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Abstract

Kernel-based optimal transport (OT) estimation is an alternative to the standard1

plug-in OT estimation. Recent works suggested that kernel-based OT estimators are2

more statistically efficient than plug-in OT estimators when comparing probability3

measures in high-dimensions [59]. However, the computation of these estimators4

relies on the short-step interior-point method for which the required number of5

iterations is known to be large in practice. In this paper, we propose a nonsmooth6

equation model for kernel-based OT estimation and show that it can be efficiently7

solved via a specialized semismooth Newton (SSN) method. Indeed, by exploring8

the special problem structure, the per-iteration cost of performing one SSN step can9

be significantly reduced in practice. We also prove that our algorithm can achieve a10

global convergence rate of O(1/
√
k) and a local quadratic convergence rate under11

some standard regularity conditions. Finally, we demonstrate the effectiveness of12

our algorithm by conducing the experiments on both synthetic and real datasets.13

1 Introduction14

Optimal transport (OT) theory [60] has provided a principled framework for comparing probability15

distributions. It has been extensively adopted in machine learning and related fields, with examples16

including generative modeling [2, 21, 51, 57], classification and clustering [20, 55, 25], and domain17

adaptation [9, 10, 49], see also the monograph [43]. It has also had an impact in applied areas such as18

neuroimaging [27] and cell trajectory prediction [53, 66].19

Curse of Dimensionality. In many real application problems, the OT cost is computed for squared20

Euclidean distance on the sampled distributions with n observations (leading to the 2-Wasserstein21

distance). It is known that OT estimation suffers from the curse of dimensionality [16, 19, 62]:22

the standard plug-in estimator, which consists in computing the OT distance between the sampled23

distributions with n observations, converges to the OT distance between true distributions at a rate of24

O(n−1/d), which degrades exponentially in the dimension d. This rate can be improved toO(n−1/2d)25

when true distributions are different [7] but it is still problematic in a high-dimensional regime. This26

issue can be a barrier to its adoption in machine learning since various application problems arising27

from image processing and bioengineering are high-dimensional. Practitioners have long been aware28

of such limitations and proposed efficient computational schemes that not only improve computational29

complexity but also carry out statistical regularization.30

Regularization. In this context, two threads have been investigated to regularize the OT distance:31

entropic regularization [11, 12, 22, 36] or low-dimensional projection [48, 4, 41, 29, 39, 31, 32, 40].32

For the former approach, the sample complexity of entropic OT is bounded by O(η−d/2n−1/2) for a33

regularization parameter η > 0. For the latter approach, the sample complexity of projection OT is34

bounded by O(n−1/k) for an integer-valued projection dimension k ≤ d. Even though these bounds35
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attain the dimension-free dependence on n, they deteriorate when η is small or k is large, either of36

which is needed to study the sample complexity of OT [7], and which plays a role in real applications.37

Leveraging Smoothness. A recent line of works have focused on the wavelet-based OT estimators38

under a strong smoothness condition [63, 26, 15, 34]. Although these estimators are minimax optimal39

from a statistical viewpoint, they are algorithmically intractable [59]. In contrast, a specific entropic40

regularized OT estimator is computationally tractable but still suffers from the curse of dimensionality41

when the dimension is sufficiently large [44]. Recently, Vacher et al. [59] has closed this statistical-42

computational gap by designing a kernel-based estimator relying on kernel sums-of-squares (SoS)43

and showed that it can be computed by a short-step interior-point method with polynomial-time44

complexity guarantee. However, the short-step interior-point method is well known to be ineffective45

for large number of iterations required as the sample size increases, diminishing their value from46

both statistical and practical viewpoints1. In this context, Muzellec et al. [38] proposed to use the47

relaxation model and solve it using gradient-based methods. However, the relaxation model may not48

be a good approximation for kernel-based OT estimator, thereby lacking any statistical guarantee.49

Goal: While there is an ongoing debate in the OT literature on the merits of computing the plug-in50

OT estimators v.s. kernel-based OT estimators, we adopt the perspective that Vacher et al. [59]51

does introduce a fairly novel approach and we believe that it is worth studying if the kernel-based52

OT estimation can provide leads for practical use. The goal of this paper is therefore to facilitate53

the computational aspect by designing new algorithms, and to figure out whether that estimator’s54

theoretical claims is also supported by practical relevance. The statistical analysis of kernel-based OT55

estimation itself, e.g., the proper choice of penalty parameters, is beyond the scope of this paper.56

Contribution: In this paper, we propose a nonsmooth equation model for computing kernel-based57

OT estimators and show that it has a special problem structure, allowing it to be solved in an efficient58

manner using semismooth Newton method [37, 47, 46, 58].59

We first propose a nonsmooth equation model for computing the kernel-based OT estimator and60

define an approximate OT value, which allows us to carry out a finite-time analysis of the algorithm.61

Then, we propose a specialized semismooth Newton method for computing the kernel-based OT62

estimator and prove a global convergence rate of O(1/
√
k) (Theorem 3.3) and a local quadratic63

convergence rate under standard regularity conditions (Theorem 3.4). Notably, we significantly64

reduce the per-iteration computational cost by exploiting the special problem structure. Finally, we65

conduct the experiments to evaluate our algorithm on both synthetic and real datasets. Experimental66

results demonstrate its efficiency for solving the kernel-based OT estimation.67

Organization. The remainder of the paper is organized as follows. In Section 2, we present the68

nonsmooth equation model for computing the kernel-based OT estimators and define the optimality69

notion based on the residual map. In Section 3, we propose and analyze the specialized semismooth70

Newton (SSN) algorithm for computing the kernel-based OT estimators and prove that our algorithm71

achieves the convergence rate guarantee in both global and local sense. In Section 4, we conduct the72

experiments on both synthetic and real datasets, demonstrating that our algorithm can effectively73

compute the kernel-based OT estimators and is more efficient than short-step interior-point methods.74

In Section 5, we conclude this paper. In the supplementary material, we provide further background75

materials on SSN methods, additional experimental results, and missing proofs for key results.76

2 Preliminaries and Technical Background77

In this section, we present the basic setup for the kernel-based optimal transport (OT) estimation and78

propose a nonsmooth equation model for its computation.79

2.1 Kernel-based OT estimation80

We formally define the OT distance and review the kernel-based OT estimation [59]. Indeed, the OT81

distance with strong smooth distributions can be estimated at a dimension-free statistical rate with82

high probability by solving a suitably defined optimization model.83

1The short-step interior-point method proposed by Vacher et al. [59] is in fact a Newton barrier method and
does not exploit the special structure of kernel-based OT estimation. The required number of iterations is large
as shown by our experiments in the subsequent of this paper.
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Let X and Y be two bounded domains in Rd and let P(X) and P(Y ) be the set of Borel probability84

measures in X and Y . Suppose that µ ∈ P(X), ν ∈ P(Y ) and Π(µ, ν) is the set of couplings85

between µ and ν, the OT distance [60] is given by86

OT(µ, ν) := 1
2

(
inf

π∈Π(µ,ν)

∫
X×Y

‖x− y‖2 dπ(x, y)

)
.

Its dual formulation is stated as follows,87

sup
u,v∈C(Rd)

∫
X

u(x)dµ(x) +

∫
Y

v(y)dν(y), s.t. 1
2‖x− y‖

2 ≥ u(x) + v(y),∀(x, y) ∈ X × Y,

where C(Rd) is the space of continuous functions on Rd. Note that the supremum can be attained and88

the corresponding optimal dual functions u? and v? are referred to as the Kantorovich potentials [52].89

This problem is delicate to solve since 1
2‖x−y‖

2 ≥ u(x)+v(y) needs to be satisfied on a continuous90

set X × Y . A natural approach is to take n points {(x̃1, ỹ1), . . . , (x̃n, ỹn)} ⊆ X × Y and consider91

the constraints 1
2‖x̃i − ỹi‖

2 ≥ u(x̃i) + v(ỹi) for all 1 ≤ i ≤ n. However, it can not leverage the92

smoothness of potentials [3], yielding an error of Ω(n−1/d). Vacher et al. [59] has overcome this93

difficulty by replacing the inequality constraints with equality constraints that are equivalent and94

considering the equality constraints over n points. Following their works, we impose the following95

assumption on the support sets X,Y and the densities of µ and ν.96

Assumption 2.1 Let d ≥ 1 be the dimension and let m > 2d+ 2 be the order of smoothness. Then,97

we assume that (i) the support sets X,Y are convex, bounded, and open with Lipschitz boundaries;98

(ii) the densities of µ, ν are finite, bounded away from zero and m-times differentiable.99

Assumption 2.1 guarantees that the potentials u? and v? have a similar order of differentiability [14],100

leading to an effective way to represent u and v via a reproducing Kernel Hilbert space (RKHS) [42].101

In particular, we define Hs(Z) := {f ∈ L2(Z) | ‖f‖Hs(Z) :=
∑
|α|≤s ‖Dαf‖L2(Z) < +∞} and102

remark that Hs(Z) ⊆ Ck(Z) for any s > d
2 + k, where k ≥ 0 is integer-valued. This implies that103

Hm+1(X), Hm+1(Y ) and Hm(X × Y ) are RKHS under Assumption 2.1 and they are associated104

with three bounded continuous feature maps φX : X 7→ Hm+1(X), φY : Y 7→ Hm+1(Y ) and105

φXY : X × Y 7→ Hm(X × Y ). For simplicity, we let HX = Hm+1(X), HY = Hm+1(Y ) and106

HXY = Hm(X × Y ). Vacher et al. [59, Corollary 7] shows that (i) u? ∈ HX and v? ∈ HY with107 ∫
X

u(x)dµ(x) = 〈u,wµ〉HX
,

∫
X

v(y)dν(y) = 〈v, wν〉HY
,

where wµ =
∫
X
φX(x)dµ(x) and wν =

∫
Y
φY (y)dν(y) are kernel mean embeddings; (ii) A? ∈108

S+(HXY )2 exists and satisfies the equality constraint as follows:109

1
2‖x− y‖

2 − u?(x)− v?(y) = 〈φXY (x, y), A?φXY (x, y)〉HXY
.

Putting these pieces yields a representation theorem for estimating the OT distance. Indeed, under110

Assumption 2.1, the dual OT problem is equivalent to the RKHS-based problem given by111

max
u,v,A

〈u,wµ〉HX
+ 〈v, wν〉HY

,

s.t. 1
2‖x− y‖

2 − u(x)− v(y) = 〈φXY (x, y), AφXY (x, y)〉HXY
.

(2.1)

The above equation offers two advantages: (i) The equality constraint can be well approximated112

under Assumption 2.1; (ii) RKHSs allow the kernel trick: computing parameters are expressed in113

terms of kernel functions that correspond to114

kX(x, x′) = 〈φX(x), φX(x′)〉HX
, kY (y, y′) = 〈φY (y), φY (y′)〉HY

,

and115

kXY ((x, y), (x′, y′)) = 〈φXY (x, y), φXY (x′, y′)〉HXY
,

where the kernel functions are explicit and can be computed in O(d) given the samples. The final116

step is to approximate Eq. (2.1) using the data x1, . . . , xnsample ∼ µ and y1, . . . , ynsample ∼ ν, and117

the filling points {(x̃1, ỹ1), . . . , (x̃n, ỹn)} ⊆ X × Y . Indeed, we define µ̂ = 1
nsample

∑nsample
i=1 δxi and118

2We refer to S+(HXY ) as the set of linear, positive and self-adjoint operators on HXY .

3



ν̂ = 1
nsample

∑nsample
i=1 δyi , and use 〈u,wµ̂〉HX

+ 〈v, wν̂〉HY
instead of 〈u,wµ〉HX

+ 〈v, wν〉HY
where119

wµ̂ = 1
nsample

∑nsample
i=1 φX(xi) and wν̂ = 1

nsample

∑nsample
i=1 φY (yi). We also impose the penalization terms120

for u, v, and A to alleviate the error induced by sampling the corresponding equality constraints.121

Then, the resulting problem with regularization parameters λ1, λ2 > 0 is summarized as follows:122

max
u,v,A

〈u,wµ̂〉HX
+ 〈v, wν̂〉HY

− λ1Tr(A)− λ2(‖u‖2HX
+ ‖v‖2HY

),

s.t. 1
2‖x̃i − ỹi‖

2 − u(x̃i)− v(ỹi) = 〈φXY (x̃i, ỹi), AφXY (x̃i, ỹi)〉HXY
.

(2.2)

Focusing on the case nsample = Θ(n), we let û? and v̂? be the unique maximizers of Eq. (2.2). Then,123

the estimator for OT(µ, ν) we consider corresponds to124

ÔT
n

= 〈û?, wµ̂〉HX
+ 〈v̂?, wν̂〉HY

. (2.3)

125

Remark 2.2 It follows from Vacher et al. [59, Corollary 3] that the norm of empirical potentials can126

be controlled using λ1 = Θ̃(n−1/2) and λ2 = Θ̃(n−1/2) in high probability sense, leading to the127

sample complexity bound: |ÔT
n
− OT(µ, ν)| = Õ(n−1/2). In comparison with plug-in estimators,128

the kernel-based OT estimators are better when the sample size is small and the dimension is high.129

Note that Eq. (2.2) is an infinite-dimensional optimization problem and is thus difficult to be solved.130

Thanks to Vacher et al. [59, Theorem 15], we have that the dual problem of Eq. (2.2) can be presented131

in a finite-dimensional space and the strong duality holds true. Indeed, we define Q ∈ Rn×n with132

Qij = kX(x̃i, x̃j) + kY (ỹi, ỹj), and z ∈ Rn with zi = wµ̂(x̃i) + wν̂(ỹi) − λ2‖x̃i − ỹi‖2, and133

q2 = ‖wµ̂‖2HX
+ ‖wν̂‖HY

, where we have134

wµ̂(x̃i) = 1
nsample

nsample∑
j=1

kX(xj , x̃i), wν̂(ỹi) = 1
nsample

nsample∑
j=1

kY (yj , ỹi),

and135

‖wµ̂‖2HX
= 1

n2
sample

∑
1≤i,j≤nsample

kX(xi, xj), ‖wν̂‖2HY
= 1

n2
sample

∑
1≤i,j≤nsample

kY (yi, yj).

We define K ∈ Rn×n with Kij = kXY ((x̃i, ỹi), (x̃j , ỹj)) and R as an upper triangular matrix for136

the Cholesky decomposition of K. We let Φi be the ith column of R. Then, the dual problem of137

Eq. (2.2) reads:138

min
γ∈Rn

1
4λ2

γ>Qγ − 1
2λ2

γ>z + q2

4λ2
, s.t.

n∑
i=1

γiΦiΦ
>
i + λ1I � 0. (2.4)

Suppose that γ̂ is one minimizer, we have139

Ŵn = q2

2λ2
− 1

2λ2

n∑
i=1

γ̂i(wµ̂(x̃i) + wν̂(ỹi)).

To our knowledge, the existing method proposed for solving Eq. (2.4) is a short-step interior-point140

method for which the required number of iterations is known to be large when n is large, which141

is necessary to guarantee small statistical error. To avoid this issue, Muzellec et al. [38] proposed142

solving an unconstrained relaxation model which allows for the application of gradient-based methods.143

However, the estimators obtained from solving such relaxation model lack any statistical guarantee.144

2.2 Nonsmooth equation model and optimality condition145

For simplicity, we define the operator Φ : Rn×n 7→ Rn and its adjoint Φ? : Rn 7→ Rn×n by146

Φ(X) =

〈X,Φ1Φ>1 〉
...

〈X,ΦnΦ>n 〉

 , Φ?(γ) =

n∑
i=1

γiΦiΦ
>
i .

We present the optimality notion for Eq. (2.4) as follows:147
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Definition 2.1 A point γ̂ ∈ Rn is an optimal solution of Eq. (2.4) if we have Φ?(γ̂) + λ1I � 0 and148

1
4λ2

γ̂>Qγ̂− 1
2λ2

γ̂>z+ q2

4λ2
≤ 1

4λ2
γ>Qγ− 1

2λ2
γ>z+ q2

4λ2
for all γ satisfying that Φ?(γ)+λ1I � 0.149

Clearly, Eq. (2.4) can be reformulated as the following optimization problem given by150

min
γ∈Rn

max
X�0

1
4λ2

γ>Qγ − 1
2λ2

γ>z + q2

4λ2
− 〈X,Φ?(γ) + λ1I〉. (2.5)

We denote w = (γ,X) as a vector-matrix pair and let R : Rn × Rn×n → Rn × Rn×n be given by151

R(w) =

( 1
2λ2

Qγ − 1
2λ2

z − Φ(X)
X − projSn

+
(X − (Φ?(γ) + λ1I))

)
. (2.6)

where Sn+ = {X ∈ Rn×n : X � 0}. Then, we can measure the optimality of w via appeal to the152

quantity ‖R(w)‖ and shows that the notion is the same as used in Definition 2.1.153

Proposition 2.3 A point γ̂ is an optimal solution of Eq. (2.4) if and only if ŵ = (γ̂, X̂) satisfies154

R(ŵ) = 0 for some X̂ � 0.155

Proposition 2.3 shows that we can compute the kernel-based OT estimators by solving the nonsmooth156

equation model R(w) = 0. The optimality criterion based on the residual map R(·) allows for a157

global convergence rate analysis for our specialized semismooth Newton method.158

3 Algorithm and Convergence Analysis159

In this section, we derive our algorithm and provide a convergence rate analysis. The key idea here is160

to apply the regularized semismooth Newton (SSN) method for solving R(w) = 0 and improve the161

computation of each SSN step by exploring the special structure of generalized Jacobian. We also162

safeguard the regularized SSN method by min-max method to achieve a global rate.163

Generalized Jacobian. We first examine the special structure of the generalized Jacobian of R(w).164

Indeed, by using the definition of Sn+, we have projSn
+

(Z) = PαΣαP
>
α where165

Z = PΣP> = (Pα Pᾱ)

(
Σα 0
0 Σᾱ

)(
P>α
P>ᾱ

)
, (3.1)

with Σ = diag(σ1, . . . , σn) and the sets of the indices of positive and nonpositive eigenvalues of Z166

(we denote these sets by α = {i | σi > 0} and ᾱ = {1, 2, . . . , n} \ α). Moreover, we notice that R167

is Lipschitz continuous. Then, Rademacher’s theorem can guarantee that R is almost everywhere168

differentiable. We introduce the concepts of generalized Jacobian [8].169

Definition 3.1 Suppose that R is Lipschitz continuous and DR is the set of differentiable points of R.170

The B-subdifferential of R at w is given by ∂BR(w) := {limk→+∞∇F (wk) | wk ∈ DR, w
k → w}.171

The set ∂R(w) = conv(∂BR(w)) is called generalized Jacobian where conv denotes the convex hull.172

We define a generalized operatorM(Z) ∈ ∂projSn
+

(Z) using its application to an n× n matrix S:173

M(Z)[S] = P (Ω ◦ (P>SP ))P> for all S � 0,

where the ◦ symbol denotes a Hadamard product and Ω =

(
Eαα ηαᾱ
η>αᾱ 0

)
with Eαα being a matrix174

of ones and ηij = σi

σi−σj
for all (i, j) ∈ α× ᾱ. Note that all entries of Ω lie in the interval (0, 1]. In175

general, it is nontrivial to characterize the generalized Jacobian ∂R(w) exactly but we can compute176

an element J (w) ∈ ∂R(w) usingM(·) as defined before.177

We next introduce the definition of the (strong) semismoothness of an operator.178

Definition 3.2 Suppose that R is Lipschitz continuous. Then, R is (strongly) semismooth at w if (i)179

R is directionally differentiable at w; and (ii) for any ∆w and J ∈ ∂R(w + ∆w), we have180

(semismooth) ‖R(w+∆w)−R(w)−J [∆w]‖
‖∆w‖ → 0,

(strongly semismooth) ‖R(w+∆w)−R(w)−J [∆w]‖
‖∆w‖2 ≤ C.

, as ∆w → 0.

5



Algorithm 1 Solving Eq. (3.2) where rk = (r1
k, r

2
k) ∈ Rn × Rn×n)

1: Compute a1 = −r1
k − 1

µk+1 (Φ(r2
k + Tk[r2

k])) and a2 = −r2
k.

2: Use the CG or symmetric QMS method to solve ( 1
2λ2
Q+ µkI + ΦTkΦ?)−1ã1 = a1 inexactly

and compute ã2 = 1
µk+1 (a2 + Tk[a2]), where Tk[·] is computed using the trick [68].

3: Compute the direction ∆wk = (∆w1
k,∆w

2
k) by ∆w1

k = ã1 and ∆w2
k = ã2 − Tk[Φ?(ã1)].

The following proposition characterizes the residual map given in Eq. (2.6) and its generalized181

Jacobian matrix. It also guarantees that the SSN method is suitable to solve R(w) = 0.182

Proposition 3.1 The residual map R given in Eq. (2.6) is strongly semismooth.183

Regularized SSN step. We then discuss how to compute the Newton direction efficiently. In184

particular, at a given iterate wk, we compute a Newton direction ∆wk by solving the equation185

(Jk + µkI)[∆wk] = −rk, (3.2)

where Jk ∈ ∂R(wk), rk = R(wk) and I is an identity operator. The regularization parameter186

is chosen as µk = θk‖rk‖ for stabilizing the semismooth Newton method in practice. From a187

computational point of view, it is not practical to solve the linear system in Eq. (3.2) exactly. Thus,188

we seek an approximation step ∆wk by solving Eq. (3.2) approximately such that189

‖(Jk + µkI)[∆wk] + rk‖ ≤ τ min{1, κ‖rk‖‖∆wk‖}, (3.3)

where 0 < τ, κ < 1 are some positive constants and ‖·‖ is defined for a vector-matrix pairw = (γ,X)190

(i.e., ‖w‖ = ‖γ‖2 + ‖X‖F where ‖ · ‖2 is Euclidean norm and ‖ · ‖F is Frobenius norm).191

Since Jk in Eq. (3.2) is nonsymmetric and its dimension is large, we consider applying the Schur192

complement trick to transform Eq. (3.2) into a smaller symmetric system. If we vectorize the193

vector-matrix pair ∆w3, the operatorsM(Z) and Φ can be expressed as matrices:194

M(Z) = P̃ΓP̃> ∈ Rn
2×n2

, A =

Φ>1 ⊗ Φ>1
...

Φ>n ⊗ Φ>n

 ∈ Rn×n
2

,

where P̃ = P ⊗ P and Γ = diag(vec(Ω)).195

We next provide a key lemma on the matrix form of Jk + µkI at a given iterate wk = (γk, Xk).196

Lemma 3.2 Given an iterate wk = (γk, Xk), we compute Zk = Xk − (Φ?(γk) + λ1I) and use197

Eq. (3.1) to obtain Pk, Σk, αk and ᾱk. We then obtain Ωk, P̃k = Pk ⊗ Pk and Γk = diag(vec(Ωk)).198

Then, the matrix form of Jk + µkI is given by199

(Jk + µkI)−1 = C1BC2,

where200

C1 =

(
I 0

−TkA> I

)
, C2 =

(
I 1

µk+1 (A+ATk)
0 I

)
,

and201

B =

(
( 1

2λ2
Q+ µkI +ATkA

>)−1 0

0 1
µk+1 (I + Tk)

)
,

with Tk = P̃kLkP̃
>
k where Lk is a diagonal matrix with (Lk)ii = (Γk)ii

µk+1−(Γk)ii
and (Γk)ii ∈ (0, 1]202

is then denoted as the ith diagonal entry of Γk.203

As a consequence of Lemma 3.2, the solution of Eq. (3.2) can be obtained by solving one certain204

symmetric linear system with the matrix 1
2λ2

Q + µkI + ATkA
>. We remark that this system is205

well-defined since both Q and ATkA> are positive semidefinite and the coefficient µk is chosen such206

that 1
2λ2

Q+ µkI +ATkA
> is invertible. This also shows that Eq. (3.2) is well-defined.207

3If w = (γ,X) is a vector-matrix pair, we define vec(w) = (γ; vec(X)) as its vectorization.
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Algorithm 2 A specialized SSN method with safeguarding

1: Input: τ, κ, α2 ≥ α1 > 0, β0 < 1, β1, β2 > 1 and θ, θ > 0.
2: Initialization: v0 = w0 ∈ Rn × Sn+ and θ0 > 0. Set k = 0.
3: for k = 0, 1, 2, . . . do
4: Update vk+1 from vk using one-step EG.
5: Select Jk ∈ ∂R(wk).
6: Solve the linear system in Eq. (3.2) approximately such that ∆wk satisfies Eq. (3.3).
7: Compute w̃k+1 = wk + ∆wk.
8: Update θk+1 using Eq. (3.4) accordingly.
9: Set wk+1 = w̃k+1 if ‖R(w̃k+1)‖ ≤ ‖R(vk+1)‖ is satisfied. Otherwise, set wk+1 = vk+1.

We define Tk and Q as the operator form of Tk = P̃kLkP̃
>
k and Q and write rk = (r1

k, r
2
k) explicitly208

where r1
k ∈ Rn and r2

k ∈ Rn×n. Then, we have209

vec(a) = −
(
I 1

µk+1 (A+AT )
0 I

)
vec(rk) =⇒

{
a1 = −r1

k − 1
µk+1 (Φ(r2

k + Tk[r2
k])),

a2 = −r2
k.

The next step consists in solving a new symmetric linear system and is given by210

vec(ã) =

(
( 1

2λ2
Q+ µkI +ATkA

>)−1 0

0 1
µk+1 (I + Tk)

)
vec(a),

which leads to211 {
ã1 = ( 1

2λ2
Q+ µkI + ΦTkΦ?)−1a1,

ã2 = 1
µk+1 (a2 + Tk[a2]).

Compared to Eq. (3.2) whose matrix form has size (n2 +n)× (n2 +n), we remark that the one in the212

step above is smaller with the size of n× n and can be efficiently solved by conjugate gradient (CG)213

method or symmetric quasi-minimal residual (QMR) method [28, 50]. The final step is to compute214

the Newton direction ∆wk = (∆w1
k,∆w

2
k) as follows,215

vec(∆wk) =

(
I 0

−TA> I

)
vec(ã) =⇒

{
∆w1

k = ã1,
∆w2

k = ã2 − Tk[Φ?(ã1)].

It remains to provide an efficient manner to compute Tk[·]. Since Tk is defined as the operator form216

of T = P̃kLkP̃
>
k , we have217

Tk[S] = Pk(Ψk ◦ (P>k SPk))P>k ,

where Ψk is determined by µk and Ωk. Indeed, we have218

Ωk =

(
Eαkαk

ηαkᾱk

η>αkᾱk
0

)
=⇒ Ψk =

( 1
µk
Eαkαk

ξαkᾱk

ξ>αkᾱk
0

)
,

where ξij =
ηij

µk+1−ηij for all (i, j) ∈ αk× ᾱk. Following Zhao et al. [68], we use the decomposition219

Tk[S] = G+G> where U = Pk(:, αk)>S and220

G = Pk(:, αk)( 1
2µk

(UPk(:, αk))Pk(:, αk)> + ξαkᾱk
◦ (UPk(:, ᾱk))Pk(:, ᾱk)>).

The number of flops required to compute Tk[S] is 8|αk|n2. For the case of |αk| > ᾱk, we compute221

Tk[S] via Tk[S] = 1
µk
S − Pk(( 1

µk
E −Ψk) ◦ (P>k SPk))P>k using 8|ᾱk|n2 flops. This demonstrates222

that we can obtain an approximate solution of Eq. (3.2) efficiently whenever |αk| or |ᾱk| is small.223

We present the scheme for computing an approximate Newton direction in Algorithm 1.224

Adaptive strategy. We propose a rule for updating θk where µk = θk‖rk‖ is defined in Eq. (3.2).225

Indeed, we compute ρk = −〈R(wk),∆wk〉 and use it to update θk+1. The update rule is summarized226

as follows:227

θk+1 =

 max{θ, β0θk}, if ρk ≥ α2‖∆wk‖2,
β1θk, if α1‖∆wk‖2 ≤ ρk < α2‖∆wk‖2,

min{θ, β2θk}, otherwise.
(3.4)

where β0 < 1, β1, β2 > 1 and θ, θ > 0.228
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Figure 1: Visualization of the OT map with nsample = n ∈ {50, 100, 200}.

Main scheme. We summarize the complete scheme of our new algorithm in Algorithm 2. Indeed,229

we generate a sequence of iterates by alternating between extragradient (EG) method [17, 6] and the230

aforementioned regularized SSN method.231

Note that we maintain one auxiliary sequence of iterates {vk}k≥0. This sequence is directly generated232

by the EG method for solving the min-max optimization problem in Eq. (2.5) and is used to safeguard233

the regularized SSN method to achieve a global convergence rate. More specifically, we start with234

v0 = w0 ∈ Rn × Sn+ and perform the kth iteration as follows,235

1. Update vk+1 from vk using one-step EG.236

2. Update w̃k+1 from wk using one-step regularized SSN.237

3. Set wk+1 = w̃k+1 if ‖R(w̃k+1)‖ ≤ ‖R(vk+1)‖ and wk+1 = vk+1 otherwise.238

In our experiment, we find that the main iterates are mostly generated by regularized SSN steps and239

the whole algorithm converges at a superlinear rate. This phenomenon is quite intuitive: if the initial240

point is sufficiently close to one nondegenerate optimal solution, the regularized SSN method can241

achieve the similar quadratic convergence rate (cf. Theorem 3.4) as shared by other SSN methods in242

the existing literature [35, 18, 1]. The detailed analysis will be provided in the appendix.243

Main results. We establish the convergence guarantee of Algorithm 2 in the following theorems.244

Theorem 3.3 Suppose that {wk}k≥0 is a sequence of iterates generated by Algorithm 2. Then, the245

residuals of {wk}k≥0 converge to 0 at a rate of 1/
√
k, i.e., ‖R(wk)‖ = O(1/

√
k).246

Theorem 3.4 Suppose that {wk}k≥0 is a sequence of iterates generated by Algorithm 2. Then, the247

residuals of {wk}k≥0 converge to 0 at a quadratic rate if the initial point w0 is sufficiently close to248

w? with R(w?) = 0 and every element of ∂R(w?) is invertible.249

Remark 3.5 In the context of constrained convex-concave min-max optimization problem, Cai et al.250

[6] proved the O(1/
√
k) last-iterate convergence rate of the EG, matching the lower bounds [24, 23].251

Since the kernel-based OT estimation can be solved as a min-max problem, the global convergence252

rate in Theorem 3.3 demonstrates the efficiency of Algorithm 2. It remains unclear whether or not we253

can improve the convergence result by exploring special structure of Eq. (2.5).254

4 Experiments255

We present the results of experiments that evaluate the kernel-based OT estimation with our algorithm.256

The baseline approach is the short-step interior-point method [59]; we exclude the gradient-based257

method [38] from our experiment since it only solves the relaxation model. All the experiments were258

conducted on a MacBook Pro with an Intel Core i9 2.4GHz and 16GB memory.259

Following the setup in Vacher et al. [59], we draw nsample samples from µ and nsample samples from ν,260

where µ is a mixture of 3 d-dimensional Gaussian distributions and ν is a mixture of 5 d-dimensional261

Gaussian distributions. Then, we sample n filling samples from a 2d Sobol sequence. We also set the262

bandwidth σ2 = 0.01 and parameters λ1 = 1
n and λ2 = 1√

nsample
. Focusing on the case of d = 1 (i.e.,263

1-dimensional setting), we report the visualization results in Figure 1 and 2 and find that the inferred264

OT map will be closer the the true OT map as the number of filling points and data samples increase.265
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Figure 2: Visualization of the constraint with nsample = n ∈ {50, 100}. The right one is ground truth.
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Figure 3: Comparisons of mean computation time of IPM and our algorithm on CPU time.

By varying the dimension d ∈ {2, 5, 10}, we also report the computation efficiency results in Figure 3.266

It indicates that the our new algorithm is more efficient than the IPM as the number of filling points267

increases, with smaller variance in computation time (seconds).268

The experiments comparing kernel-based OT estimators with plug-in OT estimators on synthetic269

datasets have been conducted before [59, 38] and the results demonstrate that the kernel-based OT270

estimators behave better when the number of samples is small. Here, we repeat such experiment but271

using the real-world 4i datasets from Bunne et al. [5], which contains single-cell perturbed responses,272

and which include the unperturbed cells and cells subject to drug perturbations. Our experiments are273

conducted on 15 datasets with different drug perturbations.274

Due to space limit, we defer the results to Appendix G (see Figure 4). We can see that the kernel-based275

OT estimators computed by our algorithm achieve satisfactory performance and behave better in most276

cases when the number of training samples is small; in particular, they better on 6 datasets, comparable277

on 5 datasets and worse on 4 datasets. Note that OTT computes the entropic regularized plug-in OT278

estimators and is heavily optimized to effectively handle noisy data. Therefore, it would be no surprise279

that OTT outperforms our algorithm when the number of training samples is sufficient. However, the280

kernel-based OT estimation still provides a fairly effective alternative when the number of training281

samples is small, which is consistent with the previous observations on synthetic data [59, 38]. Our282

results also validate the effectiveness of our algorithm for computing kernel-based OT estimators.283

5 Concluding Remarks284

In this paper, we propose a nonsmooth equation model for computing kernel-based OT estimators285

and show that it has a special problem structure, allowing it to be solved in an efficient manner using286

semismooth Newton method. In particular, we propose a specialized semismooth Newton method that287

achieves low per-iteration computational cost by exploiting the special problem structure, and prove288

a global sublinear convergence rate and a local quadratic convergence rate under standard regularity289

conditions. Preliminary experimental results on synthetic datasets show that our algorithm is more290

efficient than the short-step interior-point method [59], and the results on real data demonstrate the291

effectiveness of our algorithm. Future work includes the applications of kernel-based OT estimators292

to deep generative models and other real-world problems.293
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