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Abstract

Realistic and interactive scene simulation is a key prerequisite for autonomous
vehicle (AV) development. In this work, we present SceneDiffuser, a scene-level
diffusion prior designed for traffic simulation. It offers a unified framework that
addresses two key stages of simulation: scene initialization, which involves gener-
ating initial traffic layouts, and scene rollout, which encompasses the closed-loop
simulation of agent behaviors. While diffusion models have been proven effec-
tive in learning realistic and multimodal agent distributions, several challenges
remain, including controllability, maintaining realism in closed-loop simulations,
and ensuring inference efficiency. To address these issues, we introduce amortized
diffusion for simulation. This novel diffusion denoising paradigm amortizes the
computational cost of denoising over future simulation steps, significantly reducing
the cost per rollout step (16x less inference steps) while also mitigating closed-loop
errors. We further enhance controllability through the introduction of generalized
hard constraints, a simple yet effective inference-time constraint mechanism, as
well as language-based constrained scene generation via few-shot prompting of
a large language model (LLM). Our investigations into model scaling reveal that
increased computational resources significantly improve overall simulation real-
ism. We demonstrate the effectiveness of our approach on the Waymo Open Sim
Agents Challenge, achieving top open-loop performance and the best closed-loop
performance among diffusion models.

1 Introduction

Simulation environments allow efficient and safe evaluation of autonomous driving systems [1, 8,
15, 22, 31, 32, 46, 50–52, 54]. Simulation involves initialization (determining starting conditions for
agents) and rollout (simulating agent behavior over time), typically treated as separate problems [44].
Inspired by diffusion models’ success in generative media, such as video generation [2, 10] and video
editing (inpainting [21, 24, 28], extension, uncropping etc.), we propose SceneDiffuser, a unified
spatiotemporal diffusion model that addresses both initialization and rollout for autonomous driving,
trained end-to-end on logged driving scenes. To our knowledge, SceneDiffuser is the first model to
jointly enable scene generation, controllable editing, and efficient learned closed-loop rollout (Fig. 1).

One challenge in simulation is evaluating long-tail safety-critical scenarios [1, 8, 22, 32, 46]. While
data mining can help, such scenarios are often rare. We address this by learning a generative scene
realism prior that allows editing logged scenes or generating diverse scenarios. Our model supports
scene perturbation (modifying a scene while retaining similarity) and agent injection (adding agents to
create challenging scenarios). We also enable synthetic scene generation on roadgraphs with realistic
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Scene Initialization (Generation and Editing)

Log Scenario Log Perturbation Agent Injection Fully Synthetic Scenario
Scene Rollout (Closed-loop with Amortized Diffusion)

Rollout Step = 2 Rollout Step = 30 Rollout Step = 60 Rollout Step = 80 (final)
Figure 1: SceneDiffuser: a generative prior for simulation initialization via log perturbation, agent
injection, and synthetic scene generation, and for efficient closed-loop simulation at 10Hz via
amortized diffusion. It progressively refines initial trajectories throughout the rollout. Environment
sim agents are in green-blue gradient (temporal progression), AV agent in orange-yellow, and
synthetic agents in red-purple.

layouts. We design a protocol for specifying scenario constraints, enabling scalable generation, and
demonstrate how a few-shot prompted LLM can generate constraints from natural language.

Given a scene, realistically simulating agents and AV behavior is challenging [15, 31, 50–52, 54].
Unlike motion prediction tasks [18, 25, 26, 38, 41, 48] where entire future trajectories are jointly
predicted in a single inference, simulator predictions are iteratively fed back into the model, requiring
realism at each step. This poses challenges: distributional drift from compounding errors, high
computational cost for models like diffusion, and the need to simulate various perception attributes
realistically.

We propose Amortized Diffusion for simulation rollout generation, a novel approach for amortizing
the cost of the denoising inference over a span of physical steps that effectively addresses the
challenges of simulation realism due to closed-loop drift and inference efficiency. Amortized
diffusion iteratively carries over prior predictions and refines them over the course of future physical
steps (see Sec. 3.2 and Fig. 4). This allows our model to produce stable, consistent, and realistic
simulated trajectories, while requiring only a single denoising function evaluation at each physical
step while jointly simulating all perception attributes at each step. Experiments show that Amortized
Diffusion not only requires 16x less model inferences per step, but is also significantly more realistic.

In summary, SceneDiffuser’s main contributions are:

• A unified generative model for scene initialization and rollout, jointly learning distributions
for agents, timesteps, and perception features including pose, size and type.

• A novel amortized diffusion method for efficient and realistic rollout generation, significantly
improving trajectory consistency and reducing closed-loop error.

• Controllable scene initialization methods, including log perturbation, agent injection, and
synthetic generation with a novel hard constraint framework and LLM.

• Investigation of model scaling, showing increased compute effectively improves realism.

• Demonstration of effectiveness on the Waymo Open Sim Agents Challenge, achieving top
open-loop performance and the best closed-loop performance among diffusion models.
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Figure 2: We formulate various different tasks, including behavior prediction, conditional scenegen
and unconditional scenegen as inpainting tasks on the scene tensor. We represent the scene tensor as
a normalized tensor x ∈ RA×T ×D, for the number of agents, timesteps and feature dimensions.

2 Related Work

2.1 Data-driven Agent Simulation

A variety of generative models have been explored for scene initialization and simulation, including
autoregressive models [8, 22, 46], cVAEs [45], cGANs [1], and Gaussian Mixture Models (GMMs)
[8, 47]. For closed-loop rollouts, these models have been extended with GMMs [51], GANs [15],
AR models over discrete motion vocabularies [31], cVAE [54], and deterministic policies [50, 52].
Open-loop rollouts have also been explored using cVAE [35].

2.2 Diffusion Models for Agent Simulation

Open-loop Sim Open-loop simulation generates behavior for agents that all lie within one’s control,
i.e. does not receive any external inputs between steps. Open-loop simulation thus cannot respond to
an external planner stack (AV), the evaluation of which is the purpose of simulation. Diffusion models
have recently gained traction in multi-agent simulation, particularly in open-loop scenarios (multi-
agent trajectory forecasting) [31, 39], using either single-shot or autoregressive (AR) generation.
Single-shot approaches employ spatiotemporal transformers in ego-centric [6, 18] or scene-centric
frames with motion/velocity deltas [9, 53]. Soft guidance techniques enhance controllability [17, 56].
DJINN [27] uses 2d condition masks for flexible generation.

Closed-loop Sim Closed-loop simulation with diffusion remains challenging due to compounding
errors and efficiency concerns. Chang et al. [3] explore route and collision avoidance guidance in
closed-loop diffusion, while VBD [14] combines denoising and behavior prediction losses with a
query-centric Transformer encoder [42]. VBD found it computationally infeasible to replan at a 1Hz
frequency in a receding horizon fashion over the full WOSAC test split due to the high diffusion
inference cost, therefore testing in open-loop except over 500 selected scenarios.

Initial Condition Generation Diffusion-based initial condition generation has also been studied
[20]. Pronovost et al. [32, 33] adapt the LDM framework to rendered scene images, while SLEDGE
[5] and DriveSceneGen [44] diffuse initial lane polylines, agent box locations, and AV velocity.

2.3 Diffusion for Temporal World Modeling and Planning

Outside of the autonomous driving domain, diffusion models have proven effective for world sim-
ulation through video and for planning. Various diffusion models for 4d data have been proposed,
often involving spatiotemporal convolutions and attention mechanisms [11, 12, 43]. In robotics,
diffusion-based temporal models leverage Model Predictive Control (MPC) for closed-loop control
[4] and have shown state-of-the-art performance for imitation learning [29].

Similar to our Amortized Diffusion approach, TEDi [55] proposes to entangle the physical timestep
and diffusion steps for human animation, thereby reducing O(T · T ) complexity for T physical
timesteps and T denoising steps to O(T ). However, we are the first work to demonstrate the
effectiveness of this approach for reducing closed-loop simulation errors, and the first to extend it to
a multi-agent simulation setting.
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Figure 3: SceneDiffuser architecture. Global scene context is encoded into a fixed number of Nc
tokens via a Perceiver IO [16] encoder. The noisy scene tokens are fused with local and global context,
then used to condition a spatiotemporal transformer-based backbone [49] via Adaptive LayerNorm
(AdaLN) [30]. Input/output tensor are in green, context tensors in blue, and ops in italics.

3 Method

3.1 Scene Diffusion Setup

We denote the scene tensor as x ∈ RA×T ×D, where A is the number of agents jointly modeled
in the scene, T is the total number of modeled physical timesteps, and D is the dimensionality
of all the features that are jointly modeled. We learn to predict the following attributes for each
agent: positional coordinates x, y, z, heading γ, bounding box dimensions l, h, w, and object type
k ∼ {AV, car, pedestrian, cyclist}. We model all tasks considered in SceneDiffuser as multi-task
inpainting on this scene tensor. Given an inpainting mask m̄ ∈ BA×T ×D, the corresponding
inpainting context values x̄ := m̄ � x, a set of global context c (such as roadgraph and traffic
signals), and a validity mask for a given agent at a given timestep v̄ ∈ BA,T (to account for there
being < A agents in the scene or for occlusion), we train a diffusion model to learn the conditional
probability p(x|C), where C := {m̄, x̄, c, v̄}. See Fig. 2 for an illustration of the scene tensor.

Feature Normalization To simplify the diffusion model’s learning task, we normalize all feature
channels before concatenating them alongD to form the scene tensor. We first encode the entire scene
in a scene-centric coordinate system, namely the AV’s coordinate frame just before the simulation
commences. We then scale x, y, z by fixed constants, l, h, w by their standard deviation, and one-hot
encode k. See Appendix A.6 for more details. This simple yet generalizable process allows us to
jointly predict float, boolean, and even categorical attributes by converting into a normalized space of
floats. After generating a scene tensor x, we apply a reverse process to obtain the generated features.

Diffusion Preliminaries We adopt the notation and setup for diffusion models from [13]. The
forward diffusion process gradually adds Gaussian noise to x. The noisy scene tensor at diffusion
step t can be expressed as q(zt|x) = N (zt|αtx, σ2

t I), where αt and σt are parameters which control
the magnitude and variances of the noise schedule under a variance-preserving model. Therefore
zt = αtx+ σtεt, where εt ∼ N (0, I). One major departure from the classic diffusion setup in our
amortized diffusion regime is that we do not assume a uniform noise level t ∈ R for the entire scene
tensor x. Instead, we have t ∈ RT where t can be relaxed to have a different value per physical
timestep in the scene tensor as described in Sec. 3.2. We utilize the commonly used α-cosine schedule
where αt = cos(πt/2) and σt = sin(πt/2). At the highest noise level of t = 1, the forward diffusion
process completely destroys the initial scene tensor x resulting in zt = εt ∼ N (0, I). Assuming
a Markovian transition process, we have the transition distributions q(zt|zs) = N (zt|αtszs, σ2

tsI),
where αts = αt/αs and σ2

ts = σ2
t − α2

tsσ
2
s and t > s. In the denoising process, conditioned on a

single datapoint x, the denoising process can be written as

q(zs|zt,x) = N (zt|µt→s, σ2
t→sI), (1)

where µt→s =
αtsσ

2
s

σ2
t
zt +

αsσ
2
ts

σ2
t
x and σt→s =

σ2
tsσ

2
s

σ2
t

. In the denoising process, x is approximated
using a learned denoiser x̂. Following [13] and [37], we adopt the commonly used v prediction,
defined as vt(εt,x) = αtεt − σtx. We trained a model parameterized by θ to predict vt given zt ,
t and context C: v̂t := v̂θ(zt, t, C). The predicted x̂t can be recovered via x̂t = αtzt − σtv̂t. The
model is end-to-end trained with a single loss:

E(x,C)∼D,t∼{U(0,1);t̂},m∼M,εt∼N (0,I)[||v̂θ(zt, t, C)− vt(εt,x)||22], (2)
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Figure 4: Amortized diffusion rollout procedure. The warm up step initializes the future predictions
for the entire future horizon, which is then perturbed by a monotonic noise schedule t̂. The trajectory
is iteratively denoised by one step at each simulation step.

D = {(xi, Ci)|i = 1, 2, · · · , |D|} is the dataset containing paired agents and scene context data,
t is probabilistically either sampled from a uniform distribution, or sampled as a monotonically
increasing temporal schedule t̂, where t̂τ = max

(
0, (τ − Thistory)/Tfuture

)
to facilitate amortized

rollout which will be discussed in Sec. 3.2. Each is sampled with 50% probability. M = {m̄bp �
m̄control, m̄scenegen � m̄control} is the set of inpainting masks for the varied tasks.

Scene Diffusion Tasks Different tasks are fomulated as inpainting problems (Fig. 2).

Scene Generation (SceneGen): Given the full trajectory of some agents, generate the full trajectory
of other agents. We have m̄scenegen ∈ RA,1,1 (broadcastable to T timesteps and D features), where
m̄scenegen, a ∼ Pr(X = Aselect/Avalid), where Aselect ∼ U(0, Avalid) is the number of agents sampled
to be selected as inpainting conditions out of Avalid valid agents in the scene.

Behavior Prediction (BP): Given past and current data for all agents, predict the future for all agents.
We have m̄bp ∈ R1,T ,1 (broadcastable to A agents and D features), where m̄bp,τ = I(τ < Thistory).

Conditional SceneGen and Behavior Prediction: Both scenegen and behavior prediction masks
are multiplied by a control mask at training time to enable controllable scenegen and controllable
behavior prediction at inference time. We have m̄control ∈ RA,T ,D, where m̄control,(a,τ,d) = Ia · Iτ ·
Id, Ia ∼ Pr(X = Acontrol/Avalid), Iτ ∼ Pr(X = Tcontrol/T ), Id ∼ Pr(X = pd) where pd of the
corresponding feature channel. This allows us to condition on certain channels, such as positions x, y
with or without specifying other features such as type and heading.

Architecture We present a schematic for the SceneDiffuser architecture in Fig. 3, consisting of two
end-to-end trained models: a global context encoder and a transformer denosier backbone. Validity v̄
is used as a transformer attention mask within the transformer denoiser backbone.

Diffusion Sampler We use DPM++ [19] with a Heun solver. We utilize 16 denoising steps for our
one-shot experiments and for our amortized diffusion warmup process.

3.2 Scene Rollout

Future prediction with no replanning (‘One-Shot‘) is not used in simulation due to its non-reactivity,
and forward scene inference, under the standard diffusion paradigm (‘Full AR’), is computationally
intensive due to the double for-loop over both physical rollout steps and denoising diffusion steps
[55]. Moreover, executing only the first step while discarding the remainder leads to inconsistent
plans that result in compounding errors. We adopt an amortized autoregressive (‘Amortized AR‘)
rollout, aligning the diffusion steps with physical timesteps to amortize diffusion steps over physical
time, requiring a single diffusion step at each simulation step while reusing previous plans.

We illustrate the three algorithms in Algorithm 1-3 using the same model trained with a noise mixture
t ∼ {U(0, 1); t̂} (Eqn. 2). We also illustrate Algorithm 3 in Fig. 4. We denote the total number
of timesteps T = H + F , where H,F denote the number of past and future steps. We denote
x := x[−H:F ] to be the temporal slicing operator where x[0] is the final history step.

Input: Global context c (roadgraph and traffic signals), history states x[−H:0], validity v̄.

Output: Simulated observations for unobserved futures x̂[1:F ].

2 We omit L/2 due to training collapse.
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Algorithm 1 One-Shot (Open-Loop)
1: OneShot(x[−H:0], C):
2: z1 ∼ N (0, I)

3: for t = 1, · · · ,∆t, 0 do . For each diffusion timestep
4: x̂t ← αtzt − σtv̂θ(zt, t, C) . V-prediction
5: x̂t ← x[−H:0] � m̄bp + x̂t � (∼ m̄bp) . Apply inpainting

6: zs ∼ q(zs|zt, x̂t)
7: zt ← zs
x̂← z0

8: return x̂[1:F ]

Algorithm 2 Full AR (Closed-Loop)
1: FullAR(x[−H:0], C):
2: x̂← x[−H:0]

3: for τ = 0, ...,T − 1 do . For each physical timestep
4: x̂[τ+1:τ+F ] ← OneShot(x̂[τ−H:τ], C) . Update buffer at indices
5: return x̂[1:F ]

Algorithm 3 Amortized AR (Closed-Loop)
1: AmortizedAR((x[−H:0], C)):
2: x̂← OneShot(x[−H:0], C) .Warm-Up
3: x̂[0:F ] ← αt̂x̂

[0:F ] + σt̂ε . Add noise t̂

4: for τ = 1, ...,T do . For each physical timestep
5: x̂[τ:τ+F ] ← αt̂x̂

[τ:τ+F ] − σt̂v̂θ(x̂[τ:τ+F ], t̂, C) . Recover solution from v-prediction

6: x̂[τ:τ+F ] ← αt̂x̂
[τ:τ+F ] + σt̂ε . Add noise t̂

7: x̂[τ−H:τ+F ] ← x̂[τ−H:τ] � m̄bp + x̂[τ−H:τ+F ] � (∼ m̄bp) . Apply inpainting

8: return x̂[1:F ]
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Figure 5: We compare the influence of replan
rate on performance for our Full AR and Amor-
tized AR models. Circle radius ∝ # inference
calls over the simulation. At 10Hz, Amortized
AR requires 16x less model inference per step
and is more realistic compared to Full AR.

Figure 6: Scene generation realism with model
parameter and resolution scaling2. Decreased
temporal patch sizes (i.e. increased temporal
resolution) and increased parameters are both
effective for improving realism via compute scal-
ing. Circle radius ∝ compute GFLOPs.

3.3 Controllable Scene Generation

To simulate long-tail scenarios such as rare behavior of other agents, it is important to effectively
insert controls into the scene generation process. To do so, we input an inpainting context scene
tensor x̄ , where some pixels are pre-filled. Through pre-filled feature values in x̄, we can specify a
particular agent of a specified type to be appear at a specific position at a specific timestamp.

Data Augmentation via Log Perturbation The diffusion framework makes it straightforward to
produce additional perturbed examples of existing ground truth (log) scenes. Instead of starting from
pure noise zt ∼ N (0, I) and diffusing backwards from t→ 0, we take our original log scene x′ and
add noise to it such that our initial zt = αtx

′ + εt where εt ∼ N (0, σtI). Starting the diffusion
process at t = 0 yields the original data, while t = 1 produces purely synthetic data. For t ∈ (0, 1),
higher values increase diversity and decrease resemblance to the log. See Figs. 1 and 12 (Appendix).

Language-based Few-shot Scene Generation The diffusion model inpaint constraints can be
defined through structured data such as a Protocol Buffer3 (‘proto’). Protos can be converted into
inpainting values, and we leverage the off-the-shelf generalization capabilities of a publicly accessible

3 https://protobuf.dev/
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Figure 7: Full AR quality deteriorates at in-
creasing replan rates due to compounding errors.
Amortized AR retains a high level of realism
even at 10 Hz while being more efficient.

(a) No Hard Constraints

(b) Post-Diffusion GHC (c) In-Diffusion GHC

Figure 8: Applying no-collision constraints pre-
vents collisions (red-purple) in generated scenes
(b, c). Iteratively applying constraints with every
diffusion step further enhances realism (c vs b).

chat app powered by a large language model (LLM)4, to generate new Scene Diffusion constraints
protos solely using natural language via few-shot prompt engineering. We show example results
generated by the LLM in Fig. 10. Details in the Appendix (A.7).

3.4 Generalized Hard Constraints

Users of simulation often require agents to have specific behaviors while maintaining realistic
trajectories. However, diffusion soft constraints [27, 56, 57] require a differentiable cost for the
constraint and do not guarantee constraint satisfaction. Diffusion hard constraints [21] are modeled
as inpainting values and are limited in their expressivity.

Inspired by dynamic thresholding [36] in the image generation domain, where intermediate images
are dynamically clipped to a range at every denoising step, we introduce generalized hard constraints
(GHC), where a generalized clipping function is iteratively applied at each denoising step. We modify
Eqn. 1 such that at each denoising step µt→s =

αtsσ
2
s

σ2
t
z +

αsσ
2
ts

σ2
t

clip(x), where clip(·) denotes the
GHC-specific clipping operator. See more details on constraints in Appendix A.9.

We qualitatively demonstrate the effect of hard constraints for unconditional scene generation in
Fig. 8. Applying hard constraints post-diffusion removes overlapping agents but results in unrealistic
layouts, while applying the hard constraints after each diffusion step both removes the overlapping
agents and takes advantage of the prior to improve the realism of the trajectories. We find that the
basis on which the hard constraints operate is important: a good constraint will modify a significant
fraction of the scene tensor (for example, shifting an agent’s entire trajectory rather than just the
overlapping waypoints), or else the model "rejects" the constraint on the next denoising step.

4 Experimental Results

Dataset We use the Waymo Open Motion Dataset (WOMD)[7] for both our scene generation and
agent simulation experiments. WOMD includes tracks of all agents and corresponding vectorized
maps in each scenario, and offers a large quantity of high-fidelity object behaviors and shapes
produced by a state-of-the-art offboard perception system.

4.1 Simulation Rollout

Benchmark We evaluate our closed-loop simulation models on the Waymo Open Sim Agent
Challenge (WOSAC) [23] metrics (see Appendix A.1), a popular sim agent benchmark used in many
recent works [9, 14, 31, 51, 53]. Challenge submissions consist of x/y/z/γ trajectories representing
centroid coordinates and heading of the objects’ boxes that must be generated in closed-loop and
4

The chat app is available at gemini.google.com, powered by Gemini V1.0 Ultra at the time of access.
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METRICS M/1 M/1+GHC L/1 LOG

COMPOSITE METRIC 0.516 0.558 0.549 0.593

LINEAR SPEED 0.326 0.327 0.331 0.339
LINEAR ACCEL. 0.387 0.383 0.378 0.445
ANGULAR SPEED 0.529 0.562 0.534 0.572
ANGULAR ACCEL. 0.595 0.608 0.588 0.625
DIST. TO OBJ. 0.154 0.176 0.174 0.192
COLLISION 0.692 0.841 0.794 0.875
TIME TO COLLISION 0.826 0.827 0.827 0.842
DIST. TO RD. EDGE 0.164 0.165 0.176 0.204
OFFROAD 0.546 0.549 0.566 0.605

Table 1: Realism metrics on WOMD val. for scene gener-
ation for the M/1 model, M/1 with hard constraints, L/1,
and oracle log distribution matching (see Sec. 4.3). Real-
ism can be improved through hard constraints or scaling.

Figure 9: Generated vs logged distri-
bution. SceneDiffuser learns realistic
joint distributions across modeled fea-
tures such as length and width.

ONE-SHOT FULL AR AMORTIZED AR
(10 HZ) (10 HZ)

COMPOSITE SCORE (M/1) 0.730 0.492 0.673
COMPOSITE SCORE (L/1) 0.736 - 0.703

# FN EVALS 16 16 · 80 = 1280 80 + 16 = 96

Table 2: Distrib. realism metrics on WOSAC.
L/1 denotes the Large model of patch size 1.

COMPOSITE METRIC COLLISION RATE OFFROAD RATE
(↑) (↓) (↓)

-ADALN-ZERO -7.99% +65.2% +29.3%
-SPATIAL-ATTN -14.5% +209% +11.8%
-MULTITASK -2.04% +39.6% +3.24%
-SIZE,TYPE 0.68% -6.85% +2.90%

Table 3: Design analysis and ablation studies.

with factorized AV vs. agent models. WOSAC uses the test data from the Waymo Open Motion
Dataset (WOMD)[7]. Up to 128 agents (one of which must represent the AV) must be simulated in
each scenario for the 8 second future (comprising 80 steps of simulation), producing 32 rollouts per
scenario for evaluation. In a small departure from the official setting, we utilize the logged validity
mask as input to our transformer and unify the AV and agents’ rollout step for simplicity.

Evaluation In Tab. 2, we show results on WOSAC. We show that Amortized AR (10 Hz) not only
requires 16x fewer model inference calls, but is also significantly more realistic than Full AR at a
10Hz replan rate. In Amortized AR, we re-use the plan from the previous step, leading to increased
efficiency and consistency. The one-shot inference setting is equivalent to Full AR with no replanning
(0.125 Hz) and achieves comparably higher realism, though as it is not executed in closed-loop, it is
not reactive to external input in simulation, and thus not a valid WOSAC entry.

In Figs. 5 and 7, we investigate the effects of varied replan rates to simulation realism. While high
replan frequency leads to significant degredation in realism under the Full AR rollout paradigm,
Amortized AR significantly reduces error accumulation while being 16× more efficient.

In Tab. 4, we compare against the WOSAC leaderboard with the aforementioned modifications. We
achieve top open-loop performance and the best closed-loop performance among diffusion models.

4.2 Scene Generation

Unconstrained Scene Generation We use the unconditional scene generation task as a means to
quantitatively measure the distributional realism of our model. We condition the scene using the same
logged road graph and traffic signals, as well as the logged agent validity to control for the same
number of agents generated per scene. All agent attributes are generated by the model.

Due to a lack of public benchmarks for this task, we adopt a slightly modified version of the WOSAC
[23] metrics, where different metrics buckets are aggregated per-scene instead of per-agent, due to
the lack of one-to-one correspondence between agents in the generated scene versus the logged scene
(see Appendix A.2 for more details). Metrics are aggregated over all agents that are ever valid in the
9 second trajectory.

We show our model’s realism metrics in Tab. 1. Even compared to the oracle performance (comparing
logged versus logged distributions), our model achieves comparable realism scores in every realism
bucket. Introducing hard constraints on collisions can significantly improve the composite metric
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AGENT POLICY REPLAN LINEAR LINEAR ANG. ANG. DIST. COLLISION TTC DIST. TO OFFROAD COMPOSITE ADE MINADE COLLISION OFFROAD
f RATE SPEED ACCEL. SPEED ACCEL. TO OBJ. ROAD EDGE METRIC RATE RATE

(HZ) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↓) (↓) (↓) (↓)
RANDOM AGENT 10 0.002 0.116 0.014 0.034 0.000 0.000 0.735 0.148 0.191 0.144 50.739 50.706 1.000 0.613
CONST. VELOCITY 10 0.043 0.067 0.252 0.439 0.202 0.355 0.739 0.455 0.451 0.381 7.923 7.923 0.314 0.293
MTR+++ [34] 2 0.321 0.247 0.428 0.533 0.340 0.886 0.797 0.655 0.893 0.700 2.125 1.679 0.080 0.135
MVTE [51] 10 0.353 0.354 0.496 0.599 0.392 0.913 0.833 0.642 0.907 0.732 3.859 1.674 0.090 0.158
TRAJEGLISH [31] 10 0.356 0.399 0.509 0.654 0.378 0.925 0.834 0.660 0.884 0.735 3.158 1.615 0.076 0.170

SCENEDMF [9] 0.125 0.343 0.395 0.381 0.366 0.362 0.760 0.812 0.623 0.735 0.628 4.158 2.414 0.217 0.285
VBD [14] 0.125 0.359 0.366 0.420 0.522 0.368 0.934 0.815 0.651 0.879 0.720 2.257 1.474 0.036 0.152
OURS (ONE-SHOT) 0.125 0.399 0.225 0.510 0.605 0.401 0.934 0.837 0.686 0.893 0.736 2.436 1.103 0.070 0.172

OURS (AMORTIZED) 10 0.310 0.389 0.459 0.560 0.349 0.917 0.815 0.634 0.833 0.703 2.619 1.767 0.064 0.177

LOGGED ORACLE - 0.476 0.478 0.578 0.694 0.476 1.000 0.883 0.715 1.000 0.819 0.000 0.000 0.028 0.111

Table 4: Per-component WOSAC metric results on the test split of WOMD, representing likelihoods.
Methods are ranked by composite metric on the 2024 Challenge scores; Closed-loop results within
1% of the best are in bold (for models with 10Hz replan). Diffusion-based methods marked in blue.

(M) Cut-In (M) Tailgater

(L) S-shape (L) Surrounding Traffic

Figure 10: Long-tail synthetic scenes gen-
erated via control points either explicitly
defined by a manually defined (M) or
LLM-generated (L) config. Magenta in-
dicates generated motorcyclists/car agents.

8 4 2 1

S

M

L

Figure 11: Fully synthetic scene generation quality com-
parison via scaling model parameters (S → L) and in-
creasing temporal resolution (patch size 8→ 1). Increas-
ing compute by scaling either the model size or temporal
resolution improves the overall realism.

by preventing collisions, while scaling the model without hard constraints improves most realism
metrics as the model learns to generate more realistic trajectories. The realism metrics only apply to
trajectories and do not account for generated agent type and size distributions. We compare the gener-
ated size distributions versus log distributions in Fig. 9 and find the marginal and joint distributions
both closely track the logged distribution. We show more examples of diverse, unconstrained scene
generation when conditioning on the same global context in Appendix A.8 Fig. 13.

Constrained Scene Generation and Augmentation The controllability we possess in the scene
generation process as a product of our diffusion model design can be useful for targeted generation
and augmentation of scenes. In Fig. 10, we show qualitative results of scenes with constrained agents
generated either via manually defined configs or by a few-shot prompted LLM. Extended qualitative
results are listed in Appendix A.7.3.

4.3 Model Design Analysis and Ablation Studies

Scaling Analysis Given two options of scaling model compute, either by increasing transformer
temporal resolution by decreasing temporal patch sizes, or increasing the number of model parameters,
we investigate the performance of multiple transformer backbones: {Model Size} × {Temporal Patch
Size} = {L, M, S} × {8, 4, 2, 1}. We vary model size by jointly scaling the number of transformer
layers, hidden dimensions, and attention heads (see Sec. A.6 of Appendix for details). We show
quantitative results from this model scaling in Fig. 6 and qualitative comparisons in Fig. 11. Increasing
both temporal resolution and number of model parameters improves realism of the simulation.

Multi-task Compatibility We find that multitask co-training across BP, SceneGen and with random
control masks improves performance compared to a single-task, BP only model on the sim agent
rollout task, notably reducing collision and offroad rates. We find that jointly learning multiple agent
features (x, y, z, γ, size, type) achieves on-par performance with a pose-only (x, y, z, γ) model.
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Model Architecture Ablation As shown in Tab. 3, replacing AdaLN-Zero conditioning with cross
attention leads to a 7.99% decrease in realism performance, largely due to significantly higher
collision rates and offroad rates. Removing the agent-wise spatial attention layer very significantly
increases collision rate, as it removes the mechanism for agents to learn a joint distribution.

5 Conclusion

We have introduced SceneDiffuser, a scene-level diffusion prior designed for traffic simulation.
SceneDiffuser combines scene initialization with scene rollout to provide a diffusion-based approach
to closed-loop agent simulation that is efficient (through amortized autoregression) and controllable
(through generalized hard constraints). We performed scaling and ablation studies and demonstrated
model improvements with computational resources. On WOSAC, we demonstrate competitive results
with the leaderboard and state-of-the-art performance among diffusion methods.

Limitations While our amortized diffusion approach is, to our knowledge, the only and best
performing closed-loop diffusion-based agent model with competitive performance, we do not exceed
current SOTA performance for other autoregressive models. We do not explicitly model validity
masks and resort to logged validity in this work. Future work looks to also model the validity mask.

Broader Impact This paper aims to improve AV technologies. With our work we aim to make
AVs safer by providing more realistic and controllable simulations. The generative scene modeling
techniques developed in this work could have broader social implications regarding generative media
and content generation, which poses known social benefits as well as risks of misinformation.
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A Appendix / supplemental material

A.1 WOSAC Metrics

Suppose there areN ≈ 500k scenarios, each of length T = 80 steps, each containingA ≤ 128 agents
(objects). For each scenario, we generate K = 32 samples (conditioned on the true initial state),
which is a set of trajectories for each object for each time step, where each point in the trajectory
is a D = 4-dim vector recording location (x, y, z) and orientation θ. Let all this generated data be
denoted by x(1 : N , 1 : A, 1 : K, 1 : T , 1 : D). Let the ground truth data be denoted x∗(1 : N ,
1 : A′, 1 : T , 1 : D). Below we discuss how to evaluate the likelihood of the true (test) dataset x∗
under the distribution induced by the simulated dataset x.

(Note that we may have A′ > A, since the ground truth (GT) can contain cars that enter the
scene after the initial prefix used by the simulator; this is handled by defining a validity mask,
v(1 : N, 1 : T, 1 : A′), which is set to 0 if we want to exclude a GT car from the evaluation, and is
set to 1 otherwise.)

Rather than evaluating the realism of the full trajectories in the raw (x, y, z, θ) state space, WOSAC
defines M = 9 statistics (scalar quantities of interest) from each trajectory. Let Fj(x(i, a, :))
represent the set of statistics/features (of type j) derived from x(i, a, 1 : K, 1 : T ) by pooling over
T,K. This is used to compute a histogram pija(.) for the empirical distribution of Fj for scenario i.
Let Fj(x∗(i, a, t)) be the value of this statistic from the true trajectory i for vehicle a at time t . Then
we define the negative log likelihood to be

NLL(i, a, t, j) = − log pija(Fj(x
∗(i, a, t)) (3)

The j’th metric for scenario i is defined as

m(a, i, j) = exp
(
− [

1

N(i, a)
]
∑
t

v(i, a, t)NLL(i, a, t, j)
)

m(i, j) =
1

A

∑
a

m(a, i, j)

N(i, a) =
∑
t

v(i, a, t) is the number of valid points.

(4)

Finally an aggregated metric, used to rank entries, is computed as

score =
1

N ′
1

M

N ′∑
i=1

M∑
j=1

wjm(i, j) (5)

where 0 ≤ wj ≤ 1.

The 9 component metrics are defined as linear speed, linear acceleration magnitude, angular speed, an-
gular acceleration magnitude, distance to nearest object, collisions, time-to-collision (TTC), distance
to road edge, and road departures.

A.2 SceneGen Metrics

We instead let Fj(x(i, :)) represent the set of statistics/features (of type j) derived from x(i, 1 : A′, 1 :
K,−H : T ) by pooling over T,A′,K. This is used to compute a histogram pij(.) for the empirical
distribution of Fj for scenario i.

A.3 Additional Evaluation Details

Simulation step validity Due to the requirement of validity masks during inference, which is applied
as an attention padding mask within the transformer, the model does not generate valid values for
invalid steps. As the WOSAC challenge evaluates simulation agents for all steps, regardless of the
step’s validity, we use linear interpolation / extrapolation to impute values for all invalid steps in our
simulations for the final evaluation.
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A.4 Additional Dataset Information

WOSAC uses the v1.2.0 release of WOMD, and we treat WOMD as a set D of scenarios where each
scenario is a history-future pair. This dataset offers a large quantity of high-fidelity object behaviors
and shapes produced by a state-of-the-art offboard perception system. We use WOMD’s 9 second 10
Hz sequences (comprising H = 11 observations from 1.1 seconds of history and 80 observations from
8 seconds of future data), which contain object tracks at 10 Hz and map data for the area covered by
the sequence. Across the dataset splits, there exists 486,995 scenarios in train, 44,097 in validation,
and 44,920 in test.

A.5 Additional Amortized Diffusion Algorithm Details

Warm up: At inference time, the rollout process is preceded by a warm up step. The warm up step
is necessary for initializing a buffer of future timesteps before any diffusion iterations take place. The
warm up entails a single iteration of a one-shot prediction process described in Algorithm 5a. This
process samples pure noise for some future steps and conditions the denoising process on the set of
past steps.

Amortized autoregressive rollout: In Fig. 4, we provide a visual illustration of our amortized
autoregressive rollout procedure. We operate the rollout procedure using a buffer to track future steps
in the trajectory. After the warm up, the future buffer contains T predicted steps with an increasing
noise level. Note that step τ = 1 has very little noise applied. The future buffer in this state is
denoised for a single iteration using past steps to condition the process. After a single iteration, the
clean step at τ = 1 is popped off of the buffer, and it is added to the past steps. Before the next
iteration, a step τ = T + 1 is sampled from a pure noise distribution and is appended to the end of
the future buffer. The described rollout process can be repeated to generate trajectories of arbitrary
length as clean steps are popped off the buffer.

A.6 Additional Implementation Details

Architecture Details : For our base model, our scene encoder architecture uses 256 latent queries.
Each scene token is 256-dimensional, with 4 transformer layers and 4 transformer heads, with a
transformer model dimension of 256. We train and run inference with all 128 agents.

Scaling Hyperparameters:
Small Model: Scene token dimension 128, 2 Transformer layers, 128 Transformer model dimensions,
2 Transformer Heads.

Medium Model: Scene token dimension 256, 4 Transformer layers, 256 Transformer model dimen-
sions, 4 Transformer Heads.

Large Model: Scene token dimension 512, 8 Transformer layers, 512 Transformer model dimensions,
8 Transformer Heads.

Optimizer : We use the Adafactor optimizer [40], with EMA (exponential moving average). We
decay using Adam, with β1 = 0.9, decayadam = 0.9999, weight decay of 0.01, and clip gradient
norms to 1.0.

Training details Train batch size of 1024, and train for 1.2M steps. We select the most competitive
model based on validation set performance, for which we perform a final evaluation using the test
set. We use an initial learning rate of 3× 10−4. We use 16 diffusion sampling steps. When training,
we mix the behavior prediction (BP) task with the scene generation task, with probability 0.5. The
randomized control mask is applied to both tasks.

Additional Hyperparameters To preprocess features, we use scaling constants of 1
80 for features

x, y, z, and compute mean µ and standard deviation σ of features l, w, h.

We preprocess each agent feature f to produce normalized feature f ′ via f ′ =
f−µf
2∗σf , where:

µl = 4.5, µw = 2.0, µh = 1.75, µk = 0.5. (6)

and

σl = 2.5, σw = 0.8, σh = 0.6, σk = 0.5. (7)
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Perturb Step = 0 / 32 (Log) Perturb Step = 16 / 32 Perturb Step = 24 / 32 Perturb Step = 32 / 32

Figure 12: Log-perturbation via noising and denoising the original logs to different noise levels. An
increasing level of noise added and then removed results in scenes more and more dissimilar from the
original log, yet increasingly diverse. The scenes are realistic regardless of the perturbation noise
level.

We scale by twice the std σ values to allow sufficient dynamic range for high feature values for some
channels.

A.7 Prompts used in Language-based few-shot Scene Generation

A.7.1 Prompt:

Prompt 1: Prompts used in Language-based few-shot Scene Generation.
You are writing proto to generate and control an agent ’s behavior
for an autonomous vehicle (AV) simulation. I will give the follow 2
examples of input and the generated proto MultiAgentMultiConstraint ,
which will constrain the agent ’s position in either past , current , or
future timestep. 5 timesteps equals 1 second , so for example 15 steps
would equal 3 seconds. Given a natural language description of the
agent ’s desired behavior , please generate the corresponding
MultiAgentMultiConstraint.

Very Important limitations:
1. Only time_step_idx values in [0,8] are valid for PAST time step.
2. Only time_step_idx values in [0] are valid for CURRENT time step.
3. Only time_step_idx values in [0 ,49] are valid for FUTURE time step.
4. You may only use types POT_CAR , POT_MOTORCYCLIST , POT_PEDESTRIAN to

generate these examples
5. No two agents should overlap each other at the same time step in

the same time frame.

The following are 2 examples of a natural language input and the
output is a text file that creates the corresponding constraint.

Example 1
Input: Generate constraints where a motorcycle agent cuts in front of
the AV coming from the right side at some time in the future.
Output:
‘‘‘
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7 # Slightly right of ADV
long_distance: 0.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {
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time_frame: FUTURE
time_step_idx: 30
lat_distance: 0.0
long_distance: 3.0 # ahead of AV
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_0 ’

}
scene_name: ’single_motorcycle_cut_in ’
‘‘‘

Example 2
Input: Generate constraints where a car agent is tailgating the AV by
following behind it closely.
Output:
‘‘‘
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 0.0
long_distance: -15.0
agent_type: POT_CAR

}
}

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 0.0
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 30
lat_distance: 0.0
long_distance: -2.0
agent_type: POT_CAR

}
}
agent_name: ’car_0 ’

}
scene_name: ’single_car_tailgater ’
‘‘‘

Please output just the MultiAgentMultiConstraint in the response and
leave any explanation in the comments. Please double check the
important limitations described before are met.

Now take a deep breath and lets think step by step to write the proto
given the following input:

S-Shaped Maneuver: Create a motorcyclist agent that is doing a
S-shaped maneuver around the AV.

Surrounding Traffic: Create a scene with 8 agents that are surrounding
the AV and traveling along for a few seconds. There are 4 agents on
the left lane of AV in a straight line and 4 agents on the lane of AV
in a straight line. 2 of the front agents at motorcyclists while the

17



rest are cars.

A.7.2 Scene Diffusion Constraint Protos Result:

Prompt 2: (Manual) Cut-in Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 3.0
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 9
lat_distance: 0.0
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 40
lat_distance: -3
long_distance: 10
agent_type: POT_CYCLIST

}
}
agent_name: ’cut_in_0 ’

}

Prompt 3: (Manual) Tailgate Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: PAST
time_step_idx: 0
lat_distance: 0
long_distance: -20
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 20
lat_distance: 0.0
long_distance: -10
agent_type: POT_CYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 40
lat_distance: 0
long_distance: -3
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agent_type: POT_CYCLIST
}

}
agent_name: ’tailgater_agent_0 ’

}

Prompt 4: (LLM Generated) S-shaped Constraint
agent_constraints {

step_constraints {
# Initial position slightly to the right of the AV (

time_step_idx 0)
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 2.0 # Adjust this value as needed for initial

lateral offset
long_distance: 0.0
agent_type: POT_CYCLIST

}
}
step_constraints {

# Move the motorcycle diagonally to the left in the future (
around 15 steps)

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 15
lat_distance: -3.0 # Adjust this value for desired leftward

movement
long_distance: 5.0 # Adjust this value for desired forward

movement
agent_type: POT_CYCLIST

}
}
step_constraints {

# Move the motorcycle diagonally back to the right in the future
(around 30 steps)
relative_step_constraint {

time_frame: FUTURE
time_step_idx: 30
lat_distance: 2.0 # Adjust this value for desired rightward

movement
long_distance: 10.0 # Adjust this value for desired forward

movement
agent_type: POT_CYCLIST

}
}
agent_name: ’motorcycle_0 ’

}

Prompt 5: (LLM Generated) Surrounding Traffic Constraint
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: 10.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {
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time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: 30.0
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_left_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: 5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: 25.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: -5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: -3.7
long_distance: -1.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_1 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: -3.7
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
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lat_distance: -3.7
long_distance: -6.0
agent_type: POT_CAR

}
}
agent_name: ’car_left_2 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: 10.0
agent_type: POT_MOTORCYCLIST

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: 30.0
agent_type: POT_MOTORCYCLIST

}
}
agent_name: ’motorcycle_right_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: 5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: 25.0
agent_type: POT_CAR

}
}
agent_name: ’car_right_0 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: -5.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: -1.0
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agent_type: POT_CAR
}

}
agent_name: ’car_right_1 ’

}
agent_constraints {

step_constraints {
relative_step_constraint {

time_frame: CURRENT
time_step_idx: 0
lat_distance: 3.7
long_distance: -10.0
agent_type: POT_CAR

}
}
step_constraints {

relative_step_constraint {
time_frame: FUTURE
time_step_idx: 25
lat_distance: 3.7
long_distance: -6.0
agent_type: POT_CAR

}
}
agent_name: ’car_right_2 ’

}

A.7.3 Controllable Scenegen Results

Qualitative results showing one successful and one failed example of applying the control points to
scene generation task with the protos are listed in Appendix A.7.2. For measuring the success and
failures of this scene generation task, we randomly selected 25 examples that were generated with
each of the 4 control protos and qualitatively determined success on 1) if the new object does not
overlap with any existing objects in the scene and 2) if the new object semantically behaves in the
way intended by the control points. Otherwise, we considered it a failure. Overall, we measured a
success rate of 40/100.
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Cut-in (left: success, right: failure)

Tailgate (left: success, right: failure)

23



S-shape (left: success, right: failure)

Surrounding Traffic (left: success, right: failure)

A.8 Scene Generation

We show additional unconditioned scene generation results in Fig. 13.

A.9 Generalized Hard Constraint Definitions

Non-collision Constraints ensure the boxes of generated agents do not overlap. We
define the potential field of agent a to be a rounded square potential φa(x, y) =

1
(x−xa)4+(y−ya)4+ε if ||(x − xa, y − ya)||2 < 1.5 else 0. We define clipcollision(x) =

arg minx

(∑
a∈A

∑
i=±0.5,j=±0.5

∑
a′∈A,a′ 6=a φa′(xa + iwa, ya + jla)

)
that minimizes the po-

tential of each agent’s corners against all other agents. (x, y) is defined in the normalized space.

Range Constraints limit a certain feature xd within the range of dmin and dmax. In the context of
Scene Generation for example, this can be used to limit the length of a vehicle to an arbitrary range,
e.g. between 7-9 meters. We have cliprange(xd) = min(max(xd, dmin), dmax).
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Figure 13: Results of unconditioned scene generation for randomly selected road locations. For each
example, we show the ground truth log along with 3 generated scenes.

Onroad Constraints ensure that the bounding boxes of specified generated agents stay on road.
We define the offroad potential of road graph polyline i to be φi(x, y) = (x − xi)2 + (y − yi)2 if
Wi(x, y) = 0 else 0, where (xi, yi) is the closest point on the road graph with respect to (x, y) and
Wi(x, y) is the winding number of position (x, y) to polyline i, such that we only penalize a trajectory
for going offroad. We only consider the closest road graph segment and only consider trajectories
that are more than > 20% onroad. We define cliponroad(x) = arg minx

(
mini∈RG φi(x, y)

)
.
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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