
Unsupervised Progressive Learning and the STAM Architecture

James Smith 1 Seth Baer* 1 Cameron Taylor* 1 Constantine Dovrolis 1

Abstract

We first pose the Unsupervised Progressive
Learning (UPL) problem: an online represen-
tation learning problem in which the learner
observes a non-stationary and unlabeled data
stream, and identifies a growing number of fea-
tures that persist over time even though the data
is not stored or replayed. To solve the UPL
problem we propose the Self-Taught Associative
Memory (STAM) architecture. Layered hierar-
chies of STAM modules learn based on a com-
bination of online clustering, novelty detection,
forgetting outliers, and storing only prototypi-
cal features rather than specific examples. We
evaluate STAM representations using classifica-
tion and clustering tasks. Even though there
are no prior approaches that are directly ap-
plicable to the UPL problem, we evaluate the
STAM architecture in comparison to some un-
supervised and self-supervised deep learning ap-
proaches adapted in the UPL context.

1. Introduction
The Continual Learning (CL) problem is predominantly
addressed in the supervised context with the goal being
to learn a sequence of tasks without “catastrophic forget-
ting” (Goodfellow et al., 2013; Parisi et al., 2019; van de
Ven & Tolias, 2019). There are several CL variations
but a common formulation is that the learner observes a
set of examples {(xi, ti, yi)}, where xi is a feature vec-
tor, ti is a task identifier, and yi is the target vector as-
sociated with (xi, ti) (Chaudhry et al., 2019a;b; Lopez-
Paz & Ranzato, 2017). Other CL variations replace task
identifiers with task boundaries that are either given (Hsu
et al., 2018) or inferred (Zeno et al., 2018). Typically,
CL requires that the learner either stores and replays some

*Equal contribution 1College of Computing, Georgia Institute
of Technology, Atlanta, GA. Correspondence to: James Smith
<jamessealesmith@gatech.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

previously seen examples (Aljundi et al., 2019a;b; Gep-
perth & Karaoguz, 2017; Hayes et al., 2019; Kemker et al.,
2018; Rebuffi et al., 2017) or generates examples of earlier
learned tasks (Kemker & Kanan, 2018; Liu et al., 2020;
Shin et al., 2017).

The Feature (or Representation) Learning (FL) problem,
on the other hand, is unsupervised but mostly studied in
the offline context: given a set of examples {xi}, the goal
is to learn a feature vector (of a given, fixed dimension-
ality) hi = f(xi) that, ideally, makes it easier to identify
the explanatory factors of variation behind the data (Bengio
et al., 2013), leading to better performance in tasks such as
classification or clustering. FL methods differ in the prior
P (h) and the loss function. Autoencoders, for instance,
aim to learn features of a lower dimensionality than the
input that enable a sufficiently good reconstruction at the
output (Bengio, 2014; Kingma & Welling, 2013; Tschan-
nen et al., 2018; Zhou et al., 2012). A similar approach
is self-supervised methods, which learn representations by
optimizing an auxiliary task (Berthelot et al., 2019; Doer-
sch et al., 2015; Gidaris et al., 2018; Kuo et al., 2019; Oord
et al., 2018; Sohn et al., 2020).

In this work, we focus on a new and pragmatic problem
that adopts some elements of CL and FL but is also differ-
ent than them – we refer to this problem as Unsupervised
Progressive Learning (UPL). UPL can be described as fol-
lows:
1. the data is observed as a non-IID stream (e.g., different
portions of the stream may follow different distributions
and there may be strong temporal correlations between suc-
cessive examples),
2. the features should be learned exclusively from unla-
beled data,
3. each example is “seen” only once and the unlabeled data
are not stored for iterative processing,
4. the number of learned features may need to increase
over time, in response to new tasks and/or changes in the
data distribution,
5. to avoid catastrophic forgetting, previously learned fea-
tures need to persist over time, even when the correspond-
ing data are no longer observed in the stream.

The UPL problem is encountered in important AI appli-
cations, such as a robot learning new visual features as it

UPL and the STAM Architecture

explores a time-varying environment. Additionally, we ar-
gue that UPL is closer to how animals learn, at least in the
case of perceptual learning (Goldstone, 1998). We believe
that in order to mimic that, ML methods should be able
to learn in a streaming manner and in the absence of su-
pervision. Animals do not “save off” labeled examples to
train in parallel with unlabeled data, they do not know how
many “classes” exist in their environment, and they do not
have to replay/dream periodically all their past experiences
to avoid forgetting them.

To the extent of our knowledge, the UPL problem has not
been addressed before. The closest prior work is CURL
(“Continual Unsupervised Representation Learning”) by
Rao et al. (Rao et al., 2019). CURL however does not im-
pose the requirement that the data is presented to the learner
as a stream that should be processed online, and so CURL
requires iterative processing through gradient minimization
methods (additional differences with CURL are discussed
in Section 6).

To address the UPL problem, we describe an architecture
referred to as STAM (“Self-Taught Associative Memory”).
STAM learns features through online clustering at a hier-
archy of increasing receptive field sizes. Online cluster-
ing can be performed through a single pass over the data
stream. Further, despite its simplicity, clustering can gen-
erate representations that enable better classification per-
formance than more complex FL methods such as sparse-
coding or some deep learning methods (Coates et al., 2011;
Coates & Ng, 2012). STAM allows the number of clus-
ters to increase over time, driven by a novelty detection
mechanism. Additionally, STAM includes a brain-inspired
dual-memory hierarchy (short-term versus long-term) that
enables the conservation of previously learned features (to
avoid catastrophic forgetting) that have been seen multiple
times at the data stream, while forgetting outliers.

2. STAM Architecture
In the following, we describe the STAM architecture as a
sequence of its major components: a hierarchy of increas-
ing receptive fields, online clustering (centroid learning),
novelty detection, and a dual-memory hierarchy that stores
prototypical features rather than specific examples. The no-
tation is summarized in SM-A in the extended verison of
the paper found under the same title on arXiv.

I. Hierarchy of increasing receptive fields: An input vec-
tor xt ∈ Rn (an image in all subsequent examples) is an-
alyzed through a hierarchy of Λ layers. Instead of neurons
or hidden-layer units, each layer consists of STAM units
– in its simplest form a STAM unit functions as an on-
line clustering module. Each STAM processes one ρl × ρl
patch (subvector) of the input at that layer. The patches are

overlapping, with a small stride (set to one pixel in our ex-
periments) to accomplish translation invariance (similar to
CNNs). The patch dimension ρl increases in higher layers
– the idea is that the first layer learns the smallest and most
elementary features while the top layer learns the largest
and most complex features.

II. Centroid Learning: Every patch of each layer is clus-
tered, in an online manner, to a set of centroids. These
time-varying centroids form the features that the STAM ar-
chitecture gradually learns at that layer. All STAM units
of layer l share the same set of centroids Cl(t) – again for
translation invariance.1 Given the m’th input patch xl,m at
layer l, the nearest centroid of Cl selected for xl,m is

cl.j = arg min
c∈Cl

d(xl,m, c) (1)

where d(xl,m, c) is the Euclidean distance between the
patch xl,m and centroid c.2 The selected centroid is up-
dated based on a learning rate parameter α, as follows:

cl,j = αxl,m + (1− α)cl,j, 0 < α < 1 (2)

A higher α value makes the learning process faster but less
predictable. We do not use a decreasing value of α because
the goal is to keep learning in a non-stationary environment
rather than convergence to a stable centroid.

III. Novelty detection: When an input patch xl,m at layer l
is significantly different than all centroids at that layer (i.e.,
its distance to the nearest centroid is a statistical outlier),
a new centroid is created in Cl based on xl,m. We refer
to this event as Novelty Detection (ND). This function is
necessary so that the architecture can learn novel features
when the data distribution changes.

To do so, we estimate in an online manner the distance dis-
tribution between input patches and their nearest centroid
(separately for each layer). The novelty detection thresh-
old at layer l is denoted by D̂l and it is defined as the 95-th
percentile (β = 0.95) of this distance distribution.

IV. Dual-memory organization: New centroids are stored
temporarily in a Short-Term Memory (STM) of limited ca-
pacity ∆, separately for each layer. Every time a centroid
is selected as the nearest neighbor of an input patch, it is
updated based on (2). If an STM centroid cl,j is selected
more than θ times, it is copied to the Long-Term Memory
(LTM) for that layer. We refer to this event as memory con-
solidation. The LTM has (practically) unlimited capacity
and the learning rate is much smaller (in our experiments
the LTM learning rate is set to zero).

1We drop the time index t from this point on but it is still
implied that the centroids are dynamically learned over time.

2We have also experimented with the L1 metric with only min-
imal differences. Different distance metrics may be more appro-
priate for other types of data.

UPL and the STAM Architecture

Figure 1. A hypothetical pool of STM and LTM centroids visualized at seven time instants. From ta to tb, a centroid is moved from
STM to LTM after it has been selected θ times. At time tb, unlabeled examples from classes ‘2’ and ‘3’ first appear, triggering novelty
detection and new centroids are created in STM. These centroids are moved into LTM by td. From td to tg , the pool of LTM centroids
remains the same because no new classes are seen. The pool of STM centroids keeps changing when we receive “outlier” inputs of
previously seen classes. Those centroids are later replaced (Least-Recently-Used policy) due to the limited capacity of the STM pool.

This memory organization is inspired by the Complemen-
tary Learning Systems framework (Kumaran et al., 2016),
where the STM role is played by the hippocampus and
the LTM role by the cortex. This dual-memory scheme is
necessary to distinguish between infrequently seen patterns
that can be forgotten (”outliers”), and new patterns that are
frequently seen after they first appear (”novelty”).

We initialize the pool of STM centroids at each layer us-
ing randomly sampled patches from the first few images of
the unlabeled stream. When the STM pool of centroids at
a layer is full, the introduction of a new centroid (created
through novelty detection) causes the removal of an earlier
centroid. We use the Least-Recently Used (LRU) policy to
remove atypical centroids that have not been recently se-
lected by any input. Figure 1 illustrates this dual-memory
organization.

3. Classification using STAM
Given a small amount of labeled data, STAM can be used in
classification tasks. We emphasize that the labeled data is
not used for representation learning – it is only used to asso-
ciate previously learned features with a given set of classes.

I. Associating centroids with classes: Suppose we are
given some labeled examples XL(t) from a set of classes
L(t) at time t. We can use these labeled examples to asso-

ciate existing LTM centroids at time t (learned strictly from
unlabeled data) with the set of classes in L(t).

Given a labeled example of class k, suppose that there is a
patch x in that example for which the nearest centroid is c.
That patch contributes the following association between
centroid c and class k:

fx,c(k) = e−d(x,c)/D̄l (3)

where D̄l is a normalization constant (calculated as the av-
erage distance between input patches and centroids).

The class-association vector gc between centroid c and
any class k is computed aggregating all such associations,
across all labeled examples in XL:

gc(k) =

∑
x∈XL(k) fx,c(k)∑

k′∈L(t)

∑
x∈XL(k′) fx,c(k′)

, k = 1 . . . L(t)

(4)
where XL(k) refers to labeled examples belonging to class
k. Note that

∑
k gc(k)=1.

II. Class informative centroids: If a centroid is associated
with only one class k (gc(k) = 1), only labeled examples
of that class select that centroid. At the other extreme, if
a centroid is equally likely to be selected by examples of
any labeled class, (gc(k) ≈ 1/|L(t)|), the selection of that
centroid does not provide any significant information for
the class of the corresponding input. We identify the cen-

UPL and the STAM Architecture

troids that are Class INformative (CIN) as those that are
associated with at least one class significantly more than
expected by chance. Specifically, a centroid c is CIN if

max
k∈L(t)

gc(k) >
1

|L(t)|
+ γ (5)

where 1
|L(t)| is the chance term and γ is the significance

term.

III. Classification using a hierarchy of centroids: At test
time, we are given an input x of class k(x) and infer its
class as k̂(x). The classification task is a “biased voting”
process in which every patch of x, at any layer, votes for a
single class as long as that patch selects a CIN centroid.

Specifically, if a patch xl,m of layer l selects a CIN centroid
c, then that patch votes vl,m(k) = maxk∈L(t) gc(k) for the
class k that has the highest association with c, and zero for
all other classes. If c is not a CIN centroid, the vote of that
patch is vl,m(k) = 0 for all classes.

The vote of layer l for class k is the average vote across all
patches in layer l (as illustrated in Figure 2):

vl(k) =

∑
m∈Ml

vl,m(k)

|Ml|
(6)

whereMl is the set of patches in layer l. The final inference
for input x is the class with the highest cumulative vote
across all layers:

k̂(x) = arg max
k′

Λ∑
l=1

vl(k) (7)

4. Clustering using STAM
We can also use STAM representations in unsupervised
tasks, such as offline clustering. To do this, we first de-
fine an embedding function that maps a given vector x into
the space defined by STAM LTM centroids. In particular,
the embedding is defined as Φ(x) : Rn −→ R|C|, where
the element j = 1...|C| of Φ(x) is the normalized dis-
tance (Equation equation 3) between the LTM centroid cl
and its closest patch in x. The embedding vector repre-
sents how strongly each feature (LTM centroid) is present
anywhere in the given input. The embedding vectors of a
given dataset are then clustered offline using k-means for a
given value of k. Any other clustering algorithm could be
used instead.

5. Evaluation
To evaluate the STAM architecture in the UPL context, we
consider a data stream in which small groups of classes ap-
pear in successive phases, referred to as Incremental UPL.

New classes are introduced two at a time in each phase, and
they are only seen in that phase. STAM must be able to
both recognize new classes when they are first seen in the
stream, and to also remember all previously learned classes
without catastrophic forgetting.

Another evaluation scenario is Uniform UPL, where
all classes appear with equal probability throughout the
stream. The results for Uniform UPL are shown in SM-F
in the extended verison of the paper found under the same
title on arXiv.

For brevity, we include results for three datasets: MNIST
(Lecun et al., 1998), EMNIST (balanced split with 47
classes) (Cohen et al., 2017), and SVHN (Netzer et al.,
2011) (we have also experimented with CIFAR). For each
dataset we utilize the standard training and test splits. We
preprocess the images by applying per-patch normaliza-
tion (instead of image normalization), and color images are
transformed to grayscale. More information about the im-
age preprocessing can be found in SM-G in the extended
verison of the paper found under the same title on arXiv.

We create the training stream by randomly selecting, with
equal probability, Np data examples from the classes seen
during each phase. Np is set to 8000, 8000, and 2000 for
MNIST, SVHN, and EMNIST respectively. More informa-
tion about the impact of the stream size can be found in
SM-D in the extended verison of the paper found under the
same title on arXiv.

In the classification task, we select a small portion of the
training dataset as the labeled examples that are available
only to the classifier.

In each task, we average results over three different unla-
beled data streams. During testing, we select 100 random
examples of each class from the test dataset. This process
is repeated five times for each training stream (i.e., a total
of fifteen results per experiment). The following plots show
mean±standard deviation ranges.

We utilize one F72s V2 and one NC6s V2 virtual machine
from Microsoft’s Azure cloud computing service to per-
form all experiments.

For all datasets, we use a 3-layer STAM hierarchy. The hy-
perparameter values are tabulated in SM-A in the extended
verison of the paper found under the same title on arXiv.
The robustness of the results with respect to these values is
shown in SM-E in the extended verison of the paper found
under the same title on arXiv.

Baseline Methods: We evaluate the STAM architecture
comparing its performance to few basic unsupervised and
self-supervised models that we have adapted in the UPL
context. We emphasize that there are no prior approaches

UPL and the STAM Architecture

Figure 2. An example of the classification process. Every patch (at any layer) that selects a CIN centroid votes for the single class that
has the highest association with. These patch votes are first averaged at each layer. The final inference is the class with the highest
cumulative vote across all layers.

that are directly applicable to the UPL problem, and so
we cannot perform direct comparisons between STAM and
“competing” models. In follow-up work, we plan to mod-
ify existing methods that were designed to address differ-
ent problems (such as CURL, GEM or iCARL) in the UPL
context and compare them with STAM. The baselines we
consider here are:
(I) a Convolutional AutoEncoder (CAE) trained to mini-
mize Euclidean reconstruction error,
(II) a rotation-based self-supervised method which
learns the auxiliary task of predicting image rotations based
on RotNet (Gidaris et al., 2018), and
(III) offline Principal Component Analysis (PCA), just
for reference purposes, as it is probably the simplest base-
line.
A detailed description of these baseline models is presented
in SM-B in the extended verison of the paper found under
the same title on arXiv.

To satisfy the stream requirement of UPL, the number of
training epochs for the CAE and RotNet models is set to
one. This is necessary so that each unlabeled example
is processed only once. Deep learning methods become
weaker in this streaming scenario because they cannot train
iteratively over several epochs on the same dataset. For all
baselines, the classification task is performed using a K
nearest-neighbor (KNN) classifier – we have experimented
with various values of K and other single-pass classifiers,
and report only the best performing results here.

We have also compared the memory requirement of STAM
(storing centroids at STM and LTM) with the memory re-

quirement of the CAE and RotNet baselines (storing neural
network weights). The results of that comparison appear
in SM-H in the extended verison of the paper found under
the same title on arXiv. For instance, STAM has 17% of
RotNet’s memory footprint.

Classification Task: We focus on an expanding classifi-
cation task, meaning that in each phase we need to classify
all classes seen so far. The results for the classification task
are given in Figure 3. Note that we use only 10 labeled
examples per class for MNIST and EMNIST, and 100 ex-
amples per class for SVHN.

As we introduce new classes in the training stream, the av-
erage accuracy per phase decreases for all methods in each
dataset. This is expected, as the task gets more difficult af-
ter each phase. We focus on which method performs best in
each task, and which methods see a smaller decrease in ac-
curacy per phase. In the first dataset (MNIST), we observe
that STAM performs consistently better than RotNet and
CAE, and STAM is less vulnerable to catastrophic forget-
ting. For SVHN, the trend is similar after the first phase but
the difference between STAM and RotNet is much smaller.
Finally, in EMNIST, we see a consistently higher accuracy
with STAM compared to the deep learning baselines. For
additional analysis and discussion of these results, please
also refer to SM-C in the extended verison of the paper
found under the same title on arXiv.

Clustering Task: Given that we have the same number
of test vectors per class, we associate each cluster with the

UPL and the STAM Architecture

Figure 3. Classification accuracy for MNIST (left), SVHN (center), and EMNIST (right). The task is expanding classification for
incremental UPL, i.e., recognize all classes seen so far. Note that the number of labeled examples is 10 per class for MNIST and
EMNIST and 100 per class for SVHN.

Figure 4. Clustering accuracy for MNIST (left), SVHN (center), and EMNIST (right). The task is expanding clustering for incremental
UPL. The number of clusters is equal to the number of classes in the data stream seen up to that point in time.

Figure 5. Ablation study: A STAM architecture without LTM (left), a STAM architecture in which the LTM centroids are adjusted with
the same learning rate α as in STM (center), and a STAM architecture with removal of layers (right)

most-represented class in that cluster. Any instances of an-
other class in that cluster are counted as errors. The number
of clusters k is equal to twice the number of classes seen up
to that phase in the unlabeled datastream. The results of the
clustering task are given in Figure 4.

For MNIST, STAM still performs consistently better than
the two other models, and its accuracy stays almost con-
stant going from 4 classes to 10 classes. For SVHN, RotNet
performs significantly better. Finally, for EMNIST, STAM
outperforms the two deep learning methods without experi-
encing significant loss of accuracy after the first 10 phases
(20 classes).

Ablation studies: Several STAM ablations are presented
in Figure 5. On the left, we remove the LTM capability
and only use STM centroids for classification. During the
first two phases, there is little (if any) difference in classi-
fication accuracy. However, we see a clear dropoff during
phases 3-5. This suggests that, without the LTM mecha-
nisms, features from classes that are no longer seen in the

stream are forgotten over time, and STAM can only suc-
cessfully classify classes that have been recently seen.

We also investigate the importance of having static LTM
centroids rather than dynamic centroids (Fig. 5-middle).
Specifically, we replace the static LTM with a dynamic
LTM in which the centroids are adjusted with the same
learning rate parameter α, as in STM. The accuracy suffers
drastically because the introduction of new classes “takes
over” LTM centroids of previously learned classes, after
the latter are removed from the stream. Similar to the re-
moval of LTM, we do not see the effects of “forgetting”
until phases 3-5. Note that the degradation due to a dy-
namic LTM is less severe than that from removing LTM
completely.

Finally, we look at the effects of removing layers from the
STAM hierarchy (Fig. 5-right). We see a small drop in ac-
curacy after removing layer 3, and a large drop in accu-
racy after also removing layer 2. The importance of having
a deeper hierarchy would be more pronounced in datasets
with higher-resolution images or videos, potentially show-

UPL and the STAM Architecture

ing multiple objects in the same frame. In such cases, CIN
centroids can appear at any layer, starting from the lowest
to the highest.

Additional results: The reader can find additional exper-
imental results in the Supp-Material section that focus on
the questions: how does the number of LTM centroids in-
crease with time and what fraction of them are “Class Infor-
mative” (in classification tasks), how does the accuracy of
STAM vary with the number of labeled examples per class,
and how do the various hyperparameters of the STAM ar-
chitecture affect classification accuracy?

6. Related Work
The UPL problem has some similarities with several recent
approaches in the machine learning literature but it is also
different in important aspects we describe in this section.
Each paragraph highlights the most relevant prior work and
explains how it is different from UPL.

I: Continual learning: In addition to CL models cited
in the introduction, other supervised CL methods include
regularization-based approaches (Aljundi et al., 2018;
Golkar et al., 2019; Hayes & Kanan, 2019; Kirkpatrick
et al., 2017; Yoon et al., 2018; Zenke et al., 2017), expand-
ing architectures (Lomonaco & Maltoni, 2017; Maltoni &
Lomonaco, 2019; Rusu et al., 2016), and distillation-based
methods (Lee et al., 2019; 2020; Li & Hoiem, 2017). Their
main difference with UPL and STAM is that they are de-
signed for supervised learning, and it is not clear how to
adapt them for non-stationary and unlabeled data streams.

II. Offline unsupervised learning: Additional offline rep-
resentation learning methods include clustering (Caron
et al., 2018; Jiang et al., 2017a; Xie et al., 2016; Yang
et al., 2016), generative models (Eslami et al., 2016; Jiang
et al., 2017b; Kosiorek et al., 2018; 2019), information the-
ory (Hjelm et al., 2019; Ji et al., 2019), among others.
These methods require prior information about the num-
ber of classes present in a given dataset (to set the number
of cluster centroids or class outputs) and iterative training
(i.e. data replay), and therefore cannot be directly applied
in the UPL setting.

III. Semi-supervised learning (SSL): SSSL methods re-
quire labeled data during the representation learning stage
and so they are not compatible with UPL (Kingma et al.,
2014; Lee, 2013; Miyato et al., 2018; Oliver et al., 2018;
Rasmus et al., 2015; Springenberg, 2015; Tarvainen &
Valpola, 2017).

IV. Few-shot learning (FSL) and Meta-learning: These
methods recognize object classes not seen in the training set
with only a single (or handful) of labeled examples (Fei-Fei
et al., 2006; Finn et al., 2017; Ren et al., 2018; Snell et al.,

2017). Similar to SSL, FSL methods require labeled data to
learn representations and therefore are not applicable in the
UPL context. Centroid networks (Huang et al., 2019) do
not require labeled examples at inference time but require
labeled examples for training.

V. Multi-Task Learning (MTL): Any MTL method that
involves separate heads for different tasks is not compatible
with UPL because task boundaries are not known a priori in
UPL (Ruder, 2017). MTL methods that require pre-training
on a large labeled dataset are also not applicable to UPL
(Pan & Yang, 2010; Yosinski et al., 2014).

VI. Online and Progressive Learning: Many earlier
methods learn in an online manner, meaning that data is
processed in fixed batches and discarded afterwards. This
includes progressive learning (Venkatesan & Er, 2016) and
streaming with limited supervision (Chiotellis et al., 2018;
Li et al., 2018; Loo & Marsono, 2015), both of which re-
quire labeled data in the training stream.

VII. Continual Unsupervised Representation Learning
(CURL): Similar to STAM, CURL also focuses on the
problem of continual unsupervised learning from non-
stationary data with unknown task boundaries (Rao et al.,
2019). Its main difference with STAM however is that it
is not a streaming method, and so it does not require that
each example is seen only once. The CURL model re-
quires gradient-based optimization, going through the same
data multiple times. Another difference with STAM is that
catastrophic forgetting in CURL is addressed through a
generative model that also needs to be learned.

VIII. Data dimensionality and clustering-based repre-
sentation learning: As mentioned earlier in this section,
clustering has been used successfully in the past for offline
representation learning (e.g., (Coates et al., 2011; Coates &
Ng, 2012)). Its effectiveness, however, gradually drops as
the input dimensionality increases (Beyer et al., 1999; Hin-
neburg et al., 2000). In the STAM architecture, we avoid
this issue by clustering smaller subvectors (patches) of the
input data. If those subvectors are still of high dimensional-
ity, another approach is to reduce the intrinsic dimensional-
ity of the input data at each layer by reconstructing that in-
put using representations (selected centroids) from the pre-
vious layer.

VIII. Related work to other STAM components: STAM
relies on online clustering. This algorithm can be imple-
mented with a rather simple recurrent neural network of
excitatory and inhibitory spiking neurons, as shown re-
cently (Pehlevan et al., 2017). The novelty detection com-
ponent of STAM is related to the problem of anomaly de-
tection in streaming data (Dasgupta et al., 2018) — and the
simple algorithm currently in STAM can be replaced with
more sophisticated methods (e.g., (Cui et al., 2016; Yong

UPL and the STAM Architecture

et al., 2012)). Finally, brain-inspired dual-memory systems
have been proposed before for memory consolidation (e.g.,
(Kemker & Kanan, 2018; Parisi et al., 2018; Shin et al.,
2017)).

7. Discussion
The STAM architecture aims to address the following
desiderata that is often associated with Lifelong Learning
(Parisi et al., 2019):

I. Online learning: STAMs update the learned features
with every observed example. There is no separate train-
ing stage for specific tasks, and inference can be performed
in parallel with learning.

II. Transfer learning: The features learned by the STAM
architecture in earlier phases can be also encountered in the
data of future tasks (forward transfer). Additionally, new
centroids committed to LTM can also be closer to data of
earlier tasks (backward transfer).

III. Resistance to catastrophic forgetting: The STM-
LTM memory hierarchy of the STAM architecture miti-
gates catastrophic forgetting by committing to ”permanent
storage” (LTM) features that have been often seen in the
data during any time period of the training period.

IV. Expanding learning capacity: The unlimited capacity
of LTM allows the system to gradually learn more features
as it encounters new classes and tasks. The relatively small
size of STM, on the other hand, forces the system to forget
features that have not been recalled frequently enough after
their creation.

V. No direct access to previous experience: STAM only
needs to store data centroids in a hierarchy of increasing
receptive fields – there is no need to store previous exem-
plars or to learn a generative model that can produce such
examples.

UPL and the STAM Architecture

References
Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and

Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In ECCV, 2018.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Cac-
cia, M., Lin, M., and Page-Caccia, L. Online continual
learning with maximal interfered retrieval. In Advances
in Neural Information Processing Systems, pp. 11849–
11860, 2019a.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradient
based sample selection for online continual learning. In
Advances in Neural Information Processing Systems, pp.
11816–11825, 2019b.

Bengio, Y. How auto-encoders could provide credit as-
signment in deep networks via target propagation. arXiv
preprint arXiv:1407.7906, 2014.

Bengio, Y., Courville, A., and Vincent, P. Representation
learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell., 35(8):1798–1828, August
2013. ISSN 0162-8828. doi: 10.1109/TPAMI.2013.50.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic
approach to semi-supervised learning. In Advances in
Neural Information Processing Systems, pp. 5050–5060,
2019.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U.
When is ”nearest neighbor” meaningful? In Proceedings
of the 7th International Conference on Database The-
ory, ICDT ’99, pp. 217–235, London, UK, UK, 1999.
Springer-Verlag. ISBN 3-540-65452-6.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M.
Deep clustering for unsupervised learning of visual fea-
tures. In The European Conference on Computer Vision
(ECCV), September 2018.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny,
M. Efficient lifelong learning with a-GEM. In Interna-
tional Conference on Learning Representations, 2019a.

Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,
Dokania, P. K., Torr, P. H., and Ranzato, M. Contin-
ual learning with tiny episodic memories. arXiv preprint
arXiv:1902.10486, 2019b.

Chiotellis, I., Zimmermann, F., Cremers, D., and Triebel,
R. Incremental semi-supervised learning from streams
for object classification. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 5743–5749. IEEE, 2018.

Coates, A. and Ng, A. Y. Learning feature representations
with k-means, pp. 561–580. Springer, 2012.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Proceed-
ings of the fourteenth international conference on artifi-
cial intelligence and statistics, pp. 215–223, 2011.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. Em-
nist: an extension of mnist to handwritten letters. ArXiv,
abs/1702.05373, 2017.

Cui, Y., Ahmad, S., and Hawkins, J. Continuous online
sequence learning with an unsupervised neural network
model. Neural Comput., 28(11):2474–2504, November
2016. ISSN 0899-7667. doi: 10.1162/NECO a 00893.

Dasgupta, S., Sheehan, T. C., Stevens, C. F., and Navlakha,
S. A neural data structure for novelty detection. Pro-
ceedings of the National Academy of Sciences, 115(51):
13093–13098, 2018.

Doersch, C., Gupta, A., and Efros, A. A. Unsuper-
vised visual representation learning by context predic-
tion. 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1422–1430, 2015.

Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Szepes-
vari, D., Kavukcuoglu, K., and Hinton, G. E. Attend,
infer, repeat: Fast scene understanding with genera-
tive models. In Proceedings of the 30th International
Conference on Neural Information Processing Systems,
NIPS’16, pp. 3233–3241, USA, 2016. Curran Associates
Inc. ISBN 978-1-5108-3881-9.

Fei-Fei, L., Fergus, R., and Perona, P. One-shot learning of
object categories. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 28(4):594–611, April
2006. ISSN 0162-8828. doi: 10.1109/TPAMI.2006.79.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Pro-
ceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, pp. 1126–1135.
JMLR.org, 2017.

Gepperth, A. and Karaoguz, C. Incremental learning with
self-organizing maps. 2017 12th International Workshop
on Self-Organizing Maps and Learning Vector Quanti-
zation, Clustering and Data Visualization (WSOM), pp.
1–8, 2017.

Gidaris, S., Singh, P., and Komodakis, N. Unsupervised
representation learning by predicting image rotations. In
International Conference on Learning Representations,
2018.

UPL and the STAM Architecture

Goldstone, R. L. Perceptual learning. Annual review of
psychology, 49(1):585–612, 1998.

Golkar, S., Kagan, M., and Cho, K. Continual learning via
neural pruning. arXiv preprint arXiv:1903.04476, 2019.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and
Bengio, Y. An empirical investigation of catastrophic
forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211, 2013.

Hayes, T. L. and Kanan, C. Lifelong machine learning
with deep streaming linear discriminant analysis. arXiv
preprint arXiv:1909.01520, 2019.

Hayes, T. L., Cahill, N. D., and Kanan, C. Memory effi-
cient experience replay for streaming learning. In 2019
International Conference on Robotics and Automation
(ICRA), pp. 9769–9776. IEEE, 2019.

Hinneburg, A., Aggarwal, C. C., and Keim, D. A. What is
the nearest neighbor in high dimensional spaces? In Pro-
ceedings of the 26th International Conference on Very
Large Data Bases, VLDB ’00, pp. 506–515, San Fran-
cisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-715-3.

Hjelm, D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. In ICLR 2019. ICLR, April 2019.

Hsu, Y.-C., Liu, Y.-C., Ramasamy, A., and Kira, Z. Re-
evaluating continual learning scenarios: A categoriza-
tion and case for strong baselines. In NeurIPS Continual
learning Workshop, 2018.

Huang, G., Larochelle, H., and Lacoste-Julien, S. Centroid
networks for few-shot clustering and unsupervised few-
shot classification. arXiv preprint arXiv:1902.08605,
2019.

Ji, X., Henriques, J., and Vedaldi, A. Invariant infroma-
tion clustering for unsupervised image classification and
segmentation. In Proceedings of the International Con-
ference on Computer Vision (ICCV), 2019.

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. Vari-
ational deep embedding: An unsupervised and genera-
tive approach to clustering. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,
IJCAI’17, pp. 1965–1972. AAAI Press, 2017a. ISBN
9780999241103.

Jiang, Z., Zheng, Y., Tan, H., Tang, B., and Zhou, H. Vari-
ational deep embedding: An unsupervised and genera-
tive approach to clustering. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,

IJCAI’17, pp. 1965–1972. AAAI Press, 2017b. ISBN
978-0-9992411-0-3.

Kemker, R. and Kanan, C. Fearnet: Brain-inspired model
for incremental learning. International Conference on
Learning Representations (ICLR), 2018.

Kemker, R., McClure, M., Abitino, A., Hayes, T., and
Kanan, C. Measuring catastrophic forgetting in neural
networks. AAAI Conference on Artificial Intelligence,
2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling,
M. Semi-supervised learning with deep generative mod-
els. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2,
NIPS’14, pp. 3581–3589, Cambridge, MA, USA, 2014.
MIT Press.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J., Ra-
malho, T., Grabska-Barwinska, A., et al. Overcoming
catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 2017.

Kosiorek, A., Kim, H., Teh, Y. W., and Posner, I. Sequen-
tial attend, infer, repeat: Generative modelling of mov-
ing objects. In Bengio, S., Wallach, H., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 8606–8616. Curran Associates, Inc., 2018.

Kosiorek, A., Sabour, S., Teh, Y. W., and Hinton, G. E.
Stacked capsule autoencoders. In Advances in Neural In-
formation Processing Systems, pp. 15486–15496, 2019.

Kumaran, D., Hassabis, D., and McClelland, J. L. What
learning systems do intelligent agents need? comple-
mentary learning systems theory updated. Trends in cog-
nitive sciences, 20(7):512–534, 2016.

Kuo, C.-W., Ma, C.-Y., Huang, J.-B., and Kira, Z. Manifold
graph with learned prototypes for semi-supervised image
classification. arXiv preprint arXiv:1906.05202, 2019.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, Nov 1998.
ISSN 0018-9219. doi: 10.1109/5.726791.

Lee, D.-H. Pseudo-label : The simple and efficient semi-
supervised learning method for deep neural networks.
ICML 2013 Workshop : Challenges in Representation
Learning (WREPL), 07 2013.

UPL and the STAM Architecture

Lee, K., Lee, K., Shin, J., and Lee, H. Overcoming catas-
trophic forgetting with unlabeled data in the wild. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 312–321, 2019.

Lee, S., Ha, J., Zhang, D., and Kim, G. A neural dirichlet
process mixture model for task-free continual learning.
arXiv preprint arXiv:2001.00689, 2020.

Li, Y., Wang, Y., Liu, Q., Bi, C., Jiang, X., and Sun, S.
Incremental semi-supervised learning on streaming data.
Pattern Recognition, 88, 11 2018. doi: 10.1016/j.patcog.
2018.11.006.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelli-
gence, 40(12):2935–2947, 2017.

Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B.,
Bagdanov, A. D., Jui, S., and van de Weijer, J. Genera-
tive feature replay for class-incremental learning. arXiv
preprint arXiv:2004.09199, 2020.

Lomonaco, V. and Maltoni, D. Core50: a new dataset
and benchmark for continuous object recognition. arXiv
preprint arXiv:1705.03550, 2017.

Loo, H. R. and Marsono, M. N. Online data stream clas-
sification with incremental semi-supervised learning. In
Proceedings of the Second ACM IKDD Conference on
Data Sciences, CoDS ’15, pp. 132–133, New York,
NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450334365. doi: 10.1145/2732587.2732614.

Lopez-Paz, D. and Ranzato, M. Gradient episodic memory
for continual learning. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NIPS’17, pp. 6470–6479, USA, 2017. Curran
Associates Inc. ISBN 978-1-5108-6096-4.

Maltoni, D. and Lomonaco, V. Continuous learning in
single-incremental-task scenarios. Neural Networks,
116:56–73, 2019.

Miyato, T., Maeda, S.-i., Ishii, S., and Koyama, M. Virtual
adversarial training: a regularization method for super-
vised and semi-supervised learning. IEEE transactions
on pattern analysis and machine intelligence, 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu,
B., and Ng, A. Y. Reading digits in natural images
with unsupervised feature learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning
2011, 2011.

Oliver, A., Odena, A., Raffel, C. A., Cubuk, E. D.,
and Goodfellow, I. Realistic evaluation of deep semi-
supervised learning algorithms. In Advances in Neural
Information Processing Systems, pp. 3235–3246, 2018.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Pan, S. and Yang, Q. A Survey on Transfer Learning. IEEE
Transactions on Knowledge and Data Engineering, 22
(10):1345–1359, 2010.

Parisi, G. I., Tani, J., Weber, C., and Wermter, S. Lifelong
learning of spatiotemporal representations with dual-
memory recurrent self-organization. Frontiers in neu-
rorobotics, 12:78, 2018.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. Continual lifelong learning with neural net-
works: A review. Neural Networks, 113:54 – 71, 2019.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2019.01.012.

Pehlevan, C., Genkin, A., and Chklovskii, D. B. A clus-
tering neural network model of insect olfaction. In
2017 51st Asilomar Conference on Signals, Systems, and
Computers, pp. 593–600. IEEE, 2017.

Rao, D., Visin, F., Rusu, A., Pascanu, R., Teh, Y. W., and
Hadsell, R. Continual unsupervised representation learn-
ing. In Advances in Neural Information Processing Sys-
tems 32, pp. 7645–7655. Curran Associates, Inc., 2019.

Rasmus, A., Berglund, M., Honkala, M., Valpola, H., and
Raiko, T. Semi-supervised learning with ladder net-
works. In Cortes, C., Lawrence, N. D., Lee, D. D.,
Sugiyama, M., and Garnett, R. (eds.), Advances in Neu-
ral Information Processing Systems 28, pp. 3546–3554.
Curran Associates, Inc., 2015.

Rebuffi, S., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In 2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR’17, pp. 5533–5542, 2017.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky,
K., Tenenbaum, J. B., Larochelle, H., and Zemel, R. S.
Meta-learning for semi-supervised few-shot classifica-
tion. In Proceedings of 6th International Conference on
Learning Representations ICLR, 2018.

Ruder, S. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Shin, H., Lee, J. K., Kim, J., and Kim, J. Continual
learning with deep generative replay. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,

UPL and the STAM Architecture

Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 30, pp. 2990–
2999. Curran Associates, Inc., 2017.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In Advances in neural information
processing systems, pp. 4077–4087, 2017.

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini,
N., Cubuk, E. D., Kurakin, A., Zhang, H., and Raf-
fel, C. Fixmatch: Simplifying semi-supervised learn-
ing with consistency and confidence. arXiv preprint
arXiv:2001.07685, 2020.

Springenberg, J. T. Unsupervised and semi-supervised
learning with categorical generative adversarial net-
works. arXiv preprint arXiv:1511.06390, 2015.

Tarvainen, A. and Valpola, H. Mean teachers are better
role models: Weight-averaged consistency targets im-
prove semi-supervised deep learning results. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 30, pp. 1195–
1204. Curran Associates, Inc., 2017.

Tschannen, M., Bachem, O., and Lucic, M. Recent
advances in autoencoder-based representation learning.
arXiv preprint arXiv:1812.05069, 2018.

van de Ven, G. M. and Tolias, A. S. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734,
2019.

Venkatesan, R. and Er, M. J. A novel progressive learning
technique for multi-class classification. Neurocomput.,
207(C):310–321, September 2016. ISSN 0925-2312.
doi: 10.1016/j.neucom.2016.05.006.

Xie, J., Girshick, R., and Farhadi, A. Unsupervised deep
embedding for clustering analysis. In Balcan, M. F. and
Weinberger, K. Q. (eds.), Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp. 478–
487, New York, New York, USA, 20–22 Jun 2016.
PMLR.

Yang, J., Parikh, D., and Batra, D. Joint unsupervised learn-
ing of deep representations and image clusters. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 5147–5156, 2016.

Yong, S.-P., Deng, J. D., and Purvis, M. K. Novelty de-
tection in wildlife scenes through semantic context mod-
elling. Pattern Recogn., 45(9):3439–3450, September
2012. ISSN 0031-3203. doi: 10.1016/j.patcog.2012.02.
036.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong learn-
ing with dynamically expandable networks. In Interna-
tional Conference on Learning Representations, 2018.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q. (eds.), Advances in Neu-
ral Information Processing Systems 27, pp. 3320–3328.
Curran Associates, Inc., 2014.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In International Confer-
ence on Machine Learning, 2017.

Zeno, C., Golan, I., Hoffer, E., and Soudry, D. Task ag-
nostic continual learning using online variational bayes.
arXiv preprint arXiv:1803.10123, 2018.

Zhou, G., Sohn, K., and Lee, H. Online incremen-
tal feature learning with denoising autoencoders. In
Lawrence, N. D. and Girolami, M. (eds.), Proceedings of
the Fifteenth International Conference on Artificial In-
telligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pp. 1453–1461, La Palma,
Canary Islands, 21–23 Apr 2012. PMLR.

