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ABSTRACT

The quality of datasets plays an increasingly crucial role in the research and
development of modern artificial intelligence (AI). Despite the proliferation of open
dataset platforms nowadays, data quality issues, such as incomplete documentation,
inaccurate labels, ethical concerns, and outdated information, remain common in
widely used datasets. Furthermore, these issues are often subtle and difficult to be
detected by rule-based scripts, therefore requiring identification and verification
by dataset users or maintainers–a process that is both time-consuming and prone
to human mistakes. With the surging ability of large language models (LLM),
it’s promising to streamline the discovery of hidden dataset issues with LLM
agents. To achieve this, one significant challenge is enabling LLM agents to
detect issues in the wild rather than simply fixing known ones. In this work, we
establish a benchmark to measure LLM agent’s ability to tackle this challenge.
We carefully curate 221 real-world test cases from eight popular dataset platforms
and propose an automatic evaluation framework using GPT-4. Our proposed
framework shows strong empirical alignment with expert evaluations, validated
through extensive comparisons with human annotations. Without any hints, a
baseline GPT-4 Curator agent can only reveal 11% of the data quality issues in
the proposed dataset, highlighting the complexity of this task and indicating that
applying LLM agents to real-world dataset curation still requires further in-depth
exploration and innovation.

1 INTRODUCTION

High-quality datasets have become increasingly crucial for advancing artificial intelligence (AI)(Jain
et al., 2020; Kaplan et al., 2020). Open dataset platforms, such as Hugging Face(Lhoest et al.,
2021) and BIG-Bench (Srivastava et al., 2023), have substantially accelerated AI research and
development by facilitating community contributions. However, community-contributed datasets
often encounter subtle data quality issues, including insufficient documentation (Yang et al., 2024),
inaccurate annotations (Klie et al., 2024), and ethical concerns (Gebru et al., 2021).

There have been existing efforts on standardizing dataset management practices (Gebru et al., 2021;
Wang et al., 2023; Gan et al., 2024) and developing dataset curation toolkits and systems (Gupta
et al., 2021; Mao et al., 2023). However, these toolkits and systems often rely heavily on rule-
based scripts, which lack the necessary flexibility to detect the aforementioned subtle data quality
issues. Consequently, existing techniques remain insufficient to address the complex challenge of
automatically curating datasets at scale on open dataset platforms, where we still primarily rely on
dataset users or platform maintainers as dataset curators to identify data quality issues.

Recent advancement of large language models (LLMs) has led to promising development of LLM
agents for real-world software engineering problems (Jimenez et al., 2024a). For certain issues in
software development, LLM agents have been shown to be capable of autonomously generating
proper code to fix them (Mesh, 2024; Tao et al., 2024). Given this development, we envision that
LLM agents could become an effective technique for building autonomous dataset curation systems.

However, there is still a significant gap between the need of dataset curation and the state-of-the-art
LLM agents for software engineering. Specifically, existing studies primarily focus on developing
agents that solve identified and well-defined issues, while dataset curation requires one to discover
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Figure 1: Illustration of instances in DCA-Bench. The Issue Card displays a specific test case,
including metadata such as Issue ID, source platform (e.g., BIG-Bench), type, associated tags, and
hints. Relevant dataset files can be found using the Issue ID. Furthermore, DCA-Bench incorporates
documentation from the dataset platform along with additional reference materials related to dataset
curation and quality. We provide a convenient API to access data of each test case as well as reference
materials. The Curator is asked to detect the issues in files by describing the issue context and
pinpointing the location in the file where issues occur. The elements labeled title, content, and
involved serve as ground truth for evaluating the Curator’s performance and are hidden from the
Curator during testing.

hidden issues in the community-contributed datasets—a distinct capability different from problem-
solving (Jay, 1996; Wikipedia contributors, 2024) and remaining under-explored.

In response to these challenges, we introduce the Dataset Curation Agents Benchmark (DCA-Bench)
as an initial step towards achieving autonomous dataset curation. Fig.1 illustrates the instance
structure in DCA-Bench. Specifically, DCA-Bench aims to provide a comprehensive benchmark for
evaluating LLM agents’ capability to discover data quality issues across online dataset platforms, the
first step of the curation pipeline. Henceforth, we will consistently refer to such an LLM agent as a
“Curator” to highlight its role in this task. A well-performed Curator can detect and locate existing
issues, which is critical for a follow-up fix by human maintainers or other LLM agents.

Rather than defining the data quality issue beforehand, we adopt a bottom-up methodology for issue
collections and classifications. Specifically, we collect 221 diverse and representative data quality
issues from 8 online dataset platforms, covering a broad spectrum of problems such as data errors,
documentation issues, file discrepancies, and legal/ethical risks. These issues are further categorized
into 4 types and detailed with 18 tags, reflecting their varied content and complexity. The main
features of DCA-Bench include:

• Real-world Cases with Minimal Simplification: All test cases of DCA-Bench have references
to real-world sources, allowing benchmark users to better understand them in the wild. To test the
Curator’s ability under the complex real-world environment, each test case in DCA-Bench not
only contains those flawed ones, but also files that without known issues.

• Multiple Difficulty Levels: DCA-Bench provides four levels of hints for each test case in the
benchmark. From a higher level hint, the Curator gains more information about the content and
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location of the issue. The motivation is to make the task more achievable and also gauge the
information required for the Curator to detect these issues.

• Accurate Automatic Evaluation: Unlike traditional machine learning tasks, the task of dataset
curation does not have labels that can be directly evaluated by scripts. Human-level efforts are
required to rate the performance of the Curator, which is not scalable. Therefore, we develop
an automatic and accurate evaluation scheme using GPT4 (OpenAI, 2024a) to replace human
annotators.

In addition to the benchmark, we implement a straightforward baseline for this task using OpenAI
GPT4 Assistant1. The provided baseline only succeeds in detecting 10.86% issues without hints and
70.14% when given the most specific hint, demonstrating the difficulty of this benchmark.

We believe DCA-Bench will serve as a foundational initial step towards developing a fully autonomous
and powerful dataset curation system, further enhancing the quality of community-contributed open
datasets. This benchmark can also serve as a testbed for evaluating LLMs’ capability of problem
discovery in addition to problem-solving, which is a critical area that has been under-explored.

We organize this paper as follows: In Section 2, we introduce the background of the dataset curation
problem and existing literature. In Section 3, we go through an overview of the composition of
DCA-Bench, the construction process, task definition, and the automatic evaluation framework. In
Section 4, we carry out experiments to validate the reliability of our automatic evaluation scheme and
discuss preliminary testing results of baseline Curators on DCA-Bench.

2 RELATED WORK

Dataset Quality Management With the advancement of modern AI, the need for high-quality
datasets is surging (Jain et al., 2020; Kaplan et al., 2020). Consequently, open dataset platforms
like Hugging Face and Kaggle keep growing rapidly. However, recent studies (Klie et al., 2024;
2023; Weber-Genzel et al., 2023) indicate that many popular datasets suffer from errors, biases, or
annotation artifacts (Gururangan et al., 2018), and lack proper documentation (Yang et al., 2024). In
addition, common issues in real-world datasets include problems with data loading scripts and file
discrepancies, where conflicting information exists between files.

There have been many existing efforts on dataset quality management. The FAIR principles (Wilkin-
son et al., 2016) provide a broad framework for creating and managing datasets. Gebru et al. (2021)
puts forward a standardized process for documenting datasets in the context of machine learning.
Gong et al. (2023) propose several strategies, including dataset profiling, data cleansing, and quality
monitoring. More recent works (Gebru et al., 2021; Wang et al., 2023; Gan et al., 2024) further ex-
plore standardizing dataset management practices. Based on these works, researchers have developed
advanced dataset management toolkits and systems (Gupta et al., 2021; Mao et al., 2023; Zhou et al.,
2024). More recently, Zhou et al. (2023); Chen et al. (2023a) developed systems that are capable of
greatly enhancing data quality. However, they focus on filtering a large-scale LLM-pertaining corpus
rather than detecting dataset quality issues. There are some specialized works focused on detecting
harmful content (Althobaiti, 2022; Kirk et al., 2023), annotation errors (Weber-Genzel et al., 2023;
Wang & Mueller, 2022) and data attributions (Longpre et al., 2023). Nevertheless, those methods
are not generalizable enough and lack the flexibility to solve challenges such as nuanced ethical
biases (see example 1) and incorrect annotations involving logical or factual errors (see example 3).
Moreover, studies on file discrepancies( example 2) and relevant issues remain scarce. Consequently,
we still primarily rely on dataset users or platform maintainers to identify these issues in practice. We
envision LLM agents as a promising technique to address the challenges in this space and propose a
benchmark dataset as an initial step toward this goal.

LLMs for Software Engineering Our work is also relevant to the emerging research direction on
using LLMs to solve software engineering tasks. Fan et al. (2023) suggest that there are two major
categories in this area: (i) code generation and completion, and (ii) maintenance and evolution.

There has been extensive literature on LLMs for code generation and completion, in terms of both
models and benchmarks. On the model side, various code generation LLMs have been proposed (Chen
et al., 2022; Luo et al., 2023; Rozière et al., 2024), along with agent frameworks designed to tackle

1We use GPT-4-0125-preview with Code Interpreter enabled.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

complex coding problems, such as data analysis (Hong et al., 2024; Guo et al., 2024). On the
benchmark side, datasets have been created to complete functions and short programs from natural
language descriptions (Jimenez et al., 2024a; Chen et al., 2021; Austin et al., 2021; Lai et al., 2022;
Zhang et al., 2024; Ding et al., 2023) and retrieve relevant code (Liu et al., 2023a). We note that
the main purpose of the proposed DCA-Bench is to measure LLM agents’ capability of discovering
hidden dataset issues instead of generating code, although generating and running some test code
may be helpful.

For the second category, maintenance and evolution, it involves tasks such as localizing and fixing
bugs (Wu et al., 2023; Feng & Chen, 2023), improving program performance (Garg et al., 2024;
Chen et al., 2023c), and refactoring code without changing program behavior (Poldrack et al.,
2023). Our work falls into this category while differing from previous studies in two key aspects.
Firstly, while most literature focuses on tasks with well-defined outcomes, such as fixing a buggy
function, our work addresses non-standard issues like ethical concerns in data points or cross-file
inconsistencies. Secondly, few studies have explored using LLMs to maintain dataset repositories,
which is increasingly important for the machine learning community.

LLMs as A Proxy of Human Evaluation Recent studies have shown that LLMs, when carefully
prompted, can serve as a good proxy of human evaluations for a number of scenarios, such as
evaluating text generation quality (Liu et al., 2023b; Chiang & Lee, 2023), reasoning ability (He
et al., 2024a; Hao et al., 2024), and generated image quality (Chen et al., 2023b; You et al., 2024).

Inspired by these studies, we adopt an LLM to automatically evaluate the Curator’s responses based
on carefully designed instruction. We also empirically show that our LLM-based Evaluator highly
aligns with human preference, ensuring a reliable automatic evaluation scheme.

3 THE DATASET CURATION AGENT BENCHMARK

In this section, we start with an overview of the proposed DCA-Bench in Section 3.1. Next, we
introduce the benchmark construction process in Section 3.2 and give a detailed task definition in
Section 3.3. Finally, Section 3.4 presents our evaluation framework.

3.1 DATASET OVERVIEW

The dataset assets provided in DCA-Bench consist of test cases and reference resources. Tab. 1
shows basic statistics of test cases. Each test case typically contains multiple files, designed to
create a minimal environment for uncovering hidden data quality issues. We classify these test cases
into four categories based on the number of files included and number of hidden issues in a test
case. Additionally, we assign 18 descriptive tags to further label the cases, such as “data-problem”,
“document-problem”, “infrastructure-problem”, and “ethical/legal-risk”. Furthermore, DCA-Bench
provides reference resources, including related documentation and external materials such as dataset
curation tutorials, to help users enhance Curator performance using methods like RAG (Lewis et al.,
2021).

3.2 TEST CASE CONSTRUCTION

The test cases in DCA-Bench are collected from the real issues reported by users or maintainers of
eight dataset platforms, including Hugging Face Dataset (Lhoest et al., 2021), BIG-Bench (Srivastava
et al., 2023), Kaggle (Kaggle), OpenML (Vanschoren et al., 2014), TensorFlow Dataset (Abadi
et al., 2015), Open-Data-Registry (AWS-Labs, 2024), Five-Thirty-Eight (FiveThirtyEight, 2024),
and Graph Learning Benchmark (GLI) (Ma et al., 2022). The construction of the test cases of the
DCA-Bench involved the following two stages.

Issue Collection and Preprocessing At this stage, we select and preprocess relevant and manage-
able data quality issues with the following steps:

1. Selection of Dataset Platforms and Issues: We focus on dataset platforms where users and
maintainers can interact. For example, there is a “Discussion” section in each Kaggle dataset for
discussing dataset-related issues, which helps collect meaningful data quality issues. We then
manually collect data quality issues from these discussions. Please refer to A.1.4 for more details
about the choice of platforms and case selections.
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Table 1: Basic statistics of DCA-Bench. #Token is calculated using the tiktoken package to
tokenize the file content. Non-text files are skipped. See Section A.5.2 for a detailed calculating pro-
cedure. For tag-level statistics, each test case can contain more than one tag. The definitions of types,
tags and detailed statistics are provided in Appendix A.1.2, along with examples in Appendix A.1.3.

Statistic Number

Sample-Level
#Samples 221
Avg. #Files/Sample 2.13
Avg. #Tokens/Sample 3.58× 106

Type-Level

Single-Issue Single-File 61
Single-Issue Multi-File 100
Multi-Issue Single-File 14
Multi-Issue Multi-File 46

Tag-Level

data-problem 197
document-problem 83
infrastructure-problem 19
ethical/legal-risk 10

2. Issue Filtering and Modification: We prioritize the issues that have received feedback from
dataset maintainers. Otherwise, we manually verify the problems mentioned in the issues to
ensure their validity. We exclude issues that are not directly related to dataset files uploaded
by contributors (e.g., issues about Tensorflow or Hugging Face data loading APIs). For issues
involving multiple sub-issues or file sizes over 512MB, we either discard them or split them into
manageable sub-cases with adjustments.

3. File Downloading: After gathering candidate issues, we download the dataset files from the
version before the problems are fixed. In order to simulate real-world scenarios, the dataset files
included in each test case are not limited to those involving issues.

Hints Generation Asking Curators to discover hidden issues from raw dataset files can be very
challenging. To make it more manageable and test the Curators’ capability in finer granularity, we
generate different levels of hints to help the Curators locate the hidden issues. We apply GPT-4 with
carefully designed prompts2 to generate three levels of hints for each test case, in addition to the
no-hint setting:

• h0: No hint provided. In this case, the Curator is required to detect the issue fully on its own.

• h1: General description of the issue, without any specific details or hints on the location.

• h2: Information about which files are involved in the issue, in addition to information from h1.

• h3: Partial contextual information about the issue, in addition to information from h2.

After generating the hints, we manually double-check the hints and make necessary modifications to
ensure that the generated hints follow the guidelines above.

3.3 BENCHMARK API

After gathering test cases and related information from dataset platforms, as well as generating
multi-level hints, we proceed to develop the benchmark API, which encapsulates the inputs to the
Curator and the Evaluator, adhering to the Task I/O paradigm as illustrated in Fig.2.

In this framework, the Curator receives following from benchmark API: (i) dataset files with hidden
issues, (ii) hints on the issues, and (iii) optional dataset documentation and reference materials. It
is then asked to identify, describe, and provide contextual evidence for these issues. The Curator
is allowed to use any strategy and tools to process provided dataset files and find the issue, e.g.,
flattening the file contents and feeding them to the Curator, applying RAG technology, using a code
interpreter to write and execute programs, or combining multiple strategies together.

2See Appendix A.2.5 for prompts used for the Hint Writer.
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Figure 2: The Task I/O of DCA-Bench. For each test case, the input for the Curator includes dataset
files and hints, with reference materials and platform documentation being optional. The Curator is
then required to provide a description of the issue and corresponding contextual evidence. The label
of the test case includes the issue title, content, the involved file names, and corresponding contextual
evidence. Given the output from the Curator and the label, the Evaluator is then asked to rate the
performance of the Curator.

The Evaluator then compares the outputs from the Curator with the label provided by the benchmark
API to rate the performance of the Curator. The performance of the Curator is then classified into
three levels: fail, success, and success+, which we introduce in the following section.

3.4 EVALUATION PIPELINE

We now discuss the motivation and design of our evaluation pipeline. We evaluate the Curators
in terms of the following two aspects: (i) whether the Curators accurately identify the issues, and
(ii) whether the Curators provide necessary contextual evidence about the issue. We accordingly
categorize the performance of the Curator into three levels:

• fail: The Curator fails to discover any issues, only identifies irrelevant issues, or acknowledges
the issue but offers completely wrong contextual evidence.

• success: The Curator identifies the annotated issue and provides at least one correct piece of
contextual evidence.

• success+: The Curator correctly identifies all issues and provides all necessary contextual
evidence.

Note that this evaluation process has several intrinsic challenges. Firstly, due to the nuanced nature of
text generation, different Curator outputs can refer to the same issue, while similar Curator outputs
may also point to different issues. Fixed keyword (He et al., 2024b) or rule-based code tests (Jimenez
et al., 2024a) are often insufficient to distinguish the nuances. Additionally, Curators may be able to
identify the issues using only a portion of the contextual evidence annotated in the test case, which
means that evaluation protocols requiring the inclusion of all the annotated contextual evidence can
be overly stringent. While human experts can easily capture such nuances and properly evaluate the
Curator performance, human evaluation is too expensive for a benchmark in practice. Recognizing
that evaluating the Curator’s performance is easier than building the Curator agent, we propose an
automatic evaluation pipeline where LLMs are leveraged to serve as the Evaluator.

We explored several prompting strategies using a few samples of human-annotated outcomes on a
handful of issues and ended up with the following prompt design, which asks the LLMs to rate the
Curator outputs in terms of a few criteria, and then aggregate these ratings to obtain an overall score
for the Curator performance. The criteria we have in the Evaluator prompt are listed as follows:

• Precise Contextual Evidence: This criterion evaluates whether the Curator has detected and
described the issue while providing accurate contextual evidence. The Curator should receive a
low rating if it identifies the issue but fails to locate the correct context. A medium or high rating
is justified only if the Curator identifies the issue and accurately pinpoints where it arises.
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• Detailed Issue Analysis: This criterion examines whether the Curator’s response extends beyond
the mere repetition of provided hints, indicating a profound understanding of the issue.

• Relevance of Reasoning: This criterion ensures the Curator’s logical reasoning is directly pertinent
to the addressed problem rather than being generic or irrelevant.

For each test case, the Evaluator receives the Curator’s output along with the hints and the ground
truth annotations about the issues in the test case. Then, the Evaluator is asked to rate the Curator’s
performance for each criterion with a real number from 0 to 1. The final score is a weighted sum of
the three ratings, with weights of 0.85, 0.15, and 0.05, reflecting their respective importance. The
Evaluator then categorizes the Curator’s performance according to defined thresholds on the final
score3.

To enhance the accuracy of the evaluation, a simplified voting strategy similar to Verga et al. (2024)
was implemented to mitigate the influence of randomness. The strategy comprises three rounds of
voting. In the first round, we collect results from n Evaluators. If a consensus is reached, the decision
is made with the consensus; however, if there is no consensus, we conduct another round of voting
within m Evaluators, and apply a majority vote to make the decision. In the event of a tie, additional
votes will be conducted one by one until a definitive majority vote is determined. In practice, m and
n are both set to 2.

The testing results of the Evaluator on larger scale samples are displayed in Section 4.1, demonstrating
its reliable performance. Notably, we collect annotated test data for the Evaluator after we have
finalized the prompt design for our Evaluator. Therefore, we believe the proposed prompt design of
our Evaluator can generalize across different Curators and issues in the DCA-Bench.

4 EXPERIMENTS

In this section, we first verify the performance of the Evaluator, showing its reliable alignment with
human annotators, while demonstrating consistency and negligible bias. We then apply this Evaluator
to test some baseline Curators on DCA-Bench and discuss the results.

4.1 VALIDATION OF THE EVALUATOR

High Alignment with Human To verify the effectiveness of the proposed agent Evaluator, we
conduct a comparative analysis against human annotations. We randomly select 23 test cases for each
of the four hint levels, resulting in a total of 92 (issue, hint) pairs. Using these pairs, we collect the
outputs of a baseline Curator agent, which is based on the OpenAI Assistant API with GPT-4-0125
preview equipped with the Code Interpreter tool4, on each of the 92 pairs. The Evaluator and human
annotators then rate the Curator outputs independently. For the Evaluator, we test four different
models as backends: GPT-4-0125 preview, GPT-4o-0513, GPT-3.5-Turbo, and Llama3-70B-Instruct.
Human annotators follow a structured codebook5 to ensure rating consistency. Finally, we compare
the Evaluator’s ratings with human annotations (ground truth) using a binary classification scheme:
fail versus succ (where succ combines both success and success+). Additional results
based on a three-class classification scheme (fail, success, and success+) are provided in
Appendix A.2.3.

As shown in Tab. 2, Evaluators using all backend models achieve high recall scores, indicating
that they rarely misclassify succ as fail. However, weaker models such as GPT3.5-turbo and
Llama3-70B-Instruct often misclassify fail as succ, as evidenced by their relatively low precision
score. Overall, the Evaluator with the GPT-4-0125-preview backend shows a high alignment with
human annotations, suggesting that it could serve as a reliable proxy for human evaluations in our
benchmark.

Consistent Evaluation To assess the consistency of the ratings provided by our Evaluator, we ran
the Evaluator six times on the same outputs generated by the Baseline Curator (GPT-4-0125-preview)
using a subset of DCA-Bench (92 data-hint combinations). This yielded a standard deviation of
±2.02%, indicating a high stability.

3More details about the settings of weights and thresholds are provided in Appendix A.2.1.
4See https://platform.openai.com/docs/assistants/tools/code-interpreter.
5Please see Appendix A.2.2 for details
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Table 2: The performance of Evaluators with different backend models, using human annotations as
ground truth. Here, we treat succ as the positive class when calculating Precision, Recall, and F1
Score. The “κ Value” refers to Cohen’s κ between the Evaluator ratings and the human annotations.

Success Rate / %

Model Name Accuracy Precision Recall F1 Score κ Value

GPT-4-0125-preivew 96.74 92.86 96.30 94.55 92.22
GPT-4o-0513 92.39 81.25 96.30 88.14 82.59
GPT3.5-turbo 68.48 48.21 100.00 65.06 42.15

Llama3-70B-Instruct 69.57 49.09 100.00 65.85 43.68

Negligible Self-Preference and Length Bias We considered potential biases, such as self-
preference and length bias (Panickssery et al., 2024; et al., 2023), when designing our LLM Evaluator.
Experiments show these biases are negligible. See Appendix A.2.4 for details.

4.2 BENCHMARKING THE BASELINE CURATORS

Experimental Setup We apply our Evaluator with backend GPT-4-0125-preview to benchmark
the performance of some baseline Curators. We first experiment with the baseline Curator based on
the OpenAI Assistant API equipped with the Code Interpreter tool on the full set of test cases and
hint levels. As pointed out by OpenAI API users6, the OpenAI Assistant API’s performance is often
worse than that of the web-interface ChatGPT, so we also test Curators based on the web-interface
ChatGPT. However, experimenting with the web-interface ChatGPT is not scalable, as we need
to manually feed the prompts to the browser. Therefore, we selected 32 (issue, hint) pairs where
the Assistant-API-based Curator fails, forming a hard set of DCA-Bench. Then, we carry out this
small-scale experiment on ChatGPT-4, ChatGPT-4o, and ChatGPT-4 with reference materials7. The
model’s knowledge is limited to May 2024, when we conduct the experiments. The performance of
the Curator is classified as fail and succ by the Evaluator.

Results and Analysis Fig. 3 shows the results of the Assistant-API-based Curator8. Without any
hints (Hint Level 0), the Curator only successfully detects 10.86% of issues. With more informative
hints, the performance of the Curator increases accordingly, achieving a 70.14% success rate when
given the most informative hint (Hint Level 3). Despite this improvement, the success rate is still
unsatisfactory given the amount of information provided, as we cannot expect to have such informative
hints when developing the real autonomous dataset curation pipeline.

Hint Level 0 Hint Level 1 Hint Level 2 Hint Level 3
0.0

0.2

0.4

0.6

10.86%

28.05%

38.91%

70.14%

Figure 3: Success rates of the baseline Curator on com-
plete DCA-Bench.

Table 3: Success rates of different mod-
els tested on the hard set of DCA-Bench.

Model Succ /%
ChatGPT-4 18.80
ChatGPT-4o 18.80
ChatGPT-4 w/refs 12.50

6See Appendix A.5.1 for details
7The ChatGPT website was accessed in May 2024.
8See Appendix A.5.3 for a cost analysis of evaluating baseline Curator.
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Tab. 3 shows the results of web-interface ChatGPT-based Curators on the hard set. OpenAI’s most
powerful models, ChatGPT-4 and ChatGPT-4o, only succeeded in detecting approximately 19% of the
issues. Hypothetically, dataset curation knowledge should help the assistant better identify the issue
about data quality. Therefore, we used OpenAI’s MyGPT9 to add reference materials in DCA-Bench
as knowledge to ChatGPT and tested its performance (the row ChatGPT-4 w/ refs). Surprisingly,
the performance of the model drops in comparison to the model without such extra knowledge. We
suspect that this is because the reference materials introduce overly generic information, taking up the
context window of the model and reducing its attention to the context relevant to the specific issues.
Besides, we analyze the success rate of the Baseline Curator on issues with different token lengths.
We observe that the success rate doesn’t monotonically decrease as content length grows. A detailed
analysis of its performance across different issue types and hint levels is provided in Appendix A.3.

Overall, the results of the baseline Curators indicate that the proposed DCA-Bench benchmark poses
a significant challenge for state-of-the-art LLMs.

5 CONCLUSION

To help the development of LLM agents capable of dataset curation, we present DCA-Bench, a
collection of representative data quality issue cases from popular dataset platforms. Instead of fixing
predefined issues, DCA-Bench aims to test the agent’s capability to discover hidden data quality
issues, a critical initial step in the dataset curation pipeline. To efficiently and effectively evaluate
the performance of the Curator agents, we develop an LLM-based Evaluator with carefully designed
prompts, which aligns well with human annotators. We conduct a benchmark study on the baseline
Curator using DCA-Bench, and the results indicate that while LLMs have potential in real-world
dataset curation, further exploration and innovation are needed to fully realize their capabilities.

Limitations Dataset curation is a complex and comprehensive problem, and test cases we collect
might not fully cover the entire problem set. Additionally, due to the complexity of dataset files,
we cannot guarantee that all the issues in the dataset files in DCA-Bench are labeled. Lastly, we
haven’t considered other modality information such as images or audios, which may be helpful to
effectively curate multimedia datasets. Based on our work, future studies could explore developing
more complex LLM agent systems, best practices for handling multi-modal information in dataset
curation, or creating a more realistic simulation environment for testing LLM agents.

Reproducibility Statement We have uploaded all the code used for experiments, and all the
DCA-Bench data to Google Drive for your reference. Please refer to the “Reproduction Guidelines”
in README.md file.

Ethics Statement To address any potential ethical risks that might raise concerns, we have carried
out thorough ethical reviews. Each data collected in DCA-Benchhas the corresponding source and
License information recorded in the dca_bench.csv in supplementary materials. Please refer to
A.4 for more information.
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A APPENDIX

A.1 DETAILS ABOUT EXAMPLES, STATISTICS, AND CONSTRUCTION PROCESS OF DCA-BENCH

A.1.1 REAL WORLD DATASET CURATION EXAMPLES

The real-world dataset curation process can be complex. During the dataset contribution procedure,
authors and administrators must communicate iteratively to address issues in the contributed datasets.
These issues can be numerous and challenging to address comprehensively at once, even for proficient
individuals. Additionally, new issues often arise while fixing existing ones, leading to a complex
contribution procedure. Below, we provide a few URLs to real-world cases on the TensorFlow dataset
and BIG-Bench to illustrate these challenges:

• https://github.com/tensorflow/datasets/pull/1360

• https://github.com/tensorflow/datasets/pull/1549

• https://github.com/google/BIG-bench/pull/870

Besides, dataset issues are often reported by dataset users, even though uploaded datasets have passed
the initial checks of the administrators. Here are some representative examples classified by tags:

Cross-file discrepancies
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• https://www.kaggle.com/datasets/antonkozyriev/game-recommendations-on-
steam/discussion/4200733"

• https://www.kaggle.com/datasets/nelgiriyewithana/global-youtube-statistics-
2023/discussion/438729

• https://www.kaggle.com/datasets/sudarshan24byte/online-food-dataset/discussion/491973

Insufficient documentation

• https://github.com/Graph-Learning-Benchmarks/gli/issues/259
• https://www.kaggle.com/datasets/pkdarabi/brain-tumor-image-dataset-semantic-

segmentation/discussion/479324

Inaccurate annotations

• https://github.com/google/BIG-bench/issues/938
• https://github.com/google/BIG-bench/issues/872
• https://github.com/tensorflow/datasets/issues/1207

Ethical concerns

• https://github.com/google/BIG-bench/pull/685
• https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/discussion/429030
• https://www.kaggle.com/datasets/pavansubhasht/ibm-hr-analytics-attrition-

dataset/discussion/157179

A.1.2 ISSUE TYPE AND TAG

We classify the issues into single-issue / multi-files and single-file/multi-files.

• single-issue: This sample has only one known issue.
• multi-issue: this sample has multiple issues. If many issues of the same type exist in a sample, we

also classify them into multi-issue.
• single-file: the environment of this sample has only one file
• multi-file: the environment of this sample has multiple files

It’s important to distinguish between the total number of files in a test case and the number of files
affected by issues. Tab. 4 shows the distribution of issue-affected files in DCA-Bench.

Table 4: Statistics of files involved with issues. On average, each instance has 1.44 files involved in
the issue.

Number of Issue-Affected Files Number of Test Cases
1 159
2 54
3 6

> 3 2

To help benchmark users better understand the issue, we further assigned each of them several tags.
Some tags have a structure of affiliations.

typo: Issues caused by typographical errors.
wrong-format: Problems related to incorrect formatting.
inappropriate-file: Missing, empty or redundant files.
ethical/legal-risk: Ethical or legal risks associated with the dataset, such as racial bias, missing
license.
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cross-file-discrepancy: Discrepancies between files (e.g., meta-information in the documentation
does not match the actual data).
internal-discrepancy: Discrepancies within a single file.
data-problem: Issues related to the data files.
|- wrong-value: Errors in the data values.
|- missing-value: there are missing columns or values.
|- data-leakage: Risks of data leakage.
|- apparent-corruption: Errors in the data files that can be easily detected using the information

within the file. (e.g. duplicated data, apparently wrong target format compared to other targets
in the same file, CSV file with wrong format)

|- hidden-corruption: Errors in the data files that require external knowledge and logical reason-
ing to resolve.

document-problem: Issues related to the documentation files(e.g. README, DataCard, meta-data
and other descriptive text) of the dataset.
|- wrong-info: Wrong information in the documentation files (e.g., wrong meta-information,

typos, invalid URLs, and email addresses).
|- insufficient-info: Missing or unclear information in the documentation files (e.g., meanings of

columns, labels, units of data values).
infrastructure-problem: Issues with fetching, loading, processing, or displaying data.
|- data-access: Problems accessing the data.
|- script-code: Issues with scripts.

Tab. 5 displays the statistics of each tag in DCA-Bench in detail.

Table 5: The number of tags in DCA-Bench. Note that the sum of the sub-category might not equal
the parent category. For instance, if there’s an ethical or legal risk identified in a dataset document, it
should be tagged as [“document-problem”, “ethical/legal-risk”], without including any sub-categories
of "document-problem" that are not relevant.

Category Number Sub-category Number
typo 18 — —

wrong-format 14 — —

inappropriate-file 4 — —

ethical/legal-risk 10 — —

internal-discrepancy 21 — —

cross-file-discrepancy 44 — —

data-problem 197

wrong-value 71
missing-value 15
data-leakage 2

apparent-corruption 40
hidden-corruption 59

document-problem 83 wrong-info 27
insufficient-info 52

infrastructure-problem 19 data-access 4
script-code 15

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.1.3 ISSUE EXAMPLES

Example 1: An issue example reported on Kaggle which involves racial bias

Title Boston House Prices B feature is RACIST

Meta-Info
• ID: 7e8f31cb-8c2a-4676-b3d4-941a64184a26
• Platform: Kaggle
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��ethical-legal-risk

�� ��document-problem

• Source: https://www.kaggle.com/datasets/vikrishnan/boston-house-prices/
discussion/429030

Content
B: 1000(Bk-0.63)2 where Bk is the proportion of blacks by town No other
race is featured in this dataset. Red-lining anyone?

Involved Files
- name: datacard.md
- context: PTRATIO:pupil-teacher ratio by town 12. B: 1000(Bk-0.63)2 where
Bk is the proportion of blacks by town 13. LSTAT:% lower status of
the population

Hints
h1 dataset contains potentially biased feature
h2 bias in a feature documented in a markdown file
h3 a feature in datacard.md is described using a formula that appears to single out one race
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Example 2: An issue example reported on BIG-Bench that involves a discrepancy between dataset
files.

Title Miss aligned static information

Meta-Info
• ID: 80d6db6a-6cbf-4261-8d13-3244e7fb54fd
• Platform: BIG-Bench
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��cross-file-discrepancy

�� ��document-problem/wrong-info

• Source: https://github.com/google/BIG-bench/pull/498

Content
The stastic info in README.md is not aligned with the actual data file.
There are 190 stories rather than 194 stories; 99 Ÿesr̈ather than 100 Ÿes;̈
91 N̈or̈ather than 94 N̈o.̈

Involved Files
1. name: task.json
- context: the number of datapoints in data files.

2. name: README.md
- context: We collected 194 stories from 30 papers published in the span
of 1989 to 2021. Each story has a causal judgment question associated
with it with a "Yes" or "No" answer. We carefully balanced the dataset
- there are 100 "Yes" answers (52%) and 94 "No" answers (48%). Each
paper that we collected from has conducted rigorous human experiments.
We follow a simple binarization strategy to reflect the majority of
human agreement and use it as the ground truth to evaluate the AI
model.

Hints
h1 Mismatched quantitative information
h2 Mismatched quantitative information in README.md and data file
h3 Quantitative discrepancies between README.md and task.json, specifically in the counts of

stories, ’Yes’ answers, and ’No’ answers
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Example 3: An issue example which has a wrong target label that needs precise factual knowledge to
discern

Title Error in 118th Congress data

Meta-Info
• ID: 51e12546-8bf3-473c-9ed6-f85d63c357ce
• Platform: FiveThirtyEight
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��data-problem/hidden-corruption ,

�� ��data-problem/wrong-value

• Source: https://github.com/fivethirtyeight/data/issues/336

Content
The "congress-demographics" data includes Benjamin Eric Sasse as being a
member of the 118th Congress but he resigned after the 117th.

Involved Files
- name: data_aging_congress.csv
- context: The "congress-demographics" data includes Benjamin Eric Sasse as
being a member of the 118th Congress but he resigned after the 117th.

Hints
h1 inaccurate data entry
h2 an inaccurate data entry in a CSV file
h3 an entry in ’data_aging_congress.csv’ inaccurately includes a member as part of the 118th

Congress
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Example 4: An issue example which has a wrong target label that requires translation ability to
discern

Title Mistranslation in conlang_translation task?

Meta-Info
• ID: bb29a2c3-872b-41cc-ac55-b26f22043da6
• Platform: BIG-Bench
• Issue Type: single-issue & multi-file

• Issue Tags:
�� ��data-problem/wrong-value ,

�� ��data-problem/hidden-corruption

• Source: https://github.com/google/BIG-bench/issues/553

Content
On the English to Gornam translation, one of the translations may be
incorrect. Specifically, the example given is English: They want to eat
my pizzas. Gornam: Sa wott min Pizzas atten. However, from looking at
the other examples, it seems like when the subject is plural (like they),
the suffix en is attached to the word, so the correct Gornam translation
should be Sa wotten min Pizzas atten. Is this true, or is there some
flaw in this logic that we are missing?

Involved Files
- name: task.json
- context:

"examples": [
{"input": "I want to buy the orange.", "target": "Ek wott dei Orange leuren."},
{"input": "He is wearing my pants.", "target": "Ha trugt min Rose."},

- {"input": "They want to eat my pizzas.", "target": "Sa wott min Pizzas atten."},
+ {"input": "They want to eat my pizzas.", "target": "Sa wotten min Pizzas atten."},

{"input": "I can eat.", "target": "Ek conn atten."},
{"input": "They eat their shirts.", "target": "Sa atten hir Pemts."},
{"input": "He tries on my coat.", "target": "Ha roturt min Enzu en."},

Hints
h1 incorrect translation example
h2 incorrect translation example in a JSON file
h3 a potential translation inconsistency in ’task.json’ involving plural subject examples

A.1.4 DISCUSSION ON CHOICES OF DATASET PLATFORMS AND CASES SELECTIONS

We mainly focus on two types of dataset platforms. The first type includes HuggingFace and Kaggle,
which hosts a huge volume of datasets and offers a dedicated discussion section for individual datasets.
The second type is hosted on GitHub, such as BIG-Bench, where the data quality issues are identified
from the issue or pull request (PR) sections. Roughly speaking, for HuggingFace and Kaggle, we first
select a few popular datasets and then examine the discussion posts relevant to data quality issues.
For GitHub-based repositories, we obtain data quality issues by browsing the issue or PR sections.

Our detailed collection process is outlined as follows:

Kaggle:

1. We begin by using Kaggle API to select datasets that have ≥ 5 discussions with a proper
files size ≤ 512 MB, and collect them into a candidate list.

2. We manually review the discussion sections of these datasets, collecting discussions relevant
to dataset issues and compiling them into a table.
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3. For each collected discussion, if the dataset issues are confirmed by either the dataset owner
or other participants (with at least two reports of the issue), we consider it as verified. If not,
we manually verify the issues by checking the corresponding files, which is straightforward
due to the dataset’s version history control (in case the issue has been resolved in the current
version).

HuggingFace:

1. We follow a similar approach to Kaggle, first selecting candidate datasets that have enough
discussions and proper file size by using HuggingFace API

2. Using the same strategy as for Kaggle, we collect discussions relevant to dataset issues and
verify them through the same process.

Platforms Hosted on GitHub: On GitHub, dataset issues are identified from several sources,

1. Issues raised by platform maintainers during the review of new dataset contribution PRs.
These are inherently verified by the maintainers.

2. Issues reported by users in the issues section. If these issues are confirmed by the maintainers,
they are considered verified (And it’s usually linked to a PR so as to fix it). If not, we
manually check the corresponding files ourselves.

We have also surveyed on other dataset hosting platforms, which we found are not ideal for
constructing DCA-Bench. Zenodo is a platform for safely storing and sharing research data, which
fully follows FAIR principles (Wilkinson et al., 2016). However, to our knowledge, it doesn’t support
a feedback mechanism, which makes it unclear whether there are issues within those dataset files
and whether the descriptions align with the datasets. Compared to HuggingFace and Kaggle, this
lack of feedback makes the platform less informative about the issues that concern dataset users,
which is why we did not collect datasets from it. Harvard-Dataverse faces similar issues, as it has a
GitHub repository but does not use it for reporting dataset problems. Domain-specific datasets like
the Materials-Data-Facility or PANGAEA also share the same problem, making it difficult for us
to collect issue samples from them, which is why they were less interesting for us. Open-Science-
Framework seems not to be a standard dataset hosting platform—it is a platform for hosting projects,
where the files do not necessarily have to be datasets, so we dismissed further discussions.

A.2 DETAILS ABOUT DCA-BENCH EVALUATOR AND HINTS WRITER

A.2.1 DESIGN DETAILS OF THE EVALUATOR

In this part, we elaborate on the prompt design of our Evaluator. While it’s natural to ask LLMs to
directly classify the Curators’ performance into fail/success/success+, this strategy is poorly
aligned with the annotation of human experts as we tested. In addition to common prompt methods
(e.g., COT (Wei et al., 2023), role-playing (Kong et al., 2024), delimiter (OpenAI, 2024b), we believe
more prompt engineering is needed to improve the performance of the Evaluator, and here is our
design:

We chose to have the Evaluator rate on specific metrics because this strategy allows for iterative
refinement of the prompt by adjusting the weight and threshold of each metric. This approach
decreases uncertainty by introducing fixed numerical comparisons, which provides a clearer direction
for tuning, as opposed to relying solely on textual standards, which can be more ambiguous.

In designing the Evaluator’s prompt, we started by selecting a small subset of human-labeled samples.
We began with an initial weight distribution of (0.7, 0.2, 0.1) to reflect the relative importance of each
metric in Section 3.4. The high initial weight for "Precise Contextual Evidence" was chosen to align
with our focus on whether the Curator identifies annotated issues by providing contextual evidence,
as discussed in Section 3.4. We then fine-tuned these weights using the selected subset to better align
the Evaluator’s prompt with human judgments.

The motivation behind this design is to make iterative refinement of prompts more effective. De-
veloping a good prompt requires testing it on a subset of human-labeled issues with corresponding
outcomes from Curators and then making adjustments based on the outcomes. Unlike the model
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training process, which benefits from clear gradients and systematic optimization, tuning text prompts
is often an empirical process necessitating numerous trials without the guarantee of improvement in its
performance. Employing numerical weights and thresholds could enable us to tune the prompt more
fine-grained, only changing the weights or threshold based on the results, which share similarities
with linear regression, resulting in a more efficient prompt tuning process and better performance. By
"training" on a this human-labeled subset, we finalized weights in the prompt as 0.85, 0.15, and 0.05.

It’s important to highlight that we collected samples for the test set used in Section 4.1 after finalizing
the prompt design, ensuring that there is no test data leakage to the prompt tuning.

To be more detailed, the Evaluator is prompted with the following instructions to evaluate the
performance of the agent, with <ISSUE>, <HINT>, and <ANSWER> being the place-holder.� �
You are required to act as an answer evaluator. Given an issue context,

the hint disclosed to the agent and the answer from the agent,
you should rate the performance of the agent into three levels: "failed",

"partially", and "success". The rating rules are as follows:

<rules>
1. You will be given a list of <metrics>, for each metric, you should

rate in [0,1] for the agent based on the metric criteria, and then
multiply the rating by the weight of the metric.

2. If the sum of the ratings is less than 0.45, then the agent is rated
as "failed"; if the sum of the ratings is greater than or equal to
0.45 and less than 0.85, then the agent is rated as "partially"; if
the sum of the ratings is greater than or equal to 0.85, then the
agent is rated as "success".

3. **<text>** means the text is important and should be paid attention to.

4. ****<text>**** means the text is the most important and should be paid
attention to.

</rules>

The <metrics> are as follows:
{

"m1": {
"criteria": "Precise Contextual Evidence:

1. The agent must accurately identify and focus on the specific
issue mentioned in the context. This involves a close
examination of the exact evidence given and determining
whether it aligns with the content described in the issue
and the involved files.

2. Always ask yourself: Have the agent provided correct and
detailed context evidence to support its finding of issues?
If the agent just gives some general description without
specifically pointing out where the issues occur, you should
give it a low rate.

3. Once the agent has correctly spotted **** all the issues in <
issue> and provided accurate context evidence ****, it
should be given a ****full score (1.0) even if it includes
other unrelated issues/examples ****"

4. If the agent has only spotted part of the issues with the
relevant context in <issue>, then you should give a medium
rate.

5. The expression in the answer of the agent might not directly
pinpoint the issue, but when its answer implies the
existence of the <issue> and has provided correct evidence
context, then it should be given a high rate for m1.

6. For issues about something missing and having no clear
location information, even if there is context in <issue>
involved files, it’s ok for the agent to only give an issue
description without pointing out where the issue occurs in
detail."
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"weight": 0.8,
"range": [0, 1]

},
"m2": {

"criteria": "Detailed Issue Analysis:
1. The agent must provide a detailed analysis of the issue,

showing an understanding of how this specific issue could
impact the overall task or dataset as human evaluators do.

2. This metric stresses the importance of not just identifying
that there is an issue but also understanding and explaining
its implications in detail.",

"weight": 0.15,
"range": [0, 1]

},
"m3": {

"criteria": "Relevance of Reasoning:
1. The agent’s reasoning should directly relate to the specific

issue mentioned, highlighting this inconsistency’s potential
consequences or impacts.

2. This metric ensures that the agent’s logical reasoning
directly applies to the problem at hand."

"weight": 0.05,
"range": [0, 1]

}
}
</metrics>

--------------------------------

Now let’s begin:

<issue>
<ISSUE>
</issue>

<hint>
<HINT>
</hint>

-------------------- Below is the answer from the agent. Ensure you don’t
take the information above as the agent’s answer!

<answer>
<ANSWER>
</answer>

--------------------

response below,
1. after your analysis, remember to give a **"decision: [failed/partially

/success]"** for me to extract it using REGEX.
2. Don’t use Code Interpreter!; Use your ability to analyze the text. **

Pay attention to your calculations and make sure they are correct. **
3. There could be multiple issues described in <issue> part. You should

start by thinking clearly about how many issues exist in <issue> and
list them out, then you should compare them with the answer from the
agent.

4. you should focus on whether the agent has spotted the issue in <issue>
rather than caring about whether the agent includes unrelated

examples not present in the context.� �
Please note the categories of the Curator’s performance are different from papers. We use
partially for success in the paper. This modification is made because we want to emphasize
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we focus more on separating fail from the other two categories, which is a binary classification
problem. Using partially might cause confusion.

A.2.2 HUMAN ANNOTATION CODEBOOK FOR EVALUATING CURATOR’S PERFORMANCE

The human annotators are required to follow the following codebook when rating the responses from
the Curators:

You are tasked with evaluating the work of a Dataset Curator, who is responsible for identifying
issues in dataset files and pinpointing the contextual evidence within those files. You will be provided
with a ground truth that specifies the issues present in the files and their exact locations.

Based on this information, please categorize the Curator’s findings into the three following categories:

• fail: the Curator either denies the existence of the issue stated on the label, identifies irrelevant
issues, or acknowledges the issue but offers completely inaccurate supporting evidence.

• success: The Curator identifies the annotated issue and provides at least one correct piece of
contextual evidence.

• success+: the Curator correctly identifies all issues and provides all necessary contextual
evidence.

Additional Rules: 1. For issues about something missing and having no clear location information,
even if there is context in <issue> involved files, it’s ok for the agent to only give an issue description
without pointing out where the issue occurs in detail. 2. You should focus on whether the agent
has spotted the issue in ground truth rather than caring about whether the agent includes unrelated
examples not present in the context. The inclusion of other irrelevant issues won’t influence its
performance in evaluation.

A.2.3 ADDITIONAL RESULTS FROM HUMAN-ALIGNMENT EXPERIMENT ON EVALUATOR

As defined in Section 3.3, the performance of the Curator is categorized into fail,
success, and strict-success. However, accurately distinguishing between success and
strict-success in the original triple classification is challenging for Evaluators.

Tab. 6 presents the complete results of the Evaluators’ performance with strict success alignment,
compared to human annotations (ground truth). There is a significant drop in the Evaluators’
performance when required to provide a triple classification.

Table 6: The performance of Evaluators with different back-end models, using human annota-
tions as ground truth on 92 (issue, hint) pairs. Compared with binary classification (fail /
(success+success+), the triple classification proves to be more difficult, making the evaluation
results from the Evaluator less reliable.

Binary / % Triple / %

Model Name Accuracy Precision Recall F1 Score κ value Accuracy κ value

GPT-4-0125-preivew 96.74 92.86 96.30 94.55 92.22 88.04 73.77
GPT-4o-0513 92.39 81.25 96.30 88.14 82.59 83.70 66.47
GPT3.5-turbo 68.48 48.21 100.00 65.06 42.15 63.04 38.82

LLama3-70B-Instruct 69.57 49.09 100.00 65.85 43.68 64.13 41.30

A.2.4 NEGLIGIBLE SELF-PREFERENCE AND LENGTH BIAS OF EVALUATOR

In this section, we discuss the possibility that LLM Evaluators may be biased towards Curators that
are backed by the same LLM model (self-preference), and might be biases toward the length of the
response (length bias) (Panickssery et al., 2024; et al., 2023). We design two experiments to examine
whether these biases are within acceptable range.
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Experiment on Self-Preference Bias We used GPT-3.5-Turbo and GPT-4-0125-preview as the
backend models for both the Curators and the Evaluators, leading to four combinations of Curator
and Evaluator settings. For each Evaluator, we calculated the Average Odds Difference (AOD)
Majumder et al. (2022), a metric that measures fairness by assessing differences in true positive and
false positive rates between two groups. A value of zero indicates perfect fairness, with equal model
performance across both groups. Higher AOD values suggest increasing disparity, with the model
performing unevenly between the groups. The AOD is defined as:

AOD =
1

2
(|TPRgroup1 − TPRgroup2|+ |FPRgroup1 − FPRgroup2|) (1)

In this context, the GPT-4-0125-preview Curator is privileged, while the GPT-3.5-Turbo Curator is
unprivileged. We evaluated the GPT-3.5-Turbo Evaluator five times and the GPT-4-0125-preview
Evaluator three times.

Table 7: True Positive Rate (TPR) Results

Evaluator \ Curator GPT-3.5-Turbo GPT4-0125-preview
GPT-3.5-Turbo 100.00 (±0.00)% 100.00 (±0.00)%
GPT-4-0125-preview 84.44 (±3.14)% 91.35 (±3.49)%

Table 8: False Positive Rate (FPR) Results

Evaluator \ Curator GPT-3.5-Turbo GPT4-0125-preview
GPT-3.5-Turbo 68.95 (±1.29)% 56.78 (±3.18)%
GPT-4-0125-preview 0.00 (±0.00)% 3.71 (±2.92)%

Using the error propagation formula10 and Eq. 1, we get the AOD for GPT-3.5-Turbo is
6.09 (±1.72)%.We can also get that the AOD for GPT-4-0125-preview, which is 5.31(±2.76)%.

Since an AOD ≤ 10% is considered fair Majumder et al. (2022), the bias remains within an
acceptable range.

Furthermore, we observe a great alignment between the GPT-4-0125-preview based Evaluator and
human annotations, on both the GPT-3.5-Turbo based Curator and the GPT-4-0125-preview based
Curator:

Table 9: Comparison of Metrics between Evaluators and Human
Annotations

Metric/Curator GPT-3.5-Turbo GPT-4-0125-preview
Accuracy 97.46 (±0.51)% 96.38 (±0.51)%
Precision 100.00 (±0.00)% 96.29 (±2.92)%
Recall 84.44 (±3.14)% 91.36 (±3.49)%
F1 Score 91.53 (±1.87)% 93.66 (±0.97)%
κ value 90.06 (±2.16)% 91.13 (±1.31)%

These results suggest that using the same model for dataset curation and evaluation does not introduce
significant bias in our study, which is acceptable.

Experiment on Length Bias We also conducted an experiment to further investigate this. After the
Curator generated the results, we fed its response to another LLM (gpt-4o-2024-08-06) to expand
upon its generation. While the most common bias is the preference towards longer responses, we also
tested the case where the response is more succinct. The corresponding prompts are listed as follows.

Rephrase to verbose:
10https://en.wikipedia.org/wiki/Propagation_of_uncertainty
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� �
You are provided with a description text, and your task is to make it

more detailed and elaborate. Ensure that you do not add any new
information or content that was not present in the original context.
Your goal is to expand upon the existing meaning without altering it.
Additionally, maintain the same format as the original answer. Don’t
mention this prompt in your response.

=================== Start:� �
Rephrase to succinct:� �
You are provided with a description text. Your task is to rephrase it

concisely while ensuring all essential information is retained. Do
not add new information or omit any key details from the original
context. Remember to maintain and keep the same format as the
original answer. When answer is already short, you don’t have to
condense it too much. Do not mention this prompt in your response.

=================== Start:� �
Both prompts are designed to ensure that the only difference between the responses is the length. We
used GPT-3.5-Turbo (0125) and GPT-4o-mini (0718) as the underlying models for the Curator and
compared the results with responses of different length to see if there was a significant change in the
success rate. The experiment was conducted on 92 cases (at the hint level).

Model Name/Running Type Succinct Normal Verbose

GPT-3.5-Turbo 204.8 339.1 520.0
GPT-4o-mini 361.4 521.8 672.9

Table 10: Average response length of succinct, normal, verbose settings.

Model Name/Running Type Succinct Normal Verbose

GPT-3.5-Turbo 13.04% 14.13% 13.04%
GPT-4o-mini 20.65% 20.65% 19.57%

Table 11: Accuracy of succinct, normal, verbose settings.

As can be seen, the difference of accuracy is at most ≈ 1% for various response lengths, indicating
that there is no significant length bias with our Evaluator.

A.2.5 PROMPT DESIGN OF HINTS WRITER

The Hints Writer is prompted with the following instructions to generate three level hints for the
issue, with <ISSUE> being the placeholder.� �
You are an issue-hint writer. You need to formulate some hints for

detecting certain issues, based on the description in
<issue> below.

<rules>
- The hints should have three different levels, from very general to very

specific.
- For ‘‘general hint’’, you should only tell the general issue, without

any specific information.
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- For ‘‘medium hint’’, you could tell which files are involved in this
issue + general hint. Make sure it contains the information from the
general hint.

- For ‘‘specific hint’’, you should tell which files are involved in this
issue clearly, as well as a part of context information. Make sure

it contains the information from the general and medium hints.
- You should never tell the agent the full context of the issue, only

give it hints, so we can test to what degree the agent detects the
issue and tell us evidence by themselves.

- Your word used in hints should be precise, pay attention to the word
choice, and try to avoid misleading or ambiguous words. You should
make sure you have a clear understanding of the issue before writing
the hints.

- The hints should be clear and concise, try to cover all the issues
mentioned and avoid unnecessary information.

</rules>

<example>
{

<issue>
{

title: What is the provenance of these benchmark datasets?}
content:

{
Firstly, check the English proverbs dataset: https://github.

com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/
english_proverbs

‘‘‘
task can help to draw conclusions about human-like

understanding and
## Data source
## References

‘‘‘
There is nothing in the data source section.

}
involved: {

name: README.md,
context: {

‘‘‘
task can help to draw conclusions about human-like

understanding and Data Source References
‘‘‘

}
}

}
</issue>

output:
{

general: "section with empty content"
medium: "a section with empty content in markdown file"
specific: "a sub-heading section in README.md with empty content"

}

</example>

------

Now let’s begin

<issue>
<ISSUE>
</issue>

write your hints here in JSON format:
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� �
When designing the prompt, we take into consideration the risk that hints could provide too much
information that can already serve as a valid answer. In the “<rule>” section, we clearly require the
Hint Writer not to reveal the full context of the issue to the Curator, in case it takes it as a shortcut
and skips reading the real files. We also manually check the generated hints to ensure the generated
hints comply this rule.

A.3 DETAILED ANALYSIS OF THE PERFORMANCE OF BASELINE CURATOR ON DCA-BENCH

A.3.1 FROM THE PERSPECTIVE OF DIFFERENT CONTENT LENGTH

Given the large average content length (or size of files, counted by token number) involved in test
cases, it’s interesting to explore how the success rate of the Baseline Curator changes with the number
of tokens. Therefore, we created a statistical plot showing the count of success and failure cases
for different content lengths. Fig. 4 shows that the success rate doesn’t monotonically decrease as
content length grows. For our baseline Curators, we used the OpenAI Assistant API with the Code
Interpreter Tool to build the agents. This tool provides temporary file storage for uploaded files and
can process them with code scripts. By processing data before it is passed to the LLM, the tool allows
the OpenAI Assistant to handle much smaller inputs in terms of token usage, even when working
with large datasets. Consequently, the effective input size for the LLM is often significantly reduced.
Notably, depending on the agent’s capacity to efficiently process and manage information.
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Figure 4: Number of success & failure and success rate versus different content length of test cases.

Besides, the performance of the Curator also depends on the type of issues. Take the issue 21ca944c-
cf82-4764-bb2c-4c8db0cee95011 as an example. This issue involves many missing values in a large
CSV file. Even with 361,814 tokens, it’s relatively easy for an LLM agent to spot the problem. The
agent can quickly check part of the file and identify the missing values. This example shows that
task difficulty isn’t just about data size. It also depends on the problem type and how relevant the
information is.

11https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/discussion/168946
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Therefore, it’s expected that a test case with larger content length does not necessarily lead to poorer
performance.

A.3.2 FROM THE PERSPECTIVE OF HINT LEVEL

Here is a more detailed analysis of the overall performance with different hints. As outlined in
L183-L186, the hints are divided into four levels, from 0 to 3, focusing on two dimensions with
increasing information: the description of the issue and its specific context. The design follows an
incremental pattern from h0 to h3. Please refer to Appendix 10 for some specific examples. Let’s
continue by discussing the capabilities required to succeed at each hint level.

If we aim to develop an LLM agent for this task without considering cost constraints, the process
should involve the following steps: Retrieve Knowledge → Plan and Select Files to Check →
Read Files and Validate Issues → Receive Feedback and Update State → (Loop) → Make Final
Decisions. Since our Baseline Curator does not support looping, we exclude it from the following
analysis. We will use this diagram to demonstrate which steps become less critical as the hint level
increases.

h0: With no hints provided, the Curator must examine all the uploaded files. This requires the
ability to handle and retain very long inputs effectively. To identify potential issues, the Curator needs
comprehensive knowledge of dataset curation to anticipate a wide range of problems and retrieve
relevant information when provided with the dataset files. The task also involves exploring and
interacting with the dataset files to gradually narrow down the search space, requiring high-level
reasoning and planning abilities. This corresponds to no reduction in the original diagram’s required
steps.

h1: When given a general description of the issues but no specific location, the search space is
somewhat reduced but not entirely, as the description remains broad. A robust understanding of
dataset curation and the ability to manage long inputs are still necessary. Ideally, this follows the
pattern of Retrieval of Knowledge (↓), with minimal impact on the steps for planning and selecting
files, except where file names are relevant. The steps for reading files and validating issues also see a
slight reduction (↓).

h2: At this level, the Curator is provided with both a general description of the issue and specific
hints about which files are involved. This further reduces the search space, making the ability to
manage long inputs sufficient but less critical. The need for extensive knowledge retrieval decreases
as the Curator can focus on the relevant files. Planning and file selection are simplified, as the Curator
has clear guidance on which files to examine. Reading and validating issues also become easier,
as the scope is narrower, reducing the overall complexity of the task. This follows the pattern of
Retrieval of Knowledge (↓), Planning and Choosing Files (↓), and Reading and Validating Issues (↓).

h3: At the highest hint level, the Curator receives the general description, the specific files involved,
and partial context. This greatly reduces the need for managing long inputs and makes the retrieval
of knowledge more targeted. Planning and file selection is almost straightforward, with the Curator
essentially guided to the areas needing attention. Reading and validating issues are significantly
simplified due to the detailed context, further decreasing the Curator’s workload. This follows
the pattern of Retrieval of Knowledge (↓ ↓), Planning and Choosing Files (↓ ↓), and Reading and
Validating Issues (↓ ↓).

A.3.3 FROM THE PERSPECTIVE OF DIFFERENT ISSUE TAGS

We show the evaluation results from the Baseline Curator on the whole DCA-Bench classified into
different tags in Tab. 12. We conduct analysis for some tags with relatively low success rates below.

Typo This refers to issues caused by typographical errors, including misspelled words, misused
phrases, and incorrect email addresses. The specific nature of these issues is that they involve small
errors within a long context, which means a large search space. This makes errors that are easy to
spot in shorter contexts extremely difficult to find, even for humans.
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Table 12: The success rate of Baseline Curator on DCA-Bench (221 samples × 4 hint levels) grouped
by tags.

Category Success Rate/Number Sub-category Success Rate/Number

typo 33.33% / 18*4 — —
wrong-format 46.43% / 14*4 — —
inappropriate-file 50.00% / 4*4 — —
ethical/legal-risk 47.50% / 10*4 — —
internal-discrepancy 36.90% / 21*4 — —
cross-file-discrepancy 28.41% / 44*4 — —

data-problem 32.99% / 197*4 wrong-value 29.58% / 71*4
missing-value 40.00% / 15*4
data-leakage 50.00% / 2*4
apparent-corruption 45.63% / 40*4
hidden-corruption 25.42% / 59*4

document-problem 40.96% / 83*4 wrong-info 29.63% / 27*4
insufficient-info 45.67% / 52*4

infrastructure-problem 35.53% / 19*4 data-access 56.25% / 4*4
script-code 30.00% / 15*4

Internal-discrepancy This involves issues within a file where information is misaligned, such as a
mismatched sum for some features in a .csv file12, or a word misused in a way that contradicts itself
within its context13. These issues require reasoning and memory over a long context.

Cross-file-discrepancy Compared to internal-discrepancy, this type of issue requires checking for
consistency across different files, such as misaligned information between a datacard and dataset
files14. This can be challenging when there are many issues and limited hints about the files involved.

Wrong-info This involves incorrect information in documentation files (e.g., wrong meta-
information, typos, invalid URLs, and email addresses). This category overlaps with the issues
mentioned above.

Script-code Many datasets also provide script code to load the data, and issues can arise in these
scripts, leading to data loading problems15. To address these issues, the Curator needs to be skilled in
coding and debugging and sometimes must understand the dataset’s purpose16.

A.4 ETHICS STATEMENT

A.4.1 RESEARCH INVOLVING HUMAN PARTICIPANTS

The human annotators are the authors of this work, and we have confirmed that they are willing to
annotate, knowing the potential ethically problematic data issues, as we listed in Offensive Content.
Prior to the annotation, the leading authors have checked that the datasets with ethical problems pose
minimal risks to the annotators.

12https://github.com/fivethirtyeight/data/issues/52
13https://github.com/google/BIG-bench/pull/904/files#diff-a5582cf9c7731f66cc3e8f6aa0e9d070483fc14f7c1d3545f275207c6fa39bd5
14https://github.com/fivethirtyeight/data/issues/261
15https://huggingface.co/datasets/spyysalo/bc2gm_corpus/discussions/3
16https://github.com/google/BIG-bench/pull/559
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A.4.2 DATA PRIVACY, COPYRIGHT, AND CONSENT

The DCA-Bench has collected materials and datasets from the following platforms: HuggingFace,
Tensorflow Dataset, Graph Learning Indexer, Kaggle, BIG-bench, OpenML, Open-Data-Registry,
and FiveThirtyEight. The corresponding terms or license links are provided.

Besides, we have also included a detailed table DCA_Benchmark.csv in our supplementary
materials.

where all the files involved in DCA-Bench have been annotated with their License Information.

Each data point in DCA-Bench has two types of license:

• License for the platform that hosted this dataset
• License of this dataset

Details:

• Some data points in DCA-Bench involve files from 2 datasets, we listed all licenses.
• Many datasets themselves don’t have a license listed on their data card.
• We notice that there are some datasets17claiming that "Data files © Original Authors", which

is not a standard License. We have reached out to the dataset owners for clarification, but
have not yet received a response. Therefore, we choose to record them as it claimed in our
table.

How does this secondary usage of user-generated data comply with restrictions? DCA-Bench
involves user-generated data (comments, modified codes) collected from dataset repositories hosted
on GitHub, HuggingFace, and Kaggle.

For GitHub, we collected the comments and modified codes generated by users. According to
section D.3, paragraph 2 of GitHub Terms of Service18,

"Because you retain ownership of and responsibility for Your Content, we need
you to grant us—and other GitHub Users—certain legal permissions, listed in
Sections D.4—D.7."

According to section D.5. License Grant to Other Users19, if not provided a specific license, any
User-Generated Content you post publicly, including issues, comments, and contributions to other
Users’ repositories, may be viewed by others. However, it doesn’t clearly explain how this content
is allowed to be used in which ways, and which is not. However, according to a Github issue
discussion20, we believe our practice is acceptable. Besides, we noticed that there have already been
some works (Kocetkov et al., 2022; Jimenez et al., 2024b) with similar usage of GitHub data, which
implies that this usage is acceptable.

For HuggingFace, according to HuggingFace Content Policy21, Content types may include:

• "ML Artifacts": Code and assets hosted as Hugging Face Repositories, including Models,
Datasets, and Spaces;

• "Community Content": Content that can be found in the Community section of the Hug-
ging Face Platform, including discussions, comments, and usernames, as well as related
documentation such as READMEs, model cards, data cards, pull requests, and merges.

According to HuggingFace Terms of Service22, Section “Your Content”,
17e.g. https://www.kaggle.com/datasets/roche-data-science-coalition/uncover/data
18https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#c-acceptable-use
19https://docs.github.com/en/site-policy/github-terms/github-terms-of-service#5-license-grant-to-other-

users
20https://github.com/orgs/community/discussions/135466
21https://huggingface.co/content-guidelines
22https://huggingface.co/terms-of-service
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"If you decide to set your Repository public, you grant each User a perpetual,
irrevocable, worldwide, royalty-free, non-exclusive license to use, display, publish,
reproduce, distribute, and make derivative works of your Content through our
Services and functionalities;"

Therefore, we believe our usage of user-generated content from HuggingFace should belong to the
“derivative works” here, which is acceptable.

For Kaggle, after reviewing their Terms of Use23, we noticed that there are no explicit guidelines
regarding the use of user-submitted content for academic research purposes. So we have sent Kaggle
Support a request for clarification, and here is the response:

" Kaggle is a neutral platform in hosting competitions and data. Protections
under copyright law can vary based on the nature of data, contractual obligations,
and your jurisdiction. As a result, we are not able to approve individual uses of
data on a case-by-case basis. Copyright or usage questions should be directed to
your legal counsel. You may post usage enquiries in the respective competition’s
forum, but we can not guarantee an official response from the Sponsor.

If the rules do not specify usage restrictions, we ask that you use your best
judgement in determining fair use. For example, it may be okay for you to use the
data for teaching a class, demoing a method in a blog post, or other non-commercial
purposes. Some of our competitions identify themselves as open-source and are
meant to foster research, collaboration, and continued analysis by the data science
community. "

Since our paper is not for commercial usage, we believe our practice is acceptable

Lastly, our collection and evaluation processes exclude the gathering of any user information. We
promise that we will remove the content once requested with a valid reason.

A.4.3 OFFENSIVE CONTENT

Our dataset, comprising 221 data instances, includes content that may be considered sensitive or
potentially controversial. Specifically, there are 10 data points involving ethical or legal risks, among
which 2 data points24 contain content that may exhibit bias towards specific groups of people. Other
issues are relevant to data source or license information.

Besides, the risk in most cases is associated with deploying models trained with these datasets.
Reviewing the quality issues of these datasets poses minimal risks to the annotators.

Justification for Inclusion

While we acknowledge the sensitive nature of these data instances, their inclusion in our dataset is
both intentional and necessary for the following reasons:

• Benchmark Objectives: One of the primary goals of our benchmark is to examine LLM
agents’ ability to identify and assess potential ethical and legal risks in AI training data. The
inclusion of these sensitive data points is crucial for thoroughly evaluating the capability of
AI models to recognize and appropriately handle such content.

• Realistic Representation: These data points reflect real-world scenarios that AI systems
may encounter. By including them, we ensure our benchmark provides a more comprehen-
sive and authentic assessment of AI performance.

23https://www.kaggle.com/terms
24https://github.com/google/BIG-bench/pull/685 and https://www.kaggle.com/datasets/vikrishnan/boston-

house-prices/discussion/429030
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A.5 OTHER TECHINAL DETAILS

A.5.1 DISCUSSION ON THE DIFFERENCE BETWEEN OPENAI ASSISTANT API AND CHATGPT

The performance discrepancy between OpenAI’s Assistant API and ChatGPT has been widely
discussed within the OpenAI user community. Users often report that the Assistant API’s performance
does not match the capabilities of ChatGPT, especially in tasks involving complex file processing and
analysis.

The Assistant API provides several methods for handling files: 1. Code Interpreter for file uploads. 2.
Building VectorStores via File Search. 3. Attaching files to messages using their file IDs.

However, these methods have significant issues: - The quality of the VectorStore built using File
Search is inferior to ChatGPT’s built-in file search capabilities. - Files are referenced by their file IDs
rather than their names, leading to confusion and errors during processing.

The following code snippet illustrates the process of uploading and referencing files in the Assistant
API by attaching them to the messages:

msg_file_ids = []
for file_path in file_paths:

message_file = self.client.files.create(
file=open(file_path, "rb"), purpose="assistants"

)
msg_file_ids.append(message_file.id)

attachments = [{"id": file_id, "tools": [{"type": "file_search"}]} for
file_id in msg_file_ids]

thread = self.client.beta.threads.create(
messages=[

{
"role": "user",
"content": input,
"attachments": attachments

}
]

)

Despite correctly assigning file names during the upload process, the Assistant API seems to ignore
these names during subsequent file processing, relying solely on file IDs. This results in frequent
mix-ups and incorrect file references.

Several forum posts and articles highlight deficiencies relevant to this topic: - Different responses
assistant playground vs API - using the same assistant ID25 - Huge difference between ChatGPT
assistant and API assistant26 - Assistant API not consistent27. This implies the limitations of OpenAI
Assistant API.

In conclusion, while the Assistant API offers various tools for convenient file handling, its current
implementation presents significant challenges that hinder its effectiveness compared to ChatGPT,
which motivates us to select a subset of DCA-Bench containing hard cases to test on ChatGPT.

A.5.2 CALCULATION OF FILE NUMBER AND CONTEXT LENGTH

We calculate the file context length using the tiktoken package28 to tokenize the file content,
using:

import tiktoken

25https://community.openai.com/t/different-responses-assistant-playground-vs-api-using-same-assistant-
id/547562

26https://community.openai.com/t/huge-difference-between-chatgpt-assistant-and-api-assistant/587335
27https://community.openai.com/t/assistant-api-not-consistant/718145
28https://github.com/openai/tiktoken
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def calculate_token_len(sentence, model="gpt-4-0125-preview"):
encoding = tiktoken.encoding_for_model(model)
tokens = encoding.encode(sentence)
token_len = len(tokens)
return token_len

During calculation, non-text files are skipped, which include .jpg, .jpeg, .png, .gif, .bmp, .mp3, .wav,
.ogg, .flac, .mp4, .avi, .mov, .mkv.

For .zip files, we will unzip them to calculate the context length of text files. However, when
calculating the file number, we take the whole .zip number as one single file.

A.5.3 COST ANALYSIS

In this section, we provide an estimated cost analysis for applying our Evaluator backend by
GPT-4-0125-preview to rate the performance of the Baseline Curator (OpenAI Assistant API)
on DCA-Bench (884 inputs in total). We applied tiktoken for tokenization of contexts.

Based on the pricing information available as of May 2024 from https://openai.com/api/pricing/, the
costs are: input cost: $16.12, output cost: $28.99, total cost: $45.11.

The costs are rounded to two decimal places. Note the cost here only involves the Evaluator; we
dismiss the cost to run the baseline Curator on DCA-Bench to get the outputs, which depends on the
design of the Curator and thus is not our focus.
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