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Abstract

Graph Lottery Tickets (GLTs), comprising a sparse graph neural network (GNN) and a
sparse input graph adjacency matrix, can significantly reduce the inference compute footprint
compared to their dense counterparts. However, their performance against adversarial attacks
remains to be fully explored. In this paper, we first investigate the resilience of GLTs against
different poisoning structure perturbation attacks and observe that they are vulnerable and
show a large drop in classification accuracy. We then present an adversarially robust graph
sparsification (ARGS) framework that prunes the adjacency matrix and the GNN weights by
optimizing a novel loss function capturing the graph homophily property and information
associated with both the true labels of the train nodes and the pseudo labels of the test nodes.
By iteratively applying ARGS to prune both the perturbed graph adjacency matrix and the
GNN model weights, we can find adversarially robust graph lottery tickets that are highly
sparse yet achieve competitive performance under different training-time structure attacks.
Evaluations conducted on various benchmarks, considering different poisoning structure
attacks such as PGD, MetaAttack, PR-BCD, GR-BCD, and adaptive attacks, demonstrate
that the GLTs generated by ARGS can significantly improve their robustness, even when
subjected to high levels of sparsity.

1 Introduction

Graph neural networks (GNNs) (Hamilton et al., 2017; Kipf & Welling), 2016; [Velickovié et al. {2017} |Zhou
et al.l 2020; [Zhang et all [2020) achieve state-of-the-art performance on various graph-based tasks like
semi-supervised node classification (Kipf & Welling, [2016; Hamilton et all [2017 [Velickovi¢ et al., [2017)),
link prediction (Zhang & Chen| 2018), and graph classification (Ying et al.| |2018). The success of GNNs
is attributed to the neural message-passing scheme in which each node updates its feature by recursively
aggregating and transforming the features of its neighbors. However, the effectiveness of GNNs when scaled
up to large and densely connected graphs is impacted due to high training and inference cost and substantial
memory consumption. Unified graph sparsification (UGS) (Chen et all |2021) addresses this concern by
simultaneously pruning the input graph adjacency matrix and the GNN to show the existence of a graph
lottery ticket (GLT), a pair of sparse graph adjacency matrix and GNN model, which can substantially reduce
inference cost without compromising model performance.

Recent studies reveal that GNNs are vulnerable to adversarial attacks (Dai et al., [2018; |[Wu et al., 2019;
Zigner & Guinnemann, [2019; Mujkanovic et al.| [2022; [Jin et al., [2020a). An adversarial attack on the graph
structure introduces unnoticeable perturbations by inserting, deleting, or rewiring edges in the graph. These
perturbations increase the distribution shift between train and test nodes in the graph, fooling the GNN to
misclassify nodes (Li et al., [2023b)) in the transductive node classification task. To counter these attacks,
many defense techniques have been developed. Some techniques improve the node classification accuracy of
GNNs by cleaning the perturbed graph structure (Wu et al.l |2019; [Entezari et al.l 2020; [Jin et al.| |2020b;
Deng et al., 2022; |Zhu et al., |2021b); others improve the accuracy by modifying the GNN architecture (Zhang
& Zitnik, 2020; |Geisler et al.l 2021} [Zhu et al} 2019). Although GLTs demonstrate strong performance on
original benign graph data, their performance in the presence of adversarial structure perturbations remains
largely unexplored. Achieving adversarially robust GLTs (ARGLTSs) can enable efficient GNN inference under
adversarial threats.
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We address this challenge by first investigating empirically
the resilience of GLTs identified by UGS against different 84
structure perturbation attacks (Ziigner & Gunnemann, 2019;
Liu et al.; 2019; Mujkanovic et al., [2022)) and showing that
they are vulnerable. We then present ARGS (Adversarially
Robust Graph Sparsification), an optimization framework
that, given an adversarially perturbed graph, iteratively
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attack (Geisler et al.l 2021), and the greedy randomized ARGS achieves similar accuracy with 35% more
block coordinate descent (GR-BCD) attack (Geisler et al., .1ty for the Cora dataset under PGD attack.
2021)) poison the graph structure by adding new edges or
deleting existing edges, resulting in changes in the properties
of the underlying graph. Our analysis shows that the PGD attack and MetaAttack introduce most edge
modifications around the train nodes (Li et all [2023b]) while the local structure of the test nodes is less
affected. Moreover, for homophilic graphs, adversarial edges are often introduced between nodes with
dissimilar features. In contrast, for heterophilic graphs, adversarial edges are introduced between nodes
with dissimilar neighborhood structures. We leverage this information to formulate a new loss function that
better guides the pruning of the adversarial edges in the graph and the GNN weights. Additionally, we use
self-learning to train the pruned GNNs on sparse graph structures, which improves the classification accuracy
of the GLTs. To the best of our knowledge, this is the first study on the adversarial robustness of GLTs.

Figure 1: Comparison of different graph sparsifi-

Our proposal is evaluated across various GNN architectures on both homophilic (Cora, citeseer, PubMed,
OGBN-ArXiv, OGBN-Products) and heterophilic (Chameleon, Squirrel) graphs attacked by the PGD attack,
MetaAttack, the PR-BCD attack (Geisler et all 2021), and the GR-BCD attack for the node classification
task. In case of homophilic graphs, connected nodes generally have similar features and often belong to
the same class while for heterophilic graphs, linked nodes have dissimilar features and different classes.
We also evaluate the proposed technique for adaptive attacks. By iteratively applying ARGS, ARGLTs
can be broadly located across the 7 graph datasets with substantially reduced inference costs (up to 98%
multiply-and-accumulate savings) and little to no accuracy drop. Figure [1| shows that, for node classification
on Cora attacked by the PGD attack, our ARGLT achieves similar accuracy to that of the full models and
graphs even with high graph and model sparsity of 48.68% and 94.53%, respectively. Compared to the GLTs
identified by UGS, our ARGLTSs on average achieve the same accuracy with 2.4x higher graph sparsity and
2.3x higher model sparsity.

2 Related Work

2.1 Graph Lottery Ticket Hypothesis

The lottery ticket hypothesis (LTH) (Frankle & Carbin} |2018]) conjectures that there exist small sub-networks,
dubbed as lottery tickets (LTs), within a dense randomly initialized neural network, that can be trained in
isolation to achieve comparable accuracy to their dense counterparts. UGS made it possible to extend the
LTH to GNNs (Chen et al.| [2021)), showing the existence of GLTs that can make GNN inference efficient. A
GNN sub-network along with a sparse input graph is defined as a GLT if the sub-network with the original
initialization trained on the sparsified graph has a matching test accuracy to the original unpruned GNN
trained on the full graph. Specifically, during training, UGS applies two differentiable binary mask tensors
to the adjacency matrix and the GNN model weights, respectively. After training, the lowest-magnitude
elements are removed and the corresponding mask location is updated to 0, eliminating the low-scored edges



Under review as submission to TMLR

and weights from the adjacency matrix and the GNN, respectively. The sparse GNN weight parameters
are then rewound to their original initialization. To identify the GLTs, the UGS algorithm is applied in an
iterative fashion until pre-defined graph and weight sparsity levels are reached. Experimental results show
that UGS can significantly trim down the inference computational cost without compromising predictive
accuracy. In this work, we aim to find GLTs for datasets that have been adversarially perturbed. When
we apply the UGS algorithm directly to the perturbed graphs, the performance accuracy of the GLTS is
substantially low compared to their clean counterparts, calling for new methods to find adversarially robust
GLTs.

2.2 Adversarial Attacks on Graphs

Adversarial attacks on graphs can be classified as poisoning attacks, perturbing the graph at train time, and
evasion attacks, perturbing the graph at test time. Both poisoning and evasion attacks can be targeted or
global attacks (Liu et al} [2019). A targeted attack deceives the model to misclassify a specific node (Ziigner
let al) [2018; Bojchevski & Giuinnemann, 2019). A global attack degrades the overall performance of the
model (Zugner & Giinnemann| [2019; [Wu et al., [2019). Depending on the amount of information available, the
existing attacks can be categorized into white-box attacks, gray-box attacks, and black-box attacks
let al] 2018} [Chang et all, [2020). An attacker can modify the node features, the discrete graph structure, or
both. Different attacks show that structure perturbation is often more effective when compared to modifying
the node features (Zhu et al., 2021al). Examples of global poisoning attacks include the MetaAttack
|& Giinnemann) [2019), PGD attack 2019), PR-BCD attack (Geisler et all [2021)), and GR-BCD
attack (Geisler et all|2021)). Gradient-based attacks like PGD and MetaAttack treat the adjacency matrix
as a parameter tensor and modify it via scaled gradient-based perturbations that aim to maximize the loss,
thus resulting in degradation of the GNN prediction accuracy. PR-BCD and GR-BCD (Geisler et al., [2021]))
are more scalable first-order optimization attacks that can scale up to large datasets like OGBN-ArXiv, and
OGBN-Products respectively. Global poisoning attacks are highly effective in reducing the
classification accuracy of different GNNs and are typically more challenging to counter since they modify the
graph structure before training (Zhu et al., [2021a). Therefore, we consider global graph structure poisoning
attacks.

2.3 Defenses on Graphs

Several approaches have been developed to combat adversarial attacks on graphs (Tang et al., [2020; Entezari
et al] [2020; [Zhu et all [2019; [Jin et all [2020b; [Zhang & Zitnikl [2020; Wu et al] [2019; [Deng et al 2022}
Zhou et al [2023). Many of these techniques try to improve the classification accuracy by preprocessing
the graph structure, i.e., they detect the potential adversarial edges and assign lower weights to these
edges, or even remove them. Jaccard-GCN removes all the edges between nodes whose
features exhibit a Jaccard similarity below a certain threshold. SVD-GCN (Entezari et al.| 2020) replaces the
adjacency matrix with a low-rank approximation since many real-world graphs are low-rank and attacks tend
to disproportionately affect the high-frequency spectrum of the adjacency matrix. ProGNN
leverages low rank, sparsity, and feature smoothness properties of graphs to clean the perturbed adjacency
matrix. GARNET (Deng et al.| 2022)) combines spectral graph embedding with probabilistic graphical models
to recover the original graph topology from the perturbed graph. GNNGuard (Zhang & Zitnik| 2020]) learns
weights for the edges in each message passing aggregation via cosine-similarity and penalizes the adversarial
edges either by filtering them out or by assigning less weight to them. STABLE preprocesses
the graph structure by leveraging unsupervised learning. Instead of using the node features like the above
mentioned techniques, STABLE uses contrastive learning to learn new node representations which are then
used for refining the graph structure. Other techniques try to improve the GNN performance by enhancing
model training through data augmentation (Li et al) 2022} [Feng et al| [2020), adversarial training
2019), self-learning 2023b)), robust aggregate functions (Geisler et al.l 2021; Li et al.| 2022), or by
developing novel GNN layers (Zhu et al., 2019).

Differently from the approaches above, GCN-LFR (Chang et al.| [2021)), a spectral-based method, leverages
the fact that some low-frequency components in the graph spectrum are more robust to edge perturbations
and regularizes the training process of a given GCN with robust information from an auxiliary regularization
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network to improve the adversarial performance of GCNs. Overall, graph preprocessing tends to remove
only a small fraction of edges from the adjacency matrix. Additionally, none of these defenses reduce the
number of parameters in the GNN model, resulting in unchanged computational footprints. We instead aim
to improve the robustness of sparse GNNs with sparse adjacency matrices to achieve computation efficiency.
As robustness generally requires more non-zero parameters, yielding parameter-efficient robust GLTs remains
a challenge.

3 Methodology

Notations. Let G = {V, £} represent an undirected graph with |V| nodes and || edges. The topology of the
graph can be represented with an adjacency matrix A € RIVI*IVI| where A;; =1if there is an edge ¢; ; € £
between nodes v; and v; while A;; = 0 otherwise. Each node v; € V has an attribute feature vector x; € R,
where F is the number of node features. Let X € RIVI*F and Y € RIVIXC denote the feature matrix and the
labels of all nodes in the graph, respectively. In this paper, we will also represent a graph as a pair {A, X }.
In the case of message-passing GNN, the representation of a node v; is iteratively updated by aggregating
and transforming the representations of its neighbors. As an example, a two-layer(Kipf & Welling] [2016)
GCN can be specified as

Z = f({A,X},0) = S(As(AXWy)W), (1)

where Z is the prediction, ® = (Wy, W7) are the weights, o(.) is the activation function, e.g., a rectified
linear unit (ReLU), S(.) is the softmax function, A = D=2 (A + I)D~= is the normalized adjacency matrix
with self-loops, and D is the degree matrix of A + I. We consider the transductive semi-supervised node
classification (SSNC) task for which the cross-entropy (CE) loss over labeled nodes is given by

C
Lo(f({A, X},0)) == Y >V, log(Z,), (2)

€YV j=1

where V7, is the set of train node indices, C' is the total number of classes, and Y; is the one-hot encoded
label of node v;.

Graph Lottery Tickets. A GLT consists of a sparsified graph, obtained by pruning some edges in G, and a
GNN sub-network, with the original initialization, that can be trained to achieve comparable performance to
the original GNN trained on the full graph, where performance is measured in terms of test accuracy. Given
a GNN f(-,0) and a graph G = {A, X}, the associated GNN sub-network and the sparsified graph can
be represented as f(-,myp © ®) and G, = {m, ©® A, X}, respectively, where m, and my are differentiable
masks applied to the adjacency matrix A and the model weights ©, respectively, and © is the element-
wise product. UGS (Chen et al., 2021) finds the two masks m, and my by optimizing the loss function
Lyas = Lo(f({my,© A, X}, mg©O))+11||myl|1 +2||myl|1, such that the GNN sub-network f(-, my© ©)
along with the sparsified graph G, can be trained to a similar accuracy as f(,®) on G. Here, 11,12 are the
Iy sparsity regularizes of mg, mg.

Poisoning Attack on Graphs. In this work, we primarily investigate the robustness of GLTs under global
poisoning attacks modifying the structure of the graph. In the case of a poisoning attack, GNNs are trained
on a graph that has been maliciously modified by the attacker. The aim of the attacker is to find an optimal
perturbed A" that fools the GNN into making incorrect predictions. This can be formulated as a bi-level
optimization problem (Zigner et all 2018} |Ziigner & Giinnemann| 2019)):

arg max Lo (f({A', X}, 0%))

A'co(A) 3)
s.t. O =argmin Lo(f({A', X}, 0))
e

where ®(A) is the set of adjacency matrices that fit the constraint % < A, L is the attack loss
function, A is the perturbation rate, and ®* is the optimal parameter for the GNN on the perturbed graph.
We provide details about the different poisoning attacks in Appendix [A-2]
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Figure 2: Classification accuracy of GLTs generated using UGS for Cora and Citeseer datasets attacked by the PGD
attack and MetaAttack. The baseline refers to accuracy on the clean graph.

3.1 UGS Analysis Under Adversarial Attacks

We perform MetaAttack (Ziigner & Giinnemann| [2019) and the PGD attack (Wu et al., on the Cora
and Citeseer datasets with different perturbation rates. We use the same setup as Xu et al.| (2018), |Zhang &/
|Zitnik| (2020)), and [Mujkanovic et al (2022)) for performing the poisoning attacks on the datasets. Then, we
apply UGS on these perturbed graphs to find the GLTs. As shown in Figure 2] the classification accuracy of
the GLTs identified by UGS is lower than the clean graph accuracy. The difference increases substantially
when the perturbation rate increases. For example, in the PGD attack, when the graph sparsity is 30%,
at 5% perturbation, the accuracy drop is 6%. This drop increases to 25% when the perturbation rate is
20%. Moreover, for 20% perturbation rate, even with 0% sparsity, the accuracy of the GNN is around 20%
lower than that of the clean graph accuracy. While UGS removes edges from the perturbed adjacency matrix,
as shown in Figure [2] it may not effectively remove the adversarially perturbed edges. A naive application
of UGS may not be sufficient to improve the adversarial robustness of the GLTs. Consequently, there is a
need for an adversarially robust UGS technique that can efficiently remove the edges affected via adversarial
perturbations while pruning the adjacency matrix and the associated GNN, along with improved adversarial
training, allowing the dual benefits of improved robustness and inference efficiency.

3.2 Analyzing the Impact of Adversarial Attacks on Graph Properties
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Figure 3: Impact of adversarial attacks on graph properties. (a), (b) Density distribution of attribute feature
differences of connected nodes in perturbed homophilic (Citeseer) and heterophilic (Chameleon) graphs. (c) Density
distribution of positional feature differences of connected nodes in perturbed heterophilic graphs.

Adversarial attacks like MetaAttack, PGD, PR-BCD, and GR-BCD poison the graph structure by either
introducing new edges or deleting existing edges, resulting in changes in the original graph properties. We
analyze the difference in the attribute features of the nodes that are connected by the clean and adversarial
edges. Figure [3h and b depict the density distribution of the attribute feature difference of connected nodes
in homophilic and heterophilic graph datasets attacked by the PGD attack. In homophilic graphs, the
attack tends to connect nodes with large attribute feature differences. A defense technique can potentially
leverage this information to differentiate between the benign and adversarial edges in the graphChen et al/|
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(2022)). However, this is not the case for heterophilic graphs (Zhu et al., 2022). We resort, instead, to the
positional features of the nodes, using positional encoding techniques like DeepWalk (Perozzi et al.l [2014).
Interestingly, as we observe from Figure [, in heterophilic graphs, attacks tend to connect nodes with large
positional feature differences. ARGS uses these graph properties to iteratively prune the adversarial edges
from homophilic and heterophilic graphs.

3.3 Adversarially Robust Graph Sparsification

We present ARGS, a sparsification technique that simultaneously reduces edges in G and GNN parameters in
©® under adversarial attack conditions to effectively accelerate GNN inference yet maintain robust classification
accuracy. ARGS reformulates the loss function to include (a) a CE loss term on the train nodes, (b) a CE
loss term on a set of test nodes, and (c) a square loss term on all edges. Pruning the edges based on this
combined loss function results in the removal of adversarial as well as less-important non-adversarial edges
from the graph.

Removing Edges Around Train Nodes. Poisoning attacks like the MetaAttack and the PGD attack tend to
modify more the local structure around the train nodes than that around the test nodes (Li et al.l |2023b).
Specifically, a large portion of the modifications is introduced to the edges connecting a train node to a test
node or a train node to another train node. We include a CE loss term associated with the train nodes, as
defined in equation [2] in our objective function to account for the edges surrounding the train nodes. These
edges include both adversarial and non-adversarial edges.

Removing Adversarial Edges. In numerous application do-
mains, including social graphs, web page graphs, and citation
graphs, connected nodes in a homophilic graph exhibit simi-
lar attribute features, while they still keep similar positional
features in heterophilic graphs (Li et al., |2022; |McPherson
et al.l 2001} [Kipf & Welling, [2016]). On the other hand, as
shown in Figure[3] adversarial attacks tend to connect nodes
with distinct attribute features in homophilic graphs and
distinct positional features in heterophilic graphs. There- .
fore, we help remove adversarial edges and encourage feature ON Y2 X9 0N RO NNDIDON DD
smoothness by including the following loss to our objective Pruning lterations

function for homophilic graphs:

—— Train-Test
Train-Train
—— Test-Test

No. of Adversarial Edge

Figure 4: Evolution of adversarial edges in Cora
(4) dataset (attacked by PGD, 20% perturbation) as

we apply ARGS to prune the graph. Train-Train
edges connect two nodes from the train set. Train-
Test edges connect a node from the train set with
one from the test set. Test-Test edges connect two
nodes from the test set.

‘Cfé(A X ZA _wj) )

i,j=1

where A’ is the perturbed adjacency matrix and (x; — x;)*
measures the attribute feature difference. For heterophilic
graphs, we introduce instead the following loss term:

‘Cfs Z A ) ) (5)

1,j=1

where y;,¥y; € R” are the positional features of nodes 7, j, obtained by running the DeepWalk algorithm (Per-
ozzi et all |2014]) on the input graph G, P is the number of node positional features, and (y; — yj)2 measures
the positional feature distance.

Removing Edges Around Test Nodes. Removal of edges tends to be random in later iterations of UGS (Hui
et al. 2023)) since only a fraction of edges in G is related to the train nodes and directly impacts the
corresponding CE loss. To better guide the edge removal around the test nodes, we also introduce a CE loss
term for these nodes. However, the labels of the test nodes are unknown. We can then leverage the fact that
structure poisoning attacks modify only the structure surrounding the train nodes, while their features and
labels remain clean. Therefore, we first train a simple multi-layer perceptron (MLP) with 2 layers on the
train nodes. The nodes in the train set are termed train nodes, whereas those within the test set are denoted
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Algorithm 1 Adversarially Robust Graph Sparsification

Input: Graph G = {A, X}, GNN f(G, ®y) with initialization ®°, Sparsity levels s, for graph and ss for GNN, Initial
masks mg = A, my =1¢€ R!I®ollo

Output: Final masks mg, me

. i [Imgll [l
1: while (1 - HAQHOO < sg) and (1 - H%QHOO < 39) do

m® — 1y, m — ma, OO — (WO, W)

fort=0,1,2,...,7—1do
Input G = {m}, ® A, X} to f(-,m§j ® ©") to compute the loss Laras in equation equation
Ol — O — uVeoiLaras

t+1 t
mg+ “— m, — wngZLARGS

t+1 t
m9+ — mg — wgvmteL',ARGS

o T—1 _T—1
my=m, ,Mmy=1m,

Set percentage pg of the lowest-scored values in mg to 0 and set others to 1
Set percentage py of the lowest-scored values in my to 0 and set others to 1

=
=

as test nodes. MLPs only use the node features for training. We then use the trained MLP to predict the
labels for the test nodes. We call these labels pseudo-labels. Finally, we use the test nodes for which the MLP
has high prediction confidence for computing the test node CE loss term. Let Vpy be the set of test nodes for
which the MLP prediction confidence is high and Y,,;;, be the prediction by the MLP. The CE loss is given by

C
LA, X}0) == 3 3 Yy, log(2y)). (6)

leYrr j=1

In summary, the complete loss function that ARGS optimizes is

Laras = aLo(f({my® A", X}, my© ©)) + BLys(my © A, X)

, (7)
+’7£1(f({mg ©A 7X}7m9 ®®)) +/\1||m9||1 +)‘2Hm9||17

where 3, A1, and Ao are the hyperparameters and the value of o and + is set to 1. A; and As are the [y
regularizers of m, and mg, respectively. After the training is complete, the lowest percentages p, of elements
of my and pg of elements of my are set to 0. Then, the updated masks are applied to prune A and ©, and
the weights of the GNN are rewound to their original initialization value to generate the ARGLT. We apply
these steps iteratively until we reach the desired sparsity s, and sg. Algorithm |I| illustrates our iterative
pruning process, where || - || is the Ly norm, counting the number of non-zero elements. As shown in
Figure {4 for the Cora dataset attacked by the PGD attack with 20% perturbation, most of the adversarial
perturbation edges are between train and test nodes (Li et al. |2023b). Moreover, our proposed sparsification
technique successfully removes many of the adversarial edges. In particular, after applying our technique for
20 iterations, where each iteration removes 5% of the graph edges, the number of train-train, train-test, and
test-test adversarial edges reduces by 68.13%,47.3%, and 14.3%, respectively.

Training Sparse ARGLTs. Structure poisoning attacks do not modify the labels of the nodes. In the case of
attacks like PGD and MetaAttack, the locality structure of the test nodes is less contaminated (Li et al.,
2023b)), implying that the train node labels and the local structure of the test nodes contain relatively “clean”
information. We leverage this insight and train the GNN sub-network using both train nodes and test nodes.
We use a CE loss term for both the train (£g) and test (£1) nodes. Since the true labels of the test nodes are
not available, we train an MLP on the train nodes and then use it to predict the labels for the test nodes (Li
et al., 2018; 2023b)). To compute the CE loss, we use only those test nodes for which the MLP has high
prediction confidence. The loss function used for training the sparse GNN on the sparse adjacency matrix
generated by ARGS is

min 1Lo(f({my © A, X}, my©0))+ (L (f({my,© A, X}, my © ©)) (8)

where my and m, are the masks evaluated by ARGS that are kept fixed throughout training, and 7 is set to
1. In the early pruning iterations, when graph sparsity is low, the test nodes are more useful in improving the
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model adversarial performance because the train nodes’ localities are adversarially perturbed and there exist
distribution shifts between the train and test nodes. However, as the graph sparsity increases, adversarial
edges associated with the train nodes are gradually removed by ARGS, thus reducing the distribution shift
and making the contribution of the train nodes more important in the adversarial training.

4 Evaluation
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Figure 5: Node classification performance versus graph sparsity levels and inference MACs for the GCN, GIN, and
GAT architectures on Cora and Citeseer datasets attacked by PGD and MetaAttack, respectively. Red stars + indicate
the ARGLTs. Dash black lines represent the performance of STRG, an adversarial defense technique.

4.1 Evaluation Setup

We evaluate the effectiveness of ARGS and the existence of ARGLTS across diverse datasets and GNN models
under different adversarial attacks and perturbation rates. In particular, we evaluate our sparsification method
on both homophilic and heterophilic graph datasets which are attacked by two structure poisoning attacks,
namely, PGD and MetaAttack (Ziigner & Giinnemann, 2019)). We consider 3 different GNN
models, namely, graph convolution networks (GCNs) (Kipf & Welling, 2016)), graph isomorphism networks
(GINS) , and graph attention networks (Veli¢kovié¢ et all 2017). We also evaluate ARGS
on large datasets, namely, OGBN-ArXiv and OGBN-Products (Hu et al., attacked by the PR-BCD
and GR-BCD attacks, respectively for the DeeperGCN model. Finally, we evaluate the robustness of ARGS
against adaptive attacks (Mujkanovic et al., 2022). We use DeepRobust, an adversarial attack library
2020)), to perform the PGD attack and MetaAttack and generate the perturbed graph adjacency matrix
A . When performing these attacks we use surrogate models which are of the same type and architecture
as that of the GNN model being attacked. For example, when attacking ARGS that is using a 2-layer
GCN as the GNN model, the surrogate model is also a 2-layer GCN. We use Pytorch-Geometric
to perform the PR-BCD and GR-BCD attacks on the OGBN-ArXiv and OGBN-Products
datasets, respectively. We compare our method with UGS (Chen et all [2021]), random pruning, and other
state-of-the-art adversarial defense methods, namely, STRG (Li et al., 2023b), GARNET (Deng et all [2022),
GNNGuard (Zhang & Zitnik, [2020), ProGNN (Jin et al., [2020a)), and Soft Median (Geisler et al. 2021)).
Only UGS and random pruning techniques prune both the graph adjacency matrix and the GNN model
parameters — no other existing defense techniques prune the GNN model parameters. For a fair comparison,
we set p, = 5%, pg = 20%, similarly to the parameters used by UGS. More details on the dataset statistics,
model configurations, and hyperparameters in ARGS can be found in Appendix [A-T}

4.2 Defense on Homophilic Graphs

We first evaluate the performance of ARGS on homophilic graphs against PGD and MetaAttack. Due to
space limitations, we show the results for a 20% perturbation rate for the Cora and Citeseer datasets. Results
for PubMed and other perturbation rates are shown in Appendix [A-4]
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Table 1: Performance comparison between ARGS and other defense techniques in terms of accuracy and
inference MAC count

Cora (PGD attack)
Perturbation Rate 20%

Citeseer (MetaAttack)
Perturbation Rate 20%

Model | Accuracy (%) | Inference MACs (M) | Accuracy (%) | Inference MACs (M)
GCN-ProGNN 63.43+£0.89 1832.14 61.02 +0.11 4006.91
GCN-ARGS 77.53£1.15 78.78 68.97 +0.89 43.78
GCN-GNNGuard 73.194+0.72 1948.32 71.62+1.01 4188.33
GCN-ARGS 77.53+£1.15 78.78 71.78+0.58 211.77
GCN-GARNET 66.66+£1.10 1684.9 72.97+1.20 3898.21
GCN-ARGS 77.53+£1.15 78.78 73.19+0.78 425.81

Figure [5] shows the results for the GCN, GIN, and GAT architectures on the Cora and Citeseer datasets
attacked by PGD and MetaAttack, respectively, where the average accuracy of ARGLT is reported across 5
runs. ARGLTS at a range of graph sparsity from 30% to 60% with similar performance as the STRG baseline
can be identified across the different GNN backbones. The ARGLTS significantly reduce the inference MACs
for GCN, GIN, and GAT by ~ 95%, ~ 97%, and ~ 83%, respectively, for the Cora dataset. For the Citeseer
dataset, the inference MACs reduce by ~ 98% for all the backbone GNNs.

Comparison with Other Defense Techniques. We
compare the performance of ARGS with GNNGuard, . .
GARNET, and ProGNN, which are all defense methods. Perturbation Rate: 10.0% Perturbation Rate: 15.0%
Differently from ARGS, none of these methods prunes the
weights of the GNN model. We compare these methods
in terms of accuracy and inference MAC and we consider
GCN as the backbone. For the different baselines, the GLT
which has similar accuracy as the baseline with maximum

graph and model sparsity is identified as the ARGLT by B I I R N I R A
ARGS and reported in Table[l] For the Cora dataset, the Graph Sparsity (%) Graph Sparsity (%)
ARGLT identified by ARGS for PGD attack (20% pertur- »
bation rate) with maximum sparsity levels (model sparsity:
98.9%, graph sparsity: 64.1%) has a classification accuracy
of 77.53%. The three different defense techniques, namely,
ProGNN, GNNGuard, and GARNET have a classifica-
tion accuracy of 63.43%, 73.19%, and 66.66%, respectively,
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sparse ARGLT has a classification accuracy of 70.2%. The

defense technique ProGNN has a classification accuracy

of 61.02%, which is less than the classification accuracy of the most sparse ARGLT. Hence, we compare

it with the most sparse ARGLT. The defense techniques GNNGuard and GARNET have a classification

accuracy of 71.62% and 72.97%, respectively. In these cases, the GLT with the same classification accuracy

as the defense technique is reported in Table equation

4.3 Defense on Large Graphs

We evaluate the robustness of ARGS on the large-scale datasets OGBN-ArXiv and OGBN-Products. OGBN-
ArXiv has 170,000 nodes and 1.16 million edges while OGBN-Products has 2.5 million nodes and 61 million
edges. We use the PR-BCD attack for perturbing the OGBN-ArXiv dataset. Attempting the PR-BCD
attack on the OGBN-Products dataset resulted in out-of-memory errors. We then conducted a more scalable



Under review as submission to TMLR

Table 2: Comparison between ARGLTs identified by ARGS and GLTs identified by UGS in terms of Graph
sparsity, Model sparsity, and Inference MACs across different baselines for the OGBN-Products dataset

Baseline Accuracy (%) | Graph Sparsity(%) | Model Sparsity(%) | Inference MACs(M)
UGS ARGS UGS ARGS UGS ARGS
Soft Median GDC 59.23 87.84 87.84 87.89 87.89 75721.5 75727.8
GCN 62.71 83.32 87.84 83.36 87.89 104076.4 75727.8
GNNGuard 63.22 83.32 87.84 83.36 87.89 104076.4 75727.8
GARNET 74.97 19.00 40.95 19.01 40.98 506511.0 369089.2

Table 3: ARGS and UGS performance comparison for the PGD attack and an adaptive attack for the Cora, Citeseer,
and PubMed dataset. GCN is used as the GNN model.

‘ ‘ ‘ Classification Accuracy at ‘ Classification Accuracy at
Perturbation Rate 5% Perturbation Rate 10%

Graph Sparsity Graph Sparsity Graph Sparsity Graph Sparsity
. 22.64% 43.16% 22.64% 43.16%
Dataset Technique Attack Model Sparsity | Model Sparsity | Model Sparsity | Model Sparsity
67.60% 91.70% 67.60% 91.70%
Cora ARGS PGD Attack 82.04+1.09 80.68+0.85 82.840.77 80.18+1.13
Adaptive Attack 80.33+1.35 78.77+£1.86 79.68+1.35 77.16+0.98
Citeseer ARGS PGD Attack 75.32+0.88 74.17+0.56 74.7+0.98 73.53+1.05
Adaptive Attack 74.11+1.76 73.16+0.87 72.93+1.87 71.89+1.01
PubMed ARGS PGD Attack 85.57+0.07 85.41+0.09 82.724+0.05 83.36+0.10
Adaptive Attack 83.09+0.06 83.75+0.09 80.78+0.12 83.04+0.09

GR-BCD attack (Geisler et al., 2021) on the OGBN-Products dataset, employing a perturbation rate of 50%.
The reference GNN model is Deeper-GCN (Li et al.l 2023a). For both the PR-BCD and GR-BCD attacks,
the adversarial edges are uniformly distributed among the train and test nodes. Hence, we set the value of
¢ to be 0. The PGD attack or MetaAttack faces timeout due to memory for these large graphs. Figure [6]
shows that ARGS with 28-layer DeeperGCN as the backbone GNN can identify ARGLTSs that have high
model and graph sparsity compared to UGS. Here we take GARNET as the baseline. In the case of the
original GARNET, a 3-layer GCN is used as the backbone GNN. We also consider GARNET with 28-layer
DeeperGCN as an additional baseline for fair comparison. For 28-layer DeeperGCN baseline, the model
sparsity and graph sparsity are 94.50% and 48.67% for the 10% perturbed dataset, and 94.50% and 48.70%,
respectively, for the 15% perturbed dataset. Results on the OGBN-Products dataset are reported in Table
Our baselines include GCN, GARNET, GNNGuard, and Soft Median GDC. For the different baselines, the
GLT which has similar accuracy as the baseline with maximum graph and model sparsity is identified as the
ARGLT by ARGS and reported in Table[2] Here we compare the performance between UGS and ARGS and
as evident from Table[2] ARGS can identify lottery tickets with higher graph and model sparsity than UGS.

4.4 Defense Against Adaptive Attacks.

Recently, adaptive attacks (Mujkanovic et al., [2022) have been developed, which are targeted to specific
defense techniques, to evaluate their robustness. Because all the components in the loss function of ARGS
are differentiable, ARGS can also be directly attacked by an adaptive attack. Specifically, we evaluate ARGS
on a gradient-based adaptive attack, called Meta-PGD (Mujkanovic et al., [2022)), where ARGS is attacked
by unrolling its training procedure. Table [3] compares the performance of ARGS against the PGD attack
and the adaptive attack, with GCN as the GNN backbone for Cora and CiteSeer. For a 5% perturbation
rate, the accuracy of the ARGLT identified by ARGS reduces by only ~1.7% for Cora while for CiteSeer
it reduces by only ~1.5%. For a 10% perturbation rate, the reduction in classification accuracy is ~2.9%
for the Cora dataset and ~2.5% for the Cora dataset, showing that the performance degradation of ARGS
against adaptive attack is minimal. We also perform the adaptive attack on OGBN-ArXiv and the results
are highlighted in Table [4]
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Table 4: ARGS and UGS performance comparison for the PRBCD attack and adaptive attack for the OGBN-ArXiv
dataset. DeeperGCN is used as the GNN model.

Classification Accuracy at

‘ ‘ ‘ Classification Accuracy at ‘
Perturbation Rate 15%

Perturbation Rate 10%

Graph Sparsity | Graph Sparsity | Graph Sparsity | Graph Sparsity
. 5.0% 26.5% 5.0% 26.5%
Dataset Technique Attack Model Sparsity Model Sparsity Model Sparsity Model Sparsity
20.0% 73.8% 20.0% 73.8%
OGBN-ArXiv ARGS PRBCD Attack 68.70 68.28 69.19 67.64
Adaptive Attack 68.30 67.83 67.06 66.38

MetaAttack Ptb rate 10.0% MetaAttack Ptb rate 20.0% PGD Attack Ptb rate 10.0% PGD Attack Ptb rate 20.0%

Weight Sparsity (%)

Weight Sparsity (%)

— ARGS UGS
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Figure 7: Node classification performance versus weight sparsity levels for GPRGNN on Chameleon and Squirrel
dataset attacked by the PGD Attack and MetaAttack.

4.5 Defense on Heterophilic Graphs.

We report the classification accuracy of ARGS on heterophilic graphs in Figure m We use GPRGNN ((Chien
et al., 2020) as the GNN model for the heterophilic graph datasets Chameleon and Squirrel (McCallum et al.|
2000). GPRGNN performs better than GCN, GIN, and GAT for heterophilic graphs (Deng et al.l 2022). We
use GARNET as the baseline since it achieves state-of-the-art adversarial classification accuracy compared to
other defense techniques for heterophilic graphs. As shown in Figure[7] ARGS is able to identify GLTs that
achieve similar classification accuracy as GARNET for the Chameleon and Squirrel datasets attacked by PGD
and MetaAttack with 85% to 97% weight sparsity, resulting in a substantial reduction in inference MACs.

4.6 Analysis Under Structure and Node Feature Attacks.

In addition to structural attacks, we also evaluate the performance of ARGS against an attack that modifies
both the graph structure and the node features simultaneously. Mettack (Zigner & Gunnemann, [2019)) can
be modified for this purpose. For a given perturbation budget, this attack performs a structure perturbation
and a feature perturbation at each iteration, and between the two perturbations, it chooses the one that
results in a higher attack loss. This iterative process is repeated until the perturbation budget is exhausted.
We attack the Cora and Citeseer datasets with 5%, 10%, and 15% perturbation rates, and use the STRG
defense technique as the baseline. ARGS can find highly sparse GLTs that achieve similar classification
accuracy as the baseline for different graph datasets perturbed with different perturbation rates using this
attack. For example, for a 5% perturbation rate, ARGS finds GLTs that have 53.75% graph sparsity and
96.55% model sparsity for the Cora dataset and 58.31% graph sparsity and 97.92% model sparsity for the
Citeseer dataset. We also include the performance of UGS for comparison. Figure [§] shows that, for the
same sparsity levels, GLTs identified by ARGS achieve much higher classification accuracy when compared to
GLTs identified by UGS. We observe that the attacked graph contains more edge perturbations than feature
perturbations since modifying the graph structure results in higher attack loss than modifying the node
features. This result shows that ARGS can find highly sparse GLTs for graphs attacked by both structure
and node feature perturbations.
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Figure 8: Node classification performance over achieved graph sparsity levels for a GCN model on Cora and Citeseer
datasets attacked by a version of the MetaAttack that modifies both graph structure and node features. The
perturbation rates are 5%, 10%, and 15%. Red stars x indicate the ARGLTs. STRG is used as the baseline.

4.7 Ablation Study

We evaluate the effectiveness of each component of the proposed loss function for the sparsification algorithm
by performing an ablation study, as shown in Table [5] We consider the Cora dataset under PGD attack
with 10% and 20% perturbation rates. Configuration 1 corresponds to ARGS with all the loss components
(equation@. Configuration 2 does not use the feature smoothness component (equation while configuration
3 skips the CE loss associated with the predicted test nodes (equation @ Configuration 4 skips both the
smoothness and CE loss on predicted test nodes. Table [5] shows that both configurations 2 and 3 improve
the final performance when compared to that of configuration 4, highlighting the importance of the losses
introduced in equation [4 and equation [f] More importantly, at both high and low target sparsity, we yield the
best classification performance with configuration 1, showcasing the importance of the unified loss function
(equation . Further ablation studies are provided in the appendix.

Table 5: Ablation study.

Classification Accuracy at Classification Accuracy at
GCN, Cora, PGD Attack Perturbation Rate 10% Perturbation Rate 20%
Graph Sparsity | Graph Sparsity | Graph Sparsity | Graph Sparsity
. 9.8% 64.4% 9.8% 64.5%
Configuration @ B v m ¢ Model Sparsity | Model Sparsity | Model Sparsity | Model Sparsity
36.1% 98.9% 36.1% 98.9%
1 V0|V v |V 83.25 75.10 80.63 75.60
2 VI X |V | V|V 82.04 70.57 78.92 64.84
3 Vv Xx | Vv |V 82.44 72.84 78.97 52.92
4 v | X X | v |V 80.58 62.42 75.7 54.18

5 Conclusion

In this paper, we first empirically observed that the performance of GLTs collapses against structure
perturbation poisoning attacks. To address this issue, we presented a new adversarially robust graph
sparsification technique, ARGS, that prunes the perturbed adjacency matrix and the GNN weights by
optimizing a novel loss function. By iteratively applying ARGS, we found ARGLTSs that are highly sparse
yet achieve competitive performance under different structure poisoning attacks. Our evaluation showed the
superiority of our method over UGS at both high and low sparsity regimes.
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A Appendix

A.1 Dataset Details

We use seven different benchmark datasets, namely, Cora, Citeseer, PubMed, OGBN-arXiv, OGBN-Produts,
Chameleon, and Squirrel, to evaluate the efficacy of ARGS in finding ARGLTs. Details about the benchmark
datasets are summarized in Table @ In the case of Cora, Citeseer, and PubMed, 10% data constitute the
train set, 10% data constitute the validation set while the test set is 80%. For Chameleon and Squirrel [39],
we keep the same data split setting as |Chien et al.| (2020). For OGBN-ArXiv, and OGBN-Products we follow
the data split setting of Open Graph Benchmark (OGB) (Hu et al., 2020).

A.2 Poisoning Attacks on GNNs

We consider different structure poisoning attacks to perturb the input graph. We recall the attacker’s objective
is to find an optimal perturbed A which results in degradation in the performance of the GNN model on the

Table 6: Details on the datasets.

Datasets \ Type #Nodes #Edges Classes Features
Cora Homophilic 2485 5069 7 1433
Citeseer Homophilic 2110 3668 6 3703
PubMed Homophilic 19717 44338 3 500
OGBN-ArXiv Homophilic 169,343 1,166,243 40 128
OGBN-Products | Homophilic 2,449,029 61,859,140 47 100
Chameleon Heterophilic 2277 62792 5 2325
Squirrel Heterophilic 5201 396846 5 2089
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test data. Poisoning attacks can be formulated as a bi-level optimization problem as shown in Equation
MetaAttack (Bojchevski & Glinnemann| 2019)) tackles the bi-level problem using meta-gradients. It treats
the graph adjacency matrix as a hyperparameter which is to v be optimized such that the L, increases.
PGD attack relaxes the discrete adjacency matrix to [0, 1]"*™ during the gradient-based
optimization, and the resulting weighted changes in the adjacency matrix reflects the probability of an edge
getting flipped. After each gradient update, the entries in the adjacency matrix are projected back such
that the perturbations are within A. Out of the different perturbed adjacency matrices in ®(A) the one
which results in maximum L. is chosen as the perturbed graph A’. Attacks like PGD and MetaAttack
face scalability issues when extended to large graph datasets like OGBN-ArXiv, and OGBN-Products. More
scalable attacks have been developed recently. Inspired by the randomized block coordinate descent (RBCD),
PR-BCD, and GR-BCD attacks |Geisler et al.| (2021)) have been developed where only a subset of variables is
optimized at a time therefore only the gradients of those variables are computed resulting in lower memory
requirements.

A.3 Implementation Details

For fair comparison, we follow the setup used by UGS as our default setting (Chen et all, [2021)). For Cora,
Citeseer, and PubMed we conduct all our experiments on two-layer GCN, GIN, and GAT networks with 512
hidden units. The graph sparsity p, and model sparsity pg are 5% and 20% unless otherwise stated. The
value of 8 is chosen from {0.01,0.1, 1,10} while the value of o, v,7, and ¢ is 1 by default. We use the Adam
optimizer for training the GNNs. In each pruning round, the number of epochs to update the masks is by
default 200, using early stopping. The 2-layer MLP used for predicting the pseudo-labels of the test nodes
has by default hidden dimension of 1024 unless otherwise mentioned. We use DeepRobust, an adversarial
attack library , to implement the PGD attack and MetaAttack on the different datasets.
We use Pytorch-Geometric (Fey & Lenssen, 2019)) to perform the PR-BCD and GR-BCD attacks on the
OGBN-ArXiv and OGBN-Products datasets, respectively. All the experiments are conducted on an NVIDIA
Tesla A100 (80GB GPU).

For GCN, the values of A\; and A, are 1072 and 10~2 for Cora and Citeseer, while for PubMed they are 10~6
and 1073, respectively. The value of the learning rate is 8 x 10~ and that of the weight decay is 8 x 10> for
the Cora dataset. For Citeseer and PubMed, the learning rate is 1072 and the weight decay is 5 x 10~%. For
the different datasets, we use a dropout of 0.5.

In the case of GIN, for the Cora dataset, the learning rate is 8 x 1073, the weight decay is 8 x 1072, \; is
1073, and Ay is 1073, For Citeseer, the learning rate is 1072, the weight decay is 5 x 107%, A\; is 107°, and Ay
is 107°. For GAT, in the case of the Cora dataset, the learning rate is 8 x 1073, the weight decay is 8 x 107,
A1 is 1073, Xy is 1073, and dropout is 0.6. Finally, for the Citeseer dataset, the learning rate is 1072, the
weight decay is 5 x 1074, A\; is 107°, Ay is 1072, and the dropout is 0.6.

We use DeeperGCN models for the OGBN-ArXiv and OGBN-Products datasets. In the case of OGBN-ArXiv,
we use a 28-layer DeeperGCN model; for OGBN-Products, we use a 14-layer DeeperGCN model. For
OGBN-ArXiv, the learning rate is 1072, A\; is 107, and )y is 107%. For OGBN-Products, the learning rate
is 1072, A\; is 1074, and )y is 107%. Droput is 0.5 for both the datasets. In the case of heterophilic graphs,
we use GPRGNN as the backbone GNN. For the Chameleon dataset, the learning rate is 5 x 1072, \; is
1073, Ay is 1073, and dropout is 0.4. For the Squirrel dataset, the learning rate is 5 x 1072, A; is 1076, Xy is
1072, and dropout is 0.4.

A.4 Performance Evaluation of ARGS

We evaluate the performance of ARGS on homophilic graphs perturbed by the PGD attack and MetaAttack.
We show the results for a 5%, 10%, and 15% perturbation rate for the Cora and Citeseer datasets in Figures |§|,
Figures [[T}and [I2] show the performance of ARGS on the Cora and Citeseer datasets with GIN as the
backbone GNN. Finally, Figure [13| shows the performance of ARGS on Citeseer with GAT as the backbone
GNN. Furthermore, we evaluate the performance of ARGS on the PubMed dataset, as shown in Figure [T4]

16



Under review as submission to TMLR

84 Perturbation rate 5% 82 Perturbation rate 10% a2 Perturbation rate 15%
© 70 68
jud
<]
. ¥
O 56 54 &
=
] <
oy 2
8 42| — ARGS (Ours) 40] — ARGS (Ours) 401 — ARGS (Ours) 2
3 UGS UGS UGS
é() 281 — Random Pruning 26 ™ Random Pruning 26 ™ Random Pruning
== Baseline == Baseline == Baseline
*  ARGLT % ARGLT * ARGLT
14 12 12
COLIPPRDPOPPRPEP COPLIPPRPRORPRP O OPVPP PP RO RSP L
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)
84 Perturbation rate 5% 84 Perturbation rate 10% 84 Perturbation rate 15%
© 70
i
o
2 ¥
O 56 &
=
] <
t [a)
8 42| — ARGS (Ours) —— ARGS (Ours) 42| — ARGS (Ours) o
3 UGS UGS UGS
é-() 28l ™ Random Pruning 281 — Random Pruning 281 — Random Pruning
== Baseline == Baseline == Baseline
* ARGLT *  ARGLT % ARGLT

14 14 14
COPVPPRDPOEPPRPEP S OLIPPRPOPPPPRP COPLIPPRPRORP S

Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)

Figure 9: Node classification performance over achieved graph sparsity levels for GCN on the Cora dataset attacked
by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, and 15%. Red stars % indicate the ARGLTs
which achieve similar performance with high sparsity. STRG is used as the baseline.
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Figure 10: Node classification performance over achieved graph sparsity levels for GCN on the Citeseer dataset
attacked by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, and 15%. Red stars x indicate
the ARGLTSs which achieve similar performance with high sparsity. STRG is used as the baseline.

A.5 Comparing the Impact of Node Attribute Features and Positional Features on ARGLTs for
Homophilic Graphs

For homophilic graphs, we considered node attribute features for removing the adversarial edges, while node
positional features were considered for heterophilic graphs. We then perform a set of experiments, where
we instead consider positional features of the nodes for homophilic graphs. We observe that the overlap
between the density distribution of positional feature differences of clean edges and that of adversarial edges
is higher compared to that of the attribute features. However, the two density distributions of positional
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Figure 11: Node classification performance over achieved graph sparsity levels for GIN on the Cora dataset attacked
by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, and 15%. Red stars % indicate the ARGLTs
which achieve similar performance with high sparsity. STRG is used as the baseline.
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Figure 12: Node classification performance over achieved graph sparsity levels for GIN on the Citeseer dataset
attacked by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, and 15%. Red stars x indicate
the ARGLTs which achieve similar performance with high sparsity. STRG is used as the baseline.

feature differences are still separable. The results are reported in Table [7] When positional features are
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Figure 13: Node classification performance over achieved graph sparsity levels for GAT on the Citeseer dataset
attacked by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, and 15%. Red stars * indicate
the ARGLTs which achieve similar performance with high sparsity. STRG is used as the baseline.

GCN

6 Perturbation rate 5% 84 Perturbation rate 10% ar Perturbation rate 15% 6 Perturbation rate 20%
gsl 75 75 /_/—-'-’_’_ﬁk
5 ¥
576 66 68 64 8
a =]
5'71 57 59 53 g
e —— ARGS (Ours) —— ARGS (Ours) —— ARGS (Ours) —— ARGS (Ours) Q
3 uGs uGs uGs uGs
266 = = Baseline 481 == Baseline 501 == Baseline 421 == Baseline

* ARGLT * ARGLT * ARGLT * ARGLT
61 39 41 31
RSN S ISR I A R S S IIPI I I A S SIS O O PSP PO
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)
88
_/_:/_\_/ﬁ _____ — _/_7/__m
g 79 77 73
£ ~
Qo 1%
571 67 58 58 kS
z £
a63 57 43 43 ?:‘5
o —— ARGS (Ours) —— ARGS (Ours) —— ARGS (Ours) —— ARGS (Ours) 2
3 uGs uGs uGs uGs
255 - = Baseline 471 — = Baseline 281 — = Baseline 281 =~ Baseline
* ARGLT * ARGLT * ARGLT * ARGLT
47 37 13 13
O O D D S O O D NP S O O O N PP [T ST R SR I Y
Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%) Graph Sparsity (%)

Figure 14: Node classification performance over achieved graph sparsity levels for GCN on the PubMed dataset
attacked by the PGD attack and MetaAttack. The perturbation rates are 5%, 10%, 15%, and 20%. Red stars
indicate the ARGLTs which achieve similar performance with high sparsity. STRG is used as the baseline.

considered, ARGS is still able to find highly sparse GLTs, but the sparsity levels of the GLTs in some cases
are lower than those obtained when attribute features are considered.

A.6 Ablation Study

We perform an ablation study to verify the effectiveness of each component of the proposed loss function used
for the sparsification algorithm. Part of this study is already included in the main sections of the paper. We
report the rest of the results in Table 8] In particular, we present the analysis performed on the Cora dataset
for all the 3 different attacks with all the 4 perturbation rates. We recall that configuration 1 corresponds to
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Table 7: ARGS performance comparison when positional and attribute features are considered for homophilic graphs

in the Cora and Citeseer datasets on three different GNN models.

| GCN GIN GAT
el i Perturbation Feature Graph Model Graph Model Graph Model
‘ Dataset ‘ Attack ‘ rate Type ‘ Sparsity ‘ Sparsity ‘ Sparsity ‘ Sparsity ‘ Sparsity ‘ Sparsity ‘

Cora PGD 5% Attribute 49.2% 94.8% 58.3% 97.2% 64.2% 98.9%
Positional 46.0% 93.3% 58.3% 97.2% 64.2% 98.9%

10% Attribute 48.3% 94.2% 46.0% 93.5% 64.3% 98.9%

Positional 37.2% 87.1% 40.1% 89.8% 64.3% 98.9%

15% Attribute 49.1% 94.8% 53.7% 96.7% 64.2% 98.9%

Positional 37.2% 87.1% 18.5% 59.2% 64.3% 98.9%

Citeseer | Mettack 5% Attribute 31.2% 79.4% 33.6% 83.6% 64.2% 98.9%
Positional 25.8% 74.2% 26.5% 74.2% 64.2% 98.9%

10% Attribute 33.6% 83.6% 64.2% 98.8% 64.2% 98.8%

Positional 33.6% 83.6% 64.2% 98.8% 64.2% 98.8%

15% Attribute 48.7% 94.8% 64.2% 98.8% 64.3% 98.8%

Positional 43.1% 91.9% 64.2% 98.8% 64.3% 98.8%

ARGS with all the loss components. As shown in Table [§] at both high and low target sparsity, we yield the
best classification performance with configuration 1, showcasing the importance of the unified loss function.

Table 8: Ablation study.

GCN, Cora, PGD Attack

Classification Accuracy at
Perturbation Rate 5%

Classification Accuracy at

Perturbatio

n Rate 15%

Graph Sparsity | Graph Sparsity | Graph Sparsity | Graph Sparsity
. 22.7% 60.4% 22.7% 60.4%
Configuration « B v n ¢ Model Sparsity Model Sparsity Model Sparsity Model Sparsity
67.7% 98.2% 67.7% 98.2%
1 VIV | v 82.04 74.75 80.23 73.99
2 VI X |V | V|V 81.84 73.64 79.98 68.81
3 v |V X | v | Vv 81.69 74.45 76.86 72.89
4 v | X X | v | Vv 79.28 71.33 74.70 63.48
Classification Accuracy at Classification Accuracy at
GCN, Cora, Mettack Attack Perturbation Rate 5% Perturbation Rate 10%
Graph Sparsity Graph Sparsity Graph Sparsity Graph Sparsity
. 22.7% 62.3% 22.6% 64.2%
Configuration « B v n ¢ Model Sparsity Model Sparsity Model Sparsity Model Sparsity
67.6% 98.6% 67.5% 98.9%
1 vV0|ivi|v|v |V 81.74 71.83 80.23 71.58
2 VI X |V | V|V 80.89 69.91 78.17 70.98
3 v | Vv X | v | Vv 79.88 71.33 75.40 66.81
4 v | X X | v | Vv 78.89 69.03 75.40 60.97
Classification Accuracy at Classification Accuracy at
GCN, Cora, Mettack Attack Perturbation Rate 15% Perturbation Rate 20%
Graph Sparsity Graph Sparsity Graph Sparsity Graph Sparsity
. 22.7% 60.4% 22.6% 60.3%
Configuration @ B 7 m ¢ Model Sparsity | Model Sparsity | Model Sparsity | Model Sparsity
67.6% 98.2% 67.5% 98.2%
1 v v v v v 80.73 75.91 79.38 70.37
2 v X v v v 80.23 73.69 78.72 69.97
3 v | v X | v | Vv 77.97 72.74 75.50 69.16
4 v | X X | v | Vv 78.42 72.08 74.09 68.86

A.7 Performance Evaluation of ARGS on Clean Graph

We evaluate the performance of ARGS on clean graphs. As shown in Table [JJ ARGS can find highly sparse
GLTs for clean graphs. The lottery tickets found by ARGS achieve similar model and graph sparsity when
compared to UGS for the same classification accuracy on Cora and Citeseer datasets across three different
GNN models. We assume the accuracy of UGS at 0% graph and 0% model sparsity as the baseline accuracy.
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Table 9: Comparison of ARGS and UGS performance with GCN, GIN, and GAT as backbones on the clean
Cora and Citeseer datasets.

Dataset \ Technique \ Accuracy \ Graph Sparsity \ Model Sparsity
GCN
Cora UGS 80% 26.52% 74.20%
ARGS 80% 40.17% 89.48%
Citeseer UGS 70% 64.56% 98.93%
ARGS 70% 64.27% 98.88%
GIN
Cora UGS 79% 26.82% 73.93%
ARGS 79% 33.73% 83.33%
Citeseer UGS 68% 66.05% 98.86%
ARGS 63% 64.27% 98.86%
GAT
Cora UGS 80% 65.35% 98.91%
ARGS 80% 64.32% 98.93%
Citeseer UGS 70% 67.61% 98.86%
ARGS 70% 64.24% 98.86%
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