness for
malware detection. We analyze the performance on benign
and malicious data separately in Appendix B.1.

MADCAT

F1 Score of MADCAT: Pseudo-Labeling

—e— baseline(mean:0.7529)
—¥— MADCAT with ground-truth label(mean:0.9281)
0.6 1 —a— pseudo-label: random(mean:0.8276)

—m— pseudo-label: confidence top-N(mean:0.8313)

—e— pseudo-label: confidence-bucket(mean:0.8314)

5 > A

S ot S Y x A
LAY Y >
O Y

Y o e o
oF T °7 ¢S
O

Figure 4: MADCAT performance with pseudo-labeling.
All MADCATs achieve higher F1 scores vs. the baseline.

4.3 Synergy with Prior Approaches

Our previous results assume that ground-truth labels are
available at test time to balance the dataset. While it may be
feasible for a small subset of the test-time data, obtaining
labels for the entire stream of future data is often imprac-
tical in real-world scenarios. Alam et al. (2024) address
this issue using pseudo-labeling—where the base model
is used to label incoming data, and it is continuously fine-
tuned on the newly pseudo-labeled samples. We evaluate
whether MADCAT can achieve synergy when combined
with pseudo-labeling.

Methodology. Using the same experimental setup as before,
we use the BinaryMLP model to generate pseudo-labels for
each month’s test-time data. However, when the pseudo-
labeled data is highly imbalanced (e.g., dominated by one
class) MADCAT’s performance may degrade due to biased
learning (Zheng et al., 2022). To address this, we addition-
ally consider three label-balancing strategies:

* Random: Samples are randomly selected from each
pseudo-labeled class to ensure an equal number of be-
nign and malicious samples.

* Confidence-based top-N: All samples are sorted by the
model’s confidence scores within each pseudo-labeled
class, and we select the top-N most confident samples.

* Confidence-based bucket: We divide the data into 10
buckets based on rounded confidence scores and select
an equal number of samples from each bucket to main-
tain balance across varying confidence labels.

Results. Figure 4 shows our results. All MADCATSs com-
bined with pseudo-labeling achieve higher F1 scores com-
pared to the baseline. However, the performance is slightly
lower than that of MADCAT trained on a dataset balanced
using ground-truth labels. This suggest that when the dataset
collected for test-time training is unlabeled, pseudo-labeling
using the base model can be an effective option.

4.4 Ablation Study

Dataset Balancing. We first evaluate the importance of
dataset balancing. We test the individual impact of balanc-

F1 Score of MADCAT: Balanced and Unbalanced Dataset

—e— baseline(mean:0.7529)

—¥— MADCAT (balanced MAE & balanced TTT)(mean:0.9281)
—&— unbalanced MAE & balanced TTT(mean:0.8592)

—=— balanced MAE & unbalanced TTT(mean:0.8298)

5 > A

S ot S Y r A
LAY Y >
O

Y o e o
o7 T ° ¢S
O

—e— baseline(mean:0.7529)
—¥— 0.0(mean:0.6667)
—+— 0.1(mean:0.9280)
—m— 0.2(mean:0.9335)
~—— 0.3(mean:0.9281)
—+ 0.4(mean:0.9258)
$ 0.5(mean:0,9291)
—w— 0.6(mean:0.9263)
06 —#— 0.7(mean:0.9197)
0.8(mean:0.9192)
—— 0.9(mean:0.9064)

> A o

oY o o RS > A) ~ ™ A
RYSNCY RO R: > : >
ST S

& e o K > A
S A S
S

2 @ @ 2
RYAICAY
I

Figure 5: Impact of database balancing (upper) and
masking ratios (lower) on MADCAT performance.

ing during initial training and test-time training. For this
analysis, we use the original unbalanced dataset, which has
a benign-to-malicious sample ratio of 9:1. All other aspects
of the experimental setup remain unchanged. The upper
plot in Figure 5 shows the results of our analysis. We first
observe that even when trained on an unbalanced dataset,
MADCAT remains effective in addressing concept drift in
malware detection. In both scenarios, MADCAT consis-
tently outperforms the baseline on average. Among the two,
balancing the dataset during initial training results in more
stable performance over time.

Masking Ratio for MAE Training. The lower plot in
Figure 5 shows MADCAT’s performance as the masking
ratio for MAE training is varied from 0.0-0.9. We used
the balanced dataset for all masking ratio setups. We first
observe that without masking (ratio is 0.0), MAE fails to
learn meaningful representations through the reconstruction
process. In contrast, when masking is applied (ratios from
0.1-0.9), MADCAT consistently outperforms the baseline.
Among these, masking ratios in the range of 0.1-0.6 yield
the best results, achieving detection accuracy above 92%.

5 Conclusion

This work presents MADCAT, a novel approach that inte-
grates self-supervised learning with test-time adaptation to
maintain robust malware detection performance under con-
cept drift. We demonstrate that MADCAT performs effec-
tively in continuous Android malware detection. MADCAT
requires only a small, balanced subset of data and does not
rely on human-annotated labels for test-time adaptation.

Our approach is promising and opens up new avenues

MADCAT

for future research: A more comprehensive evaluation of
MADCAT—across diverse malware types (e.g., Windows
PE files), various detection approaches, and alternative self-
supervision techniques—will deepen our understanding of
its effectiveness and generalizability.

Acknowledgment

E.R and S.H are partially supported by the Google Faculty
Research Award 2023. Y.K is supported by the U.S. Intel-
ligence Community Postdoctoral Fellowship. The findings
and conclusions in this work are those of the author(s) and
do not necessarily represent the views of the funding agency.

References

Alam, M. T., Fieblinger, R., Mahara, A., and Rastogi,
N. Morph: Towards automated concept drift adaptation

for malware detection, 2024. URL https://arxiv.

org/abs/2401.12790. Accepted as a poster at
NDSS 2024.

Arp, D., Spreitzenbarth, M., Hiibner, M., Gascon, H., and
Rieck, K. Drebin: Effective and explainable detection of
android malware in your pocket. 02 2014. doi: 10.14722/
ndss.2014.23247.

Barbero, F., Pendlebury, F., Pierazzi, F., and Cavallaro, L.
Transcending transcend: Revisiting malware classifica-
tion in the presence of concept drift. In 2022 IEEE Sym-
posium on Security and Privacy (SP), pp. 805-823, 2022.
doi: 10.1109/SP46214.2022.9833659.

Bottou, L. and Vapnik, V. Local Learning Algorithms. Neu-
ral Computation, 4(6):888-900, 1992.

Chaulagain, D., Poudel, P., Pathak, P., Roy, S., Caragea,
D., Liu, G., and Ou, X. Hybrid analysis of android apps
for security vetting using deep learning. In 2020 IEEE
Conference on Communications and Network Security
(CNS), pp- 1-9, 2020. doi: 10.1109/CNS48642.2020.
9162341.

Chen, Y., Ding, Z., and Wagner, D. Continuous learning for
android malware detection. In Proceedings of the 32nd
USENIX Conference on Security Symposium, SEC 23,
USA, 2023a. USENIX Association. ISBN 978-1-939133-
37-3.

Chen, Z., Zhang, Z., Kan, Z., Yang, L., Cortellazzi, J.,
Pendlebury, F., Pierazzi, F., Cavallaro, L., and Wang,
G. Is it overkill? analyzing feature-space concept
drift in malware detectors. In 2023 IEEE Security
and Privacy Workshops (SPW), pp. 21-28, 2023b. doi:
10.1109/SPW59333.2023.00007.

Gama, J. a., Zliobaitundefined, 1., Bifet, A., Pechenizkiy, M.,
and Bouchachia, A. ACM Comput. Surv., 46(4), March

2014. ISSN 0360-0300. doi: 10.1145/2523813. URL
https://doi.org/10.1145/2523813.

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. A.

Test-time training with masked autoencoders. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.),
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=SHMilb7s jXk.

Hardt, M. and Sun, Y. Test-time training on nearest

neighbors for large language models. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?
id=CNL2bkudra.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., and Girshick,

R. Masked autoencoders are scalable vision learners. In
2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 15979-15988, 2022.
doi: 10.1109/CVPR52688.2022.01553.

Hendrycks, D., Mazeika, M., Kadavath, S., and Song, D.

Using self-supervised learning can improve model robust-
ness and uncertainty. Curran Associates Inc., Red Hook,
NY, USA, 2019.

Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini,

D., Nouretdinov, 1., and Cavallaro, L. Transcend: detect-
ing concept drift in malware classification models. In
Proceedings of the 26th USENIX Conference on Security
Symposium, SEC’ 17, pp. 625-642, USA, 2017. USENIX
Association. ISBN 9781931971409.

Joyce, R. J., Amlani, D., Nicholas, C., and Raff, E. Motif:

A malware reference dataset with ground truth family
labels. Comput. Secur., 124(C), January 2023. ISSN 0167-
4048. doi: 10.1016/j.cose.2022.102921. URL https:
//doi.org/10.1016/j.cose.2022.102921.

King, J., Bendiab, G., Savage, N., and Shiaeles, S. Data

exfiltration: Methods and detection countermeasures. In
2021 IEEE International Conference on Cyber Security
and Resilience (CSR), pp. 442-447, 2021. doi: 10.1109/
CSR51186.2021.9527962.

Li, A. S., Iyengar, A., Kundu, A., and Bertino, E. Revisiting

concept drift in windows malware detection: Adaptation
to real drifted malware with minimal samples. In Pro-
ceedings 2025 Network and Distributed System Security
Symposium. In Network and Distributed System Security
Symposium (NDSS) San Diego, CA, USA, 2025.

Liang, J., He, R., and Tan, T. A comprehensive sur-

vey on test-time adaptation under distribution shifts.
International Journal of Computer Vision, 133(1):
31-64, 2025. ISSN 1573-1405. doi: 10.1007/

https://arxiv.org/abs/2401.12790
https://arxiv.org/abs/2401.12790
https://doi.org/10.1145/2523813
https://openreview.net/forum?id=SHMi1b7sjXk
https://openreview.net/forum?id=SHMi1b7sjXk
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://doi.org/10.1016/j.cose.2022.102921
https://doi.org/10.1016/j.cose.2022.102921

MADCAT

s11263-024-02181-w. URL https://doi.org/10.
1007/s11263-024-02181—-w.

Mohamad Arif, J., Ab Razak, M. F., Awang, S., Tuan Mat,
S. R., Ismail, N. S. N., and Firdaus, A. A static analysis
approach for android permission-based malware detection
systems. PLOS ONE, 16(9):¢0257968, 2021. doi: 10.
1371/journal.pone.0257968.

Molina-Coronado, B., Mori, U., Mendiburu, A., and Miguel-
Alonso, J. Efficient concept drift handling for batch an-
droid malware detection models. Pervasive Mob. Com-
put., 96(C), December 2023. ISSN 1574-1192. doi:
10.1016/j.pmcj.2023.101849. URL https://doi.
org/10.1016/7.pmcj.2023.101849.

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodriguez,
R., Chawla, N. V., and Herrera, F. A unify-
ing view on dataset shift in classification. Pat-
tern Recognition, 45(1):521-530, 2012. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2011.06.
019. URL https://www.sciencedirect.com/
science/article/pii/S0031320311002901.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. Malware images: visualization and automatic
classification. In Proceedings of the Sth International
Symposium on Visualization for Cyber Security, VizSec
’11, New York, NY, USA, 2011. Association for Com-
puting Machinery. ISBN 9781450306799. doi: 10.
1145/2016904.2016908. URL https://doi.org/
10.1145/2016904.2016908.

Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., and
Cavallaro, L. {TESSERACT}: Eliminating experimental
bias in malware classification across space and time. In
28th USENIX security symposium (USENIX Security 19),
pp. 729-746, 2019.

Sahin, M. and Bahtiyar, S. A survey on malware detec-
tion with deep learning. In 13th International Con-
ference on Security of Information and Networks, SIN
2020, New York, NY, USA, 2021. Association for Com-
puting Machinery. ISBN 9781450387514. doi: 10.
1145/3433174.3433609. URL https://doi.org/
10.1145/3433174.34336009.

Schlimmer, J. C. and Granger, R. H. Beyond incremental
processing: tracking concept drift. In Proceedings of the
Fifth AAAI National Conference on Artificial Intelligence,
AAAT’ 86, pp. 502-507. AAAI Press, 1986.

Severi, G., Meyer, J., Coull, S., and Oprea, A. Explanation-
Guided backdoor poisoning attacks against malware
classifiers. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 1487-1504. USENIX As-
sociation, August 2021. ISBN 978-1-939133-24-3.

URL https://www.usenix.org/conference/
usenixsecurity2l/presentation/severi.

Sikorski, M. and Honig, A. Practical Malware Analy-
sis: The Hands-On Guide to Dissecting Malicious Soft-
ware. No Starch Press, USA, 1st edition, 2012. ISBN
1593272901.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., and
Hardt, M. Test-time training with self-supervision for
generalization under distribution shifts. In Proceedings of

the 37th International Conference on Machine Learning,
ICML’20. JMLR.org, 2020.

Tsymbal, A. The problem of concept drift: defini-
tions and related work. 2004. URL https://api.
semanticscholar.org/CorpusID:8335940.

Wang, R., Sun, Y., Tandon, A., Gandelsman, Y., Chen, X.,
Efros, A. A., and Wang, X. Test-time training on video
streams. JMLR, 2023.

Wu, X., Guo, W., Yan, J., Coskun, B., and Xing, X. From
grim reality to practical solution: Malware classification
in real-world noise. In 2023 IEEE Symposium on Security
and Privacy (SP), pp. 2602-2619, 2023. doi: 10.1109/
SP46215.2023.10179453.

Yuan, B., Wang, J., Liu, D., Guo, W.,, Wu, P., and
Bao, X. Byte-level malware classification based
on markov images and deep learning. Computers
& Security, 92:101740, 2020. ISSN 0167-4048.
doi: https://doi.org/10.1016/j.cose.2020.101740.
URL https://www.sciencedirect.com/
science/article/pii/S0167404820300262.

Zhang, X., Zhang, Y., Zhong, M., Ding, D., Cao, Y., Zhang,
Y., Zhang, M., and Yang, M. Enhancing state-of-the-art
classifiers with api semantics to detect evolved android
malware. In Proceedings of the 2020 ACM SIGSAC con-
ference on computer and communications security, pp.
757-770, 2020.

Zheng, M., Wang, F., Hu, X., Miao, Y., Cao, H., and
Tang, M. A method for analyzing the performance
impact of imbalanced binary data on machine learn-
ing models. Axioms, 11(11):607, 2022. doi: 10.
3390/axioms11110607. URL https://doi.org/
10.3390/axioms11110607.

Zhu, S., Shi, J., Yang, L., Qin, B., Zhang, Z., Song, L., and
Wang, G. Measuring and modeling the label dynamics of
online anti-malware engines. In Proceedings of the 29th
USENIX Conference on Security Symposium, SEC’20,
USA, 2020. USENIX Association. ISBN 978-1-939133-
17-5.

https://doi.org/10.1007/s11263-024-02181-w
https://doi.org/10.1007/s11263-024-02181-w
https://doi.org/10.1016/j.pmcj.2023.101849
https://doi.org/10.1016/j.pmcj.2023.101849
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://www.sciencedirect.com/science/article/pii/S0031320311002901
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/3433174.3433609
https://doi.org/10.1145/3433174.3433609
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://www.usenix.org/conference/usenixsecurity21/presentation/severi
https://api.semanticscholar.org/CorpusID:8335940
https://api.semanticscholar.org/CorpusID:8335940
https://www.sciencedirect.com/science/article/pii/S0167404820300262
https://www.sciencedirect.com/science/article/pii/S0167404820300262
https://doi.org/10.3390/axioms11110607
https://doi.org/10.3390/axioms11110607

MADCAT

A Experimental Setup in Detail

Environment. All experiments were conducted using Python 3.8.5 and PyTorch 1.11.0 with CUDA 11.3 on a Rocky Linux
9.5. environment. We run our experiments on an internal cluster with an Intel(R) Xeon(R) Gold 6248R CPUs running at
3GHz with 48 cores and NVIDIA A40 GPUs with 48GB of VRAM. Our machine has 768GB of DDR4 RAM operating at
2933 MT/s.

Dataset. We used the APIGraph (Chen et al., 2023a) dataset throughout our evaluation. Each sample is represented by a
binary feature vector of 1,159 dimensions, with O or 1 indicating the presence or absence of each feature. The dataset is
labeled as either benign (0) or malicious (1). Table 1 shows the yearly distribution of samples.

Table 1: Yearly distribution of the APIGraph dataset. We use the same dataset as in Chen et al. (2023a).

Year Malicious Benign Total

2012 3,061 27,472 30,533
2013 4,854 43,714 48,568
2014 5,809 52,676 58,485
2015 5,508 51,944 57,452
2016 5,324 50,712 56,036
2017 2,465 24,847 27,312
2018 3,783 38,146 41,929

B Additional Evaluation Restuls
B.1 MADCAT Accuracy per Class Labels

Figure 6 shows the class-wise accuracy of MADCAT on benign and malicious samples. Throughout the evaluation period,
the accuracy on benign samples consistently exceeds that of the baseline. For malicious samples, MADCAT occasionally
shows slightly lower accuracy than the baseline; however, its performance remains mostly comparable across all datasets.

MADCAT Benign Accuracy MADCAT Malicious Accuracy

—e— baseline(mean:94.5262) —e— baseline(mean:91.7412)
82.5 { —¥— MADCAT(mean:96.4959) 70 4 —*— MADCAT(mean:89.8587)

A)

QS A0 b >
S S
U g

o8

ORI > A o
o7 > z

K

3

5 A 5 A

27 27 2 oY ©F o o oY Y

Sl A ; 7 7 T el S

AT AP O N S Y S
e

A
ate Dat

")\ el el 9‘» “)h ")/\ %N %h %,\
S & A A S
ST &S &S

3
<%
%,

&
S
S

Figure 6: MADCAT performance with baseline. Benign accuracy consistently outperforms the baseline; malicious
accuracy is sometimes lower but mostly comparable.

B.2 MADCAT Accuracy with Pseudo-Label

Figure 7 shows the class-wise accuracy of MADCAT when using pseudo-labeling for dataset balancing. Similar to the results
with ground-truth-based balancing, pseudo-labeling improves the benign accuracy and yields comparable or slightly lower
accuracy on malicious samples. Overall, pseudo-labeled MADCAT achieves results similar to those using ground-truth
labels, indicating its robustness even under label-free conditions.

MADCAT

Benign Accuracy of MADCAT: Pseudo-Labeling Malicious Accuracy of MADCAT: Pesudo-Labeling
100
100.0
975 95
95.0 %0
z 925 z
g g s
3 3
g %00 2
80
875
—e— baseline(mean:94.5262) —e— baseline(mean:91.7412) {
—¥— MADCAT with ground-truth label(mean:96.4959) 45 | ~¥~ MADCAT with ground-truth label(mean:89.8587)
85.0 1 —a— pseudo-label: random(mean:96.6234) —&— pseudo-label: random(mean:89.6691)
—=— pseudo-label: confidence top-N(mean:96.6747) —=— pseudo-label: confidence top-N(mean:89.6976)
82.5 { —e— pseudo-label: confidence-bucket(mean:96.7004) 70— p : confidence- 9207)
v A S > x A S Y A% A S v A o v e A S .y A S Y LA S A o
oF oF 9 D e e 0 oA At A D e e e Y 9F ol 90 Y) e 60 X AY At AY Y el e @) oY
A o T of & WA S Y ¥ ol P T & o S AT Y
B I T A S U A U S S S U g Lo I T U S S A S S A R S
Date Date

Figure 7: Performance of MADCAT with different pseudo-labeling strategies. All methods show similar or higher
benign accuracy than the baseline; malicious accuracy is slightly lower but comparable.

