
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DCA-BENCH: A BENCHMARK FOR DATASET
CURATION AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

The quality of datasets plays an increasingly crucial role in the research and
development of modern artificial intelligence (AI). Despite the proliferation of open
dataset platforms nowadays, data quality issues, such as incomplete documentation,
inaccurate labels, ethical concerns, and outdated information, remain common in
widely used datasets. Furthermore, these issues are often subtle and difficult to be
detected by rule-based scripts, therefore requiring identification and verification
by dataset users or maintainers–a process that is both time-consuming and prone
to human mistakes. With the surging ability of large language models (LLM),
it’s promising to streamline the discovery of hidden dataset issues with LLM
agents. To achieve this, one significant challenge is enabling LLM agents to
detect issues in the wild rather than simply fixing known ones. In this work, we
establish a benchmark to measure LLM agent’s ability to tackle this challenge.
We carefully curate 221 real-world test cases from eight popular dataset platforms
and propose an automatic evaluation framework using GPT-4. Our proposed
framework shows strong empirical alignment with expert evaluations, validated
through extensive comparisons with human annotations. Without any hints, a
baseline GPT-4 Curator agent can only reveal 11% of the data quality issues in
the proposed dataset, highlighting the complexity of this task and indicating that
applying LLM agents to real-world dataset curation still requires further in-depth
exploration and innovation.

1 INTRODUCTION

High-quality datasets have become increasingly crucial for advancing artificial intelligence (AI)(Jain
et al., 2020; Kaplan et al., 2020). Open dataset platforms, such as Hugging Face(Lhoest et al.,
2021) and BIG-Bench (Srivastava et al., 2023), have substantially accelerated AI research and
development by facilitating community contributions. However, community-contributed datasets
often encounter subtle data quality issues, including insufficient documentation (Yang et al., 2024),
inaccurate annotations (Klie et al., 2024), and ethical concerns (Gebru et al., 2021).

There have been existing efforts on standardizing dataset management practices (Gebru et al., 2021;
Wang et al., 2023; Gan et al., 2024) and developing dataset curation toolkits and systems (Gupta
et al., 2021; Mao et al., 2023). However, these toolkits and systems often rely heavily on rule-
based scripts, which lack the necessary flexibility to detect the aforementioned subtle data quality
issues. Consequently, existing techniques remain insufficient to address the complex challenge of
automatically curating datasets at scale on open dataset platforms, where we still primarily rely on
dataset users or platform maintainers as dataset curators to identify data quality issues.

Recent advancement of large language models (LLMs) has led to promising development of LLM
agents for real-world software engineering problems (Jimenez et al., 2024a). For certain issues in
software development, LLM agents have been shown to be capable of autonomously generating
proper code to fix them (Mesh, 2024; Tao et al., 2024). Given this development, we envision that
LLM agents could become an effective technique for building autonomous dataset curation systems.

However, there is still a significant gap between the need of dataset curation and the state-of-the-art
LLM agents for software engineering. Specifically, existing studies primarily focus on developing
agents that solve identified and well-defined issues, while dataset curation requires one to discover

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

BigBench

Issue Card

title

content

involved

Misaligned statistic information

task.json

Issue ID

Hints Writer

① Mismatched quantitative information

Mismatched quantitative information in
README.md and data file

Quantitative discrepancies between README.md
and task.json, specifically in the counts of
stories, 'Yes' answers, and 'No' answers"

The statistic info in README.md is not aligned
with the actual data file. There are 190 stories
rather than 194 stories; 99 "Yes" rather than
100 "Yes"; 91 "No" rather than 94 "No".

②

③

task.json

readme.md

…

Files

Documentations

Reference Materials

……

papers tutorials blogs

DCA-Bench API Layer

Repository README

80d6db6a-6cbf-4261-8d13-3244e7fb54fd

Contribution Guideline

Instances in DCA-Benchmark

readme.md ….

Type Tags

Evaluator

Metrics List
Metric Score Weight

A 0.80

B 0.15

0.60

0.50

….

Success Success+

Format

1. Issue

2. Description

3. Evidence

Tools

Collaborations

Models

Curator Design From Users

output

Rating

Fail….

results

FilesDoc & Refs

Hints Issue Card

Prompt Template

Figure 1: Illustration of instances in DCA-Bench. The Issue Card displays a specific test case,
including metadata such as Issue ID, source platform (e.g., BIG-Bench), type, associated tags, and
hints. Relevant dataset files can be found using the Issue ID. Furthermore, DCA-Bench incorporates
documentation from the dataset platform along with additional reference materials related to dataset
curation and quality. We provide a convenient API to access data of each test case as well as reference
materials. The Curator is asked to detect the issues in files by describing the issue context and
pinpointing the location in the file where issues occur. The elements labeled title, content, and
involved serve as ground truth for evaluating the Curator’s performance and are hidden from the
Curator during testing.

hidden issues in the community-contributed datasets—a distinct capability different from problem-
solving (Jay, 1996; Wikipedia contributors, 2024) and remaining under-explored.

In response to these challenges, we introduce the Dataset Curation Agents Benchmark (DCA-Bench)
as an initial step towards achieving autonomous dataset curation. Fig.1 illustrates the instance
structure in DCA-Bench. Specifically, DCA-Bench aims to provide a comprehensive benchmark for
evaluating LLM agents’ capability to discover data quality issues across online dataset platforms, the
first step of the curation pipeline. Henceforth, we will consistently refer to such an LLM agent as a
“Curator” to highlight its role in this task. A well-performed Curator can detect and locate existing
issues, which is critical for a follow-up fix by human maintainers or other LLM agents.

Rather than defining the data quality issue beforehand, we adopt a bottom-up methodology for issue
collections and classifications. Specifically, we collect 221 diverse and representative data quality
issues from 8 online dataset platforms, covering a broad spectrum of problems such as data errors,
documentation issues, file discrepancies, and legal/ethical risks. These issues are further categorized
into 4 types and detailed with 18 tags, reflecting their varied content and complexity. The main
features of DCA-Bench include:

• Real-world Cases with Minimal Simplification: All test cases of DCA-Bench have references
to real-world sources, allowing benchmark users to better understand them in the wild. To test the
Curator’s ability under the complex real-world environment, each test case in DCA-Bench not
only contains those flawed ones, but also files that without known issues.

• Multiple Difficulty Levels: DCA-Bench provides four levels of hints for each test case in the
benchmark. From a higher level hint, the Curator gains more information about the content and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

location of the issue. The motivation is to make the task more achievable and also gauge the
information required for the Curator to detect these issues.

• Accurate Automatic Evaluation: Unlike traditional machine learning tasks, the task of dataset
curation does not have labels that can be directly evaluated by scripts. Human-level efforts are
required to rate the performance of the Curator, which is not scalable. Therefore, we develop
an automatic and accurate evaluation scheme using GPT4 (OpenAI, 2024a) to replace human
annotators.

In addition to the benchmark, we implement a straightforward baseline for this task using OpenAI
GPT4 Assistant1. The provided baseline only succeeds in detecting 10.86% issues without hints and
70.14% when given the most specific hint, demonstrating the difficulty of this benchmark.

We believe DCA-Bench will serve as a foundational initial step towards developing a fully autonomous
and powerful dataset curation system, further enhancing the quality of community-contributed open
datasets. This benchmark can also serve as a testbed for evaluating LLMs’ capability of problem
discovery in addition to problem-solving, which is a critical area that has been under-explored.

We organize this paper as follows: In Section 2, we introduce the background of the dataset curation
problem and existing literature. In Section 3, we go through an overview of the composition of
DCA-Bench, the construction process, task definition, and the automatic evaluation framework. In
Section 4, we carry out experiments to validate the reliability of our automatic evaluation scheme and
discuss preliminary testing results of baseline Curators on DCA-Bench.

2 RELATED WORK

Dataset Quality Management With the advancement of modern AI, the need for high-quality
datasets is surging (Jain et al., 2020; Kaplan et al., 2020). Consequently, open dataset platforms
like Hugging Face and Kaggle keep growing rapidly. However, recent studies (Klie et al., 2024;
2023; Weber-Genzel et al., 2023) indicate that many popular datasets suffer from errors, biases, or
annotation artifacts (Gururangan et al., 2018), and lack proper documentation (Yang et al., 2024). In
addition, common issues in real-world datasets include problems with data loading scripts and file
discrepancies, where conflicting information exists between files.

There have been many existing efforts on dataset quality management. The FAIR principles (Wilkin-
son et al., 2016) provide a broad framework for creating and managing datasets. Gebru et al. (2021)
puts forward a standardized process for documenting datasets in the context of machine learning.
Gong et al. (2023) propose several strategies, including dataset profiling, data cleansing, and quality
monitoring. More recent works (Gebru et al., 2021; Wang et al., 2023; Gan et al., 2024) further ex-
plore standardizing dataset management practices. Based on these works, researchers have developed
advanced dataset management toolkits and systems (Gupta et al., 2021; Mao et al., 2023; Zhou et al.,
2024). More recently, Zhou et al. (2023); Chen et al. (2023a) developed systems that are capable of
greatly enhancing data quality. However, they focus on filtering a large-scale LLM-pertaining corpus
rather than detecting dataset quality issues. There are some specialized works focused on detecting
harmful content (Althobaiti, 2022; Kirk et al., 2023), annotation errors (Weber-Genzel et al., 2023;
Wang & Mueller, 2022) and data attributions (Longpre et al., 2023). Nevertheless, those methods
are not generalizable enough and lack the flexibility to solve challenges such as nuanced ethical
biases (see example 1) and incorrect annotations involving logical or factual errors (see example 3).
Moreover, studies on file discrepancies(example 2) and relevant issues remain scarce. Consequently,
we still primarily rely on dataset users or platform maintainers to identify these issues in practice. We
envision LLM agents as a promising technique to address the challenges in this space and propose a
benchmark dataset as an initial step toward this goal.

LLMs for Software Engineering Our work is also relevant to the emerging research direction on
using LLMs to solve software engineering tasks. Fan et al. (2023) suggest that there are two major
categories in this area: (i) code generation and completion, and (ii) maintenance and evolution.

There has been extensive literature on LLMs for code generation and completion, in terms of both
models and benchmarks. On the model side, various code generation LLMs have been proposed (Chen
et al., 2022; Luo et al., 2023; Rozière et al., 2024), along with agent frameworks designed to tackle

1We use GPT-4-0125-preview with Code Interpreter enabled.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

complex coding problems, such as data analysis (Hong et al., 2024; Guo et al., 2024). On the
benchmark side, datasets have been created to complete functions and short programs from natural
language descriptions (Jimenez et al., 2024a; Chen et al., 2021; Austin et al., 2021; Lai et al., 2022;
Zhang et al., 2024; Ding et al., 2023) and retrieve relevant code (Liu et al., 2023a). We note that
the main purpose of the proposed DCA-Bench is to measure LLM agents’ capability of discovering
hidden dataset issues instead of generating code, although generating and running some test code
may be helpful.

For the second category, maintenance and evolution, it involves tasks such as localizing and fixing
bugs (Wu et al., 2023; Feng & Chen, 2023), improving program performance (Garg et al., 2024;
Chen et al., 2023c), and refactoring code without changing program behavior (Poldrack et al.,
2023). Our work falls into this category while differing from previous studies in two key aspects.
Firstly, while most literature focuses on tasks with well-defined outcomes, such as fixing a buggy
function, our work addresses non-standard issues like ethical concerns in data points or cross-file
inconsistencies. Secondly, few studies have explored using LLMs to maintain dataset repositories,
which is increasingly important for the machine learning community.

LLMs as A Proxy of Human Evaluation Recent studies have shown that LLMs, when carefully
prompted, can serve as a good proxy of human evaluations for a number of scenarios, such as
evaluating text generation quality (Liu et al., 2023b; Chiang & Lee, 2023), reasoning ability (He
et al., 2024a; Hao et al., 2024), and generated image quality (Chen et al., 2023b; You et al., 2024).

Inspired by these studies, we adopt an LLM to automatically evaluate the Curator’s responses based
on carefully designed instruction. We also empirically show that our LLM-based Evaluator highly
aligns with human preference, ensuring a reliable automatic evaluation scheme.

3 THE DATASET CURATION AGENT BENCHMARK

In this section, we start with an overview of the proposed DCA-Bench in Section 3.1. Next, we
introduce the benchmark construction process in Section 3.2 and give a detailed task definition in
Section 3.3. Finally, Section 3.4 presents our evaluation framework.

3.1 DATASET OVERVIEW

The dataset assets provided in DCA-Bench consist of test cases and reference resources. Tab. 1
shows basic statistics of test cases. Each test case typically contains multiple files, designed to
create a minimal environment for uncovering hidden data quality issues. We classify these test cases
into four categories based on the number of files included and number of hidden issues in a test
case. Additionally, we assign 18 descriptive tags to further label the cases, such as “data-problem”,
“document-problem”, “infrastructure-problem”, and “ethical/legal-risk”. Furthermore, DCA-Bench
provides reference resources, including related documentation and external materials such as dataset
curation tutorials, to help users enhance Curator performance using methods like RAG (Lewis et al.,
2021).

3.2 TEST CASE CONSTRUCTION

The test cases in DCA-Bench are collected from the real issues reported by users or maintainers of
eight dataset platforms, including Hugging Face Dataset (Lhoest et al., 2021), BIG-Bench (Srivastava
et al., 2023), Kaggle (Kaggle), OpenML (Vanschoren et al., 2014), TensorFlow Dataset (Abadi
et al., 2015), Open-Data-Registry (AWS-Labs, 2024), Five-Thirty-Eight (FiveThirtyEight, 2024),
and Graph Learning Benchmark (GLI) (Ma et al., 2022). The construction of the test cases of the
DCA-Bench involved the following two stages.

Issue Collection and Preprocessing At this stage, we select and preprocess relevant and manage-
able data quality issues with the following steps:

1. Selection of Dataset Platforms and Issues: We focus on dataset platforms where users and
maintainers can interact. For example, there is a “Discussion” section in each Kaggle dataset for
discussing dataset-related issues, which helps collect meaningful data quality issues. We then
manually collect data quality issues from these discussions. Please refer to A.1.4 for more details
about the choice of platforms and case selections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Basic statistics of DCA-Bench. #Token is calculated using the tiktoken package to
tokenize the file content. Non-text files are skipped. See Section A.5.2 for a detailed calculating pro-
cedure. For tag-level statistics, each test case can contain more than one tag. The definitions of types,
tags and detailed statistics are provided in Appendix A.1.2, along with examples in Appendix A.1.3.

Statistic Number

Sample-Level
#Samples 221
Avg. #Files/Sample 2.13
Avg. #Tokens/Sample 3.58× 106

Type-Level

Single-Issue Single-File 61
Single-Issue Multi-File 100
Multi-Issue Single-File 14
Multi-Issue Multi-File 46

Tag-Level

data-problem 197
document-problem 83
infrastructure-problem 19
ethical/legal-risk 10

2. Issue Filtering and Modification: We prioritize the issues that have received feedback from
dataset maintainers. Otherwise, we manually verify the problems mentioned in the issues to
ensure their validity. We exclude issues that are not directly related to dataset files uploaded
by contributors (e.g., issues about Tensorflow or Hugging Face data loading APIs). For issues
involving multiple sub-issues or file sizes over 512MB, we either discard them or split them into
manageable sub-cases with adjustments.

3. File Downloading: After gathering candidate issues, we download the dataset files from the
version before the problems are fixed. In order to simulate real-world scenarios, the dataset files
included in each test case are not limited to those involving issues.

Hints Generation Asking Curators to discover hidden issues from raw dataset files can be very
challenging. To make it more manageable and test the Curators’ capability in finer granularity, we
generate different levels of hints to help the Curators locate the hidden issues. We apply GPT-4 with
carefully designed prompts2 to generate three levels of hints for each test case, in addition to the
no-hint setting:

• h0: No hint provided. In this case, the Curator is required to detect the issue fully on its own.

• h1: General description of the issue, without any specific details or hints on the location.

• h2: Information about which files are involved in the issue, in addition to information from h1.

• h3: Partial contextual information about the issue, in addition to information from h2.

After generating the hints, we manually double-check the hints and make necessary modifications to
ensure that the generated hints follow the guidelines above.

3.3 BENCHMARK API

After gathering test cases and related information from dataset platforms, as well as generating
multi-level hints, we proceed to develop the benchmark API, which encapsulates the inputs to the
Curator and the Evaluator, adhering to the Task I/O paradigm as illustrated in Fig.2.

In this framework, the Curator receives following from benchmark API: (i) dataset files with hidden
issues, (ii) hints on the issues, and (iii) optional dataset documentation and reference materials. It
is then asked to identify, describe, and provide contextual evidence for these issues. The Curator
is allowed to use any strategy and tools to process provided dataset files and find the issue, e.g.,
flattening the file contents and feeding them to the Curator, applying RAG technology, using a code
interpreter to write and execute programs, or combining multiple strategies together.

2See Appendix A.2.5 for prompts used for the Hint Writer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

BigBench

Issue Card

title

content

involved

Misaligned statistic information

task.json

Issue ID

Hints Writer

① Mismatched quantitative information

Mismatched quantitative information in
README.md and data file

Quantitative discrepancies between README.md
and task.json, specifically in the counts of
stories, 'Yes' answers, and 'No' answers"

The statistic info in README.md is not aligned
with the actual data file. There are 190 stories
rather than 194 stories; 99 "Yes" rather than
100 "Yes"; 91 "No" rather than 94 "No".

②

③

task.json

readme.md

…

Files

Documentations

Reference Materials

……

papers tutorials blogs

DC-Manager: API Layer

Repository README

80d6db6a-6cbf-4261-8d13-3244e7fb54fd

Contribution Guideline

DC-Benchmark Suite

readme.md ….

Type Tags

Evaluator

Metrics List
Metric Score Weight

A 0.80

B 0.15

0.60

0.50

….

Success Success+

Format

1. Issue

2. Description

3. Evidence

Tools

Collaborations

Models

Curator Design From Users

output

Rating

Fail….

results

FilesDoc & Refs

Hints Issue Card

Prompt Template

Figure 2: The Task I/O of DCA-Bench. For each test case, the input for the Curator includes dataset
files and hints, with reference materials and platform documentation being optional. The Curator is
then required to provide a description of the issue and corresponding contextual evidence. The label
of the test case includes the issue title, content, the involved file names, and corresponding contextual
evidence. Given the output from the Curator and the label, the Evaluator is then asked to rate the
performance of the Curator.

The Evaluator then compares the outputs from the Curator with the label provided by the benchmark
API to rate the performance of the Curator. The performance of the Curator is then classified into
three levels: fail, success, and success+, which we introduce in the following section.

3.4 EVALUATION PIPELINE

We now discuss the motivation and design of our evaluation pipeline. We evaluate the Curators
in terms of the following two aspects: (i) whether the Curators accurately identify the issues, and
(ii) whether the Curators provide necessary contextual evidence about the issue. We accordingly
categorize the performance of the Curator into three levels:

• fail: The Curator fails to discover any issues, only identifies irrelevant issues, or acknowledges
the issue but offers completely wrong contextual evidence.

• success: The Curator identifies the annotated issue and provides at least one correct piece of
contextual evidence.

• success+: The Curator correctly identifies all issues and provides all necessary contextual
evidence.

Note that this evaluation process has several intrinsic challenges. Firstly, due to the nuanced nature of
text generation, different Curator outputs can refer to the same issue, while similar Curator outputs
may also point to different issues. Fixed keyword (He et al., 2024b) or rule-based code tests (Jimenez
et al., 2024a) are often insufficient to distinguish the nuances. Additionally, Curators may be able to
identify the issues using only a portion of the contextual evidence annotated in the test case, which
means that evaluation protocols requiring the inclusion of all the annotated contextual evidence can
be overly stringent. While human experts can easily capture such nuances and properly evaluate the
Curator performance, human evaluation is too expensive for a benchmark in practice. Recognizing
that evaluating the Curator’s performance is easier than building the Curator agent, we propose an
automatic evaluation pipeline where LLMs are leveraged to serve as the Evaluator.

We explored several prompting strategies using a few samples of human-annotated outcomes on a
handful of issues and ended up with the following prompt design, which asks the LLMs to rate the
Curator outputs in terms of a few criteria, and then aggregate these ratings to obtain an overall score
for the Curator performance. The criteria we have in the Evaluator prompt are listed as follows:

• Precise Contextual Evidence: This criterion evaluates whether the Curator has detected and
described the issue while providing accurate contextual evidence. The Curator should receive a
low rating if it identifies the issue but fails to locate the correct context. A medium or high rating
is justified only if the Curator identifies the issue and accurately pinpoints where it arises.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Detailed Issue Analysis: This criterion examines whether the Curator’s response extends beyond
the mere repetition of provided hints, indicating a profound understanding of the issue.

• Relevance of Reasoning: This criterion ensures the Curator’s logical reasoning is directly pertinent
to the addressed problem rather than being generic or irrelevant.

For each test case, the Evaluator receives the Curator’s output along with the hints and the ground
truth annotations about the issues in the test case. Then, the Evaluator is asked to rate the Curator’s
performance for each criterion with a real number from 0 to 1. The final score is a weighted sum of
the three ratings, with weights of 0.85, 0.15, and 0.05, reflecting their respective importance. The
Evaluator then categorizes the Curator’s performance according to defined thresholds on the final
score3.

To enhance the accuracy of the evaluation, a simplified voting strategy similar to Verga et al. (2024)
was implemented to mitigate the influence of randomness. The strategy comprises three rounds of
voting. In the first round, we collect results from n Evaluators. If a consensus is reached, the decision
is made with the consensus; however, if there is no consensus, we conduct another round of voting
within m Evaluators, and apply a majority vote to make the decision. In the event of a tie, additional
votes will be conducted one by one until a definitive majority vote is determined. In practice, m and
n are both set to 2.

The testing results of the Evaluator on larger scale samples are displayed in Section 4.1, demonstrating
its reliable performance. Notably, we collect annotated test data for the Evaluator after we have
finalized the prompt design for our Evaluator. Therefore, we believe the proposed prompt design of
our Evaluator can generalize across different Curators and issues in the DCA-Bench.

4 EXPERIMENTS

In this section, we first verify the performance of the Evaluator, showing its reliable alignment with
human annotators, while demonstrating consistency and negligible bias. We then apply this Evaluator
to test some baseline Curators on DCA-Bench and discuss the results.

4.1 VALIDATION OF THE EVALUATOR

High Alignment with Human To verify the effectiveness of the proposed agent Evaluator, we
conduct a comparative analysis against human annotations. We randomly select 23 test cases for each
of the four hint levels, resulting in a total of 92 (issue, hint) pairs. Using these pairs, we collect the
outputs of a baseline Curator agent, which is based on the OpenAI Assistant API with GPT-4-0125
preview equipped with the Code Interpreter tool4, on each of the 92 pairs. The Evaluator and human
annotators then rate the Curator outputs independently. For the Evaluator, we test four different
models as backends: GPT-4-0125 preview, GPT-4o-0513, GPT-3.5-Turbo, and Llama3-70B-Instruct.
Human annotators follow a structured codebook5 to ensure rating consistency. Finally, we compare
the Evaluator’s ratings with human annotations (ground truth) using a binary classification scheme:
fail versus succ (where succ combines both success and success+). Additional results
based on a three-class classification scheme (fail, success, and success+) are provided in
Appendix A.2.3.

As shown in Tab. 2, Evaluators using all backend models achieve high recall scores, indicating
that they rarely misclassify succ as fail. However, weaker models such as GPT3.5-turbo and
Llama3-70B-Instruct often misclassify fail as succ, as evidenced by their relatively low precision
score. Overall, the Evaluator with the GPT-4-0125-preview backend shows a high alignment with
human annotations, suggesting that it could serve as a reliable proxy for human evaluations in our
benchmark.

Consistent Evaluation To assess the consistency of the ratings provided by our Evaluator, we ran
the Evaluator six times on the same outputs generated by the Baseline Curator (GPT-4-0125-preview)
using a subset of DCA-Bench (92 data-hint combinations). This yielded a standard deviation of
±2.02%, indicating a high stability.

3More details about the settings of weights and thresholds are provided in Appendix A.2.1.
4See https://platform.openai.com/docs/assistants/tools/code-interpreter.
5Please see Appendix A.2.2 for details

7

https://platform.openai.com/docs/assistants/tools/code-interpreter

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The performance of Evaluators with different backend models, using human annotations as
ground truth. Here, we treat succ as the positive class when calculating Precision, Recall, and F1
Score. The “κ Value” refers to Cohen’s κ between the Evaluator ratings and the human annotations.

Success Rate / %

Model Name Accuracy Precision Recall F1 Score κ Value

GPT-4-0125-preivew 96.74 92.86 96.30 94.55 92.22
GPT-4o-0513 92.39 81.25 96.30 88.14 82.59
GPT3.5-turbo 68.48 48.21 100.00 65.06 42.15

Llama3-70B-Instruct 69.57 49.09 100.00 65.85 43.68

Negligible Self-Preference and Length Bias We considered potential biases, such as self-
preference and length bias (Panickssery et al., 2024; et al., 2023), when designing our LLM Evaluator.
Experiments show these biases are negligible. See Appendix A.2.4 for details.

4.2 BENCHMARKING THE BASELINE CURATORS

Experimental Setup We apply our Evaluator with backend GPT-4-0125-preview to benchmark
the performance of some baseline Curators. We first experiment with the baseline Curator based on
the OpenAI Assistant API equipped with the Code Interpreter tool on the full set of test cases and
hint levels. As pointed out by OpenAI API users6, the OpenAI Assistant API’s performance is often
worse than that of the web-interface ChatGPT, so we also test Curators based on the web-interface
ChatGPT. However, experimenting with the web-interface ChatGPT is not scalable, as we need
to manually feed the prompts to the browser. Therefore, we selected 32 (issue, hint) pairs where
the Assistant-API-based Curator fails, forming a hard set of DCA-Bench. Then, we carry out this
small-scale experiment on ChatGPT-4, ChatGPT-4o, and ChatGPT-4 with reference materials7. The
model’s knowledge is limited to May 2024, when we conduct the experiments. The performance of
the Curator is classified as fail and succ by the Evaluator.

Results and Analysis Fig. 3 shows the results of the Assistant-API-based Curator8. Without any
hints (Hint Level 0), the Curator only successfully detects 10.86% of issues. With more informative
hints, the performance of the Curator increases accordingly, achieving a 70.14% success rate when
given the most informative hint (Hint Level 3). Despite this improvement, the success rate is still
unsatisfactory given the amount of information provided, as we cannot expect to have such informative
hints when developing the real autonomous dataset curation pipeline.

Hint Level 0 Hint Level 1 Hint Level 2 Hint Level 3
0.0

0.2

0.4

0.6

10.86%

28.05%

38.91%

70.14%

Figure 3: Success rates of the baseline Curator on com-
plete DCA-Bench.

Table 3: Success rates of different mod-
els tested on the hard set of DCA-Bench.

Model Succ /%
ChatGPT-4 18.80
ChatGPT-4o 18.80
ChatGPT-4 w/refs 12.50

6See Appendix A.5.1 for details
7The ChatGPT website was accessed in May 2024.
8See Appendix A.5.3 for a cost analysis of evaluating baseline Curator.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Tab. 3 shows the results of web-interface ChatGPT-based Curators on the hard set. OpenAI’s most
powerful models, ChatGPT-4 and ChatGPT-4o, only succeeded in detecting approximately 19% of the
issues. Hypothetically, dataset curation knowledge should help the assistant better identify the issue
about data quality. Therefore, we used OpenAI’s MyGPT9 to add reference materials in DCA-Bench
as knowledge to ChatGPT and tested its performance (the row ChatGPT-4 w/ refs). Surprisingly,
the performance of the model drops in comparison to the model without such extra knowledge. We
suspect that this is because the reference materials introduce overly generic information, taking up the
context window of the model and reducing its attention to the context relevant to the specific issues.
Besides, we analyze the success rate of the Baseline Curator on issues with different token lengths.
We observe that the success rate doesn’t monotonically decrease as content length grows. A detailed
analysis of its performance across different issue types and hint levels is provided in Appendix A.3.

Overall, the results of the baseline Curators indicate that the proposed DCA-Bench benchmark poses
a significant challenge for state-of-the-art LLMs.

5 CONCLUSION

To help the development of LLM agents capable of dataset curation, we present DCA-Bench, a
collection of representative data quality issue cases from popular dataset platforms. Instead of fixing
predefined issues, DCA-Bench aims to test the agent’s capability to discover hidden data quality
issues, a critical initial step in the dataset curation pipeline. To efficiently and effectively evaluate
the performance of the Curator agents, we develop an LLM-based Evaluator with carefully designed
prompts, which aligns well with human annotators. We conduct a benchmark study on the baseline
Curator using DCA-Bench, and the results indicate that while LLMs have potential in real-world
dataset curation, further exploration and innovation are needed to fully realize their capabilities.

Limitations Dataset curation is a complex and comprehensive problem, and test cases we collect
might not fully cover the entire problem set. Additionally, due to the complexity of dataset files,
we cannot guarantee that all the issues in the dataset files in DCA-Bench are labeled. Lastly, we
haven’t considered other modality information such as images or audios, which may be helpful to
effectively curate multimedia datasets. Based on our work, future studies could explore developing
more complex LLM agent systems, best practices for handling multi-modal information in dataset
curation, or creating a more realistic simulation environment for testing LLM agents.

Reproducibility Statement We have uploaded all the code used for experiments, and all the
DCA-Bench data to Google Drive for your reference. Please refer to the “Reproduction Guidelines”
in README.md file.

Ethics Statement To address any potential ethical risks that might raise concerns, we have carried
out thorough ethical reviews. Each data collected in DCA-Benchhas the corresponding source and
License information recorded in the dca_bench.csv in supplementary materials. Please refer to
A.4 for more information.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Maha Jarallah Althobaiti. Bert-based approach to arabic hate speech and offensive language detection
in twitter: exploiting emojis and sentiment analysis. International Journal of Advanced Computer
Science and Applications, 13(5), 2022.
9https://openai.com/index/introducing-gpts/

9

https://www.tensorflow.org/
https://openai.com/index/introducing-gpts/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

AWS-Labs. Open data registry, 2024. URL https://github.com/awslabs/
open-data-registry. Accessed: 2024-11-18.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests, 2022.

Daoyuan Chen, Yilun Huang, Zhijian Ma, Hesen Chen, Xuchen Pan, Ce Ge, Dawei Gao, Yuexiang
Xie, Zhaoyang Liu, Jinyang Gao, Yaliang Li, Bolin Ding, and Jingren Zhou. Data-juicer: A
one-stop data processing system for large language models, 2023a. URL https://arxiv.
org/abs/2309.02033.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

Yixiong Chen, Li Liu, and Chris Ding. X-iqe: explainable image quality evaluation for text-to-image
generation with visual large language models, 2023b.

Zimin Chen, Sen Fang, and Martin Monperrus. Supersonic: Learning to generate source code
optimizations in c/c++, 2023c.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 15607–15631, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-long.
870.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang.
Crosscodeeval: A diverse and multilingual benchmark for cross-file code completion, 2023.

L. Zheng et al. Judging llm-as-a-judge with mt-bench and chatbot arena. 2023.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M. Zhang. Large language models for software engineering: Survey and open problems, 2023.

Sidong Feng and Chunyang Chen. Prompting is all you need: Automated android bug replay with
large language models, 2023.

FiveThirtyEight. Data and code behind the articles and graphics at fivethirtyeight, 2024. URL
https://github.com/fivethirtyeight/data. Accessed: 2024-11-18.

Ruyi Gan, Ziwei Wu, Renliang Sun, Junyu Lu, Xiaojun Wu, Dixiang Zhang, Kunhao Pan, Junqing He,
Yuanhe Tian, Ping Yang, Qi Yang, Hao Wang, Jiaxing Zhang, and Yan Song. Ziya2: Data-centric
learning is all llms need, 2024.

Spandan Garg, Roshanak Zilouchian Moghaddam, and Neel Sundaresan. Rapgen: An approach for
fixing code inefficiencies in zero-shot, 2024.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
Hal Daumé III au2, and Kate Crawford. Datasheets for datasets, 2021.

10

https://github.com/awslabs/open-data-registry
https://github.com/awslabs/open-data-registry
https://arxiv.org/abs/2309.02033
https://arxiv.org/abs/2309.02033
https://aclanthology.org/2023.acl-long.870
https://aclanthology.org/2023.acl-long.870
https://github.com/fivethirtyeight/data

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Youdi Gong, Guangzhen Liu, Yunzhi Xue, Rui Li, and Lingzhong Meng. A survey on dataset quality
in machine learning. Information and Software Technology, 162:107268, 2023. ISSN 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2023.107268. URL https://www.sciencedirect.
com/science/article/pii/S0950584923001222.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Automated
data science by empowering large language models with case-based reasoning, 2024. URL
https://arxiv.org/abs/2402.17453.

Nitin Gupta, Hima Patel, Shazia Afzal, Naveen Panwar, Ruhi Sharma Mittal, Shanmukha Guttula,
Abhinav Jain, Lokesh Nagalapatti, Sameep Mehta, Sandeep Hans, Pranay Lohia, Aniya Aggarwal,
and Diptikalyan Saha. Data quality toolkit: Automatic assessment of data quality and remediation
for machine learning datasets, 2021.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and
Noah A. Smith. Annotation artifacts in natural language inference data, 2018.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and Zhiting Hu. Llm reasoners: New evaluation,
library, and analysis of step-by-step reasoning with large language models, 2024.

Harvard-Dataverse. Harvard dataverse. https://dataverse.harvard.edu/. Accessed:
2024-09-26.

Hangfeng He, Hongming Zhang, and Dan Roth. Socreval: Large language models with the socratic
method for reference-free reasoning evaluation, 2024a.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Lida Chen,
Xintao Wang, Yuncheng Huang, Haoning Ye, Zihan Li, Shisong Chen, Yikai Zhang, Zhouhong
Gu, Jiaqing Liang, and Yanghua Xiao. Can large language models understand real-world complex
instructions?, 2024b.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen
Zhuge, Taicheng Guo, Tuo Zhou, Wei Tao, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing
Liang, Yaying Fei, Yuheng Cheng, Zhibin Gou, Zongze Xu, and Chenglin Wu. Data interpreter:
An llm agent for data science, 2024. URL https://arxiv.org/abs/2402.18679.

Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha Guttula,
Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala. Overview and
importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 3561–3562, 2020.

Eileen S Jay. The nature of problem finding in students’ scientific inquiry. Harvard University, 1996.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024a.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024b. URL
https://arxiv.org/abs/2310.06770.

Kaggle. Creating a dataset. https://www.kaggle.com/docs/datasets#
creating-a-dataset. Accessed: 2024-09-26.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

Hannah Rose Kirk, Abeba Birhane, Bertie Vidgen, and Leon Derczynski. Handling and presenting
harmful text in nlp research, 2023.

Jan-Christoph Klie, Bonnie Webber, and Iryna Gurevych. Annotation error detection: Analyzing the
past and present for a more coherent future. Computational Linguistics, 49(1):157–198, 2023.

11

https://www.sciencedirect.com/science/article/pii/S0950584923001222
https://www.sciencedirect.com/science/article/pii/S0950584923001222
https://arxiv.org/abs/2402.17453
https://dataverse.harvard.edu/
https://arxiv.org/abs/2402.18679
https://arxiv.org/abs/2310.06770
https://www.kaggle.com/docs/datasets#creating-a-dataset
https://www.kaggle.com/docs/datasets#creating-a-dataset

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jan-Christoph Klie, Richard Eckart de Castilho, and Iryna Gurevych. Analyzing dataset annotation
quality management in the wild, 2024.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and
Xiaohang Dong. Better zero-shot reasoning with role-play prompting, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021.

Quentin Lhoest, Albert Villanova del Moral, Patrick von Platen, Thomas Wolf, Mario Šaško, Yacine
Jernite, Abhishek Thakur, Lewis Tunstall, Suraj Patil, Mariama Drame, Julien Chaumond, Julien
Plu, Joe Davison, Simon Brandeis, Victor Sanh, Teven Le Scao, Kevin Canwen Xu, Nicolas Patry,
Steven Liu, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Nathan Raw, Sylvain
Lesage, Anton Lozhkov, Matthew Carrigan, Théo Matussière, Leandro von Werra, Lysandre
Debut, Stas Bekman, and Clément Delangue. Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 175–184, Online and Punta Cana, Dominican Republic,
2021. Association for Computational Linguistics. doi: 10.5281/zenodo.4817768. URL https:
//aclanthology.org/2021.emnlp-demo.21.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023a.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
evaluation using gpt-4 with better human alignment, 2023b.

Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William
Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi Wu, Enrico
Shippole, Kurt Bollacker, Tongshuang Wu, Luis Villa, Sandy Pentland, and Sara Hooker. The
data provenance initiative: A large scale audit of dataset licensing & attribution in ai, 2023. URL
https://arxiv.org/abs/2310.16787.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023.

Jiaqi Ma, Xingjian Zhang, Hezheng Fan, Jin Huang, Tianyue Li, Ting Wei Li, Yiwen Tu, Chenshu
Zhu, and Qiaozhu Mei. Graph learning indexer: A contributor-friendly and metadata-rich platform
for graph learning benchmarks, 2022.

S. Majumder, J. Chakraborty, G. R. Bai, K. T. Stolee, and T. Menzies. Fair enough: Searching for
sufficient measures of fairness. arXiv, 2022. URL http://arxiv.org/abs/2110.13029.
Accessed: 2024-08-13.

Ze Mao, Yang Xu, and Erick Suarez. Dataset management platform for machine learning, 2023.

Materials-Data-Facility. Discover data. https://www.materialsdatafacility.org/
how-to#discover-data. Accessed: 2024-09-26.

Unit Mesh. auto-dev. https://github.com/unit-mesh/auto-dev, 2024.

Open-Science-Framework. Osf dashboard. https://osf.io/dashboard. Accessed: 2024-
09-26.

12

https://arxiv.org/abs/2211.15533
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://arxiv.org/abs/2310.16787
http://arxiv.org/abs/2110.13029
https://www.materialsdatafacility.org/how-to#discover-data
https://www.materialsdatafacility.org/how-to#discover-data
https://github.com/unit-mesh/auto-dev
https://osf.io/dashboard

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report, 2024a.

OpenAI. Six strategies for getting better results. https://
platform.openai.com/docs/guides/prompt-engineering/
six-strategies-for-getting-better-results, 2024b. Accessed: 2024-05-
28.

PANGAEA. Pangaea data publisher. https://pangaea.de/?t=Lithosphere. Accessed:
2024-09-26.

A. Panickssery, S. R. Bowman, and S. Feng. Llm evaluators recognize and favor their own generations.
arXiv, 2024. doi: 10.48550/arXiv.2404.13076. URL https://arxiv.org/abs/2404.
13076. Accessed: 2024-04-15.

Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-assisted coding: Experiments with gpt-4,
2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, and et al. Adam Santoro. Beyond the imitation game: Quantifying and
extrapolating the capabilities of language models, 2023.

Wei Tao, Yucheng Zhou, Wenqiang Zhang, and Yu Cheng. Magis: Llm-based multi-agent framework
for github issue resolution, 2024.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, June 2014. ISSN 1931-
0153. doi: 10.1145/2641190.2641198. URL http://dx.doi.org/10.1145/2641190.
2641198.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhang-
orodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries: Evaluating
llm generations with a panel of diverse models, 2024.

Wei-Chen Wang and Jonas Mueller. Detecting label errors in token classification data. arXiv preprint
arXiv:2210.03920, 2022.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng Shang, Xin Jiang,
and Qun Liu. Data management for large language models: A survey, 2023.

Leon Weber-Genzel, Robert Litschko, Ekaterina Artemova, and Barbara Plank. Donkii: Can
annotation error detection methods find errors in instruction-tuning datasets? arXiv preprint
arXiv:2309.01669, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Wikipedia contributors. Problem finding — Wikipedia, the free encyclopedia, 2024. URL
https://en.wikipedia.org/w/index.php?title=Problem_finding&
oldid=1122334455. [Online; accessed 18-April-2024].

Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton,
Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne,
Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon,
Scott Edmunds, Chris T. Evelo, Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray,
Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft, Tobias
Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L. Packer,
Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene van Schaik, Susanna-Assunta Sansone,

13

https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://platform.openai.com/docs/guides/prompt-engineering/six-strategies-for-getting-better-results
https://pangaea.de/?t=Lithosphere
https://arxiv.org/abs/2404.13076
https://arxiv.org/abs/2404.13076
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1145/2641190.2641198
https://en.wikipedia.org/w/index.php?title=Problem_finding&oldid=1122334455
https://en.wikipedia.org/w/index.php?title=Problem_finding&oldid=1122334455

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Erik Schultes, Thierry Sengstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thompson,
Johan van der Lei, Erik van Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg,
Katherine Wolstencroft, Jun Zhao, and Barend Mons. The FAIR Guiding Principles for scientific
data management and stewardship. Scientific Data, 3(1):160018, March 2016. ISSN 2052-4463.
doi: 10.1038/sdata.2016.18.

Yonghao Wu, Zheng Li, Jie M. Zhang, Mike Papadakis, Mark Harman, and Yong Liu. Large language
models in fault localisation, 2023.

Xinyu Yang, Weixin Liang, and James Zou. Navigating dataset documentations in ai: A large-scale
analysis of dataset cards on hugging face, 2024.

Zhiyuan You, Zheyuan Li, Jinjin Gu, Zhenfei Yin, Tianfan Xue, and Chao Dong. Depicting beyond
scores: Advancing image quality assessment through multi-modal language models, 2024.

Zenodo. Zenodo principles. https://about.zenodo.org/principles/. Accessed: 2024-
09-26.

Yakun Zhang, Wenjie Zhang, Dezhi Ran, Qihao Zhu, Chengfeng Dou, Dan Hao, Tao Xie, and
Lu Zhang. Learning-based widget matching for migrating gui test cases. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering, ICSE ’24. ACM, February
2024. doi: 10.1145/3597503.3623322. URL http://dx.doi.org/10.1145/3597503.
3623322.

Tong Zhou, Yubo Chen, Pengfei Cao, Kang Liu, Jun Zhao, and Shengping Liu. Oasis: Data curation
and assessment system for pretraining of large language models, 2023.

Xuanhe Zhou, Xinyang Zhao, and Guoliang Li. Llm-enhanced data management, 2024. URL
https://arxiv.org/abs/2402.02643.

14

https://about.zenodo.org/principles/
http://dx.doi.org/10.1145/3597503.3623322
http://dx.doi.org/10.1145/3597503.3623322
https://arxiv.org/abs/2402.02643

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A Appendix 15

A.1 Details about examples, statistics, and construction process of DCA-Bench 15

A.1.1 Real World Dataset Curation Examples 15

A.1.2 Issue Type and Tag . 16

A.1.3 Issue Examples . 18

A.1.4 Discussion on Choices of Dataset Platforms and Cases Selections 21

A.2 Details about DCA-Bench Evaluator and Hints Writer 22

A.2.1 Design Details of the Evaluator . 22

A.2.2 Human Annotation Codebook for Evaluating Curator’s Performance 25

A.2.3 Additional Results from Human-Alignment Experiment on Evaluator . . . 25

A.2.4 Negligible Self-Preference and Length Bias of Evaluator 25

A.2.5 Prompt Design of Hints Writer . 27

A.3 Detailed Analysis of the Performance of Baseline Curator on DCA-Bench 29

A.3.1 From the Perspective of Different Content Length 29

A.3.2 From the Perspective of Hint Level . 30

A.3.3 From the Perspective of Different Issue Tags 30

A.4 Ethics Statement . 31

A.4.1 Research involving human participants 31

A.4.2 Data Privacy, Copyright, and Consent . 32

A.4.3 Offensive Content . 33

A.5 Other Techinal Details . 34

A.5.1 Discussion on the Difference between OpenAI Assistant API and ChatGPT 34

A.5.2 Calculation of File Number and Context Length 34

A.5.3 Cost Analysis . 35

A APPENDIX

A.1 DETAILS ABOUT EXAMPLES, STATISTICS, AND CONSTRUCTION PROCESS OF DCA-BENCH

A.1.1 REAL WORLD DATASET CURATION EXAMPLES

The real-world dataset curation process can be complex. During the dataset contribution procedure,
authors and administrators must communicate iteratively to address issues in the contributed datasets.
These issues can be numerous and challenging to address comprehensively at once, even for proficient
individuals. Additionally, new issues often arise while fixing existing ones, leading to a complex
contribution procedure. Below, we provide a few URLs to real-world cases on the TensorFlow dataset
and BIG-Bench to illustrate these challenges:

• https://github.com/tensorflow/datasets/pull/1360

• https://github.com/tensorflow/datasets/pull/1549

• https://github.com/google/BIG-bench/pull/870

Besides, dataset issues are often reported by dataset users, even though uploaded datasets have passed
the initial checks of the administrators. Here are some representative examples classified by tags:

Cross-file discrepancies

15

https://github.com/tensorflow/datasets/pull/1360
https://github.com/tensorflow/datasets/pull/1549
https://github.com/google/BIG-bench/pull/870

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

• https://www.kaggle.com/datasets/antonkozyriev/game-recommendations-on-
steam/discussion/4200733"

• https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-
2023/discussion/438729

• https://www.kaggle.com/datasets/sudarshan24byte/online-food-dataset/discussion/491973

Insufficient documentation

• https://github.com/Graph-Learning-Benchmarks/gli/issues/259
• https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-dataset-semantic-

segmentation/discussion/479324

Inaccurate annotations

• https://github.com/google/BIG-bench/issues/938
• https://github.com/google/BIG-bench/issues/872
• https://github.com/tensorflow/datasets/issues/1207

Ethical concerns

• https://github.com/google/BIG-bench/pull/685
• https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030
• https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-

dataset/discussion/157179

A.1.2 ISSUE TYPE AND TAG

We classify the issues into single-issue / multi-files and single-file/multi-files.

• single-issue: This sample has only one known issue.
• multi-issue: this sample has multiple issues. If many issues of the same type exist in a sample, we

also classify them into multi-issue.
• single-file: the environment of this sample has only one file
• multi-file: the environment of this sample has multiple files

It’s important to distinguish between the total number of files in a test case and the number of files
affected by issues. Tab. 4 shows the distribution of issue-affected files in DCA-Bench.

Table 4: Statistics of files involved with issues. On average, each instance has 1.44 files involved in
the issue.

Number of Issue-Affected Files Number of Test Cases
1 159
2 54
3 6

> 3 2

To help benchmark users better understand the issue, we further assigned each of them several tags.
Some tags have a structure of affiliations.

typo: Issues caused by typographical errors.
wrong-format: Problems related to incorrect formatting.
inappropriate-file: Missing, empty or redundant files.
ethical/legal-risk: Ethical or legal risks associated with the dataset, such as racial bias, missing
license.

16

https://www.kaggle.com/datasets/antonkozyriev/game-recommendations-on-steam/discussion/4200733"
https://www.kaggle.com/datasets/antonkozyriev/game-recommendations-on-steam/discussion/4200733"
https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-2023/discussion/438729
https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-2023/discussion/438729
https://www.kaggle.com/datasets/sudarshan24byte/online-food-dataset/discussion/491973
https://github.com/Graph-Learning-Benchmarks/gli/issues/259
https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-dataset-semantic-segmentation/discussion/479324
https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-dataset-semantic-segmentation/discussion/479324
https://github.com/google/BIG-bench/issues/938
https://github.com/google/BIG-bench/issues/872
https://github.com/tensorflow/datasets/issues/1207
https://github.com/google/BIG-bench/pull/685
https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/discussion/157179
https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-dataset/discussion/157179

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

cross-file-discrepancy: Discrepancies between files (e.g., meta-information in the documentation
does not match the actual data).
internal-discrepancy: Discrepancies within a single file.
data-problem: Issues related to the data files.
|- wrong-value: Errors in the data values.
|- missing-value: there are missing columns or values.
|- data-leakage: Risks of data leakage.
|- apparent-corruption: Errors in the data files that can be easily detected using the information

within the file. (e.g. duplicated data, apparently wrong target format compared to other targets
in the same file, CSV file with wrong format)

|- hidden-corruption: Errors in the data files that require external knowledge and logical reason-
ing to resolve.

document-problem: Issues related to the documentation files(e.g. README, DataCard, meta-data
and other descriptive text) of the dataset.
|- wrong-info: Wrong information in the documentation files (e.g., wrong meta-information,

typos, invalid URLs, and email addresses).
|- insufficient-info: Missing or unclear information in the documentation files (e.g., meanings of

columns, labels, units of data values).
infrastructure-problem: Issues with fetching, loading, processing, or displaying data.
|- data-access: Problems accessing the data.
|- script-code: Issues with scripts.

Tab. 5 displays the statistics of each tag in DCA-Bench in detail.

Table 5: The number of tags in DCA-Bench. Note that the sum of the sub-category might not equal
the parent category. For instance, if there’s an ethical or legal risk identified in a dataset document, it
should be tagged as [“document-problem”, “ethical/legal-risk”], without including any sub-categories
of "document-problem" that are not relevant.

Category Number Sub-category Number
typo 18 — —

wrong-format 14 — —

inappropriate-file 4 — —

ethical/legal-risk 10 — —

internal-discrepancy 21 — —

cross-file-discrepancy 44 — —

data-problem 197

wrong-value 71
missing-value 15
data-leakage 2

apparent-corruption 40
hidden-corruption 59

document-problem 83 wrong-info 27
insufficient-info 52

infrastructure-problem 19 data-access 4
script-code 15

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1.3 ISSUE EXAMPLES

Example 1: An issue example reported on Kaggle which involves racial bias

Title Boston House Prices B feature is RACIST

Meta-Info
• ID: 7e8f31cb-8c2a-4676-b3d4-941a64184a26
• Platform: Kaggle
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��ethical-legal-risk

�� ��document-problem

• Source: https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/
discussion/429030

Content
B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town No other
race is featured in this dataset. Red-lining anyone?

Involved Files
- name: datacard.md
- context: PTRATIO:pupil-teacher ratio by town 12. B: 1000(Bk-0.63)2 where
Bk is the proportion of blacks by town 13. LSTAT:% lower status of
the population

Hints
h1 dataset contains potentially biased feature
h2 bias in a feature documented in a markdown file
h3 a feature in datacard.md is described using a formula that appears to single out one race

18

https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030
https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Example 2: An issue example reported on BIG-Bench that involves a discrepancy between dataset
files.

Title Miss aligned static information

Meta-Info
• ID: 80d6db6a-6cbf-4261-8d13-3244e7fb54fd
• Platform: BIG-Bench
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��cross-file-discrepancy

�� ��document-problem/wrong-info

• Source: https://github.com/google/BIG-bench/pull/498

Content
The stastic info in README.md is not aligned with the actual data file.
There are 190 stories rather than 194 stories; 99 Ÿesr̈ather than 100 Ÿes;̈
91 N̈or̈ather than 94 N̈o.̈

Involved Files
1. name: task.json
- context: the number of datapoints in data files.

2. name: README.md
- context: We collected 194 stories from 30 papers published in the span
of 1989 to 2021. Each story has a causal judgment question associated
with it with a "Yes" or "No" answer. We carefully balanced the dataset
- there are 100 "Yes" answers (52%) and 94 "No" answers (48%). Each
paper that we collected from has conducted rigorous human experiments.
We follow a simple binarization strategy to reflect the majority of
human agreement and use it as the ground truth to evaluate the AI
model.

Hints
h1 Mismatched quantitative information
h2 Mismatched quantitative information in README.md and data file
h3 Quantitative discrepancies between README.md and task.json, specifically in the counts of

stories, ’Yes’ answers, and ’No’ answers

19

https://github.com/google/BIG-bench/pull/498

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Example 3: An issue example which has a wrong target label that needs precise factual knowledge to
discern

Title Error in 118th Congress data

Meta-Info
• ID: 51e12546-8bf3-473c-9ed6-f85d63c357ce
• Platform: FiveThirtyEight
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��data-problem/hidden-corruption ,

�� ��data-problem/wrong-value

• Source: https://github.com/fivethirtyeight/data/issues/336

Content
The "congress-demographics" data includes Benjamin Eric Sasse as being a
member of the 118th Congress but he resigned after the 117th.

Involved Files
- name: data_aging_congress.csv
- context: The "congress-demographics" data includes Benjamin Eric Sasse as
being a member of the 118th Congress but he resigned after the 117th.

Hints
h1 inaccurate data entry
h2 an inaccurate data entry in a CSV file
h3 an entry in ’data_aging_congress.csv’ inaccurately includes a member as part of the 118th

Congress

20

https://github.com/fivethirtyeight/data/issues/336

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Example 4: An issue example which has a wrong target label that requires translation ability to
discern

Title Mistranslation in conlang_translation task?

Meta-Info
• ID: bb29a2c3-872b-41cc-ac55-b26f22043da6
• Platform: BIG-Bench
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��data-problem/wrong-value ,

�� ��data-problem/hidden-corruption

• Source: https://github.com/google/BIG-bench/issues/553

Content
On the English to Gornam translation, one of the translations may be
incorrect. Specifically, the example given is English: They want to eat
my pizzas. Gornam: Sa wott min Pizzas atten. However, from looking at
the other examples, it seems like when the subject is plural (like they),
the suffix en is attached to the word, so the correct Gornam translation
should be Sa wotten min Pizzas atten. Is this true, or is there some
flaw in this logic that we are missing?

Involved Files
- name: task.json
- context:

"examples": [
{"input": "I want to buy the orange.", "target": "Ek wott dei Orange leuren."},
{"input": "He is wearing my pants.", "target": "Ha trugt min Rose."},

- {"input": "They want to eat my pizzas.", "target": "Sa wott min Pizzas atten."},
+ {"input": "They want to eat my pizzas.", "target": "Sa wotten min Pizzas atten."},

{"input": "I can eat.", "target": "Ek conn atten."},
{"input": "They eat their shirts.", "target": "Sa atten hir Pemts."},
{"input": "He tries on my coat.", "target": "Ha roturt min Enzu en."},

Hints
h1 incorrect translation example
h2 incorrect translation example in a JSON file
h3 a potential translation inconsistency in ’task.json’ involving plural subject examples

A.1.4 DISCUSSION ON CHOICES OF DATASET PLATFORMS AND CASES SELECTIONS

We mainly focus on two types of dataset platforms. The first type includes HuggingFace and Kaggle,
which hosts a huge volume of datasets and offers a dedicated discussion section for individual datasets.
The second type is hosted on GitHub, such as BIG-Bench, where the data quality issues are identified
from the issue or pull request (PR) sections. Roughly speaking, for HuggingFace and Kaggle, we first
select a few popular datasets and then examine the discussion posts relevant to data quality issues.
For GitHub-based repositories, we obtain data quality issues by browsing the issue or PR sections.

Our detailed collection process is outlined as follows:

Kaggle:

1. We begin by using Kaggle API to select datasets that have ≥ 5 discussions with a proper
files size ≤ 512 MB, and collect them into a candidate list.

2. We manually review the discussion sections of these datasets, collecting discussions relevant
to dataset issues and compiling them into a table.

21

https://github.com/google/BIG-bench/issues/553

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

3. For each collected discussion, if the dataset issues are confirmed by either the dataset owner
or other participants (with at least two reports of the issue), we consider it as verified. If not,
we manually verify the issues by checking the corresponding files, which is straightforward
due to the dataset’s version history control (in case the issue has been resolved in the current
version).

HuggingFace:

1. We follow a similar approach to Kaggle, first selecting candidate datasets that have enough
discussions and proper file size by using HuggingFace API

2. Using the same strategy as for Kaggle, we collect discussions relevant to dataset issues and
verify them through the same process.

Platforms Hosted on GitHub: On GitHub, dataset issues are identified from several sources,

1. Issues raised by platform maintainers during the review of new dataset contribution PRs.
These are inherently verified by the maintainers.

2. Issues reported by users in the issues section. If these issues are confirmed by the maintainers,
they are considered verified (And it’s usually linked to a PR so as to fix it). If not, we
manually check the corresponding files ourselves.

We have also surveyed on other dataset hosting platforms, which we found are not ideal for
constructing DCA-Bench. Zenodo is a platform for safely storing and sharing research data, which
fully follows FAIR principles (Wilkinson et al., 2016). However, to our knowledge, it doesn’t support
a feedback mechanism, which makes it unclear whether there are issues within those dataset files
and whether the descriptions align with the datasets. Compared to HuggingFace and Kaggle, this
lack of feedback makes the platform less informative about the issues that concern dataset users,
which is why we did not collect datasets from it. Harvard-Dataverse faces similar issues, as it has a
GitHub repository but does not use it for reporting dataset problems. Domain-specific datasets like
the Materials-Data-Facility or PANGAEA also share the same problem, making it difficult for us
to collect issue samples from them, which is why they were less interesting for us. Open-Science-
Framework seems not to be a standard dataset hosting platform—it is a platform for hosting projects,
where the files do not necessarily have to be datasets, so we dismissed further discussions.

A.2 DETAILS ABOUT DCA-BENCH EVALUATOR AND HINTS WRITER

A.2.1 DESIGN DETAILS OF THE EVALUATOR

In this part, we elaborate on the prompt design of our Evaluator. While it’s natural to ask LLMs to
directly classify the Curators’ performance into fail/success/success+, this strategy is poorly
aligned with the annotation of human experts as we tested. In addition to common prompt methods
(e.g., COT (Wei et al., 2023), role-playing (Kong et al., 2024), delimiter (OpenAI, 2024b), we believe
more prompt engineering is needed to improve the performance of the Evaluator, and here is our
design:

We chose to have the Evaluator rate on specific metrics because this strategy allows for iterative
refinement of the prompt by adjusting the weight and threshold of each metric. This approach
decreases uncertainty by introducing fixed numerical comparisons, which provides a clearer direction
for tuning, as opposed to relying solely on textual standards, which can be more ambiguous.

In designing the Evaluator’s prompt, we started by selecting a small subset of human-labeled samples.
We began with an initial weight distribution of (0.7, 0.2, 0.1) to reflect the relative importance of each
metric in Section 3.4. The high initial weight for "Precise Contextual Evidence" was chosen to align
with our focus on whether the Curator identifies annotated issues by providing contextual evidence,
as discussed in Section 3.4. We then fine-tuned these weights using the selected subset to better align
the Evaluator’s prompt with human judgments.

The motivation behind this design is to make iterative refinement of prompts more effective. De-
veloping a good prompt requires testing it on a subset of human-labeled issues with corresponding
outcomes from Curators and then making adjustments based on the outcomes. Unlike the model

22

https://github.com/google/BIG-bench/issues/738
https://www.go-fair.org/fair-principles/

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

training process, which benefits from clear gradients and systematic optimization, tuning text prompts
is often an empirical process necessitating numerous trials without the guarantee of improvement in its
performance. Employing numerical weights and thresholds could enable us to tune the prompt more
fine-grained, only changing the weights or threshold based on the results, which share similarities
with linear regression, resulting in a more efficient prompt tuning process and better performance. By
"training" on a this human-labeled subset, we finalized weights in the prompt as 0.85, 0.15, and 0.05.

It’s important to highlight that we collected samples for the test set used in Section 4.1 after finalizing
the prompt design, ensuring that there is no test data leakage to the prompt tuning.

To be more detailed, the Evaluator is prompted with the following instructions to evaluate the
performance of the agent, with <ISSUE>, <HINT>, and <ANSWER> being the place-holder.� �
You are required to act as an answer evaluator. Given an issue context,

the hint disclosed to the agent and the answer from the agent,
you should rate the performance of the agent into three levels: "failed",

"partially", and "success". The rating rules are as follows:

<rules>
1. You will be given a list of <metrics>, for each metric, you should

rate in [0,1] for the agent based on the metric criteria, and then
multiply the rating by the weight of the metric.

2. If the sum of the ratings is less than 0.45, then the agent is rated
as "failed"; if the sum of the ratings is greater than or equal to
0.45 and less than 0.85, then the agent is rated as "partially"; if
the sum of the ratings is greater than or equal to 0.85, then the
agent is rated as "success".

3. **<text>** means the text is important and should be paid attention to.

4. ****<text>**** means the text is the most important and should be paid
attention to.

</rules>

The <metrics> are as follows:
{

"m1": {
"criteria": "Precise Contextual Evidence:

1. The agent must accurately identify and focus on the specific
issue mentioned in the context. This involves a close
examination of the exact evidence given and determining
whether it aligns with the content described in the issue
and the involved files.

2. Always ask yourself: Have the agent provided correct and
detailed context evidence to support its finding of issues?
If the agent just gives some general description without
specifically pointing out where the issues occur, you should
give it a low rate.

3. Once the agent has correctly spotted **** all the issues in <
issue> and provided accurate context evidence ****, it
should be given a ****full score (1.0) even if it includes
other unrelated issues/examples ****"

4. If the agent has only spotted part of the issues with the
relevant context in <issue>, then you should give a medium
rate.

5. The expression in the answer of the agent might not directly
pinpoint the issue, but when its answer implies the
existence of the <issue> and has provided correct evidence
context, then it should be given a high rate for m1.

6. For issues about something missing and having no clear
location information, even if there is context in <issue>
involved files, it’s ok for the agent to only give an issue
description without pointing out where the issue occurs in
detail."

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

"weight": 0.8,
"range": [0, 1]

},
"m2": {

"criteria": "Detailed Issue Analysis:
1. The agent must provide a detailed analysis of the issue,

showing an understanding of how this specific issue could
impact the overall task or dataset as human evaluators do.

2. This metric stresses the importance of not just identifying
that there is an issue but also understanding and explaining
its implications in detail.",

"weight": 0.15,
"range": [0, 1]

},
"m3": {

"criteria": "Relevance of Reasoning:
1. The agent’s reasoning should directly relate to the specific

issue mentioned, highlighting this inconsistency’s potential
consequences or impacts.

2. This metric ensures that the agent’s logical reasoning
directly applies to the problem at hand."

"weight": 0.05,
"range": [0, 1]

}
}
</metrics>

Now let’s begin:

<issue>
<ISSUE>
</issue>

<hint>
<HINT>
</hint>

-------------------- Below is the answer from the agent. Ensure you don’t
take the information above as the agent’s answer!

<answer>
<ANSWER>
</answer>

response below,
1. after your analysis, remember to give a **"decision: [failed/partially

/success]"** for me to extract it using REGEX.
2. Don’t use Code Interpreter!; Use your ability to analyze the text. **

Pay attention to your calculations and make sure they are correct. **
3. There could be multiple issues described in <issue> part. You should

start by thinking clearly about how many issues exist in <issue> and
list them out, then you should compare them with the answer from the
agent.

4. you should focus on whether the agent has spotted the issue in <issue>
rather than caring about whether the agent includes unrelated

examples not present in the context.� �
Please note the categories of the Curator’s performance are different from papers. We use
partially for success in the paper. This modification is made because we want to emphasize

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

we focus more on separating fail from the other two categories, which is a binary classification
problem. Using partially might cause confusion.

A.2.2 HUMAN ANNOTATION CODEBOOK FOR EVALUATING CURATOR’S PERFORMANCE

The human annotators are required to follow the following codebook when rating the responses from
the Curators:

You are tasked with evaluating the work of a Dataset Curator, who is responsible for identifying
issues in dataset files and pinpointing the contextual evidence within those files. You will be provided
with a ground truth that specifies the issues present in the files and their exact locations.

Based on this information, please categorize the Curator’s findings into the three following categories:

• fail: the Curator either denies the existence of the issue stated on the label, identifies irrelevant
issues, or acknowledges the issue but offers completely inaccurate supporting evidence.

• success: The Curator identifies the annotated issue and provides at least one correct piece of
contextual evidence.

• success+: the Curator correctly identifies all issues and provides all necessary contextual
evidence.

Additional Rules: 1. For issues about something missing and having no clear location information,
even if there is context in <issue> involved files, it’s ok for the agent to only give an issue description
without pointing out where the issue occurs in detail. 2. You should focus on whether the agent
has spotted the issue in ground truth rather than caring about whether the agent includes unrelated
examples not present in the context. The inclusion of other irrelevant issues won’t influence its
performance in evaluation.

A.2.3 ADDITIONAL RESULTS FROM HUMAN-ALIGNMENT EXPERIMENT ON EVALUATOR

As defined in Section 3.3, the performance of the Curator is categorized into fail,
success, and strict-success. However, accurately distinguishing between success and
strict-success in the original triple classification is challenging for Evaluators.

Tab. 6 presents the complete results of the Evaluators’ performance with strict success alignment,
compared to human annotations (ground truth). There is a significant drop in the Evaluators’
performance when required to provide a triple classification.

Table 6: The performance of Evaluators with different back-end models, using human annota-
tions as ground truth on 92 (issue, hint) pairs. Compared with binary classification (fail /
(success+success+), the triple classification proves to be more difficult, making the evaluation
results from the Evaluator less reliable.

Binary / % Triple / %

Model Name Accuracy Precision Recall F1 Score κ value Accuracy κ value

GPT-4-0125-preivew 96.74 92.86 96.30 94.55 92.22 88.04 73.77
GPT-4o-0513 92.39 81.25 96.30 88.14 82.59 83.70 66.47
GPT3.5-turbo 68.48 48.21 100.00 65.06 42.15 63.04 38.82

LLama3-70B-Instruct 69.57 49.09 100.00 65.85 43.68 64.13 41.30

A.2.4 NEGLIGIBLE SELF-PREFERENCE AND LENGTH BIAS OF EVALUATOR

In this section, we discuss the possibility that LLM Evaluators may be biased towards Curators that
are backed by the same LLM model (self-preference), and might be biases toward the length of the
response (length bias) (Panickssery et al., 2024; et al., 2023). We design two experiments to examine
whether these biases are within acceptable range.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Experiment on Self-Preference Bias We used GPT-3.5-Turbo and GPT-4-0125-preview as the
backend models for both the Curators and the Evaluators, leading to four combinations of Curator
and Evaluator settings. For each Evaluator, we calculated the Average Odds Difference (AOD)
Majumder et al. (2022), a metric that measures fairness by assessing differences in true positive and
false positive rates between two groups. A value of zero indicates perfect fairness, with equal model
performance across both groups. Higher AOD values suggest increasing disparity, with the model
performing unevenly between the groups. The AOD is defined as:

AOD =
1

2
(|TPRgroup1 − TPRgroup2|+ |FPRgroup1 − FPRgroup2|) (1)

In this context, the GPT-4-0125-preview Curator is privileged, while the GPT-3.5-Turbo Curator is
unprivileged. We evaluated the GPT-3.5-Turbo Evaluator five times and the GPT-4-0125-preview
Evaluator three times.

Table 7: True Positive Rate (TPR) Results

Evaluator \ Curator GPT-3.5-Turbo GPT4-0125-preview
GPT-3.5-Turbo 100.00 (±0.00)% 100.00 (±0.00)%
GPT-4-0125-preview 84.44 (±3.14)% 91.35 (±3.49)%

Table 8: False Positive Rate (FPR) Results

Evaluator \ Curator GPT-3.5-Turbo GPT4-0125-preview
GPT-3.5-Turbo 68.95 (±1.29)% 56.78 (±3.18)%
GPT-4-0125-preview 0.00 (±0.00)% 3.71 (±2.92)%

Using the error propagation formula10 and Eq. 1, we get the AOD for GPT-3.5-Turbo is
6.09 (±1.72)%.We can also get that the AOD for GPT-4-0125-preview, which is 5.31(±2.76)%.

Since an AOD ≤ 10% is considered fair Majumder et al. (2022), the bias remains within an
acceptable range.

Furthermore, we observe a great alignment between the GPT-4-0125-preview based Evaluator and
human annotations, on both the GPT-3.5-Turbo based Curator and the GPT-4-0125-preview based
Curator:

Table 9: Comparison of Metrics between Evaluators and Human
Annotations

Metric/Curator GPT-3.5-Turbo GPT-4-0125-preview
Accuracy 97.46 (±0.51)% 96.38 (±0.51)%
Precision 100.00 (±0.00)% 96.29 (±2.92)%
Recall 84.44 (±3.14)% 91.36 (±3.49)%
F1 Score 91.53 (±1.87)% 93.66 (±0.97)%
κ value 90.06 (±2.16)% 91.13 (±1.31)%

These results suggest that using the same model for dataset curation and evaluation does not introduce
significant bias in our study, which is acceptable.

Experiment on Length Bias We also conducted an experiment to further investigate this. After the
Curator generated the results, we fed its response to another LLM (gpt-4o-2024-08-06) to expand
upon its generation. While the most common bias is the preference towards longer responses, we also
tested the case where the response is more succinct. The corresponding prompts are listed as follows.

Rephrase to verbose:
10https://en.wikipedia.org/wiki/Propagation_of_uncertainty

26

https://en.wikipedia.org/wiki/Propagation_of_uncertainty

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

� �
You are provided with a description text, and your task is to make it

more detailed and elaborate. Ensure that you do not add any new
information or content that was not present in the original context.
Your goal is to expand upon the existing meaning without altering it.
Additionally, maintain the same format as the original answer. Don’t
mention this prompt in your response.

=================== Start:� �
Rephrase to succinct:� �
You are provided with a description text. Your task is to rephrase it

concisely while ensuring all essential information is retained. Do
not add new information or omit any key details from the original
context. Remember to maintain and keep the same format as the
original answer. When answer is already short, you don’t have to
condense it too much. Do not mention this prompt in your response.

=================== Start:� �
Both prompts are designed to ensure that the only difference between the responses is the length. We
used GPT-3.5-Turbo (0125) and GPT-4o-mini (0718) as the underlying models for the Curator and
compared the results with responses of different length to see if there was a significant change in the
success rate. The experiment was conducted on 92 cases (at the hint level).

Model Name/Running Type Succinct Normal Verbose

GPT-3.5-Turbo 204.8 339.1 520.0
GPT-4o-mini 361.4 521.8 672.9

Table 10: Average response length of succinct, normal, verbose settings.

Model Name/Running Type Succinct Normal Verbose

GPT-3.5-Turbo 13.04% 14.13% 13.04%
GPT-4o-mini 20.65% 20.65% 19.57%

Table 11: Accuracy of succinct, normal, verbose settings.

As can be seen, the difference of accuracy is at most ≈ 1% for various response lengths, indicating
that there is no significant length bias with our Evaluator.

A.2.5 PROMPT DESIGN OF HINTS WRITER

The Hints Writer is prompted with the following instructions to generate three level hints for the
issue, with <ISSUE> being the placeholder.� �
You are an issue-hint writer. You need to formulate some hints for

detecting certain issues, based on the description in
<issue> below.

<rules>
- The hints should have three different levels, from very general to very

specific.
- For ‘‘general hint’’, you should only tell the general issue, without

any specific information.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

- For ‘‘medium hint’’, you could tell which files are involved in this
issue + general hint. Make sure it contains the information from the
general hint.

- For ‘‘specific hint’’, you should tell which files are involved in this
issue clearly, as well as a part of context information. Make sure

it contains the information from the general and medium hints.
- You should never tell the agent the full context of the issue, only

give it hints, so we can test to what degree the agent detects the
issue and tell us evidence by themselves.

- Your word used in hints should be precise, pay attention to the word
choice, and try to avoid misleading or ambiguous words. You should
make sure you have a clear understanding of the issue before writing
the hints.

- The hints should be clear and concise, try to cover all the issues
mentioned and avoid unnecessary information.

</rules>

<example>
{

<issue>
{

title: What is the provenance of these benchmark datasets?}
content:

{
Firstly, check the English proverbs dataset: https://github.

com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/
english_proverbs

‘‘‘
task can help to draw conclusions about human-like

understanding and
Data source
References

‘‘‘
There is nothing in the data source section.

}
involved: {

name: README.md,
context: {

‘‘‘
task can help to draw conclusions about human-like

understanding and Data Source References
‘‘‘

}
}

}
</issue>

output:
{

general: "section with empty content"
medium: "a section with empty content in markdown file"
specific: "a sub-heading section in README.md with empty content"

}

</example>

Now let’s begin

<issue>
<ISSUE>
</issue>

write your hints here in JSON format:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

� �
When designing the prompt, we take into consideration the risk that hints could provide too much
information that can already serve as a valid answer. In the “<rule>” section, we clearly require the
Hint Writer not to reveal the full context of the issue to the Curator, in case it takes it as a shortcut
and skips reading the real files. We also manually check the generated hints to ensure the generated
hints comply this rule.

A.3 DETAILED ANALYSIS OF THE PERFORMANCE OF BASELINE CURATOR ON DCA-BENCH

A.3.1 FROM THE PERSPECTIVE OF DIFFERENT CONTENT LENGTH

Given the large average content length (or size of files, counted by token number) involved in test
cases, it’s interesting to explore how the success rate of the Baseline Curator changes with the number
of tokens. Therefore, we created a statistical plot showing the count of success and failure cases
for different content lengths. Fig. 4 shows that the success rate doesn’t monotonically decrease as
content length grows. For our baseline Curators, we used the OpenAI Assistant API with the Code
Interpreter Tool to build the agents. This tool provides temporary file storage for uploaded files and
can process them with code scripts. By processing data before it is passed to the LLM, the tool allows
the OpenAI Assistant to handle much smaller inputs in terms of token usage, even when working
with large datasets. Consequently, the effective input size for the LLM is often significantly reduced.
Notably, depending on the agent’s capacity to efficiently process and manage information.

100 101 102 103 104 105 106 107 108

Content Length (log scale)

75

56

37

18

0

18

37

56

75

Co
un

t

Success
Failed
Success Rate

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Number of Success & Failure and Success Rate Versus Different Content Length

Figure 4: Number of success & failure and success rate versus different content length of test cases.

Besides, the performance of the Curator also depends on the type of issues. Take the issue 21ca944c-
cf82-4764-bb2c-4c8db0cee95011 as an example. This issue involves many missing values in a large
CSV file. Even with 361,814 tokens, it’s relatively easy for an LLM agent to spot the problem. The
agent can quickly check part of the file and identify the missing values. This example shows that
task difficulty isn’t just about data size. It also depends on the problem type and how relevant the
information is.

11https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/discussion/168946

29

https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/discussion/168946

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Therefore, it’s expected that a test case with larger content length does not necessarily lead to poorer
performance.

A.3.2 FROM THE PERSPECTIVE OF HINT LEVEL

Here is a more detailed analysis of the overall performance with different hints. As outlined in
L183-L186, the hints are divided into four levels, from 0 to 3, focusing on two dimensions with
increasing information: the description of the issue and its specific context. The design follows an
incremental pattern from h0 to h3. Please refer to Appendix 10 for some specific examples. Let’s
continue by discussing the capabilities required to succeed at each hint level.

If we aim to develop an LLM agent for this task without considering cost constraints, the process
should involve the following steps: Retrieve Knowledge → Plan and Select Files to Check →
Read Files and Validate Issues → Receive Feedback and Update State → (Loop) → Make Final
Decisions. Since our Baseline Curator does not support looping, we exclude it from the following
analysis. We will use this diagram to demonstrate which steps become less critical as the hint level
increases.

h0: With no hints provided, the Curator must examine all the uploaded files. This requires the
ability to handle and retain very long inputs effectively. To identify potential issues, the Curator needs
comprehensive knowledge of dataset curation to anticipate a wide range of problems and retrieve
relevant information when provided with the dataset files. The task also involves exploring and
interacting with the dataset files to gradually narrow down the search space, requiring high-level
reasoning and planning abilities. This corresponds to no reduction in the original diagram’s required
steps.

h1: When given a general description of the issues but no specific location, the search space is
somewhat reduced but not entirely, as the description remains broad. A robust understanding of
dataset curation and the ability to manage long inputs are still necessary. Ideally, this follows the
pattern of Retrieval of Knowledge (↓), with minimal impact on the steps for planning and selecting
files, except where file names are relevant. The steps for reading files and validating issues also see a
slight reduction (↓).

h2: At this level, the Curator is provided with both a general description of the issue and specific
hints about which files are involved. This further reduces the search space, making the ability to
manage long inputs sufficient but less critical. The need for extensive knowledge retrieval decreases
as the Curator can focus on the relevant files. Planning and file selection are simplified, as the Curator
has clear guidance on which files to examine. Reading and validating issues also become easier,
as the scope is narrower, reducing the overall complexity of the task. This follows the pattern of
Retrieval of Knowledge (↓), Planning and Choosing Files (↓), and Reading and Validating Issues (↓).

h3: At the highest hint level, the Curator receives the general description, the specific files involved,
and partial context. This greatly reduces the need for managing long inputs and makes the retrieval
of knowledge more targeted. Planning and file selection is almost straightforward, with the Curator
essentially guided to the areas needing attention. Reading and validating issues are significantly
simplified due to the detailed context, further decreasing the Curator’s workload. This follows
the pattern of Retrieval of Knowledge (↓ ↓), Planning and Choosing Files (↓ ↓), and Reading and
Validating Issues (↓ ↓).

A.3.3 FROM THE PERSPECTIVE OF DIFFERENT ISSUE TAGS

We show the evaluation results from the Baseline Curator on the whole DCA-Bench classified into
different tags in Tab. 12. We conduct analysis for some tags with relatively low success rates below.

Typo This refers to issues caused by typographical errors, including misspelled words, misused
phrases, and incorrect email addresses. The specific nature of these issues is that they involve small
errors within a long context, which means a large search space. This makes errors that are easy to
spot in shorter contexts extremely difficult to find, even for humans.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 12: The success rate of Baseline Curator on DCA-Bench (221 samples × 4 hint levels) grouped
by tags.

Category Success Rate/Number Sub-category Success Rate/Number

typo 33.33% / 18*4 — —
wrong-format 46.43% / 14*4 — —
inappropriate-file 50.00% / 4*4 — —
ethical/legal-risk 47.50% / 10*4 — —
internal-discrepancy 36.90% / 21*4 — —
cross-file-discrepancy 28.41% / 44*4 — —

data-problem 32.99% / 197*4 wrong-value 29.58% / 71*4
missing-value 40.00% / 15*4
data-leakage 50.00% / 2*4
apparent-corruption 45.63% / 40*4
hidden-corruption 25.42% / 59*4

document-problem 40.96% / 83*4 wrong-info 29.63% / 27*4
insufficient-info 45.67% / 52*4

infrastructure-problem 35.53% / 19*4 data-access 56.25% / 4*4
script-code 30.00% / 15*4

Internal-discrepancy This involves issues within a file where information is misaligned, such as a
mismatched sum for some features in a .csv file12, or a word misused in a way that contradicts itself
within its context13. These issues require reasoning and memory over a long context.

Cross-file-discrepancy Compared to internal-discrepancy, this type of issue requires checking for
consistency across different files, such as misaligned information between a datacard and dataset
files14. This can be challenging when there are many issues and limited hints about the files involved.

Wrong-info This involves incorrect information in documentation files (e.g., wrong meta-
information, typos, invalid URLs, and email addresses). This category overlaps with the issues
mentioned above.

Script-code Many datasets also provide script code to load the data, and issues can arise in these
scripts, leading to data loading problems15. To address these issues, the Curator needs to be skilled in
coding and debugging and sometimes must understand the dataset’s purpose16.

A.4 ETHICS STATEMENT

A.4.1 RESEARCH INVOLVING HUMAN PARTICIPANTS

The human annotators are the authors of this work, and we have confirmed that they are willing to
annotate, knowing the potential ethically problematic data issues, as we listed in Offensive Content.
Prior to the annotation, the leading authors have checked that the datasets with ethical problems pose
minimal risks to the annotators.

12https://github.com/fivethirtyeight/data/issues/52
13https://github.com/google/BIG-bench/pull/904/files#diff-a5582cf9c7731f66cc3e8f6aa0e9d070483fc14f7c1d3545f275207c6fa39bd5
14https://github.com/fivethirtyeight/data/issues/261
15https://huggingface.co/datasets/spyysalo/bc2gm_corpus/discussions/3
16https://github.com/google/BIG-bench/pull/559

31

https://github.com/fivethirtyeight/data/issues/52
https://github.com/google/BIG-bench/pull/904/files#diff-a5582cf9c7731f66cc3e8f6aa0e9d070483fc14f7c1d3545f275207c6fa39bd5
https://github.com/fivethirtyeight/data/issues/261
https://huggingface.co/datasets/spyysalo/bc2gm_corpus/discussions/3
https://github.com/google/BIG-bench/pull/559

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A.4.2 DATA PRIVACY, COPYRIGHT, AND CONSENT

The DCA-Bench has collected materials and datasets from the following platforms: HuggingFace,
Tensorflow Dataset, Graph Learning Indexer, Kaggle, BIG-bench, OpenML, Open-Data-Registry,
and FiveThirtyEight. The corresponding terms or license links are provided.

Besides, we have also included a detailed table DCA_Benchmark.csv in our supplementary
materials.

where all the files involved in DCA-Bench have been annotated with their License Information.

Each data point in DCA-Bench has two types of license:

• License for the platform that hosted this dataset
• License of this dataset

Details:

• Some data points in DCA-Bench involve files from 2 datasets, we listed all licenses.
• Many datasets themselves don’t have a license listed on their data card.
• We notice that there are some datasets17claiming that "Data files © Original Authors", which

is not a standard License. We have reached out to the dataset owners for clarification, but
have not yet received a response. Therefore, we choose to record them as it claimed in our
table.

How does this secondary usage of user-generated data comply with restrictions? DCA-Bench
involves user-generated data (comments, modified codes) collected from dataset repositories hosted
on GitHub, HuggingFace, and Kaggle.

For GitHub, we collected the comments and modified codes generated by users. According to
section D.3, paragraph 2 of GitHub Terms of Service18,

"Because you retain ownership of and responsibility for Your Content, we need
you to grant us—and other GitHub Users—certain legal permissions, listed in
Sections D.4—D.7."

According to section D.5. License Grant to Other Users19, if not provided a specific license, any
User-Generated Content you post publicly, including issues, comments, and contributions to other
Users’ repositories, may be viewed by others. However, it doesn’t clearly explain how this content
is allowed to be used in which ways, and which is not. However, according to a Github issue
discussion20, we believe our practice is acceptable. Besides, we noticed that there have already been
some works (Kocetkov et al., 2022; Jimenez et al., 2024b) with similar usage of GitHub data, which
implies that this usage is acceptable.

For HuggingFace, according to HuggingFace Content Policy21, Content types may include:

• "ML Artifacts": Code and assets hosted as Hugging Face Repositories, including Models,
Datasets, and Spaces;

• "Community Content": Content that can be found in the Community section of the Hug-
ging Face Platform, including discussions, comments, and usernames, as well as related
documentation such as READMEs, model cards, data cards, pull requests, and merges.

According to HuggingFace Terms of Service22, Section “Your Content”,
17e.g. https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/data
18https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#c-acceptable-use
19https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#5-license-grant-to-other-

users
20https://github.com/orgs/community/discussions/135466
21https://huggingface.co/content-guidelines
22https://huggingface.co/terms-of-service

32

https://huggingface.co/terms-of-service#:~:text=You%20are%20solely%20responsible%20for%20the,you%20have%20authorized%20under%20your%20Account.
https://github.com/tensorflow/datasets/blob/master/LICENSE
https://github.com/Graph-Learning-Benchmarks/gli/blob/main/LICENSE
https://www.kaggle.com/terms
https://github.com/google/BIG-bench/blob/main/LICENSE
https://www.openml.org/terms
https://github.com/awslabs/open-data-registry/blob/main/LICENSE
https://github.com/fivethirtyeight/data/blob/master/LICENSE
https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/data
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#c-acceptable-use
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#5-license-grant-to-other-users
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#5-license-grant-to-other-users
https://github.com/orgs/community/discussions/135466
https://huggingface.co/content-guidelines
https://huggingface.co/terms-of-service

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

"If you decide to set your Repository public, you grant each User a perpetual,
irrevocable, worldwide, royalty-free, non-exclusive license to use, display, publish,
reproduce, distribute, and make derivative works of your Content through our
Services and functionalities;"

Therefore, we believe our usage of user-generated content from HuggingFace should belong to the
“derivative works” here, which is acceptable.

For Kaggle, after reviewing their Terms of Use23, we noticed that there are no explicit guidelines
regarding the use of user-submitted content for academic research purposes. So we have sent Kaggle
Support a request for clarification, and here is the response:

" Kaggle is a neutral platform in hosting competitions and data. Protections
under copyright law can vary based on the nature of data, contractual obligations,
and your jurisdiction. As a result, we are not able to approve individual uses of
data on a case-by-case basis. Copyright or usage questions should be directed to
your legal counsel. You may post usage enquiries in the respective competition’s
forum, but we can not guarantee an official response from the Sponsor.

If the rules do not specify usage restrictions, we ask that you use your best
judgement in determining fair use. For example, it may be okay for you to use the
data for teaching a class, demoing a method in a blog post, or other non-commercial
purposes. Some of our competitions identify themselves as open-source and are
meant to foster research, collaboration, and continued analysis by the data science
community. "

Since our paper is not for commercial usage, we believe our practice is acceptable

Lastly, our collection and evaluation processes exclude the gathering of any user information. We
promise that we will remove the content once requested with a valid reason.

A.4.3 OFFENSIVE CONTENT

Our dataset, comprising 221 data instances, includes content that may be considered sensitive or
potentially controversial. Specifically, there are 10 data points involving ethical or legal risks, among
which 2 data points24 contain content that may exhibit bias towards specific groups of people. Other
issues are relevant to data source or license information.

Besides, the risk in most cases is associated with deploying models trained with these datasets.
Reviewing the quality issues of these datasets poses minimal risks to the annotators.

Justification for Inclusion

While we acknowledge the sensitive nature of these data instances, their inclusion in our dataset is
both intentional and necessary for the following reasons:

• Benchmark Objectives: One of the primary goals of our benchmark is to examine LLM
agents’ ability to identify and assess potential ethical and legal risks in AI training data. The
inclusion of these sensitive data points is crucial for thoroughly evaluating the capability of
AI models to recognize and appropriately handle such content.

• Realistic Representation: These data points reflect real-world scenarios that AI systems
may encounter. By including them, we ensure our benchmark provides a more comprehen-
sive and authentic assessment of AI performance.

23https://www.kaggle.com/terms
24https://github.com/google/BIG-bench/pull/685 and https://www.kaggle.com/datasets/vikrishnan/boston-

house-prices/discussion/429030

33

https://www.kaggle.com/terms
https://github.com/google/BIG-bench/pull/685
https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030
https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

A.5 OTHER TECHINAL DETAILS

A.5.1 DISCUSSION ON THE DIFFERENCE BETWEEN OPENAI ASSISTANT API AND CHATGPT

The performance discrepancy between OpenAI’s Assistant API and ChatGPT has been widely
discussed within the OpenAI user community. Users often report that the Assistant API’s performance
does not match the capabilities of ChatGPT, especially in tasks involving complex file processing and
analysis.

The Assistant API provides several methods for handling files: 1. Code Interpreter for file uploads. 2.
Building VectorStores via File Search. 3. Attaching files to messages using their file IDs.

However, these methods have significant issues: - The quality of the VectorStore built using File
Search is inferior to ChatGPT’s built-in file search capabilities. - Files are referenced by their file IDs
rather than their names, leading to confusion and errors during processing.

The following code snippet illustrates the process of uploading and referencing files in the Assistant
API by attaching them to the messages:

msg_file_ids = []
for file_path in file_paths:

message_file = self.client.files.create(
file=open(file_path, "rb"), purpose="assistants"

)
msg_file_ids.append(message_file.id)

attachments = [{"id": file_id, "tools": [{"type": "file_search"}]} for
file_id in msg_file_ids]

thread = self.client.beta.threads.create(
messages=[

{
"role": "user",
"content": input,
"attachments": attachments

}
]

)

Despite correctly assigning file names during the upload process, the Assistant API seems to ignore
these names during subsequent file processing, relying solely on file IDs. This results in frequent
mix-ups and incorrect file references.

Several forum posts and articles highlight deficiencies relevant to this topic: - Different responses
assistant playground vs API - using the same assistant ID25 - Huge difference between ChatGPT
assistant and API assistant26 - Assistant API not consistent27. This implies the limitations of OpenAI
Assistant API.

In conclusion, while the Assistant API offers various tools for convenient file handling, its current
implementation presents significant challenges that hinder its effectiveness compared to ChatGPT,
which motivates us to select a subset of DCA-Bench containing hard cases to test on ChatGPT.

A.5.2 CALCULATION OF FILE NUMBER AND CONTEXT LENGTH

We calculate the file context length using the tiktoken package28 to tokenize the file content,
using:

import tiktoken

25https://community.openai.com/t/different-responses-assistant-playground-vs-api-using-same-assistant-
id/547562

26https://community.openai.com/t/huge-difference-between-chatgpt-assistant-and-api-assistant/587335
27https://community.openai.com/t/assistant-api-not-consistant/718145
28https://github.com/openai/tiktoken

34

https://community.openai.com/t/different-responses-assistant-playground-vs-api-using-same-assistant-id/547562
https://community.openai.com/t/different-responses-assistant-playground-vs-api-using-same-assistant-id/547562
https://community.openai.com/t/huge-difference-between-chatgpt-assistant-and-api-assistant/587335
https://community.openai.com/t/assistant-api-not-consistant/718145
https://github.com/openai/tiktoken

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

def calculate_token_len(sentence, model="gpt-4-0125-preview"):
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(sentence)
token_len = len(tokens)
return token_len

During calculation, non-text files are skipped, which include .jpg, .jpeg, .png, .gif, .bmp, .mp3, .wav,
.ogg, .flac, .mp4, .avi, .mov, .mkv.

For .zip files, we will unzip them to calculate the context length of text files. However, when
calculating the file number, we take the whole .zip number as one single file.

A.5.3 COST ANALYSIS

In this section, we provide an estimated cost analysis for applying our Evaluator backend by
GPT-4-0125-preview to rate the performance of the Baseline Curator (OpenAI Assistant API)
on DCA-Bench (884 inputs in total). We applied tiktoken for tokenization of contexts.

Based on the pricing information available as of May 2024 from https://openai.com/api/pricing/, the
costs are: input cost: $16.12, output cost: $28.99, total cost: $45.11.

The costs are rounded to two decimal places. Note the cost here only involves the Evaluator; we
dismiss the cost to run the baseline Curator on DCA-Bench to get the outputs, which depends on the
design of the Curator and thus is not our focus.

35

https://openai.com/api/pricing/

	Introduction
	Related Work
	The Dataset Curation Agent Benchmark
	Dataset Overview
	Test Case Construction
	Benchmark API
	Evaluation Pipeline

	Experiments
	Validation of the Evaluator
	Benchmarking the Baseline Curators

	Conclusion
	Appendix
	Details about examples, statistics, and construction process of DCA-Bench
	Real World Dataset Curation Examples
	Issue Type and Tag
	Issue Examples
	Discussion on Choices of Dataset Platforms and Cases Selections

	Details about DCA-Bench Evaluator and Hints Writer
	Design Details of the Evaluator
	Human Annotation Codebook for Evaluating Curator's Performance
	Additional Results from Human-Alignment Experiment on Evaluator
	Negligible Self-Preference and Length Bias of Evaluator
	Prompt Design of Hints Writer

	Detailed Analysis of the Performance of Baseline Curator on DCA-Bench
	From the Perspective of Different Content Length
	From the Perspective of Hint Level
	From the Perspective of Different Issue Tags

	Ethics Statement
	Research involving human participants
	Data Privacy, Copyright, and Consent
	Offensive Content

	Other Techinal Details
	Discussion on the Difference between OpenAI Assistant API and ChatGPT
	Calculation of File Number and Context Length
	Cost Analysis

