
SceneDiffuser: Efficient and Controllable Driving
Simulation Initialization and Rollout

Chiyu Max Jiang Yijing Bai∗ Andre Cornman∗ Christopher Davis∗ Xiukun Huang∗
Hong Jeon∗ Sakshum Kulshrestha∗ John Lambert∗ Shuangyu Li∗ Xuanyu Zhou∗

Carlos Fuertes Chang Yuan Mingxing Tan Yin Zhou Dragomir Anguelov

Waymo LLC

Abstract

Realistic and interactive scene simulation is a key prerequisite for autonomous
vehicle (AV) development. In this work, we present SceneDiffuser, a scene-level
diffusion prior designed for traffic simulation. It offers a unified framework that
addresses two key stages of simulation: scene initialization, which involves gener-
ating initial traffic layouts, and scene rollout, which encompasses the closed-loop
simulation of agent behaviors. While diffusion models have been proven effec-
tive in learning realistic and multimodal agent distributions, several challenges
remain, including controllability, maintaining realism in closed-loop simulations,
and ensuring inference efficiency. To address these issues, we introduce amortized
diffusion for simulation. This novel diffusion denoising paradigm amortizes the
computational cost of denoising over future simulation steps, significantly reducing
the cost per rollout step (16x less inference steps) while also mitigating closed-loop
errors. We further enhance controllability through the introduction of generalized
hard constraints, a simple yet effective inference-time constraint mechanism, as
well as language-based constrained scene generation via few-shot prompting of
a large language model (LLM). Our investigations into model scaling reveal that
increased computational resources significantly improve overall simulation real-
ism. We demonstrate the effectiveness of our approach on the Waymo Open Sim
Agents Challenge, achieving top open-loop performance and the best closed-loop
performance among diffusion models.

1 Introduction

Simulation environments allow efficient and safe evaluation of autonomous driving systems [1, 8,
15, 22, 31, 32, 46, 50–52, 54]. Simulation involves initialization (determining starting conditions for
agents) and rollout (simulating agent behavior over time), typically treated as separate problems [44].
Inspired by diffusion models’ success in generative media, such as video generation [2, 10] and video
editing (inpainting [21, 24, 28], extension, uncropping etc.), we propose SceneDiffuser, a unified
spatiotemporal diffusion model that addresses both initialization and rollout for autonomous driving,
trained end-to-end on logged driving scenes. To our knowledge, SceneDiffuser is the first model to
jointly enable scene generation, controllable editing, and efficient learned closed-loop rollout (Fig. 1).

One challenge in simulation is evaluating long-tail safety-critical scenarios [1, 8, 22, 32, 46]. While
data mining can help, such scenarios are often rare. We address this by learning a generative scene
realism prior that allows editing logged scenes or generating diverse scenarios. Our model supports
scene perturbation (modifying a scene while retaining similarity) and agent injection (adding agents to
create challenging scenarios). We also enable synthetic scene generation on roadgraphs with realistic

∗Equal contribution core technical contributors (alphabetically ordered).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Scene Initialization (Generation and Editing)

Log Scenario Log Perturbation Agent Injection Fully Synthetic Scenario
Scene Rollout (Closed-loop with Amortized Diffusion)

Rollout Step = 2 Rollout Step = 30 Rollout Step = 60 Rollout Step = 80 (final)
Figure 1: SceneDiffuser: a generative prior for simulation initialization via log perturbation, agent
injection, and synthetic scene generation, and for efficient closed-loop simulation at 10Hz via
amortized diffusion. It progressively refines initial trajectories throughout the rollout. Environment
sim agents are in green-blue gradient (temporal progression), AV agent in orange-yellow, and
synthetic agents in red-purple.

layouts. We design a protocol for specifying scenario constraints, enabling scalable generation, and
demonstrate how a few-shot prompted LLM can generate constraints from natural language.

Given a scene, realistically simulating agents and AV behavior is challenging [15, 31, 50–52, 54].
Unlike motion prediction tasks [18, 25, 26, 38, 41, 48] where entire future trajectories are jointly
predicted in a single inference, simulator predictions are iteratively fed back into the model, requiring
realism at each step. This poses challenges: distributional drift from compounding errors, high
computational cost for models like diffusion, and the need to simulate various perception attributes
realistically.

We propose Amortized Diffusion for simulation rollout generation, a novel approach for amortizing
the cost of the denoising inference over a span of physical steps that effectively addresses the
challenges of simulation realism due to closed-loop drift and inference efficiency. Amortized
diffusion iteratively carries over prior predictions and refines them over the course of future physical
steps (see Sec. 3.2 and Fig. 4). This allows our model to produce stable, consistent, and realistic
simulated trajectories, while requiring only a single denoising function evaluation at each physical
step while jointly simulating all perception attributes at each step. Experiments show that Amortized
Diffusion not only requires 16x less model inferences per step, but is also significantly more realistic.

In summary, SceneDiffuser’s main contributions are:

• A unified generative model for scene initialization and rollout, jointly learning distributions
for agents, timesteps, and perception features including pose, size and type.

• A novel amortized diffusion method for efficient and realistic rollout generation, significantly
improving trajectory consistency and reducing closed-loop error.

• Controllable scene initialization methods, including log perturbation, agent injection, and
synthetic generation with a novel hard constraint framework and LLM.

• Investigation of model scaling, showing increased compute effectively improves realism.

• Demonstration of effectiveness on the Waymo Open Sim Agents Challenge, achieving top
open-loop performance and the best closed-loop performance among diffusion models.

2

p. 2

Behavior
Prediction

Intent Cond
Behavior Prediction

Conditional
SceneGen

Unconditional
SceneGen

Full Scene

InPaint
Agents PastCurrent Future
Time Step

Features

x, y, length, …

AV
Agent 1

…

Agent N

The Scene Tensor Multi-task Inpainting

Figure 2: We formulate various different tasks, including behavior prediction, conditional scenegen
and unconditional scenegen as inpainting tasks on the scene tensor. We represent the scene tensor as
a normalized tensor x ∈ RA×T ×D, for the number of agents, timesteps and feature dimensions.

2 Related Work

2.1 Data-driven Agent Simulation

A variety of generative models have been explored for scene initialization and simulation, including
autoregressive models [8, 22, 46], cVAEs [45], cGANs [1], and Gaussian Mixture Models (GMMs)
[8, 47]. For closed-loop rollouts, these models have been extended with GMMs [51], GANs [15],
AR models over discrete motion vocabularies [31], cVAE [54], and deterministic policies [50, 52].
Open-loop rollouts have also been explored using cVAE [35].

2.2 Diffusion Models for Agent Simulation

Open-loop Sim Open-loop simulation generates behavior for agents that all lie within one’s control,
i.e. does not receive any external inputs between steps. Open-loop simulation thus cannot respond to
an external planner stack (AV), the evaluation of which is the purpose of simulation. Diffusion models
have recently gained traction in multi-agent simulation, particularly in open-loop scenarios (multi-
agent trajectory forecasting) [31, 39], using either single-shot or autoregressive (AR) generation.
Single-shot approaches employ spatiotemporal transformers in ego-centric [6, 18] or scene-centric
frames with motion/velocity deltas [9, 53]. Soft guidance techniques enhance controllability [17, 56].
DJINN [27] uses 2d condition masks for flexible generation.

Closed-loop Sim Closed-loop simulation with diffusion remains challenging due to compounding
errors and efficiency concerns. Chang et al. [3] explore route and collision avoidance guidance in
closed-loop diffusion, while VBD [14] combines denoising and behavior prediction losses with a
query-centric Transformer encoder [42]. VBD found it computationally infeasible to replan at a 1Hz
frequency in a receding horizon fashion over the full WOSAC test split due to the high diffusion
inference cost, therefore testing in open-loop except over 500 selected scenarios.

Initial Condition Generation Diffusion-based initial condition generation has also been studied
[20]. Pronovost et al. [32, 33] adapt the LDM framework to rendered scene images, while SLEDGE
[5] and DriveSceneGen [44] diffuse initial lane polylines, agent box locations, and AV velocity.

2.3 Diffusion for Temporal World Modeling and Planning

Outside of the autonomous driving domain, diffusion models have proven effective for world sim-
ulation through video and for planning. Various diffusion models for 4d data have been proposed,
often involving spatiotemporal convolutions and attention mechanisms [11, 12, 43]. In robotics,
diffusion-based temporal models leverage Model Predictive Control (MPC) for closed-loop control
[4] and have shown state-of-the-art performance for imitation learning [29].

Similar to our Amortized Diffusion approach, TEDi [55] proposes to entangle the physical timestep
and diffusion steps for human animation, thereby reducing O(T · T) complexity for T physical
timesteps and T denoising steps to O(T). However, we are the first work to demonstrate the
effectiveness of this approach for reducing closed-loop simulation errors, and the first to extend it to
a multi-agent simulation setting.

3

p. 11

Self-Attn
(Time)

Self-Attn
(Agents)

Project

Concat

Global Context
[Nc, H]

Roadgraph [Nr, Dr]

Traffic Sgnl. [Ns, Ds]

[Nr +Ns, H]

Latent Tokens [Nc, H]
X-Attn

{Q}

{K, V}

Scene Tensor zt

[A, 𝜏, D]

Local Context
[A, 𝜏, Dc]

Project

Concat

[A, 𝜏, H]

PosEnc t
PosEnc 𝜏

+

Global Context

X-Attn{K, V}

[Q]

Fused Context
[A, 𝜏, H]

Repeat [A, 𝜏, D]
Denoise

Scene Tensor x

Project

Adaptive LN

Global Context Encoder Transformer Denoiser Backbone

Figure 3: SceneDiffuser architecture. Global scene context is encoded into a fixed number of Nc
tokens via a Perceiver IO [16] encoder. The noisy scene tokens are fused with local and global context,
then used to condition a spatiotemporal transformer-based backbone [49] via Adaptive LayerNorm
(AdaLN) [30]. Input/output tensor are in green, context tensors in blue, and ops in italics.

3 Method

3.1 Scene Diffusion Setup

We denote the scene tensor as x ∈ RA×T ×D, where A is the number of agents jointly modeled
in the scene, T is the total number of modeled physical timesteps, and D is the dimensionality
of all the features that are jointly modeled. We learn to predict the following attributes for each
agent: positional coordinates x, y, z, heading γ, bounding box dimensions l, h, w, and object type
k ∼ {AV, car, pedestrian, cyclist}. We model all tasks considered in SceneDiffuser as multi-task
inpainting on this scene tensor. Given an inpainting mask m̄ ∈ BA×T ×D, the corresponding
inpainting context values x̄ := m̄ � x, a set of global context c (such as roadgraph and traffic
signals), and a validity mask for a given agent at a given timestep v̄ ∈ BA,T (to account for there
being < A agents in the scene or for occlusion), we train a diffusion model to learn the conditional
probability p(x|C), where C := {m̄, x̄, c, v̄}. See Fig. 2 for an illustration of the scene tensor.

Feature Normalization To simplify the diffusion model’s learning task, we normalize all feature
channels before concatenating them alongD to form the scene tensor. We first encode the entire scene
in a scene-centric coordinate system, namely the AV’s coordinate frame just before the simulation
commences. We then scale x, y, z by fixed constants, l, h, w by their standard deviation, and one-hot
encode k. See Appendix A.6 for more details. This simple yet generalizable process allows us to
jointly predict float, boolean, and even categorical attributes by converting into a normalized space of
floats. After generating a scene tensor x, we apply a reverse process to obtain the generated features.

Diffusion Preliminaries We adopt the notation and setup for diffusion models from [13]. The
forward diffusion process gradually adds Gaussian noise to x. The noisy scene tensor at diffusion
step t can be expressed as q(zt|x) = N (zt|αtx, σ2

t I), where αt and σt are parameters which control
the magnitude and variances of the noise schedule under a variance-preserving model. Therefore
zt = αtx+ σtεt, where εt ∼ N (0, I). One major departure from the classic diffusion setup in our
amortized diffusion regime is that we do not assume a uniform noise level t ∈ R for the entire scene
tensor x. Instead, we have t ∈ RT where t can be relaxed to have a different value per physical
timestep in the scene tensor as described in Sec. 3.2. We utilize the commonly used α-cosine schedule
where αt = cos(πt/2) and σt = sin(πt/2). At the highest noise level of t = 1, the forward diffusion
process completely destroys the initial scene tensor x resulting in zt = εt ∼ N (0, I). Assuming
a Markovian transition process, we have the transition distributions q(zt|zs) = N (zt|αtszs, σ2

tsI),
where αts = αt/αs and σ2

ts = σ2
t − α2

tsσ
2
s and t > s. In the denoising process, conditioned on a

single datapoint x, the denoising process can be written as

q(zs|zt,x) = N (zt|µt→s, σ2
t→sI), (1)

where µt→s =
αtsσ

2
s

σ2
t
zt +

αsσ
2
ts

σ2
t
x and σt→s =

σ2
tsσ

2
s

σ2
t

. In the denoising process, x is approximated
using a learned denoiser x̂. Following [13] and [37], we adopt the commonly used v prediction,
defined as vt(εt,x) = αtεt − σtx. We trained a model parameterized by θ to predict vt given zt ,
t and context C: v̂t := v̂θ(zt, t, C). The predicted x̂t can be recovered via x̂t = αtzt − σtv̂t. The
model is end-to-end trained with a single loss:

E(x,C)∼D,t∼{U(0,1);t̂},m∼M,εt∼N (0,I)[||v̂θ(zt, t, C)− vt(εt,x)||22], (2)

4

p. 10

Noise
Level

1. Warm up 2. Denoise 1 step 3. Step Forward 4. Next Step
5. Repeat (Loop)

Pop

Append

.

Figure 4: Amortized diffusion rollout procedure. The warm up step initializes the future predictions
for the entire future horizon, which is then perturbed by a monotonic noise schedule t̂. The trajectory
is iteratively denoised by one step at each simulation step.

D = {(xi, Ci)|i = 1, 2, · · · , |D|} is the dataset containing paired agents and scene context data,
t is probabilistically either sampled from a uniform distribution, or sampled as a monotonically
increasing temporal schedule t̂, where t̂τ = max

(
0, (τ − Thistory)/Tfuture

)
to facilitate amortized

rollout which will be discussed in Sec. 3.2. Each is sampled with 50% probability. M = {m̄bp �
m̄control, m̄scenegen � m̄control} is the set of inpainting masks for the varied tasks.

Scene Diffusion Tasks Different tasks are fomulated as inpainting problems (Fig. 2).

Scene Generation (SceneGen): Given the full trajectory of some agents, generate the full trajectory
of other agents. We have m̄scenegen ∈ RA,1,1 (broadcastable to T timesteps and D features), where
m̄scenegen, a ∼ Pr(X = Aselect/Avalid), where Aselect ∼ U(0, Avalid) is the number of agents sampled
to be selected as inpainting conditions out of Avalid valid agents in the scene.

Behavior Prediction (BP): Given past and current data for all agents, predict the future for all agents.
We have m̄bp ∈ R1,T ,1 (broadcastable to A agents and D features), where m̄bp,τ = I(τ < Thistory).

Conditional SceneGen and Behavior Prediction: Both scenegen and behavior prediction masks
are multiplied by a control mask at training time to enable controllable scenegen and controllable
behavior prediction at inference time. We have m̄control ∈ RA,T ,D, where m̄control,(a,τ,d) = Ia · Iτ ·
Id, Ia ∼ Pr(X = Acontrol/Avalid), Iτ ∼ Pr(X = Tcontrol/T), Id ∼ Pr(X = pd) where pd of the
corresponding feature channel. This allows us to condition on certain channels, such as positions x, y
with or without specifying other features such as type and heading.

Architecture We present a schematic for the SceneDiffuser architecture in Fig. 3, consisting of two
end-to-end trained models: a global context encoder and a transformer denosier backbone. Validity v̄
is used as a transformer attention mask within the transformer denoiser backbone.

Diffusion Sampler We use DPM++ [19] with a Heun solver. We utilize 16 denoising steps for our
one-shot experiments and for our amortized diffusion warmup process.

3.2 Scene Rollout

Future prediction with no replanning (‘One-Shot‘) is not used in simulation due to its non-reactivity,
and forward scene inference, under the standard diffusion paradigm (‘Full AR’), is computationally
intensive due to the double for-loop over both physical rollout steps and denoising diffusion steps
[55]. Moreover, executing only the first step while discarding the remainder leads to inconsistent
plans that result in compounding errors. We adopt an amortized autoregressive (‘Amortized AR‘)
rollout, aligning the diffusion steps with physical timesteps to amortize diffusion steps over physical
time, requiring a single diffusion step at each simulation step while reusing previous plans.

We illustrate the three algorithms in Algorithm 1-3 using the same model trained with a noise mixture
t ∼ {U(0, 1); t̂} (Eqn. 2). We also illustrate Algorithm 3 in Fig. 4. We denote the total number
of timesteps T = H + F , where H,F denote the number of past and future steps. We denote
x := x[−H:F] to be the temporal slicing operator where x[0] is the final history step.

Input: Global context c (roadgraph and traffic signals), history states x[−H:0], validity v̄.

Output: Simulated observations for unobserved futures x̂[1:F].

2 We omit L/2 due to training collapse.

5

Algorithm 1 One-Shot (Open-Loop)
1: OneShot(x[−H:0], C):
2: z1 ∼ N (0, I)

3: for t = 1, · · · ,∆t, 0 do . For each diffusion timestep
4: x̂t ← αtzt − σtv̂θ(zt, t, C) . V-prediction
5: x̂t ← x[−H:0] � m̄bp + x̂t � (∼ m̄bp) . Apply inpainting

6: zs ∼ q(zs|zt, x̂t)
7: zt ← zs
x̂← z0

8: return x̂[1:F]

Algorithm 2 Full AR (Closed-Loop)
1: FullAR(x[−H:0], C):
2: x̂← x[−H:0]

3: for τ = 0, ...,T − 1 do . For each physical timestep
4: x̂[τ+1:τ+F] ← OneShot(x̂[τ−H:τ], C) . Update buffer at indices
5: return x̂[1:F]

Algorithm 3 Amortized AR (Closed-Loop)
1: AmortizedAR((x[−H:0], C)):
2: x̂← OneShot(x[−H:0], C) .Warm-Up
3: x̂[0:F] ← αt̂x̂

[0:F] + σt̂ε . Add noise t̂

4: for τ = 1, ...,T do . For each physical timestep
5: x̂[τ:τ+F] ← αt̂x̂

[τ:τ+F] − σt̂v̂θ(x̂[τ:τ+F], t̂, C) . Recover solution from v-prediction

6: x̂[τ:τ+F] ← αt̂x̂
[τ:τ+F] + σt̂ε . Add noise t̂

7: x̂[τ−H:τ+F] ← x̂[τ−H:τ] � m̄bp + x̂[τ−H:τ+F] � (∼ m̄bp) . Apply inpainting

8: return x̂[1:F]

0 1000 2000 3000 4000 5000 6000 7000 8000

Replanning Interval/Period (ms)

0.50

0.55

0.60

0.65

0.70

W
O

SA
C

 C
om

po
si

te
 M

et
ric

Full AR
MVTE
MTR+++
Amortized AR

Figure 5: We compare the influence of replan
rate on performance for our Full AR and Amor-
tized AR models. Circle radius ∝ # inference
calls over the simulation. At 10Hz, Amortized
AR requires 16x less model inference per step
and is more realistic compared to Full AR.

Figure 6: Scene generation realism with model
parameter and resolution scaling2. Decreased
temporal patch sizes (i.e. increased temporal
resolution) and increased parameters are both
effective for improving realism via compute scal-
ing. Circle radius ∝ compute GFLOPs.

3.3 Controllable Scene Generation

To simulate long-tail scenarios such as rare behavior of other agents, it is important to effectively
insert controls into the scene generation process. To do so, we input an inpainting context scene
tensor x̄ , where some pixels are pre-filled. Through pre-filled feature values in x̄, we can specify a
particular agent of a specified type to be appear at a specific position at a specific timestamp.

Data Augmentation via Log Perturbation The diffusion framework makes it straightforward to
produce additional perturbed examples of existing ground truth (log) scenes. Instead of starting from
pure noise zt ∼ N (0, I) and diffusing backwards from t→ 0, we take our original log scene x′ and
add noise to it such that our initial zt = αtx

′ + εt where εt ∼ N (0, σtI). Starting the diffusion
process at t = 0 yields the original data, while t = 1 produces purely synthetic data. For t ∈ (0, 1),
higher values increase diversity and decrease resemblance to the log. See Figs. 1 and 12 (Appendix).

Language-based Few-shot Scene Generation The diffusion model inpaint constraints can be
defined through structured data such as a Protocol Buffer3 (‘proto’). Protos can be converted into
inpainting values, and we leverage the off-the-shelf generalization capabilities of a publicly accessible

3 https://protobuf.dev/

6

https://protobuf.dev/

Full AR @ 0.125 HZ Full AR @ 2 Hz

Full AR @ 10 Hz Amortized AR @ 10 Hz

Figure 7: Full AR quality deteriorates at in-
creasing replan rates due to compounding errors.
Amortized AR retains a high level of realism
even at 10 Hz while being more efficient.

(a) No Hard Constraints

(b) Post-Diffusion GHC (c) In-Diffusion GHC

Figure 8: Applying no-collision constraints pre-
vents collisions (red-purple) in generated scenes
(b, c). Iteratively applying constraints with every
diffusion step further enhances realism (c vs b).

chat app powered by a large language model (LLM)4, to generate new Scene Diffusion constraints
protos solely using natural language via few-shot prompt engineering. We show example results
generated by the LLM in Fig. 10. Details in the Appendix (A.7).

3.4 Generalized Hard Constraints

Users of simulation often require agents to have specific behaviors while maintaining realistic
trajectories. However, diffusion soft constraints [27, 56, 57] require a differentiable cost for the
constraint and do not guarantee constraint satisfaction. Diffusion hard constraints [21] are modeled
as inpainting values and are limited in their expressivity.

Inspired by dynamic thresholding [36] in the image generation domain, where intermediate images
are dynamically clipped to a range at every denoising step, we introduce generalized hard constraints
(GHC), where a generalized clipping function is iteratively applied at each denoising step. We modify
Eqn. 1 such that at each denoising step µt→s =

αtsσ
2
s

σ2
t
z +

αsσ
2
ts

σ2
t

clip(x), where clip(·) denotes the
GHC-specific clipping operator. See more details on constraints in Appendix A.9.

We qualitatively demonstrate the effect of hard constraints for unconditional scene generation in
Fig. 8. Applying hard constraints post-diffusion removes overlapping agents but results in unrealistic
layouts, while applying the hard constraints after each diffusion step both removes the overlapping
agents and takes advantage of the prior to improve the realism of the trajectories. We find that the
basis on which the hard constraints operate is important: a good constraint will modify a significant
fraction of the scene tensor (for example, shifting an agent’s entire trajectory rather than just the
overlapping waypoints), or else the model "rejects" the constraint on the next denoising step.

4 Experimental Results

Dataset We use the Waymo Open Motion Dataset (WOMD)[7] for both our scene generation and
agent simulation experiments. WOMD includes tracks of all agents and corresponding vectorized
maps in each scenario, and offers a large quantity of high-fidelity object behaviors and shapes
produced by a state-of-the-art offboard perception system.

4.1 Simulation Rollout

Benchmark We evaluate our closed-loop simulation models on the Waymo Open Sim Agent
Challenge (WOSAC) [23] metrics (see Appendix A.1), a popular sim agent benchmark used in many
recent works [9, 14, 31, 51, 53]. Challenge submissions consist of x/y/z/γ trajectories representing
centroid coordinates and heading of the objects’ boxes that must be generated in closed-loop and
4

The chat app is available at gemini.google.com, powered by Gemini V1.0 Ultra at the time of access.

7

gemini.google.com

METRICS M/1 M/1+GHC L/1 LOG

COMPOSITE METRIC 0.516 0.558 0.549 0.593

LINEAR SPEED 0.326 0.327 0.331 0.339
LINEAR ACCEL. 0.387 0.383 0.378 0.445
ANGULAR SPEED 0.529 0.562 0.534 0.572
ANGULAR ACCEL. 0.595 0.608 0.588 0.625
DIST. TO OBJ. 0.154 0.176 0.174 0.192
COLLISION 0.692 0.841 0.794 0.875
TIME TO COLLISION 0.826 0.827 0.827 0.842
DIST. TO RD. EDGE 0.164 0.165 0.176 0.204
OFFROAD 0.546 0.549 0.566 0.605

Table 1: Realism metrics on WOMD val. for scene gener-
ation for the M/1 model, M/1 with hard constraints, L/1,
and oracle log distribution matching (see Sec. 4.3). Real-
ism can be improved through hard constraints or scaling.

Figure 9: Generated vs logged distri-
bution. SceneDiffuser learns realistic
joint distributions across modeled fea-
tures such as length and width.

ONE-SHOT FULL AR AMORTIZED AR
(10 HZ) (10 HZ)

COMPOSITE SCORE (M/1) 0.730 0.492 0.673
COMPOSITE SCORE (L/1) 0.736 - 0.703

FN EVALS 16 16 · 80 = 1280 80 + 16 = 96

Table 2: Distrib. realism metrics on WOSAC.
L/1 denotes the Large model of patch size 1.

COMPOSITE METRIC COLLISION RATE OFFROAD RATE
(↑) (↓) (↓)

-ADALN-ZERO -7.99% +65.2% +29.3%
-SPATIAL-ATTN -14.5% +209% +11.8%
-MULTITASK -2.04% +39.6% +3.24%
-SIZE,TYPE 0.68% -6.85% +2.90%

Table 3: Design analysis and ablation studies.

with factorized AV vs. agent models. WOSAC uses the test data from the Waymo Open Motion
Dataset (WOMD)[7]. Up to 128 agents (one of which must represent the AV) must be simulated in
each scenario for the 8 second future (comprising 80 steps of simulation), producing 32 rollouts per
scenario for evaluation. In a small departure from the official setting, we utilize the logged validity
mask as input to our transformer and unify the AV and agents’ rollout step for simplicity.

Evaluation In Tab. 2, we show results on WOSAC. We show that Amortized AR (10 Hz) not only
requires 16x fewer model inference calls, but is also significantly more realistic than Full AR at a
10Hz replan rate. In Amortized AR, we re-use the plan from the previous step, leading to increased
efficiency and consistency. The one-shot inference setting is equivalent to Full AR with no replanning
(0.125 Hz) and achieves comparably higher realism, though as it is not executed in closed-loop, it is
not reactive to external input in simulation, and thus not a valid WOSAC entry.

In Figs. 5 and 7, we investigate the effects of varied replan rates to simulation realism. While high
replan frequency leads to significant degredation in realism under the Full AR rollout paradigm,
Amortized AR significantly reduces error accumulation while being 16× more efficient.

In Tab. 4, we compare against the WOSAC leaderboard with the aforementioned modifications. We
achieve top open-loop performance and the best closed-loop performance among diffusion models.

4.2 Scene Generation

Unconstrained Scene Generation We use the unconditional scene generation task as a means to
quantitatively measure the distributional realism of our model. We condition the scene using the same
logged road graph and traffic signals, as well as the logged agent validity to control for the same
number of agents generated per scene. All agent attributes are generated by the model.

Due to a lack of public benchmarks for this task, we adopt a slightly modified version of the WOSAC
[23] metrics, where different metrics buckets are aggregated per-scene instead of per-agent, due to
the lack of one-to-one correspondence between agents in the generated scene versus the logged scene
(see Appendix A.2 for more details). Metrics are aggregated over all agents that are ever valid in the
9 second trajectory.

We show our model’s realism metrics in Tab. 1. Even compared to the oracle performance (comparing
logged versus logged distributions), our model achieves comparable realism scores in every realism
bucket. Introducing hard constraints on collisions can significantly improve the composite metric

8

AGENT POLICY REPLAN LINEAR LINEAR ANG. ANG. DIST. COLLISION TTC DIST. TO OFFROAD COMPOSITE ADE MINADE COLLISION OFFROAD
f RATE SPEED ACCEL. SPEED ACCEL. TO OBJ. ROAD EDGE METRIC RATE RATE

(HZ) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓) (↓) (↓) (↓)
RANDOM AGENT 10 0.002 0.116 0.014 0.034 0.000 0.000 0.735 0.148 0.191 0.144 50.739 50.706 1.000 0.613
CONST. VELOCITY 10 0.043 0.067 0.252 0.439 0.202 0.355 0.739 0.455 0.451 0.381 7.923 7.923 0.314 0.293
MTR+++ [34] 2 0.321 0.247 0.428 0.533 0.340 0.886 0.797 0.655 0.893 0.700 2.125 1.679 0.080 0.135
MVTE [51] 10 0.353 0.354 0.496 0.599 0.392 0.913 0.833 0.642 0.907 0.732 3.859 1.674 0.090 0.158
TRAJEGLISH [31] 10 0.356 0.399 0.509 0.654 0.378 0.925 0.834 0.660 0.884 0.735 3.158 1.615 0.076 0.170

SCENEDMF [9] 0.125 0.343 0.395 0.381 0.366 0.362 0.760 0.812 0.623 0.735 0.628 4.158 2.414 0.217 0.285
VBD [14] 0.125 0.359 0.366 0.420 0.522 0.368 0.934 0.815 0.651 0.879 0.720 2.257 1.474 0.036 0.152
OURS (ONE-SHOT) 0.125 0.399 0.225 0.510 0.605 0.401 0.934 0.837 0.686 0.893 0.736 2.436 1.103 0.070 0.172

OURS (AMORTIZED) 10 0.310 0.389 0.459 0.560 0.349 0.917 0.815 0.634 0.833 0.703 2.619 1.767 0.064 0.177

LOGGED ORACLE - 0.476 0.478 0.578 0.694 0.476 1.000 0.883 0.715 1.000 0.819 0.000 0.000 0.028 0.111

Table 4: Per-component WOSAC metric results on the test split of WOMD, representing likelihoods.
Methods are ranked by composite metric on the 2024 Challenge scores; Closed-loop results within
1% of the best are in bold (for models with 10Hz replan). Diffusion-based methods marked in blue.

(M) Cut-In (M) Tailgater

(L) S-shape (L) Surrounding Traffic

Figure 10: Long-tail synthetic scenes gen-
erated via control points either explicitly
defined by a manually defined (M) or
LLM-generated (L) config. Magenta in-
dicates generated motorcyclists/car agents.

8 4 2 1

S

M

L

Figure 11: Fully synthetic scene generation quality com-
parison via scaling model parameters (S → L) and in-
creasing temporal resolution (patch size 8→ 1). Increas-
ing compute by scaling either the model size or temporal
resolution improves the overall realism.

by preventing collisions, while scaling the model without hard constraints improves most realism
metrics as the model learns to generate more realistic trajectories. The realism metrics only apply to
trajectories and do not account for generated agent type and size distributions. We compare the gener-
ated size distributions versus log distributions in Fig. 9 and find the marginal and joint distributions
both closely track the logged distribution. We show more examples of diverse, unconstrained scene
generation when conditioning on the same global context in Appendix A.8 Fig. 13.

Constrained Scene Generation and Augmentation The controllability we possess in the scene
generation process as a product of our diffusion model design can be useful for targeted generation
and augmentation of scenes. In Fig. 10, we show qualitative results of scenes with constrained agents
generated either via manually defined configs or by a few-shot prompted LLM. Extended qualitative
results are listed in Appendix A.7.3.

4.3 Model Design Analysis and Ablation Studies

Scaling Analysis Given two options of scaling model compute, either by increasing transformer
temporal resolution by decreasing temporal patch sizes, or increasing the number of model parameters,
we investigate the performance of multiple transformer backbones: {Model Size} × {Temporal Patch
Size} = {L, M, S} × {8, 4, 2, 1}. We vary model size by jointly scaling the number of transformer
layers, hidden dimensions, and attention heads (see Sec. A.6 of Appendix for details). We show
quantitative results from this model scaling in Fig. 6 and qualitative comparisons in Fig. 11. Increasing
both temporal resolution and number of model parameters improves realism of the simulation.

Multi-task Compatibility We find that multitask co-training across BP, SceneGen and with random
control masks improves performance compared to a single-task, BP only model on the sim agent
rollout task, notably reducing collision and offroad rates. We find that jointly learning multiple agent
features (x, y, z, γ, size, type) achieves on-par performance with a pose-only (x, y, z, γ) model.

9

Model Architecture Ablation As shown in Tab. 3, replacing AdaLN-Zero conditioning with cross
attention leads to a 7.99% decrease in realism performance, largely due to significantly higher
collision rates and offroad rates. Removing the agent-wise spatial attention layer very significantly
increases collision rate, as it removes the mechanism for agents to learn a joint distribution.

5 Conclusion

We have introduced SceneDiffuser, a scene-level diffusion prior designed for traffic simulation.
SceneDiffuser combines scene initialization with scene rollout to provide a diffusion-based approach
to closed-loop agent simulation that is efficient (through amortized autoregression) and controllable
(through generalized hard constraints). We performed scaling and ablation studies and demonstrated
model improvements with computational resources. On WOSAC, we demonstrate competitive results
with the leaderboard and state-of-the-art performance among diffusion methods.

Limitations While our amortized diffusion approach is, to our knowledge, the only and best
performing closed-loop diffusion-based agent model with competitive performance, we do not exceed
current SOTA performance for other autoregressive models. We do not explicitly model validity
masks and resort to logged validity in this work. Future work looks to also model the validity mask.

Broader Impact This paper aims to improve AV technologies. With our work we aim to make
AVs safer by providing more realistic and controllable simulations. The generative scene modeling
techniques developed in this work could have broader social implications regarding generative media
and content generation, which poses known social benefits as well as risks of misinformation.

Acknowledgments and Disclosure of Funding

No third-party funding received in direct support of this work. We thank Shimon Whiteson for his
detailed for detailed feedback and also the anonymous reviewers. We would like to thank Reza
Mahjourian, Rongbing Mu, Paul Mougin, and Nico Montali for offering consultation and feedback
on evaluation metrics. We thank Kevin Murphy for his assistance in developing the mathematical
notation for the likelihood metrics. We thank Zhaoyi Wei and Carlton Downey for helpful discussions
about the project. All the authors are employees of Waymo LLC.

10

References
[1] Luca Bergamini, Yawei Ye, Oliver Scheel, Long Chen, Chih Hu, Luca Del Pero, Błażej Osiński, Hugo

Grimmet, and Peter Ondruska. SimNet: Learning reactive self-driving simulations from real-world
observations. In ICRA, 2021.

[2] Tim Brooks, Bill Peebles, Connor Homes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Wing Yin Ng, Ricky Wang, and Aditya Ramesh.
Video generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

[3] Wei-Jer Chang, Francesco Pittaluga, Masayoshi Tomizuka, Wei Zhan, and Manmohan Chandraker. Con-
trollable safety-critical closed-loop traffic simulation via guided diffusion, 2023.

[4] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran Song.
Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science
and Systems (RSS), 2023.

[5] Kashyap Chitta, Daniel Dauner, and Andreas Geiger. Sledge: Synthesizing simulation environments for
driving agents with generative models, 2024.

[6] Younwoo Choi, Ray Coden Mercurius, Soheil Mohamad Alizadeh Shabestary, and Amir Rasouli. Dice:
Diverse diffusion model with scoring for trajectory prediction, 2023.

[7] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aurélien Chouard, Pei Sun, Jiquan Ngiam, Vijay
Vasudevan, Alexander McCauley, Jonathon Shlens, and Dragomir Anguelov. Large scale interactive motion
forecasting for autonomous driving: The waymo open motion dataset. In ICCV, 2021.

[8] Lan Feng, Quanyi Li, Zhenghao Peng, Shuhan Tan, and Bolei Zhou. Trafficgen: Learning to generate
diverse and realistic traffic scenarios. In ICRA, 2023.

[9] Zhiming Guo, Xing Gao, Jianlan Zhou, Xinyu Cai, and Botian Shi. SceneDM: Scene-level multi-agent
trajectory generation with consistent diffusion models, 2023.

[10] Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang, and José
Lezama. Photorealistic video generation with diffusion models, 2023.

[11] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High definition
video generation with diffusion models, 2022.

[12] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J Fleet.
Video diffusion models. In NeurIPS, volume 35, pages 8633–8646, 2022.

[13] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for high
resolution images. In ICML, pages 13213–13232. PMLR, 2023.

[14] Zhiyu Huang, Zixu Zhang, Ameya Vaidya, Yuxiao Chen, Chen Lv, and Jaime Fernández Fisac. Versatile
scene-consistent traffic scenario generation as optimization with diffusion, 2024.

[15] Maximilian Igl, Daewoo Kim, Alex Kuefler, Paul Mougin, Punit Shah, Kyriacos Shiarlis, Dragomir
Anguelov, Mark Palatucci, Brandyn White, and Shimon Whiteson. Symphony: Learning realistic and
diverse agents for autonomous driving simulation. In ICRA, 2022.

[16] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture
for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

[17] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. In ICML, 2022.

[18] Chiyu “Max” Jiang, Andre Cornman, Cheolho Park, Benjamin Sapp, Yin Zhou, and Dragomir Anguelov.
Motiondiffuser: Controllable multi-agent motion prediction using diffusion. In CVPR, 2023.

[19] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

[20] Jack Lu, Kelvin Wong, Chris Zhang, Simon Suo, and Raquel Urtasun. Scenecontrol: Diffusion for
controllable traffic scene generation. In ICRA, 2024.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

[21] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11461–11471, June 2022.

[22] Reza Mahjourian, Rongbing Mu, Valerii Likhosherstov, Paul Mougin, Xiukun Huang, Joao Messias,
and Shimon Whiteson. Unigen: Unified modeling of initial agent states and trajectories for generating
autonomous driving scenarios. In ICRA, 2024.

[23] Nico Montali, John Lambert, Paul Mougin, Alex Kuefler, Nick Rhinehart, Michelle Li, Cole Gulino,
Tristan Emrich, Zoey Yang, Shimon Whiteson, Brandyn White, and Dragomir Anguelov. The waymo
open sim agents challenge. In Advances in Neural Information Processing Systems Track on Datasets and
Benchmarks, 2023.

[24] Jiteng Mu, Michaël Gharbi, Richard Zhang, Eli Shechtman, Nuno Vasconcelos, Xiaolong Wang, and
Taesung Park. Editable image elements for controllable synthesis. arXiv preprint arXiv:2404.16029, 2024.

[25] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth Goel, Khaled S Refaat, and Benjamin Sapp.
Wayformer: Motion forecasting via simple & efficient attention networks. arXiv preprint arXiv:2207.05844,
2022.

[26] Jiquan Ngiam, Vijay Vasudevan, Benjamin Caine, Zhengdong Zhang, Hao-Tien Lewis Chiang, Jeffrey
Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David J Weiss, Benjamin Sapp,
Zhifeng Chen, and Jonathon Shlens. Scene transformer: A unified architecture for predicting future
trajectories of multiple agents. In ICLR, 2022.

[27] Matthew Niedoba, Jonathan Lavington, Yunpeng Liu, Vasileios Lioutas, Justice Sefas, Xiaoxuan Liang,
Dylan Green, Setareh Dabiri, Berend Zwartsenberg, Adam Scibior, and Frank Wood. A diffusion-model of
joint interactive navigation. In NeurIPS, 2023.

[28] Yotam Nitzan, Zongze Wu, Richard Zhang, Eli Shechtman, Daniel Cohen-Or, Taesung Park, and Michaël
Gharbi. Lazy diffusion transformer for interactive image editing, 2024.

[29] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Sergio Val-
carcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin. Imitating human
behaviour with diffusion models. In ICLR, 2023.

[30] William Peebles and Saining Xie. Scalable diffusion models with transformers. In ICCV, pages 4195–4205,
October 2023.

[31] Jonah Philion, Xue Bin Peng, and Sanja Fidler. Trajeglish: Learning the language of driving scenarios. In
ICLR, 2024.

[32] Ethan Pronovost, Meghana Reddy Ganesina, Noureldin Hendy, Zeyu Wang, Andres Morales, Kai Wang,
and Nick Roy. Scenario diffusion: Controllable driving scenario generation with diffusion. In Advances in
Neural Information Processing Systems, 2023.

[33] Ethan Pronovost, Kai Wang, and Nick Roy. Generating driving scenes with diffusion. In ICRA Workshop
on Scalable Autonomous Driving, June 2023.

[34] Cheng Qian, Di Xiu, and Minghao Tian. A simple yet effective method for simulating realistic multi-agent
behaviors. Technical report, 2023.

[35] Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fidler, and Or Litany. Generating useful accident-
prone driving scenarios via a learned traffic prior. In CVPR, June 2022.

[36] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
image diffusion models with deep language understanding. Advances in neural information processing
systems, 35:36479–36494, 2022.

[37] Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In The
Tenth International Conference on Learning Representations, ICLR. OpenReview.net, 2022.

[38] Benjamin Sapp, Yuning Chai, Mayank Bansal, and Dragomir Anguelov. Multipath: Multiple probabilistic
anchor trajectory hypotheses for behavior prediction. In Conference on Robot Learning, pages 86–99.
PMLR, 2020.

12

[39] Ari Seff, Brian Cera, Dian Chen, Mason Ng, Aurick Zhou, Nigamaa Nayakanti, Khaled S. Refaat, Rami
Al-Rfou, and Benjamin Sapp. Motionlm: Multi-agent motion forecasting as language modeling. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 8579–8590,
October 2023.

[40] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. In
ICML, 2018.

[41] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr-a: 1st place solution for 2022 waymo open
dataset challenge–motion prediction. arXiv preprint arXiv:2209.10033, 2022.

[42] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele. Mtr++: Multi-agent motion prediction with
symmetric scene modeling and guided intention querying. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 46(5):3955–3971, 2024.

[43] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video: Text-to-video
generation without text-video data. In ICLR, 2023.

[44] Shuo Sun, Zekai Gu, Tianchen Sun, Jiawei Sun, Chengran Yuan, Yuhang Han, Dongen Li, and Marcelo H
Ang. Drivescenegen: Generating diverse and realistic driving scenarios from scratch. IEEE Robotics and
Automation Letters, 2024.

[45] Simon Suo, Sebastian Regalado, Sergio Casas, and Raquel Urtasun. Trafficsim: Learning to simulate
realistic multi-agent behaviors. In CVPR, 2021.

[46] Shuhan Tan, Kelvin Wong, Shenlong Wang, Sivabalan Manivasagam, Mengye Ren, and Raquel Urtasun.
Scenegen: Learning to generate realistic traffic scenes. In CVPR, June 2021.

[47] Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Krähenbühl. Language conditioned
traffic generation. 7th Annual Conference on Robot Learning (CoRL), 2023.

[48] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava, Khaled S Refaat, Nigamaa Nayakanti, Andre
Cornman, Kan Chen, Bertrand Douillard, Chi Pang Lam, Dragomir Anguelov, et al. Multipath++: Efficient
information fusion and trajectory aggregation for behavior prediction. arXiv preprint arXiv:2111.14973,
2021.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, 2017.

[50] Eugene Vinitsky, Nathan Lichtlé, Xiaomeng Yang, Brandon Amos, and Jakob Foerster. Nocturne: a
scalable driving benchmark for bringing multi-agent learning one step closer to the real world. In NeurIPS
Datasets and Benchmarks Track, 2022.

[51] Yu Wang, Tiebiao Zhao, and Fan Yi. Multiverse transformer: 1st place solution for waymo open sim agents
challenge 2023. Technical report, Pegasus, 2023.

[52] Danfei Xu, Yuxiao Chen, Boris Ivanovic, and Marco Pavone. Bits: Bi-level imitation for traffic simulation.
In ICRA, 2023.

[53] Chen Yang, Aaron Xuxiang Tian, Dong Chen, Tianyu Shi, and Arsalan Heydarian. Wcdt: World-centric
diffusion transformer for traffic scene generation, 2024.

[54] Zhejun Zhang, Alexander Liniger, Dengxin Dai, Fisher Yu, and Luc Van Gool. Trafficbots: Towards world
models for autonomous driving simulation and motion prediction. In ICRA, 2023.

[55] Zihan Zhang, Richard Liu, Kfir Aberman, and Rana Hanocka. Tedi: Temporally-entangled diffusion for
long-term motion synthesis, 2023.

[56] Ziyuan Zhong, Davis Rempe, Yuxiao Chen, Boris Ivanovic, Yulong Cao, Danfei Xu, Marco Pavone, and
Baishakhi Ray. Language-guided traffic simulation via scene-level diffusion. In CoRL, 2023.

[57] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi Ray, and
Marco Pavone. Guided conditional diffusion for controllable traffic simulation. In ICRA, 2023.

13

A Appendix / supplemental material

A.1 WOSAC Metrics

Suppose there areN ≈ 500k scenarios, each of length T = 80 steps, each containingA ≤ 128 agents
(objects). For each scenario, we generate K = 32 samples (conditioned on the true initial state),
which is a set of trajectories for each object for each time step, where each point in the trajectory
is a D = 4-dim vector recording location (x, y, z) and orientation θ. Let all this generated data be
denoted by x(1 : N , 1 : A, 1 : K, 1 : T , 1 : D). Let the ground truth data be denoted x∗(1 : N ,
1 : A′, 1 : T , 1 : D). Below we discuss how to evaluate the likelihood of the true (test) dataset x∗
under the distribution induced by the simulated dataset x.

(Note that we may have A′ > A, since the ground truth (GT) can contain cars that enter the
scene after the initial prefix used by the simulator; this is handled by defining a validity mask,
v(1 : N, 1 : T, 1 : A′), which is set to 0 if we want to exclude a GT car from the evaluation, and is
set to 1 otherwise.)

Rather than evaluating the realism of the full trajectories in the raw (x, y, z, θ) state space, WOSAC
defines M = 9 statistics (scalar quantities of interest) from each trajectory. Let Fj(x(i, a, :))
represent the set of statistics/features (of type j) derived from x(i, a, 1 : K, 1 : T) by pooling over
T,K. This is used to compute a histogram pija(.) for the empirical distribution of Fj for scenario i.
Let Fj(x∗(i, a, t)) be the value of this statistic from the true trajectory i for vehicle a at time t . Then
we define the negative log likelihood to be

NLL(i, a, t, j) = − log pija(Fj(x
∗(i, a, t)) (3)

The j’th metric for scenario i is defined as

m(a, i, j) = exp
(
− [

1

N(i, a)
]
∑
t

v(i, a, t)NLL(i, a, t, j)
)

m(i, j) =
1

A

∑
a

m(a, i, j)

N(i, a) =
∑
t

v(i, a, t) is the number of valid points.

(4)

Finally an aggregated metric, used to rank entries, is computed as

score =
1

N ′
1

M

N ′∑
i=1

M∑
j=1

wjm(i, j) (5)

where 0 ≤ wj ≤ 1.

The 9 component metrics are defined as linear speed, linear acceleration magnitude, angular speed, an-
gular acceleration magnitude, distance to nearest object, collisions, time-to-collision (TTC), distance
to road edge, and road departures.

A.2 SceneGen Metrics

We instead let Fj(x(i, :)) represent the set of statistics/features (of type j) derived from x(i, 1 : A′, 1 :
K,−H : T) by pooling over T,A′,K. This is used to compute a histogram pij(.) for the empirical
distribution of Fj for scenario i.

A.3 Additional Evaluation Details

Simulation step validity Due to the requirement of validity masks during inference, which is applied
as an attention padding mask within the transformer, the model does not generate valid values for
invalid steps. As the WOSAC challenge evaluates simulation agents for all steps, regardless of the
step’s validity, we use linear interpolation / extrapolation to impute values for all invalid steps in our
simulations for the final evaluation.

14

A.4 Additional Dataset Information

WOSAC uses the v1.2.0 release of WOMD, and we treat WOMD as a set D of scenarios where each
scenario is a history-future pair. This dataset offers a large quantity of high-fidelity object behaviors
and shapes produced by a state-of-the-art offboard perception system. We use WOMD’s 9 second 10
Hz sequences (comprising H = 11 observations from 1.1 seconds of history and 80 observations from
8 seconds of future data), which contain object tracks at 10 Hz and map data for the area covered by
the sequence. Across the dataset splits, there exists 486,995 scenarios in train, 44,097 in validation,
and 44,920 in test.

A.5 Additional Amortized Diffusion Algorithm Details

Warm up: At inference time, the rollout process is preceded by a warm up step. The warm up step
is necessary for initializing a buffer of future timesteps before any diffusion iterations take place. The
warm up entails a single iteration of a one-shot prediction process described in Algorithm 5a. This
process samples pure noise for some future steps and conditions the denoising process on the set of
past steps.

Amortized autoregressive rollout: In Fig. 4, we provide a visual illustration of our amortized
autoregressive rollout procedure. We operate the rollout procedure using a buffer to track future steps
in the trajectory. After the warm up, the future buffer contains T predicted steps with an increasing
noise level. Note that step τ = 1 has very little noise applied. The future buffer in this state is
denoised for a single iteration using past steps to condition the process. After a single iteration, the
clean step at τ = 1 is popped off of the buffer, and it is added to the past steps. Before the next
iteration, a step τ = T + 1 is sampled from a pure noise distribution and is appended to the end of
the future buffer. The described rollout process can be repeated to generate trajectories of arbitrary
length as clean steps are popped off the buffer.

A.6 Additional Implementation Details

Architecture Details : For our base model, our scene encoder architecture uses 256 latent queries.
Each scene token is 256-dimensional, with 4 transformer layers and 4 transformer heads, with a
transformer model dimension of 256. We train and run inference with all 128 agents.

Scaling Hyperparameters:
Small Model: Scene token dimension 128, 2 Transformer layers, 128 Transformer model dimensions,
2 Transformer Heads.

Medium Model: Scene token dimension 256, 4 Transformer layers, 256 Transformer model dimen-
sions, 4 Transformer Heads.

Large Model: Scene token dimension 512, 8 Transformer layers, 512 Transformer model dimensions,
8 Transformer Heads.

Optimizer : We use the Adafactor optimizer [40], with EMA (exponential moving average). We
decay using Adam, with β1 = 0.9, decayadam = 0.9999, weight decay of 0.01, and clip gradient
norms to 1.0.

Training details Train batch size of 1024, and train for 1.2M steps. We select the most competitive
model based on validation set performance, for which we perform a final evaluation using the test
set. We use an initial learning rate of 3× 10−4. We use 16 diffusion sampling steps. When training,
we mix the behavior prediction (BP) task with the scene generation task, with probability 0.5. The
randomized control mask is applied to both tasks.

Additional Hyperparameters To preprocess features, we use scaling constants of 1
80 for features

x, y, z, and compute mean µ and standard deviation σ of features l, w, h.

We preprocess each agent feature f to produce normalized feature f ′ via f ′ =
f−µf
2∗σf , where:

µl = 4.5, µw = 2.0, µh = 1.75, µk = 0.5. (6)

and

σl = 2.5, σw = 0.8, σh = 0.6, σk = 0.5. (7)

15

Perturb Step = 0 / 32 (Log) Perturb Step = 16 / 32 Perturb Step = 24 / 32 Perturb Step = 32 / 32

Figure 12: Log-perturbation via noising and denoising the original logs to different noise levels. An
increasing level of noise added and then removed results in scenes more and more dissimilar from the
original log, yet increasingly diverse. The scenes are realistic regardless of the perturbation noise
level.

We scale by twice the std σ values to allow sufficient dynamic range for high feature values for some
channels.

A.7 Prompts used in Language-based few-shot Scene Generation

A.7.1 Prompt:

Prompt 1: Prompts used in Language-based few-shot Scene Generation.
You are writing proto to generate and control an agent ’s behavior
for an autonomous vehicle (AV) simulation. I will give the follow 2
examples of input and the generated proto MultiAgentMultiConstraint ,
which will constrain the agent ’s position in either past , current , or
future timestep. 5 timesteps equals 1 second , so for example 15 steps
would equal 3 seconds. Given a natural language description of the
agent ’s desired behavior , please generate the corresponding
MultiAgentMultiConstraint.

Very Important limitations:
1. Only time_step_idx values in [0,8] are valid for PAST time step.
2. Only time_step_idx values in [0] are valid for CURRENT time step.
3. Only time_step_idx values in [0 ,49] are valid for FUTURE time step.
4. You may only use types POT_CAR , POT_MOTORCYCLIST , POT_PEDESTRIAN to

generate these examples
5. No two agents should overlap each other at the same time step in

the same time frame.

The following are 2 examples of a natural language input and the
output is a text file that creates the corresponding constraint.

Example 1
Input: Generate constraints where a motorcycle agent cuts in front of
the AV coming from the right side at some time in the future.
Output:
‘‘‘
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7 # Slightly right of ADV
long_distance: 0.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {

16

time_frame: FUTURE
time_step_idx: 30
lat_distance: 0.0
long_distance: 3.0 # ahead of AV
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_0 ’

}
scene_name: ’single_motorcycle_cut_in ’
‘‘‘

Example 2
Input: Generate constraints where a car agent is tailgating the AV by
following behind it closely.
Output:
‘‘‘
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 0.0
long_distance: -15.0
agent_type: POT_CAR

}
}

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 0.0
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 30
lat_distance: 0.0
long_distance: -2.0
agent_type: POT_CAR

}
}
agent_name: ’car_0 ’

}
scene_name: ’single_car_tailgater ’
‘‘‘

Please output just the MultiAgentMultiConstraint in the response and
leave any explanation in the comments. Please double check the
important limitations described before are met.

Now take a deep breath and lets think step by step to write the proto
given the following input:

S-Shaped Maneuver: Create a motorcyclist agent that is doing a
S-shaped maneuver around the AV.

Surrounding Traffic: Create a scene with 8 agents that are surrounding
the AV and traveling along for a few seconds. There are 4 agents on
the left lane of AV in a straight line and 4 agents on the lane of AV
in a straight line. 2 of the front agents at motorcyclists while the

17

rest are cars.

A.7.2 Scene Diffusion Constraint Protos Result:

Prompt 2: (Manual) Cut-in Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 3.0
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 9
lat_distance: 0.0
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 40
lat_distance: -3
long_distance: 10
agent_type: POT_CYCLIST

}
}
agent_name: ’cut_in_0 ’

}

Prompt 3: (Manual) Tailgate Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 0
long_distance: -20
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 20
lat_distance: 0.0
long_distance: -10
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 40
lat_distance: 0
long_distance: -3

18

agent_type: POT_CYCLIST
}

}
agent_name: ’tailgater_agent_0 ’

}

Prompt 4: (LLM Generated) S-shaped Constraint
agent_constraints {

step_constraints {
Initial position slightly to the right of the AV (

time_step_idx 0)
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 2.0 # Adjust this value as needed for initial

lateral offset
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

Move the motorcycle diagonally to the left in the future (
around 15 steps)

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 15
lat_distance: -3.0 # Adjust this value for desired leftward

movement
long_distance: 5.0 # Adjust this value for desired forward

movement
agent_type: POT_CYCLIST

}
}
step_constraints {

Move the motorcycle diagonally back to the right in the future
(around 30 steps)
relative_step_constraint {

time_frame: FUTURE
time_step_idx: 30
lat_distance: 2.0 # Adjust this value for desired rightward

movement
long_distance: 10.0 # Adjust this value for desired forward

movement
agent_type: POT_CYCLIST

}
}
agent_name: ’motorcycle_0 ’

}

Prompt 5: (LLM Generated) Surrounding Traffic Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: 10.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {

19

time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: 30.0
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_left_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: 5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: 25.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: -5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: -1.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_1 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25

20

lat_distance: -3.7
long_distance: -6.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_2 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: 10.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: 30.0
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_right_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: 5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: 25.0
agent_type: POT_CAR

}
}
agent_name: ’car_right_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: -5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: -1.0

21

agent_type: POT_CAR
}

}
agent_name: ’car_right_1 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: -6.0
agent_type: POT_CAR

}
}
agent_name: ’car_right_2 ’

}

A.7.3 Controllable Scenegen Results

Qualitative results showing one successful and one failed example of applying the control points to
scene generation task with the protos are listed in Appendix A.7.2. For measuring the success and
failures of this scene generation task, we randomly selected 25 examples that were generated with
each of the 4 control protos and qualitatively determined success on 1) if the new object does not
overlap with any existing objects in the scene and 2) if the new object semantically behaves in the
way intended by the control points. Otherwise, we considered it a failure. Overall, we measured a
success rate of 40/100.

22

Cut-in (left: success, right: failure)

Tailgate (left: success, right: failure)

23

S-shape (left: success, right: failure)

Surrounding Traffic (left: success, right: failure)

A.8 Scene Generation

We show additional unconditioned scene generation results in Fig. 13.

A.9 Generalized Hard Constraint Definitions

Non-collision Constraints ensure the boxes of generated agents do not overlap. We
define the potential field of agent a to be a rounded square potential φa(x, y) =

1
(x−xa)4+(y−ya)4+ε if ||(x − xa, y − ya)||2 < 1.5 else 0. We define clipcollision(x) =

arg minx

(∑
a∈A

∑
i=±0.5,j=±0.5

∑
a′∈A,a′ 6=a φa′(xa + iwa, ya + jla)

)
that minimizes the po-

tential of each agent’s corners against all other agents. (x, y) is defined in the normalized space.

Range Constraints limit a certain feature xd within the range of dmin and dmax. In the context of
Scene Generation for example, this can be used to limit the length of a vehicle to an arbitrary range,
e.g. between 7-9 meters. We have cliprange(xd) = min(max(xd, dmin), dmax).

24

Figure 13: Results of unconditioned scene generation for randomly selected road locations. For each
example, we show the ground truth log along with 3 generated scenes.

Onroad Constraints ensure that the bounding boxes of specified generated agents stay on road.
We define the offroad potential of road graph polyline i to be φi(x, y) = (x − xi)2 + (y − yi)2 if
Wi(x, y) = 0 else 0, where (xi, yi) is the closest point on the road graph with respect to (x, y) and
Wi(x, y) is the winding number of position (x, y) to polyline i, such that we only penalize a trajectory
for going offroad. We only consider the closest road graph segment and only consider trajectories
that are more than > 20% onroad. We define cliponroad(x) = arg minx

(
mini∈RG φi(x, y)

)
.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: It accurately reflects the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

26

Justification: No theoretical results included.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe in detail the model architecture, training details, and algorithmic
pseudocode for our inference procedures.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

27

Answer: [Yes] and [No] .

Justification: We do not plan to release code in the near future. However our methods are
clearly described and our dataset is based on the Waymo Open Motion Dataset, which is
already publicly accessible.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [No]

Justification: It is not affordable to train multiple models for error bars in our experiments,
especially the Large models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the high computational cost it is infeasible to run multiple training runs
of the large models.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide number of model parameters as well as inference FLOPS count
for our family of models in Figure 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the Code of Ethics and confirm that we conform to the
guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Discussed in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

29

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We are not releasing data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We accessed and utilized public datasets (the Waymo Open Dataset) in
compliance with the licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

30

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: the paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

31

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Work
	Data-driven Agent Simulation
	Diffusion Models for Agent Simulation
	Diffusion for Temporal World Modeling and Planning

	Method
	Scene Diffusion Setup
	Scene Rollout
	Controllable Scene Generation
	Generalized Hard Constraints

	Experimental Results
	Simulation Rollout
	Scene Generation
	Model Design Analysis and Ablation Studies

	Conclusion
	Appendix / supplemental material
	WOSAC Metrics
	SceneGen Metrics
	Additional Evaluation Details
	Additional Dataset Information
	Additional Amortized Diffusion Algorithm Details
	Additional Implementation Details
	Prompts used in Language-based few-shot Scene Generation
	Prompt:
	Scene Diffusion Constraint Protos Result:
	Controllable Scenegen Results

	Scene Generation
	Generalized Hard Constraint Definitions

