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ABSTRACT

Protein language models (pLMs) aim to capture the complex information embed-
ded within protein sequences and are useful for downstream protein prediction
tasks. With many pLMs available, there is a critical need to benchmark their
performance across diverse tasks. Here, we introduce a biologically relevant zero-
shot prediction benchmark, focusing on dark kinase-phosphosite associations. Ki-
nases are the enzymes responsible for protein phosphorylation, and they play vital
roles in cellular signaling. While phosphoproteomics allows large-scale identi-
fication of phosphosites, determining the catalyzing kinase remains challenging.
We present a zero-shot classification benchmark dataset, DARKIN, for assign-
ing phosphosites to one of the understudied kinases (dark kinases). DARKIN
provides training, validation, and test folds that are split based on zero-shot clas-
sification, kinase groups, and sequence similarities. Evaluation of pLMs using a
novel training-free k-NN-based zero-shot classifier and a bilinear zero-shot clas-
sifier reveals superior performance by Esm models, ProtT5-XL, and the recently
introduced structure-based SaProt model. We believe this biologically relevant yet
challenging benchmark will further facilitate assessing the efficacy of pLMs and
aid the exploration of dark kinases.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities for generative sequence
modeling, serving as a mechanism to acquire semantic representations from large datasets. Building
on the success of LLMs in natural language processing, protein language models (pLMs) have been
developed to capture the complex information embedded within protein sequences (Rao et al., 2019;
Elnaggar et al., 2021; Rives et al., 2020; Meier et al., 2021; Lin et al., 2022; Brandes et al., 2022;
Ferruz et al., 2022; Geffen et al., 2022; Elnaggar et al., 2023; Su et al., 2023; Zhang & Okumura,
2024). These models present semantic representations of protein sequences to be used in prediction
tasks where protein sequences are the input. However, with the growing number of pLMs, bench-
marking their performance becomes essential to assess their reliability and applicability across var-
ious biological contexts. Previous work has compared the pLMs in their ability to predict proteins’
functional properties (Unsal et al., 2022; Schmirler et al., 2023; Zhang & Okumura, 2024), and
functional motifs (Savojardo et al., 2023). In this work, we provide a novel biologically relevant
zero-shot prediction benchmark on phosphosite-dark kinase associations.

Kinases are the enzymes that catalyze the phosphorylation of other proteins in a target-specific
manner (Hunter, 1995). Phosphorylation involves the transfer of a phosphate from adenosine 5’-
triphosphate (ATP) to amino acid residues (Cohen, 2002). The amino acid residue that receives the
phosphoryl group on the target protein (substrate) is called the phosphosite. Phosphorylation is a
key regulator of protein function in signal transduction pathways, and their dysfunction is associated
with numerous diseases (Blume-Jensen & Hunter, 2001; Müller et al., 2015). For this reason, kinases
are major drug targets in diseases such as cancer, infectious diseases, and neurological disorders
(Blume-Jensen & Hunter, 2001).
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Although the advances in phosphoproteomics enable the identification of phosphosites at the pro-
teome level, determining which kinase is responsible for phosphorylating a site remains an exper-
imental challenge. On one hand, more than 95% of reported human phosphosites have no known
cognate kinase (Needham et al., 2019). On the other hand, 25% of the kinases are yet to be as-
signed to a phosphorylation event, and for about 35% of the kinases, there are 1-10 phosphosites
reported. Thus, most of the phosphoproteome and the kinome are in the dark (Needham et al.,
2019). Associating orphan phosphosites to their cognate kinases is an important task that would aid
the understanding of the biological function of these phosphorylation events and help discover new
drug targets (Berginski et al., 2021; Deznabi et al., 2020; Needham et al., 2019).

We can summarize the contribution of this work as follows: (i) We propose a benchmark dataset
for dark kinase-phosphosite association prediction. (ii) We present a strategy to split the dataset
into train, validation, and test splits for zero-shot multi-class prediction tasks, paying attention to
the stratification of the kinase-phosphosite pairs by the kinase groups, the number of examples per
kinase and the sequence similarity of the kinases. (iii) We introduce a new training-free, k-NN-based
zero-shot classification method that allows assessing the pLMs. (iv) We evaluate and compare the
protein language models using two different zero-shot classification approaches.

2 METHODS

2.1 PROBLEM DESCRIPTION

X denotes the space of phopshosite sequences and Y denotes the set of all human kinases. The task
of kinase-phosphosite association prediction involves identifying the kinase y ∈ Y most likely to
catalyze the phosphorylation of a given phosphosite sequence x ∈ X .

Multiple kinases can phosphorylate a phosphosite, we frame the problem as a multilabel classifica-
tion task. We denote training kinases as Ytr ⊂ Y and test kinases as Yte ⊂ Y , where Yte includes
the zero-shot classes, and is disjoint from Ytr. The training data, Dtr = (xi, yi), i = 1, . . . , Ntr,
consists of pairings of train kinases with their associated phosphosites, where yi ∈ Ytr. Similarly,
the test data contains phosphosite pairings of the test kinases Yte.

2.2 DATASET CURATION AND PROCESSING

Several publicly available human kinase lists are available (Manning et al., 2002; 2023; Eid et al.,
2017; UniProt Consortium, 2023a; Moret et al., 2020), and they partially overlap due to ambiguity
on kinase domain activities. We resort to an up-to-date list by Moret et al. (2020). This curated
kinase contains a dataset of 557 human kinases with at least one kinase domain.

We obtained experimentally validated kinase-phosphosite associations from the PhosphoSitePlus
database (downloaded in May 2023). The phosphosites are represented as 15-residue amino acid se-
quences, with seven neighboring residues of the phosphosite on either side and the phosphosite itself
in the middle. Padding was only necessary when the phosphosite was close to the terminal end of the
protein to ensure that the phosphosite was in the middle. Kinase-phosphosite associations related
to non-human kinases were removed. We did not apply the same restriction to the substrates since
the model organism substrates are used to probe the interactions. We removed kinase isoforms and
fusion kinases and used the canonical form specified in the UniProt human proteome (Downloaded
May 2023).

We retrieved protein sequences from UniProt (UniProt Consortium, 2023b) (Accessed Dec 2023).
If the substrate could not be mapped to a Uniprot ID unambiguously, we removed all phosphosite-
kinase associations of these substrates. We retrieved the kinase domain sequences using the domain
indices from Moret et al. (2020). We obtained the kinase family and group information from Moret
et al. (2020). Missing group and family information were imputed according to their similarity with
other kinases. We defined a kinase group Other2 and family otherFamily for kinases that could not
be imputed into a family or group due to their dissimilarity to the rest of the groups. We downloaded
Enzyme Commision (EC) numbers of the kinases (downloaded Jul 2023) (Bairoch, 2000). We
obtained protein structure data from the AlphaFold Protein Structure Database via AlphaFoldAPI
(DeepMind and European Bioinformatics Institute, 2023) and PDBe (Protein Data Bank in Europe,
2023). For the isoform proteins whose structures are not available in AlphaFold and PDBe, we
employed ColabFold to obtain predicted 3D structures (Mirdita et al., 2022).
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Table 1: The protein Language Models (pLMs) compared in this study.

PLM Dataset Vector Model Represen- Objective Paper
Size Size tation

TAPE PFAM 768 38M Sequence Sequence-based,Structural Rao et al., 2019
Feature Prediction

ProtBERT BFD100, UniRef100 1024 420M Sequence Sequence-based, Structural, Elnaggar et al., 2021
ProtALBERT UniRef100 4096 224M Sequence Physicochemical Feature Elnaggar et al., 2021
ProtT5-XL BFD100, UniRef50 1024 3B Sequence Prediction Elnaggar et al., 2021
Esm1B UniRef50 1280 650M Sequence Structural, Physicochemical Rives et al., 2020

Feature Prediction
Esm1v UniRef90 1280 650M Sequence Sequence Variant Prediction Meier et al., 2021
Esm2 UniRef50 1280 650M Sequence Structural Feature,Contact Lin et al., 2022

Prediction
ProteinBERT UniRef90 1562 16M Sequence Sequence-based Feature, Brandes et al., 2022

GO Annotation Prediction
ProtGPT2 UniRef50 1280 738M Subword Protein Design and Engineering Ferruz et al., 2022

Sequence-based, Structural,
DistilProtBERT UniRef50 1024 230M Sequence Physicochemical Feature Geffen et al., 2022

Prediction
Ankh UniRef50 1536 1.5B Sequence General Purpose Modeling Elnaggar et al., 2023
SaProt AlphaFold2, PDB 1280 650M Sequence, Structure-Aware Feature, Su et al., 2023

Structure Mutation Effect Prediction

2.3 EVALUATED PROTEIN LANGUAGE MODELS AND BASELINE ENCODINGS

We selected pLMs whose models were accessible, reported to perform well in the literature, and
are recent. Table 1 presents the pLMs we experimented with and their properties. Processing large
dimensions of protein embeddings sets a challenge. For more efficient processing, we computed the
column-wise average of the embedding for all pLMs, excluding the padding (PAD) token vectors.
Additionally, for pLMs with the classification (CLS) token, we used the vectors corresponding to
this token as an embedding summary.

In addition to the pLMs, we used these baseline representations: (i) One-hot encoding: The in-
put sequence is expressed as a binary vector of amino acids. (ii) BLOSUM62 encoding: The
encoding utilizes the row corresponding to a particular amino acid in the BLOSUM62 matrix, rep-
resenting the likelihood of substitution of this amino acid with every amino acid. (iii) NLF encod-
ing: NLF reflects amino acids’ physicochemical properties using a non-linear Fisher’s transform
(Nanni & Lumini, 2011). Representations are calculated using the Epitopepredict tool (Farrell,
2021). (iv) ProtVec: ProtVec is a skip-gram neural network model trained to provide a continuous
representation of protein sequences (Asgari & Mofrad, 2015). ProtVec provides 100-dimensional
embedding for every 3-gram, and the average embedding is used to represent the sequence.

2.4 EVALUATION METHODOLOGY

In the zero-shot learning evaluation protocol, it’s crucial to ensure class separation during model
training and hyperparameter tuning (Xian et al., 2017). Therefore, examples are divided into train,
validation, and test sets by their class labels. We establish a setup where a portion of the well-studied
kinases (light kinases) are held out as zero-shot classes and are excluded from training. This is to
ensure sufficient test data from each kinase for a more robust evaluation. When creating the splits,
we follow multiple principles to ensure fair data split evaluations.

• Number of phosphosites per kinase: To ensure a robust evaluation in the test and vali-
dation sets, we set a minimum threshold for kinase-phosphosite pairs per kinase to avoid
relying on very few data points for any kinase class. Thus, we invert the roles of light and
dark kinases in evaluation: the test data include well-studied kinases (light kinases), while
the training primarily comprises under-studied kinases (dark kinases). However, it’s cru-
cial to note that this arrangement is solely for evaluation purposes; the deployed model can
predict dark kinases.

• Stratification based on kinase groups: Kinases from the same kinase group (Manning
et al., 2002) share evolutionary and functional similarities. Thus, we stratify kinases based
on their groups, ensuring the representation of kinase groups in the training, validation, and
test sets when feasible.

• Sequence similarity of kinases: To prevent optimistic performance estimates, kinases
with sequence similarity above a specified threshold are grouped and assigned to the same
sets (train, validation, or test). Sequence similarity is determined by sequence identity
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calculated after pairwise global alignment of the kinase domains (using BLOSUM62, with
-11 gap open penalty and -1 gap extension penalty).

Taking all these aspects into consideration, we divide the data set into training (80%), validation
(10%), and test (10%) sets. We first identify kinases as train or test kinases according to the number
of phosphosites they are associated with. Kinases with fewer than 15 phosphosites are designated as
train kinases. Later, kinases with at least 90% sequence identity similarity are grouped together and
are randomly defined as train or test kinases altogether. From the remaining kinases, test kinases
are randomly selected from each kinase group in a stratified manner. All remaining kinases are
defined as train kinases. This process is repeated to determine validation kinases from among train
kinases by setting the threshold for kinases in validation to be at least 10 phosphosites per kinase.
Finally, the train, validation, and test sets include all train phosphosite-kinase pairs associated with
the kinases in that relative set. We split the kinase into these sets in a randomized and reproducible
manner, allowing for different DARKIN dataset splits by changing the random seeds.

Due to the imbalance of the multi-class classification problem, we evaluate our methods using the
Average Precision (AP) score, which summarizes the precision-recall curve. We compute the macro
AP across classes. When multiple kinases can phosphorylate a phosphosite, we accept the predicted
kinase as a true positive if it matches any of the true kinases associated with the phosphosite.

2.5 ZERO-SHOT CLASSIFIERS
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Figure 1: a) k-NN based zero-shot classifier. First, the phosphosite’s nearest neighbor phosphosites
are determined in the training data. The majority vote is taken among the neighbors’ class labels to
pick the most likely light kinase. Then, the dark kinase closest to this light kinase is picked. b) The
bilinear compatibility function F takes the phosphosite and kinase embedding vectors and is trained
to minimize the cross-entropy loss over light kinases.

In our experiments, we employ two zero-shot learning (ZSL) models. The first is a fitting-free
method based on an intentionally kept simple adaptation of the k-NN classifier. The second is
a well-established bilinear zero-shot compatibility model. The following sections provide further
details on these approaches.

2.5.1 THE ZERO-SHOT K-NN CLASSIFIER

To benchmark the zero-shot dark kinase prediction performance, we devise a simple baseline method
by adapting the principles of the k-NN algorithm for supervised classification to our zero-shot clas-
sification task. For a given test phosphosite, we first locate the k most similar training phosphosites
in the phosphosite representation space. Subsequently, we identify the most common light kinase
among the kinases associated with the nearest neighbor phosphosites. In cases where there is no ma-
jority, we utilize the kinase of the nearest neighbor. In the subsequent step, we predict the most re-
sembling the majority kinase in the kinase representation space as the zero-shot dark kinase. Kinase
similarity is assessed using the cosine similarity of the kinase embedding vectors. This procedure is
depicted in Figure 1a. Our motivation in devising this method is to be able to evaluate the pLMs as
directly as possible, in the sense that the approach does not involve numerical optimization, and the
only hyper-parameter is k. This simplicity provides an additional view of the relative strengths of
the pLMs, avoiding model selection effects to a great extent.
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2.5.2 THE BILINEAR ZERO-SHOT LEARNING MODEL

The second zero-shot learning method that we use is a bilinear compatibility model. While a variety
of other zero-shot learning methods, particularly in image classification, have been proposed over
the years, variants based on bilinear compatibility models are arguably among the most established
ones (Xian et al., 2017; Akata et al., 2016; Romera-Paredes & Torr, 2015; Frome et al., 2013; Akata
et al., 2015; Kodirov et al., 2017; Sumbul et al., 2018; Deznabi et al., 2020). Therefore, they are
particularly suitable for our pLM evaluation purposes.

The bilinear zero-shot model (BZSM) aims to estimate the compatibility between a given pair of
phosphosite x and kinase y (illustrated in Figure 1b). In our work, we use the formulation variant
proposed and used in Sumbul et al. (2018); Deznabi et al. (2020), which defines the compatibility
function F (x, y) = [θ(x)⊤ 1]W [ϕ(y)⊤ 1]⊤ where θ(x) ∈ Rd is the phosphosite representation,
and y ∈ Rm is the kinase representation. The augmentation of both representations with separate
bias dimensions increases the expressivity of the model (Sumbul et al., 2018), which can more
clearly be observed when the definition is expanded:

F (x, y) = θ(x)⊤Wϕ(y) + θ(x)⊤W·,m +Wd,·ϕ(y) +Wd+1,m+1. (1)

In this formulation, the first term estimates pairwise compatibility. The second term acts analogous
to a log p(x) prior, formulated via a linear estimator conditioned on θ(x). Similarly, the third term
is the log p(y) prior, expressed as a linear function of ϕ(y). And finally, the last term is simply a
trainable scalar. The model is trained by minimizing the regularized cross-entropy loss:

min
W

−
∑

(x,y)∈Dtr

log p(y|x) + λ∥W∥2 (2)

where the summation runs over all phosphosite-kinase pairs available in the training set Dtr =
(xi, yi), and p(y|x) is the softmax of F over the light kinases:

p(y|x) = expF (x, y)∑
y′∈Ytr

expF (x, y′)
. (3)

The ℓ2 regularization term in Eq. 2 is implemented as weight decay in practice. At test time, p(y|x)
is calculated via softmax over the test kinases.
Table 2: Mean macro AP of 3-NN and the BZSM using only
pLM embeddings. For pLMs with CLS and average token,
the best performing one is shown.

Embedding AP (3-NN) AP (BZSM)
OneHotEnc 0.0897 0.0634 ±0.0034
Blosum62 0.0897 0.0327 ±0.0008
NLF 0.0902 0.0419 ±0.0030
ProtVec 0.0808 0.0959 ±0.0010

Esm1B (cls) 0.1119 0.1631 ±0.0011
Esm1v (cls) 0.1121 0.1640 ±0.0028
Esm2 (avg) 0.0957 0.1391 ±0.0057
Ankh-Large 0.1106 0.0840 ±0.0012
DistilProtBERT (avg) 0.0811 0.1269 ±0.0084
ProtBERT (avg) 0.0540 0.1044 ±0.0015
ProtAlbert (cls) 0.0915 0.1281 ±0.0049
ProteinBERT 0.1168 0.1236 ±0.0023
ProtGPT2 0.1054 0.1333 ±0.0020
ProtT5-XL 0.1172 0.1552 ±0.0011
SaProt (avg) 0.0973 0.1466 ±0.0026
TAPE 0.1200 0.1237 ±0.0018

Figure 2: Performance comparison of
BZSM trained with CLS and average
embedding vector for all pLMs.

3 RESULTS

Hyperparameter tuning. We use macro AP on the validation set for model selection in all cases.
For the k-NN based ZSL, we choose k from {3, 5, 7}. For the bilinear ZSL, we search hyperparam-
eters among random combinations of learning rate (0.000001...0.1), optimizer (Adam, SGD, RM-
Sprop), learning rate schedule (Exponential, Step, CosineAnnealing), momentum (0.95...0.9999)
and the weight decay (0.00001...0.01). Finally, to measure the effect of initialization, unless other-
wise stated, we train BZSM models three times and report the mean and standard deviation of the
macro AP values.
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Figure 3: a) The number of kinases b) The number of unique phosphosites c) The number of kinase-
phosphosite pairs in each train, validation, and test folds of the default DARKIN split dataset.

Table 3: The BZSM performance trained with sequence embedding and other kinase information.
The mean macro APs are shown. The best-performing results of CLS and embedding averaging are
shown.

Embedding Base + Family + Group + EC + Family + Group + EC
OneHotEnc 0.0634 0.1107 0.0832 0.0802 0.1098
Blosum62 0.0327 0.0318 0.0310 0.0337 0.0323
NLF 0.0419 0.0391 0.0425 0.0400 0.0426
ProtVec 0.0959 0.1262 0.1129 0.1214 0.1354

ProtBERT (cls) 0.0842 0.1170 0.1077 0.1132 0.1273
ProteinBERT 0.1236 0.1506 0.1215 0.1367 0.1359
ProtT5-XL 0.1552 0.1701 0.1531 0.1674 0.1731
Esm1B (cls) 0.1631 0.1740 0.1688 0.1680 0.1769
Esm1v (cls) 0.1640 0.1737 0.1653 0.1652 0.1734
Esm2 (avg) 0.1391 0.1588 0.1453 0.1496 0.1638
DistilProtBERT (cls) 0.1167 0.1360 0.1292 0.1287 0.1441
ProtGPT2 0.1333 0.1476 0.1412 0.1419 0.1557
Ankh-Large 0.0840 0.1417 0.1135 0.1178 0.1594
ProtAlbert (cls) 0.1281 0.1269 0.1276 0.1285 0.1372
SaProt (cls) 0.1292 0.1696 0.1424 0.1434 0.1800
TAPE 0.1237 0.1379 0.1333 0.1310 0.1455

DARKIN benchmark statistics. We present four DARKIN splits* to ensure consistency in our
experiments and to make consistent decisions on the data, particularly addressing the instability
associated with ZSL setups. The experiments are conducted in Darkin split 1 unless otherwise
specified. Counts of kinase, distinct phosphosite, and phosphosite-kinase associations for split 1 are
shown in 3. For other statistics, refer to the Appendix A.1.

Comparison of Protein Language Models. We initially assess the effectiveness of pLM-based em-
beddings using both k-NN and BZSM methods. Table 2 presents macro AP scores obtained through
the k-NN and BZSM when different pLM embeddings (detailed in Table 1) are used to represent the
15-mer around the phosphosite sequence and the kinase domain sequence. When employing pLM
embeddings, we utilized embeddings sourced from the same pLM for the phosphosite and kinase.
To establish baseline performance, we also present results obtained with three sequence encoding
methods: one-hot encoding, BLOSUM62, and NLF encoding (Section 2.3). In both models, we
observe that most of the pLM representations are above the baseline encodings, indicating that they
indeed capture the relevant characteristics of the protein sequences better.

The TAPE embeddings perform the best among the k-NN models (0.12 AP score); the Esm models,
ProtT5-XL, are close to TAPE’s results (Table 2). In the BZSM models, though, the TAPE embed-
dings fall behind Esm1B and Esm1v. The superior performance of TAPE in the k-NN could be due
to it being a lower dimensional vector (see Table 1). In BZSM, when employing the CLS token,
both Esm1B and Esm1v exceed 0.16 macro AP. ProtT5-XL is the third close runner-up, and SaProt
(cls) also performs well.

CLS token embedding versus averaging. Several pLMs provide a CLS token whose embedding
is commonly used as the sequence summary (Devlin et al., 2018). However, it is not clear whether
the CLS token or the average of all token embeddings provides a better summary of this task. The
performance differences between these two alternatives are shown in Figure 2, which shows that (i)
the results can depend on this detail and (ii) the right option varies across the pLMs.

*https://github.com/tastanlab/darkin
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Table 4: Comparison of the two best-pLMs, Esm1B and SaProton four random DARKIN splits. The
mean macro AP scores and their standard deviations are shown for the BZSM.

Split 1 Split 2 Split 3 Split 4
Esm1B (cls) 0.1769 ±0.0022 0.1536 ±0.0020 0.1531 ±0.0018 0.1652 ±0.0020
SaProt (cls) 0.1800 ±0.0015 0.1599 ±0.0029 0.1627 ±0.0021 0.1690 ±0.0050

Incorporating additional kinase information. We augment the kinase sequence embedding vec-
tors with additional information regarding kinase family hierarchy and EC classification. The one-
hot encoded vectors encode additional information and are appended to the sequence embedding
vectors. Here, we experiment only with the BZSM as it outperforms the k-NN. Including each
additional information individually enhances the performance of all models (Table 3), especially
the inclusion of the kinase family information improves the results. The models based on Esm1B,
Esm1v, and SaProt, using the CLS token embeddings, benefit the most and emerge as the best per-
formers in this augmented case. These findings underscore additional information in these kinase
categorizations that cannot be captured solely with sequence information.

Comparing the best-performing pLMs on different DARKIN splits. As Esm1B and SaProt
emerge as the two top-performing pLMs when paired with the BZSM model (Table 3), we further
evaluated their performance on three additional random splits of the DARKIN dataset to facilitate a
more comprehensive comparison between these two pLMs. While both models demonstrate com-
petitiveness, SaProt consistently outperforms Esm1B slightly on these four different splits (Table 4).
The performance of SaProt underscores the added value of structural information.

4 CONCLUSION

Focused on the task of assigning dark kinases to phosphosites, DARKIN offers a novel benchmark
for evaluating PLMs. We assess the pLM’s semantic representation capabilities by using them as
input to two zero-shot classifiers. Our results demonstrate the superior performance of the Esm
models, the ProtT5-XL, and the SaProt models. We hope this novel benchmark will facilitate com-
prehensive evaluations of pLMs and dark kinase prediction models, contributing to protein biology
research.
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A APPENDIX

A.1 DARKIN DATASET STATISTICS
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Figure 4: The histogram of the number of phosphosites associated with a kinase in the Phospho-
sitePlus dataset. For most of the kinases, no or few phosphosites are assigned.
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Figure 5: Splits are stratified based on kinase groups. (Upper panel) The number of kinases in each
kinase group, in train, validation, and test folds. (Lower panel) The number of unique phosphosites
that are associated with a kinase that falls into the kinase group in train, validation, and test folds.

Phosphosite Count

Single Kinase
Phosphosites

Multiple Kinase
Phosphosites

0 80004000

Train set

0 80004000

Validation set

0 80004000

Test set

Figure 6: The number of multi-label cases for train, validation, and test. In training we binarize the
multi-labels, in the testing, we count the prediction as true positive if the predicted kinase is in the
set. The number of multi-label cases is small in the test set.
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Table 5: All AP scores of all pLMs on the 3-NN and the BZSM Models with kinase additional information.

kNN (3-NN) BZSM
Embedding AP + Family + Group + EC + Family + Group + EC AP + Family + Group + EC + Family + Group + EC
OneHotEnc 0.0897 0.0901 0.0868 0.0864 0.0917 0.0634 0.1107 0.0832 0.0802 0.1098
Blosum62 0.0897 0.0897 0.0901 0.0901 0.0897 0.0327 0.0318 0.0310 0.0337 0.0323
NLF 0.0902 0.0903 0.0907 0.091 0.0913 0.0419 0.0391 0.0425 0.0400 0.0426
ProtVec 0.0808 0.0963 0.1123 0.0993 0.1230 0.0959 0.1262 0.1129 0.1214 0.1354

ProtBERT (avg) 0.0540 0.0871 0.0767 0.0722 0.0985 0.1044 0.1053 0.0982 0.1017 0.1018
ProtBERT (cls) 0.0855 0.0867 0.0930 0.0904 0.0968 0.0842 0.1170 0.1077 0.1132 0.1273
ProteinBERT 0.1168 0.1182 0.1182 0.1180 0.1227 0.1236 0.1506 0.1215 0.1367 0.1359
ProtT5-XL 0.1172 0.1164 0.1170 0.1172 0.1240 0.1552 0.1701 0.1531 0.1674 0.1731
Esm1B (avg) 0.1122 0.1107 0.1112 0.1105 0.1132 0.1512 0.1523 0.1553 0.1546 0.1554
Esm1B (cls) 0.1119 0.1101 0.1110 0.1110 0.1134 0.1631 0.1740 0.1688 0.1680 0.1769
Esm1v (avg) 0.1114 0.1114 0.1110 0.1112 0.1111 0.1404 0.1494 0.1426 0.1395 0.1430
Esm1v (cls) 0.1121 0.1125 0.1116 0.1131 0.1129 0.1640 0.1737 0.1653 0.1652 0.1734
Esm2 (avg) 0.0957 0.0981 0.0977 0.1015 0.1022 0.1391 0.1588 0.1453 0.1496 0.1638
Esm2 (cls) 0.0982 0.1024 0.1021 0.1024 0.1095 0.1238 0.1443 0.1358 0.1433 0.1518
DistilProtBERT (avg) 0.0811 0.0961 0.0977 0.0967 0.1085 0.1269 0.1380 0.1265 0.1356 0.1385
DistilProtBERT (cls) 0.1021 0.1046 0.1084 0.1101 0.1139 0.1167 0.1360 0.1292 0.1287 0.1441
ProtGPT2 0.1054 0.1061 0.1068 0.1094 0.1111 0.1333 0.1476 0.1412 0.1419 0.1557
Ankh-Large 0.1106 0.1077 0.1119 0.1055 0.1137 0.0840 0.1417 0.1135 0.1178 0.1594
ProtAlbert (avg) 0.1004 0.1055 0.1072 0.1041 0.1124 0.0831 0.0964 0.0854 0.0909 0.0845
ProtAlbert (cls) 0.0915 0.0993 0.0958 0.0982 0.1026 0.1281 0.1269 0.1276 0.1285 0.1372
SaProt (avg) 0.0973 0.1109 0.1098 0.1066 0.1209 0.1466 0.1684 0.1529 0.1490 0.1667
SaProt (cls) 0.1056 0.1100 0.1146 0.1107 0.1204 0.1292 0.1696 0.1424 0.1434 0.1800
TAPE 0.1200 0.1217 0.1211 0.1249 0.1230 0.1237 0.1379 0.1333 0.1310 0.1455
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