

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Q-LEARNING WITH POSTERIOR SAMPLING

Anonymous authors

Paper under double-blind review

ABSTRACT

Bayesian posterior sampling techniques have demonstrated superior empirical performance in many exploration-exploitation settings. However, their theoretical analysis remains a challenge, especially in complex settings like reinforcement learning. In this paper, we introduce Q-Learning with Posterior Sampling (PSQL), a simple Q-learning-based algorithm that uses Gaussian posteriors on Q-values for exploration, akin to the popular Thompson Sampling algorithm in the multi-armed bandit setting. We show that in the tabular episodic MDP setting, PSQL achieves a regret bound of $\tilde{O}(H^2\sqrt{SAT})$, closely matching the known lower bound of $\Omega(H\sqrt{SAT})$. Here, S, A denote the number of states and actions in the underlying Markov Decision Process (MDP), and $T = KH$ with K being the number of episodes and H being the planning horizon. Our work provides several new technical insights into the core challenges in combining posterior sampling with dynamic programming and TD-learning-based RL algorithms, along with novel ideas for resolving those difficulties. We hope this will form a starting point for analyzing this efficient and important algorithmic technique in even more complex RL settings.

1 INTRODUCTION

In an online Reinforcement Learning (RL) problem, an agent interacts sequentially with an unknown environment and uses the observed outcomes to learn an interaction strategy. The underlying mathematical model for RL is a Markov Decision Process (MDP). In the tabular episodic setting, the MDP has a finite state space \mathcal{S} , a finite action space \mathcal{A} and a planning horizon H . On taking an action a in state s at step h , the environment produces a reward and next state from the (unknown) reward model $R_h(s, a)$ and transition probability model $P_h(s, a)$ of the underlying MDP.

Q-learning (Watkins & Dayan, 1992) is a classic dynamic programming (DP)-based algorithm for RL. The DP equations (aka Bellman equations) provide a recursive expression for the optimal expected reward achievable from any state and action of the MDP, aka the Q -values, in terms of the optimal value achievable in the next state. Specifically, for any given $s \in \mathcal{S}, a \in \mathcal{A}, h \in [H]$, the Q -value $Q_h(s, a)$ is given by:

$$Q_h(s, a) = \max_{a' \in \mathcal{A}} R_h(s, a) + \sum_{s' \in \mathcal{S}} P_h(s, a, s') V_{h+1}(s'), \text{ with} \quad (1)$$

$$V_{h+1}(s') := \max_{a' \in \mathcal{A}} Q_{h+1}(s', a'),$$

with $V_{H+1}(s) = 0, \forall s$. The optimal action in state s is then given by the argmax action in the above.

When the reward and transition models of the MDP are unknown, the Q -learning algorithm uses the celebrated Temporal Difference (TD) learning idea (Sutton, 1988) to construct increasingly accurate estimates of Q -values using past observations. The key idea here is to construct an estimate of the right hand side of the Bellman equation, aka *target*, by *bootstrapping* the current estimate \hat{V}_{h+1} for the next step value function. That is, on playing an action a in state s at step h , and observing reward r_h and next state s' , the target z is typically constructed as: $z := r_h + \hat{V}_{h+1}(s')$.

And the estimate $\hat{Q}_h(s, a)$ for $Q_h(s, a)$ is updated to fit the Bellman equations using the *Q-learning update rule*¹

$$\hat{Q}_h(s, a) \leftarrow (1 - \alpha_n) \hat{Q}_h(s, a) + \alpha_n z. \quad (2)$$

¹Or, $\hat{Q}_h(s, a) \leftarrow \hat{Q}_h(s, a) + \alpha_n(z - \hat{Q}_h(s, a))$ where $z - \hat{Q}_h(s, a)$ is called the Temporal Difference (TD).

054 Here α_n is an important parameter of the Q -learning algorithm, referred to as the learning rate. It is
 055 typically a function of the number of previous visits n for the state s and action a .
 056

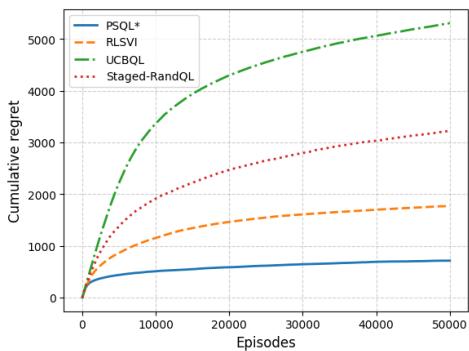
057 There are several ways to interpret the Q -learning update rule. The traditional frequentist interpretation
 058 popularized by Mnih et al. (2015) interprets this update as a gradient descent step for a least squares
 059 regression error minimization problem. We propose a more insightful interpretation of Q -learning
 060 obtained using Bayesian inference theory (details in Section 3.1). Specifically, if we assume a
 061 Gaussian prior

$$\mathcal{N}(\hat{Q}_h(s, a), \frac{\sigma^2}{n-1})$$

063 on the Q -value $Q_h(s, a)$, and a Gaussian likelihood function $\mathcal{N}(Q_h(s, a), \sigma^2)$ for the target z , then
 064 using Bayes rule, one can derive the Bayesian posterior as the Gaussian distribution

$$065 \mathcal{N}(\hat{Q}_h(s, a), \frac{\sigma^2}{n}), \quad \text{where } \hat{Q}_h(s, a) \leftarrow (1 - \alpha_n)\hat{Q}_h(s, a) + \alpha_n z \quad (3)$$

067 Importantly, the Bayesian posterior tracks not just the mean but also the variance or uncertainty in the
 068 Q -value estimate. Intuitively, the state and actions with a small number of past visits (i.e., small n)
 069 have large uncertainty in their current Q -value estimate, and should be explored more. The posterior
 070 sampling approaches implement this idea by simply taking a sample from the posterior, which is likely
 071 to be closer to the mean (less exploration) for actions with small posterior variance, and away from
 072 the mean (more exploration) for those with large variance. This uncertainty quantification is useful for
 073 managing the exploration-exploitation tradeoff for regret minimization. The exploration methodology
 074 is distinct from algorithms that use additive bonuses or randomized perturbations in the estimates.
 075



088 Figure 1: Performance comparison of
 089 $PSQL^*$ (a heuristic derived from PSQL),
 090 UCBQL (Jin et al., 2018), Staged-
 091 RandQL (Tapikin et al., 2023), and
 092 RLSVI (Russo, 2019) in a chain MDP
 093 environment (for details, and more experi-
 094 ments, see Appendix A).
 095
 096

Following this intuition, we introduce Q-learning with Posterior Sampling (PSQL) algorithm that maintains a posterior on Q -values for every state and action. Then, to decide an action in any given state, it simply generates a sample from the posterior for each action, and plays the $\arg \max$ action of the sampled Q -values.

Popularized by their success in the multi-armed bandit settings (Thompson, 1933; Chapelle & Li, 2011; Kaufmann et al., 2012; Agrawal & Goyal, 2017), and in deep reinforcement learning regimes (Osband et al., 2016a; Fortunato et al., 2017; Azizzadenesheli et al., 2018; Li et al., 2021b; Fan & Ming, 2021; Sasso et al., 2023), the posterior sampling approaches are generally believed to be more efficient in managing the exploration-exploitation tradeoff than their UCB (Upper Confidence Bound) counterparts. Our preliminary experiments (see Figure 1) suggest that this is also the case for our Q-learning approach in the tabular RL setting.² However, obtaining provable guarantees for posterior sampling approaches have historically been more challenging.

Several previous works (e.g., Li et al. (2021a); Jin et al. (2018)) use UCB-based exploration bonuses to design optimistic Q-learning algorithms with near-optimal regret bounds.³ For the posterior sampling based approaches however, the first tractable Q -learning based algorithm with provable regret bounds was provided only recently by Tapikin et al. (2023) for the Staged-RandQL algorithm. However, the Staged-RandQL (and RandQL) algorithm presented in their work deviated from the natural approach of putting a posterior on Q -values, and instead derived a Dirichlet Bayesian posterior on the transition probabilities, which is conceptually closer to some model-based posterior sampling algorithms, e.g., the PSRL algorithm in Agrawal &

²For the empirical study reported here, we implement a vanilla version of posterior sampling with Q-learning. The PSQL algorithm presented later modifies the target computation as described later in Section 3, for the sake of theoretical analysis.

³The algorithm from Jin et al. (2018) is referred as UCBQL in the text and experiments

108 Jia (2017). RandQL implements sampling from the implied distribution on Q-estimates in a more
 109 efficient way via learning rate randomization, so that it qualifies as a model-free algorithm.
 110

111 Another closely related approach with provable regret bounds is the RLSVI (Randomized Least
 112 Squared Value Iteration) algorithm by Osband et al. (2016b; 2019); Russo (2019); Zanette et al.
 113 (2020); Agrawal et al. (2021); Xiong et al. (2022). The RLSVI algorithm is an approximate value
 114 iteration-based approach that can be interpreted as maintaining “empirical posteriors” over the value
 115 functions by injecting noise. However, in the tabular setting considered here, RLSVI reduces to a
 116 model-based algorithm. (See Section 2.1 for further comparisons.) There are several other model-
 117 based posterior sampling algorithms in the literature with near optimal regret bounds (Osband et al.,
 118 2013; Osband & Van Roy, 2017; Ouyang et al., 2017; Agrawal & Jia, 2022; Agarwal & Zhang, 2022;
 119 Tiapkin et al., 2022). Model-based algorithms directly estimate the reward and/or transition model,
 120 instead of the implied optimal value functions, or policy parameters. In many settings, model-based
 121 algorithms can be more sample efficient. But, model-free approaches like Q-learning have gained
 122 popularity in practice because of their simplicity and flexibility, and underlie most successful modern
 123 deep RL algorithms (e.g., DQN Mnih et al. (2013), DDQN van Hasselt et al. (2015), A3C Mnih et al.
 124 (2016)). Provable regret bounds for a simple posterior sampling based Q-learning algorithm like
 PSQL, therefore, still remains a problem of significant interest.

125 Our contributions are summarized as follows.

- 127 • We propose the Q-learning with Posterior Sampling (PSQL) algorithm that is the *first* Q-
 128 learning algorithm with natural and efficient exploration provided by the Bayesian posterior
 129 sampling approach. Our preliminary experiments demonstrate promising empirical perfor-
 130 mance of this simple algorithm compared to contemporary approaches. (See Section 3 for
 131 algorithm design and Appendix A for experiments.)
- 132 • We provide a novel derivation of Q-learning as a solution to a Bayesian inference problem
 133 with a regularized Evidence Lower Bound (ELBO) objective. Besides forming the basis of
 134 our PSQL algorithm design, this derivation provides a more insightful interpretation of the
 135 learning rates introduced in some previous works on *Q*-learning (e.g., Jin et al. (2018)) to
 136 obtain provable regret bounds. (See Section 3.1.)
- 137 • We prove a near-optimal regret bound of $\tilde{O}(H^2\sqrt{SAT})$ for PSQL which closely match
 138 the known lower bound of $\Omega(H\sqrt{SAT})$ (Jin et al., 2018). Our result improves the regret
 139 bounds available for the closely related approach of RLSVI (Russo, 2019) and matches
 140 those recently derived by Tiapkin et al. (2023) for a more complex posterior sampling based
 141 algorithm Staged-RandQL. (See Section 2, 4.)
- 142 • Our regret analysis reveals several key difficulties in combining posterior sampling with
 143 DP and TD-learning-based algorithms due to error accumulation in the bootstrapped target;
 144 along with novel ideas for overcoming these challenges. (See Section 4.1.)

146 2 OUR SETTING AND MAIN RESULT

148 In the online reinforcement learning setting, the algorithm interacts with environment in K sequential
 149 episodes, each containing H steps. At step $h = 1, \dots, H$ of each episode k , the algorithm observes
 150 the current state $s_{k,h}$, takes an action $a_{k,h}$ and observes a reward $r_{k,h}$ and the next state $s_{k,h+1}$.

151 The reward and next state are generated by the environment according to a fixed underlying MDP
 152 $(\mathcal{S}, \mathcal{A}, R, P)$, so that $\Pr(s_{k,h+1} = s' | s_{k,h} = s, a_{k,h} = a) = P_h(s, a, s')$, $\mathbb{E}[r_{k,h} | s_{k,h} = s, a_{k,h} = a] = R_h(s, a)$. However, the reward functions and the transition probability distributions $R_h, P_h, h = 1, \dots, H$ are a priori unknown to the algorithm. The goal is to minimize total regret compared to the
 153 optimal value given by the dynamic programming equation (1). Specifically, let π_k denote the policy
 154 used by the algorithm in episode k , so that $a_{k,h} = \pi_k(s_{k,h})$. We aim to bound regret, defined as
 155

$$156 \text{Reg}(K) := \sum_{k=1}^K (V_1(s_{k,1}) - V^{\pi_k}(s_{k,1})) \quad (4)$$

157 for any set of starting states $s_{k,1}, k = 1, \dots, K$.

158 Since the algorithm can only observe the environment’s response at a visited state and action, a
 159 main challenge in this problem is managing the exploration-exploitation tradeoff. This refers to the

162 dilemma between picking actions that are most likely to be optimal according to the observations
 163 made so far, versus picking actions for that allow visiting less-explored states and actions. The
 164 two main approaches for managing exploration-exploitation tradeoffs are the optimistic approaches
 165 based on UCB and posterior sampling approaches (aka Thompson Sampling in multi-armed bandit
 166 settings).

167 In this paper, we present a Q-learning algorithm with posterior sampling (PSQL) that achieves the
 168 following regret bound. Here $\tilde{O}(\cdot)$ hides absolute constants and logarithmic factors.
 169

170 **Theorem 1 (Informal).** *The cumulative regret of our PSQL (Algorithm 1) in K episodes with horizon
 171 H is bounded as $\text{Reg}(K) \leq \tilde{O}\left(H^2\sqrt{SAT}\right)$, where $T = KH$.*
 172

173 2.1 RELATED WORKS

	Algorithm	Regret	Comments
UCB	UCBQL (Jin et al., 2018) Q-EarlySettled-Advantage (Li et al., 2021a)	$\tilde{O}(H^{1.5}\sqrt{SAT})$ $\tilde{O}(H\sqrt{SAT})$	Q-learning with UCB Q-learning with UCB
Posterior samp.	Conditional Posterior Sampling (Dann et al., 2021)	$\tilde{O}(HSA\sqrt{T})$	computationally intractable
	RLSVI (Russo, 2019)	$\tilde{O}(H^3S^{1.5}\sqrt{AT})$	approximate value iteration
	C-RLSVI (Agrawal et al., 2021)	$\tilde{O}(H^2S\sqrt{AT})$	approximate value iteration
	Staged RandQL (Tiapkin et al., 2023)	$\tilde{O}(H^2\sqrt{SAT})$	randomized learning-rates
	PSQL [this work]	$\tilde{O}(H^2\sqrt{SAT})$	Gaussian posteriors on Q-values
	Lower bound (Jin et al., 2018)	$\Omega(H\sqrt{SAT})$	-

185 Table 1: Comparison of our regret bound to related works (Dann et al. (2021) is in function
 186 approximation setting).

188 Our work falls under the umbrella of online episodic reinforcement learning on regret minimization
 189 in tabular setting. In the category of the Upper Confidence Bound (UCB)-based algorithms, there is a
 190 huge body of research both on model-based (Bartlett & Tewari, 2012; Azar et al., 2017; Fruit et al.,
 191 2018; Zanette & Brunskill, 2019; Zhang et al., 2020; Boone & Zhang, 2024), and model-free (Jin
 192 et al., 2018; Bai et al., 2019; Ménard et al., 2021; Zhang & Xie, 2023; Agrawal & Agrawal, 2024)
 193 algorithms. In-fact, Jin et al. (2018) were the first to provide a near-optimal worst-case regret bound
 194 of $\tilde{O}(\sqrt{H^3SAT})$, subsequently improved to $\tilde{O}(H\sqrt{SAT})$ by Zhang et al. (2020); Li et al. (2021a).

195 Motivated by the superior empirical performance of Bayesian posterior sampling approaches com-
 196 pared to their UCB counterparts (Chapelle & Li, 2011; Kaufmann et al., 2012; Osband et al., 2013;
 197 Osband & Van Roy, 2017; Osband et al., 2019) there have been several attempts at deriving provable
 198 regret bounds for these approaches in the episodic RL setting. Among model-based approaches, near
 199 optimal regret bounds have been established for approaches that use (typically Dirichlet) posteriors
 200 on transition models (Ouyang et al., 2017; Agrawal & Jia, 2017; Tiapkin et al., 2022). There have
 201 been relatively limited studies on model-free, sample-efficient and computationally efficient Bayesian
 202 algorithms. Dann et al. (2021) proposed one such framework but is computationally intractable. *Our
 203 work aims to fill this gap.*

204 A popular approach closely related to posterior sampling is Randomized Least Square Value It-
 205 eration (RLSVI) (Osband et al., 2016b; 2019; Russo, 2019; Zanette et al., 2020) and RLSVI-like
 206 approaches (Agrawal et al., 2021; Xiong et al., 2022; Ishfaq et al., 2021; 2023; 2024). In RLSVI,
 207 the exploration is carried out by injecting randomized uncorrelated noise to the reward samples,
 208 followed by a re-fitting of a Q -function estimate by solving a least squares problem on *all the past*
 209 data, incurring heavy computation and storage costs. This process has been interpreted as forming an
 210 approximate posterior distribution over value functions. RLSVI too enjoys a “superior-than-UCB”
 211 empirical performance. In contrast to Q-learning (or TD-learning approaches in general) these ap-
 212 proaches do not bootstrap on the older estimates and hence their techniques are not broadly applicable
 213 in our analysis. However, its worst-case regret bounds (Russo, 2019) remain suboptimal (see Table 1)
 214 in their dependence on the size of the state space.

215 More recently, Tiapkin et al. (2023) proposed (RandQL and Staged-RandQL) algorithms that are
 216 model-free, tractable and enjoy $\tilde{O}(H^2\sqrt{SAT})$ regret by randomizing the learning rates of the Q-

learning update rule. Their algorithmic design is based on Dirichlet posteriors on transition models and efficient implementation of the implied distribution on Q -value estimates via learning rate randomization. Our algorithm is much simpler with far lesser randomized sampling steps and in our preliminary experiments (see Figure 1 and Section A), our PSQL approach with simple Gaussian based posteriors shows better/comparable performance compared to these algorithms.

In Table 1 we provide a detailed comparison of our results with the above-mentioned related work on posterior sampling algorithms for RL.

3 ALGORITHM DESIGN

We first present a Bayesian posterior-based derivation of the Q-learning update rule, which forms the basis for our algorithm design.

3.1 POSTERIOR DERIVATION

An insightful interpretation of the Q-learning update rule can be obtained using Bayesian inference. Let θ denote the Bayesian parameter that we are inferring, which in our case is the quantity $Q_h(s, a)$. Given a prior p on θ , log likelihood function $\ell(\theta, \cdot)$, and a sample z , the Bayesian posterior q is given by the Bayes rule:

$$q(\theta) \propto p(\theta) \cdot \exp(\ell(\theta, z)) \quad (5)$$

which can also be derived as an optimal solution of the following optimization problem (see Chapter 10 in Bishop & Nasrabadi (2006)), whose objective is commonly referred to as Evidence Lower Bound (ELBO):

$$\max_q \mathbb{E}_{\theta \sim q}[\ell(\theta, z)] - KL(q||p) \quad (6)$$

where $KL(\cdot||\cdot) = \int_{\theta} q(\theta) \log(\frac{q(\theta)}{p(\theta)})$ denotes KL-divergence function. It is well known that when $p(\cdot)$ is Gaussian, say $\mathcal{N}(\hat{\mu}, \frac{\sigma^2}{n-1})$, and the likelihood given θ is Gaussian $\mathcal{N}(\theta, \sigma^2)$, then the posterior $q(\cdot)$ is given by the Gaussian distribution

$$\mathcal{N}(\hat{\mu}, \frac{\sigma^2}{n}), \text{ with } \hat{\mu} \leftarrow (1 - \alpha_n)\hat{\mu} + \alpha_n z \quad (7)$$

with $\alpha_n = \frac{1}{n}$. Therefore, substituting θ as $Q_h(s, a)$ and $\hat{\mu}$ as $\hat{Q}_h(s, a)$, the above yields the Q-learning learning update rule (2) with learning rate $\alpha_n = \frac{1}{n}$.

A caveat is that the above assumes z to be an unbiased sample from the target distribution, whereas in Q-learning, z is biased due to bootstrapping. In a recent work, Jin et al. (2018) observed that in order to account for this bias and obtain theoretical guarantees for Q-learning, the learning rate needs to be adjusted to $\alpha_n = \frac{H+1}{H+n}$. In fact, Bayesian inference can also provide a meaningful interpretation of this modified learning rate proposed in Jin et al. (2018). Consider the following “regularized” Bayesian inference problem (Khan & Rue, 2023) which adds an entropy term to the ELBO objective in (6):

$$\max_q \mathbb{E}_{\theta \sim q}[\ell(\theta, z)] - KL(q||p) + \lambda_n \mathcal{H}(q) \quad (8)$$

where $\mathcal{H}(q)$ denotes the entropy of the posterior. We show in Lemma B.1 (refer Appendix B) that for the choice of $\lambda_n = \frac{H}{n}$, when the prior $p(\theta)$ is Gaussian $\mathcal{N}(\hat{\mu}, \frac{\sigma^2}{n-1})$, and the likelihood of z given θ is Gaussian $\mathcal{N}(\theta, \frac{\sigma^2}{H+1})$, then the posterior $q(\cdot)$ is given by the Gaussian distribution in (7) with the same learning rate $\alpha_n = \frac{H+1}{H+n}$ as suggested in Jin et al. (2018).

Substituting θ as $Q_h(s, a)$ and $\hat{\mu}$ has $\hat{Q}_h(s, a)$ in (8), we derive that given a Gaussian prior $\mathcal{N}(\hat{Q}_h(s, a), \frac{\sigma^2}{n-1})$ over $Q_h(s, a)$, Gaussian likelihood $\mathcal{N}(Q_h(s, a), \frac{\sigma^2}{H+1})$ on target z , the following posterior maximizes the regularized ELBO objective:

$$\mathcal{N}(\hat{Q}_h(s, a), \frac{\sigma^2}{n}), \text{ where } \hat{Q}_h(s, a) \leftarrow (1 - \alpha_n)\hat{Q}_h(s, a) + \alpha_n z, \quad (9)$$

where $\alpha_n = \frac{H+1}{H+n}$, and n is the number of samples for s, a observed so far.

270 The entropy regularization term of (8) introduces extra uncertainty in the posterior. Intuitively, this
 271 makes sense for Q-learning as the target z is bootstrapped on previous interactions and likely has
 272 additional bias. The weight λ_n of this entropy term decreases as the number of samples increases
 273 and the bootstrapped target is expected to have lower bias. This derivation may be of independent
 274 interest as it provides an intuitive explanation of the modified learning rate schedule proposed ($\frac{H+1}{H+n}$
 275 as compared to $\frac{1}{n}$) in Jin et al. (2018), where it was motivated mainly by the mechanics of regret
 276 analysis. The above posterior derivation forms the basis of our algorithm design presented next.
 277

278 **3.2 ALGORITHM DETAILS**
 279

280 A detailed pseudo-code of our PSQL algorithm is provided as Algorithm 1,2. It uses the current
 281 Bayesian posterior to generate samples of Q -values at the current state and all actions, and plays the
 282 arg max action. Specifically, at a given episode k , let s_h be the current state observed in the beginning
 283 of the episode and for action a , let $N_h(s_h, a)$ be the number of visits of state s_h and action a before
 284 this episode. Let $\tilde{Q}_h(s_h, a)$ be the current estimate of the posterior mean, and

$$285 \quad \sigma(n) = \frac{\sigma^2}{n+1} := 64 \frac{H^3}{n+1} \log(KH/\delta). \quad (10)$$

287 Then, the algorithm samples for each a ,
 288

$$289 \quad \tilde{Q}_h(s_h, a) \sim \mathcal{N}(\tilde{Q}_h(s_h, a), \sigma(N_h(s_h, a))^2)$$

291 and plays the arg max action $a_h := \arg \max_a \tilde{Q}_h(s_h, a)$.
 292

293 The algorithm then observes a reward r_h and the next state s_{h+1} , computes a target z , and updates
 294 the posterior mean estimate using the Q-learning update rule. A natural setting of the target would be
 295 $r_h + \max_{a'} \tilde{Q}_{h+1}(s_{h+1}, a')$, which we refer to as the “vanilla version” or PSQL*. However, due to
 296 unresolvable difficulties in regret analysis discussed later in Section 4, the PSQL algorithm computes
 297 the target in a slightly optimistic manner ($r_h + \bar{V}_{h+1}(s)$) as we describe later in this section. Our
 298 experiments (Appendix A) show that although this modification does impact performance, PSQL still
 299 remains significantly superior to its UCB counterpart.
 300

Algorithm 1 Q-learning with Posterior Sampling (PSQL)

301 1: **Initialize:** $\hat{Q}_{H+1}(s, a) = \hat{V}_{H+1}(s) = 0$, $\tilde{Q}_h(s, a) = \hat{V}_h(s) = H$, $N_h(s, a) = 0 \forall s, a, h$.
 302 2: **for** episodes $k = 1, 2, \dots$ **do**
 303 3: Observe s_1 .
 304 4: **for** step $h = 1, 2, \dots, H$ **do**
 305 5: Sample $\tilde{Q}_h(s_h, a) \sim \mathcal{N}(\tilde{Q}_h(s_h, a), \sigma(N_h(s_h, a))^2)$, for all $a \in \mathcal{A}$.
 306 6: Play $a_h := \arg \max_{a \in \mathcal{A}} \tilde{Q}_h(s_h, a)$.
 307 7: Observe r_h and s_{h+1} .
 308 8: $z \leftarrow \text{ConstructTarget}(h, r_h, s_{h+1}, \tilde{Q}_{h+1}, N_{h+1})$.
 309 9: $n := N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1$, $\alpha_n := \frac{H+1}{H+n}$.
 310 10: $\tilde{Q}_h(s_h, a_h) \leftarrow (1 - \alpha_n) \tilde{Q}_h(s_h, a_h) + \alpha_n z$.
 311 11: **end for**
 312 12: **end for**
 313

Algorithm 2 ConstructTarget(h, r, s', \tilde{Q}, N)

314 **Return** r , if $h = H + 1$.
 315 Set $\hat{a} = \arg \max_a \tilde{Q}(s', a) + \sigma(N(s', a))$. Set $J := J(\delta)$ as in (11).
 316 /* Take maximum of the J samples from the posterior of target V_{h+1} */
 317 Sample $\tilde{V}^j \sim \mathcal{N}(\tilde{Q}(s', \hat{a}), \sigma(N(s', \hat{a}))^2)$, for $j \in [J(\delta)]$, $a \in \mathcal{A}$.
 318 $\bar{V}(s') \leftarrow \max_j \tilde{V}^j$.
 319 **Return** $z := r + \bar{V}(s')$.
 320

324 Specifically, given reward $r_h = r$ and next state $s_{h+1} = s'$, a value function estimate $\bar{V}_{h+1}(s')$ is
 325 computed as the maximum of J samples from the posterior on $Q_{h+1}(s', \hat{a})$, with \hat{a} being the arg max
 326 action of posterior mean + standard deviation. That is, let
 327

$$\hat{a} := \arg \max_a \hat{Q}_{h+1}(s', a) + \sigma(N_{h+1}(s', a)), \text{ and } \bar{V}_{h+1}(s') = \max_{j \in J} \tilde{V}^j,$$

$$\text{with } J = J(\delta) := \frac{\log(SAT/\delta)}{\log(4/(4-p_1))}, \quad p_1 = \Phi(-1) - \frac{\delta}{H} - \delta. \quad (11)$$

332 Observe that the above procedure computes a $\bar{V}_{h+1}(s')$ that is more optimistic than single sample
 333 maximum (i.e., "vanilla version" $\max_{a'} \tilde{Q}_h(s', a')$). However, the optimism is limited only to the
 334 target computation not to the main decision-making in Line 6, marking an important departure from
 335 UCB based optimism (e.g., Jin et al. (2018)). Multiple sampling from the posteriors is a common
 336 technique considered in the past works (Tsiapkin et al., 2022; Agrawal & Jia, 2017; Agrawal et al.,
 337 2017) to aid analysis. Finally, the algorithm uses the computed target $z = r_h + \bar{V}_{h+1}(s_{h+1})$ to
 338 update the posterior mean via the Q-learning update rule, with $\alpha_n = \frac{H+1}{H+n}$:

$$\hat{Q}_h(s, a) \leftarrow (1 - \alpha_n) \hat{Q}_h(s, a) + \alpha z.$$

341 Let $n = N_{k,h}(s, a)$, then Algorithm 1 implies ($\alpha_n^0 := \Pi_{j=1}^n (1 - \alpha_j)$ and $\alpha_n^i := \alpha_i \Pi_{j=i+1}^n (1 - \alpha_j)$),
 342

$$\hat{Q}_{k,h}(s, a) = \alpha_n^0 H + \sum_{i=1}^n \alpha_n^i \left(r_{k_i, h} + \bar{V}_{k_i, h+1}(s_{k_i, h+1}) \right). \quad (12)$$

346 4 REGRET ANALYSIS

348 We prove the following regret bound for PSQL.

349 **Theorem 2.** *The cumulative regret of PSQL (Algorithm 1,2) in K episodes satisfies*

$$351 \quad \text{Reg}(K) := (\sum_{k=1}^K V_1^*(s_{k,1}) - V_1^{\pi_k}(s_{k,1})) \leq O\left(H^2 \sqrt{SAT} \chi\right),$$

353 with probability at least $1 - \delta$, where $\chi = \log(JSAT/\delta)$ and $T = KH$.

355 4.1 CHALLENGES AND TECHNIQUES.

357 Most of the unique challenges for the theoretical analysis of Q-learning with posterior sampling are
 358 associated with the bootstrapped nature of TD-learning itself. As shown in (12), mean estimate at the
 359 given step h depends on a weighted average of the past next-step $h+1$ estimates, causing the errors
 360 at $h+1$ of the past estimates propagate to the estimate at step h . In model-based methods (e.g., Azar
 361 et al. (2017); Osband & Van Roy (2017); Zanette et al. (2020)) such issues are non-existent as they
 362 recalculate their estimates from scratch at each time step.

363 **Optimism dies down under recursion.** One difficulty in analyzing Bayesian posterior sampling
 364 algorithms is the absence of high probability optimism (the property that the estimates upper bound
 365 the true parameters). Observe that the regret of an algorithm in any episode k can be decomposed as:

$$366 \quad V_1^*(s_{k,1}) - V_1^{\pi_k}(s_{k,1}) \leq \underbrace{(V_1^*(s_{k,1}) - \tilde{Q}_{k,1}(s_{k,1}, a_{k,1}))}_{\text{Optimism error}} + \underbrace{(\tilde{Q}_{k,1}(s_{k,1}, a_{k,1}) - V_1^{\pi_k}(s_{k,1}))}_{\text{Estimation error}}. \quad (13)$$

369 In algorithms like UCBQL (Jin et al., 2018), there is no optimism error since the UCB estimate
 370 is a high-confidence upper bound on the optimal value function. Prior posterior sampling ap-
 371 proaches (Agrawal & Goyal, 2012; 2017; Russo, 2019; Agrawal et al., 2021) were able to bound
 372 optimism error by proving a constant probability optimism, and then boosting to high probability by
 373 a statistical argument. However, due to the recursive nature of Q-learning, their techniques do not
 374 directly apply.

375 To see this, suppose that if we have a constant probability p of optimism of posteriors on value
 376 functions in state H . The optimism of stage $H-1$ value requires optimism of stage H value; leading
 377 to p^2 probability of optimism in stage $H-1$. Continuing this way, we get an exponentially small
 probability of optimism for stage 1.

378 **Multiple sampling from the posteriors only partially helps.** To get around the issues with constant
 379 probability optimism, many posterior sampling algorithms (e.g., model-based PSRL Agrawal & Jia
 380 (2022), MNL-bandit Agrawal et al. (2017), Tiapkin et al. (2022), Ishfaq et al. (2021) etc.) taking
 381 max over multiple (say J) samples from the posterior in order to get high probability optimism. We
 382 follow a similar modification, with differences described later in the section. We believe that, due
 383 to bootstrapping nature of Q-learning (or TD-learning methods in general), merely taking multiple
 384 samples for either decision-making and the target construction would lead to exponential (in H)
 385 accumulation of errors, even for J as small as 2. Below, we provide a rough argument.

386 We expect the bias of \tilde{Q}_h (sample from the posterior distribution) to track Q_h^* with error that scales
 387 as standard deviation of \tilde{Q}_h (lets call that error as ϵ). Now, suppose J samples are used in decision-
 388 making (i.e., we take multiple samples from the posterior distributions at Line 6 of Algorithm 1).
 389 We incur regret whenever the bias of $\max_j \tilde{Q}_h^j$ exceeds Q_h^* . Using the standard techniques, this
 390 error at step H has an error bound of $\epsilon \sqrt{J \log(1/\delta)}$ with probability $1 - \delta$. This error subsequently
 391 propagates multiplicatively via bootstrapping of Bellman equation. For the step $H - 1$, the optimism
 392 error contribution will be $\epsilon \sqrt{J^2 \log(1/\delta)}$ with probability $1 - \delta$. Continuing this argument, at step 1,
 393 the cumulative optimism error will be of the order $\epsilon \sqrt{J^H \log(1/\delta)}$, i.e., exponential in H for any
 394 $J \geq 2$.
 395

396 The usual trick of obtaining high probability optimism by taking multiple samples from the posterior
 397 doesn't work for Q-learning, at least not without further novel ideas.

398 **Our techniques.** The design of target computation procedure is pivotal to PSQL. Our algorithm
 399 design is characterized by two key items: (1) using optimistic posterior sampling in target computation
 400 *only*; (2) using the argmax action \hat{a} of the posterior mean (with a standard deviation offset) in our
 401 target computation.

402 First is motivated by the observation that to break the recursive multiplicative decay in constant
 403 probability of optimism, we just need to ensure high probability optimism of the next-stage value
 404 function estimate used in the target computation. Second is motivated by the previous discussion
 405 that merely taking multiple samples may lead to exponential error. In our analysis, we show that the
 406 action \hat{a} is a special action, whose standard deviation is close to the the played action a_h with constant
 407 probability (Lemma C.2). As a result, we are able to demonstrate that as in the standard Q-learning
 408 $\bar{V}_h(s_h)$ (defined with \hat{a}) cannot be too far from $\tilde{Q}_h(s_h, a_h)$. Intuitively they are tracking the similar
 409 quantities. In summary, our algorithm uses a combination of vanilla (single-sample) and optimistic
 410 (multiple-sample) posterior sampling for action selection and target computation, respectively.

4.2 PROOF SKETCH

413 We provide a proof sketch for Theorem 2. All the missing details from this section are in Appendix C.
 414 Here, we use $\tilde{Q}_{k,h}$, $\hat{Q}_{k,h}$, $\bar{V}_{k,h}$, $N_{k,h}$, to denote the values of \tilde{Q}_h , \hat{Q}_h , \bar{V}_h , N_h , respectively at the
 415 beginning of episode k of Algorithm 1, 2. And, as before, $s_{k,h}$, $a_{k,h}$ denote the state and action
 416 visited at episode k , step h .
 417

418 Following the regret decomposition in (13) we bound the regret by bounding optimism error and
 419 estimation error. We introduce several new technical ideas to this end. Leveraging our algorithm
 420 design, we first prove that $\bar{V}_{k,h}$ is a tracking upper bound (optimistic estimate) to V_h^* . Second and
 421 the most crucial bit is to show that deviation of $\bar{V}_{k,h}(s_{k,h})$ from the sample used in decision-making,
 422 $\tilde{Q}_{k,h}(s_{k,h}, a_{k,h})$, can be tractably bounded across rounds of interactions. This combined with the
 423 optimism of $\bar{V}_{k,h}$, naturally bounds the *optimism error*. Third we demonstrate the estimation error
 424 has a recursive structure, i.e., error at step h depends on error at $h + 1$ and terms attributed to
 425 stochasticity in the model; and deviation of $\bar{V}_{k,h}(s_{k,h})$ from $\tilde{Q}_{k,h}(s_{k,h}, a_{k,h})$. Therefore, first two
 426 parts are utilized to prove *estimation error bound*.

427 **(a) $\bar{V}_{k,h}$ used in the target, is an optimistic estimate of V_h^***

428 **Lemma 1** (Abridged). *For any episode k and index h , the following holds with probability at least
 429 $1 - \delta/KH$,*

$$\bar{V}_{k,h}(s_{k,h}) \geq V_h^*(s_{k,h}),$$

430 where δ is a parameter of PSQL used to define the number of samples J used to compute the target.

The above is an abridged version of Lemma C.1. The proof of which inductively uses the optimism and estimation error bounds available for the next stage ($h + 1$) to bound the estimation error in the posterior mean $\widehat{Q}_h(s, a)$. Then, anti-concentration (i.e., lower tail bounds) of the Gaussian posterior distribution provides the desired constant probability optimism.

(b) $\overline{V}_{k,h}(s_{k,h})$ used in the target, is not far away from $\tilde{Q}_{k,h}(s_{k,h}, a_{k,h})$. The following lemma is an abridged version of Lemma C.3 and tells us that the gap is of the order of $\sigma(N_{k,h}(s_{k,h}, a_{k,h}))$ which goes down (see (10)) as $s_{k,h}, a_{k,h}$ is visited often with rate $1/\sqrt{N_{k,h}(s_{k,h}, a_{k,h})}$. This is central to our analysis.

Lemma 2 (Abridged). *In Algorithm 1, with probability $1 - 2\delta$, the following holds for all $k \in [K]$ and $h \in [H]$,*

$$\overline{V}_{k,h}(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \leq \tilde{O}(\sigma(N_{k,h}(s_{k,h}, a_{k,h}))),$$

where $\tilde{O}(\cdot)$ hides multiplicative logarithmic terms.

The challenge here is that $\overline{V}_{k,h+1}(s_{k,h+1})$ is obtained by sampling from the posterior of $\widehat{Q}(s_{k,h+1}, \cdot)$ at action \widehat{a} ($:= \arg \max_a \widehat{Q}_{k,h}(s_{k,h}, a) + \sigma(N_{k,h}(s_{k,h}, a))$) and not $a_{k,h+1}$ ($:= \arg \max_a \tilde{Q}_{k,h}(s_{k,h}, a)$). To get around this difficulty, we show in Lemma C.2 that $\sigma(N_{k,h}(s_{k,h}, \widehat{a}))^2 < 2\sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2 \log(1/\delta)$ with a non-zero probability. Finally, using a probability boosting argument (Lemma E.1) we prove Lemma 2. Combined with Lemma 1 to obtain a high probability optimism error bound.

Lemma 3 (Optimism error). *In Algorithm 1, with probability $1 - 2\delta$, the following holds for all $k \in [K]$ and $h \in [H]$,*

$$V_h^*(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \leq \tilde{O}(\sigma(N_{k,h}(s_{k,h}, a_{k,h}))),$$

where $\tilde{O}(\cdot)$ hides multiplicative logarithmic terms.

(c) Bounding estimation error. In Q-learning, an estimate of the next stage value function (here, \overline{V}_{h+1}) is used to compute the target in order to update the Q -value for the current stage (here, the posterior mean \widehat{Q}_h). As a result, the error in the posterior mean for stage h depends on the error in the value function estimates for $h + 1$.

Lemma 4 (Posterior mean estimation error). *With probability at least $1 - \delta$, for all $k, h, s, a \in [K] \times [H] \times \mathcal{S} \times \mathcal{A}$,*

$$\widehat{Q}_{k,h}(s, a) - Q_h^*(s, a) \leq \sqrt{\sigma(N_{k,h}(s, a))^2 \eta} + \alpha_n^0 H + \sum_{i=1}^n \alpha_n^i \left(\overline{V}_{k_i, h+1}(s_{k_i, h+1}) - V_{h+1}^*(s_{k_i, h+1}) \right),$$

where $n = N_{k,h}(s, a)$, and $\eta = \log(SAKH/\delta)$. And, $\alpha_n^i = \alpha_i \Pi_{j=i+1}^n (1 - \alpha_j)$, $i > 0$, with $\alpha_n^0 = \Pi_{j=1}^n (1 - \alpha_j)$.

Conceivably, we should be able to apply the above lemma inductively to obtain an estimation error bound (Lemma 5). Lemma 2 again plays a crucial role in the above recursive bound.

Lemma 5 (Cumulative estimation error.). *With probability at least $1 - \delta$, the following holds for all $h \in [H]$,*

$$\sum_{k=1}^K \left(\tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^{\pi_k}(s_{k,h}) \right) \leq O\left(H^2 \sqrt{SAT} \log(JSAT/\delta)\right).$$

(c) Putting it all together. To obtain the final regret bound, we simply sum up the optimism error bound in Lemma 3 for K episodes and add it to the cumulative estimation error bound above.

5 CONCLUSION

We presented a posterior sampling-based approach for incorporating exploration in Q-learning. Our PSQL algorithm is derived from an insightful Bayesian inference framework and shows promising empirical performance in preliminary experiments. (Detailed experimental setup and empirical results on additional environments are provided in Appendix A.) We proved a $\tilde{O}(H^2 \sqrt{SAT})$ regret bound

486 in a tabular episodic RL setting that closely matches the known lower bound. Future directions
 487 include a theoretical analysis of the vanilla version of PSQL (called PSQL* in experiments) that uses
 488 a single sample from next stage posterior in the target computation. The vanilla version outperforms
 489 Algorithm 1 empirically but is significantly harder to analyze. Another avenue is tightening the H
 490 dependence in the regret bound; Appendix F outlines a sketch for improving it by \sqrt{H} although at
 491 the expense of making the algorithm more complex. Further refinements are potentially achievable
 492 using techniques from Li et al. (2021a); Zhang et al. (2020).

493

494 REFERENCES

495

496 Alekh Agarwal and Tong Zhang. Model-based rl with optimistic posterior sampling: Structural
 497 conditions and sample complexity. *Advances in Neural Information Processing Systems*, 35:
 498 35284–35297, 2022.

499 Priyank Agrawal and Shipra Agrawal. Optimistic q-learning for average reward and episodic
 500 reinforcement learning. *arXiv preprint arXiv:2407.13743*, 2024.

501

502 Priyank Agrawal, Jinglin Chen, and Nan Jiang. Improved worst-case regret bounds for randomized
 503 least-squares value iteration. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 504 volume 35, pp. 6566–6573, 2021.

505

506 Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
 507 In *Conference on learning theory*, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.

508

509 Shipra Agrawal and Navin Goyal. Near-optimal regret bounds for thompson sampling. *Journal of*
 510 *the ACM (JACM)*, 64(5):1–24, 2017.

511

512 Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case
 513 regret bounds. In *Advances in Neural Information Processing Systems*, 2017.

514

515 Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: Worst-case
 516 regret bounds. *Mathematics of Operations Research*, 48(1):363–392, 2022.

517

518 Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Thompson sampling for the
 519 mnl-bandit. In *Conference on learning theory*, pp. 76–78. PMLR, 2017.

520

521 Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
 522 force learning. In *International Conference on Machine Learning*, pp. 263–272. PMLR,
 523 2017.

524

525 Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration
 526 through bayesian deep q-networks. In *2018 Information Theory and Applications Workshop (ITA)*,
 527 pp. 1–9. IEEE, 2018.

528

529 Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning with low
 530 switching cost. *Advances in Neural Information Processing Systems*, 32, 2019.

531

532 Peter L Bartlett and Ambuj Tewari. Regal: A regularization based algorithm for reinforcement
 533 learning in weakly communicating mdps. *arXiv preprint arXiv:1205.2661*, 2012.

534

535 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4.
 536 Springer, 2006.

537

538 Victor Boone and Zihan Zhang. Achieving tractable minimax optimal regret in average reward mdps.
 539 *arXiv preprint arXiv:2406.01234*, 2024.

540

541 Nicolo Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games*. Cambridge university
 542 press, 2006.

543

544 Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. *Advances in neural*
 545 *information processing systems*, 24, 2011.

540 Christoph Dann, Mehryar Mohri, Tong Zhang, and Julian Zimmert. A provably efficient model-free
 541 posterior sampling method for episodic reinforcement learning. *Advances in Neural Information
 542 Processing Systems*, 34:12040–12051, 2021.

543 Ying Fan and Yifei Ming. Model-based reinforcement learning for continuous control with posterior
 544 sampling. In *International Conference on Machine Learning*, pp. 3078–3087. PMLR, 2021.

545 Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
 546 Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy networks for exploration.
 547 *arXiv preprint arXiv:1706.10295*, 2017.

548 Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and Ronald Ortner. Efficient bias-span-constrained
 549 exploration-exploitation in reinforcement learning. In *International Conference on Machine
 550 Learning*, pp. 1578–1586. PMLR, 2018.

551 Haque Ishfaq, Qiwen Cui, Viet Nguyen, Alex Ayoub, Zhuoran Yang, Zhaoran Wang, Doina Precup,
 552 and Lin Yang. Randomized exploration in reinforcement learning with general value function
 553 approximation. In *International Conference on Machine Learning*, pp. 4607–4616. PMLR, 2021.

554 Haque Ishfaq, Qingfeng Lan, Pan Xu, A Rupam Mahmood, Doina Precup, Anima Anandkumar, and
 555 Kamyar Azizzadenesheli. Provable and practical: Efficient exploration in reinforcement learning
 556 via langevin monte carlo. *arXiv preprint arXiv:2305.18246*, 2023.

557 Haque Ishfaq, Yixin Tan, Yu Yang, Qingfeng Lan, Jianfeng Lu, A Rupam Mahmood, Doina Precup,
 558 and Pan Xu. More efficient randomized exploration for reinforcement learning via approximate
 559 sampling. *arXiv preprint arXiv:2406.12241*, 2024.

560 Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I Jordan. Is Q-learning provably efficient?
 561 *Advances in neural information processing systems*, 31, 2018.

562 Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
 563 optimal finite-time analysis. In *International conference on algorithmic learning theory*, pp.
 564 199–213. Springer, 2012.

565 Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule. *Journal of Machine Learning
 566 Research*, 24(281):1–46, 2023.

567 Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view on bayes'
 568 rule: Reviewing and generalizing variational inference. *Journal of Machine Learning Research*, 23
 569 (132):1–109, 2022.

570 Gen Li, Laixi Shi, Yuxin Chen, Yuantao Gu, and Yuejie Chi. Breaking the sample complexity barrier
 571 to regret-optimal model-free reinforcement learning. *Advances in Neural Information Processing
 572 Systems*, 34:17762–17776, 2021a.

573 Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, and Zhi-Quan Luo. Hyperdqn: A randomized
 574 exploration method for deep reinforcement learning. In *International Conference on Learning
 575 Representations*, 2021b.

576 Pierre Ménard, Omar Darwiche Domingues, Xuedong Shang, and Michal Valko. Ucb momentum q-
 577 learning: Correcting the bias without forgetting. In *International Conference on Machine Learning*,
 578 pp. 7609–7618. PMLR, 2021.

579 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 580 Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint
 581 arXiv:1312.5602*, 2013. URL <https://arxiv.org/pdf/1312.5602.pdf>.

582 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 583 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 584 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

585 Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
 586 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 587 learning, 2016.

594 Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
 595 learning? In *International conference on machine learning*, pp. 2701–2710. PMLR, 2017.
 596

597 Ian Osband, Daniel Russo, and Benjamin Van Roy. (More) efficient reinforcement learning via
 598 posterior sampling. *Advances in Neural Information Processing Systems*, 26, 2013.

599 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
 600 bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016a.

601

602 Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized
 603 value functions. In *International Conference on Machine Learning*, pp. 2377–2386. PMLR, 2016b.

604 Ian Osband, Benjamin Van Roy, Daniel J Russo, and Zheng Wen. Deep exploration via randomized
 605 value functions. *Journal of Machine Learning Research*, 20(124):1–62, 2019.

606

607 Yi Ouyang, Mukul Gagrani, Ashutosh Nayyar, and Rahul Jain. Learning unknown markov decision
 608 processes: A thompson sampling approach. *Advances in neural information processing systems*,
 609 30, 2017.

610 Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. *Advances in
 611 Neural Information Processing Systems*, 32, 2019.

612

613 Remo Sasso, Michelangelo Conserva, and Paulo Ruauber. Posterior sampling for deep reinforcement
 614 learning. In *International Conference on Machine Learning*, pp. 30042–30061. PMLR, 2023.

615 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3:
 616 9–44, 1988.

617

618 William R Thompson. On the likelihood that one unknown probability exceeds another in view of
 619 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

620 Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey
 621 Naumov, Mark Rowland, Michal Valko, and Pierre Ménard. Optimistic posterior sampling for
 622 reinforcement learning with few samples and tight guarantees. *Advances in Neural Information
 623 Processing Systems*, 35:10737–10751, 2022.

624

625 Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey
 626 Naumov, Pierre Perrault, Michal Valko, and Pierre Ménard. Model-free posterior sampling via
 627 learning rate randomization. *Advances in Neural Information Processing Systems*, 36:73719–73774,
 628 2023.

629 Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 630 learning, 2015.

631

632 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 633 bridge University Press, 2019.

634 Christopher JCH Watkins and Peter Dayan. Q-learning. *Machine learning*, 8:279–292, 1992.

635

636 Zhihan Xiong, Ruoqi Shen, Qiwen Cui, Maryam Fazel, and Simon S Du. Near-optimal randomized
 637 exploration for tabular markov decision processes. *Advances in neural information processing
 638 systems*, 35:6358–6371, 2022.

639 Andrea Zanette and Emma Brunskill. Tighter problem-dependent regret bounds in reinforcement
 640 learning without domain knowledge using value function bounds. In *International Conference on
 641 Machine Learning*, pp. 7304–7312. PMLR, 2019.

642

643 Andrea Zanette, David Brandfonbrener, Emma Brunskill, Matteo Pirotta, and Alessandro Lazaric.
 644 Frequentist regret bounds for randomized least-squares value iteration. In *International Conference
 645 on Artificial Intelligence and Statistics*, pp. 1954–1964. PMLR, 2020.

646 Zihan Zhang and Qiaomin Xie. Sharper model-free reinforcement learning for average-reward
 647 markov decision processes. In *The Thirty Sixth Annual Conference on Learning Theory*, pp.
 5476–5477. PMLR, 2023.

648 Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via
649 reference-advantage decomposition. *Advances in Neural Information Processing Systems*, 33:
650 15198–15207, 2020.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **The Use of Large Language Models** Commonly available LLM tools were only used to help
 703 to improve English writing, grammar and typeset in LaTeX. LLMs were not used to generate any
 704 research ideas or analysis present in this work.

705
 706 **A EXPERIMENTS**
 707

708 In section 4, we proved that our Q-learning with posterior sampling algorithm PSQL enjoys regret
 709 bounds comparable to its UCB-counterparts, e.g., Jin et al. (2018). In this section, we present empirical
 710 results that validate our theory and compare the empirical performance of the posterior sampling
 711 approach against several benchmark UCB-based and randomized algorithms for reinforcement
 712 learning.

713 For the empirical studies, we use the vanilla version of posterior sampling, which we denote as
 714 PSQL* (see Figure 1). In this vanilla version, the target computation at a step h is the default
 715 $z = r_h + \max_{a'} \tilde{Q}_{h+1}(s_{h+1}, a')$. As discussed in Section 3.2, PSQL modified this target computation
 716 to make it slightly optimistic, to deal with the challenges in theoretical analysis. Later, we also
 717 compare the empirical performance of PSQL and PSQL*. While the modified target computation
 718 does slightly deteriorate the performance of PSQL, in our experiments, it still performs significantly
 719 better compared to the benchmark UCB-based approach Jin et al. (2018).

720 Specifically, we compare the posterior sampling approach to the following three algorithms.

- 722 • UCBQL Jin et al. (2018) (Hoeffding version): the seminal work which gave the first UCB
 723 based Q-learning regret analysis.
- 724 • RLSVI Russo (2019): a popular randomized algorithm that implicitly maintains posterior
 725 distributions on Value functions.
- 726 • Staged-RandQL Tiapkin et al. (2023): a recently proposed randomized Q-learning based
 727 algorithm that uses randomized learning rates to motivate exploration.

729 **Environment description.** We report the empirical performance of RL algorithms on two tabular
 730 environments described below. In each environment, we report each algorithm’s average performance
 731 over 10 randomly sampled instances.

- 733 • (One-dimensional “chain” MDP:) An instance of this MDP is defined by two parameters
 734 $p \in [0.7, 0.95]$ and $S \in \{7, 8, 9, \dots, 14\}$. In a random instance, p & S are chosen randomly
 735 from the given ranges. The resultant MDP environment is a chain in which the agent starts
 736 at state 0 (the far-left state), and state S (the right-most state) is the goal state. At any given
 737 step h in an episode, the agent can take “left” or “right” action. The transitions are to the
 738 state in the direction of the action taken with probability p , and in the opposite direction
 739 with probability $1 - p$.
- 740 • (Two-dimensional “grid-world” MDP, similar to FrozenLake environment in the popular
 741 Gymnasium library:) A random instance of this MDP is defined by a 4×4 grid with a
 742 random number of “hole” states placed at on the grid uniformly at random that the agent
 743 must avoid or else the episode ends without any reward. The agent starts at the upper-left
 744 corner, and the goal state is the bottom-right corner of the grid. There is at least one feasible
 745 path from the starting state to the goal state that avoids all hole states. At any given time
 746 step, the agent can take the “left”, “right”, “bottom” and “up” actions. After an action is
 747 taken, the agent has $1/3$ probability to transit to the direction of the action taken, and $1/3$
 748 probability each to transit to the two perpendicular directions.

749 In both the above environments, the goal state carries the reward of $(H - h)/H$, where H is the
 750 duration of the episode and h is the time index within the episode at which the goal state is reached.
 751 No other state has any reward. The duration of an episode is set at $H = 32$ for all experiments.

752 **Findings.** We observed that the performance of all the algorithms is sensitive to constants in the
 753 exploration bonuses or in the posterior variances. These constants were tuned such that the respective
 754 algorithms performed the best in the two environments. We made the following parameter choices
 755 for the algorithmic simulations for a fair comparison:

756 • δ is fixed for all algorithms as 0.05.
 757 • In UCBQL Jin et al. (2018), the Q-function estimates are initialized as the maximum value
 758 of any state in the environment ($=: V_{\max}$). The exploration bonus for any h, s, a with visit
 759 counts as n is given by

$$760 \quad 761 \quad 762 \quad 763 \quad 764 \quad 765 \quad 766 \quad 767 \quad 768 \quad 769 \quad 770 \quad 771 \quad 772 \quad 773 \quad 774 \quad 775 \quad 776 \quad 777 \quad 778 \quad 779 \quad 780 \quad 781 \quad 782 \quad 783 \quad 784 \quad 785 \quad 786 \quad 787 \quad 788 \quad 789 \quad 790 \quad 791 \quad 792 \quad 793 \quad 794 \quad 795 \quad 796 \quad 797 \quad 798 \quad 799 \quad 800 \quad 801 \quad 802 \quad 803 \quad 804 \quad 805 \quad 806 \quad 807 \quad 808 \quad 809$$

$$\sqrt{c \frac{V_{\max}^2 \log(SAT/\delta)}{n}},$$

with $c = 0.01$

• In PSQL and PSQL*, the Q-function posterior means are initialized as V_{\max} (same as UCBQL) and the standard deviation of the posterior for any h, s, a with n visits is given by

$$\sqrt{c \frac{V_{\max}^2}{\max\{1, n\}}},$$

with $c = 0.02$.

• In RLSVI Russo (2019), the per-reward perturbation is a mean zero Gaussian with standard deviation for any h, s, a with n visits is given by,

$$\sqrt{c \frac{V_{\max}^2 \log(SAT/\delta)}{n+1}},$$

with $c = 0.005$.

• In Staged-RandQL Tiapkin et al. (2023), for the initialization of the Q-function estimates, we use a tighter upper bound of $(H - h)/H$ at step h available in our environment, instead of the default $H - h$ suggested in their paper. We use $n_0 = 1/S$ and $r_0 = 1$ as in their paper.

Our results are summarized in Figure 2 and 3. The error bars represent one standard deviation interval around the mean cumulative regret of an algorithm over 10 runs on randomly generated instances of the environment. We observe that the randomized/posterior sampling algorithms PSQL*, RLSVI,

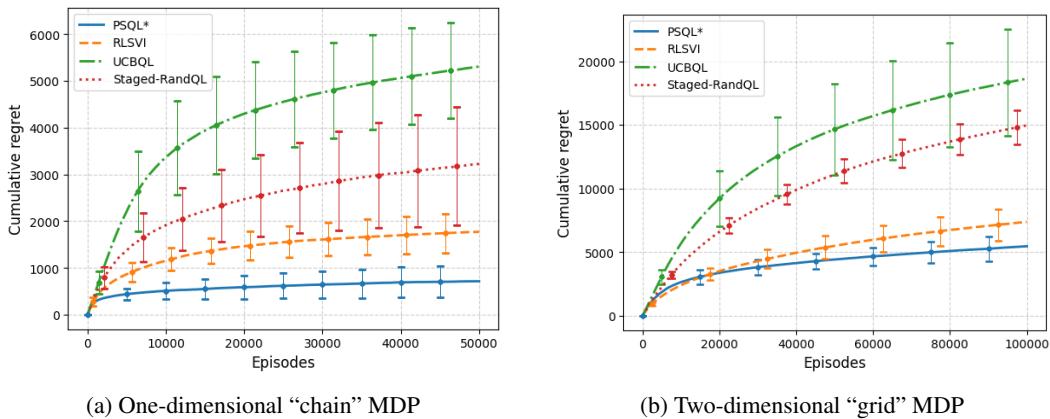


Figure 2: Regret comparison: x-axes denotes episode index, y-axes denotes cumulative regret

and Staged-RandQL, have lower regret than their UCB counterpart: UCBQL. Also, PSQL* has significantly lower regret than the other two randomized algorithms.

A direct practical implication is that, PSQL* enjoys a shorter learning time (number of episodes after which the cumulative regret is below the specified threshold (Osband et al., 2019)). Further, the variance across different runs is also the lowest of all, suggesting PSQL* enjoys higher robustness.

In Figure 3, we compare the performance of PSQL*, the single sample vanilla version of posterior sampling, with the PSQL algorithm for which we provided regret bounds. As we explained in Section 4.1 (Challenges and Techniques), in order to achieve optimism in the target, PSQL computed the next state value by taking the max over multiple samples from the posterior of empirical mean maximizer

action $\hat{a} = \arg \max_a \hat{Q}_h(s_h, a) + \sigma(N_h(s_h, a))$. This introduces some extra exploration, and as a result, we observe that PSQL* displays a more efficient exploration-exploitation tradeoff, PSQL still performs significantly better than the UCB approach. These observations motivate an investigation into the theoretical analysis of the vanilla version, which we believe will require significantly new techniques.

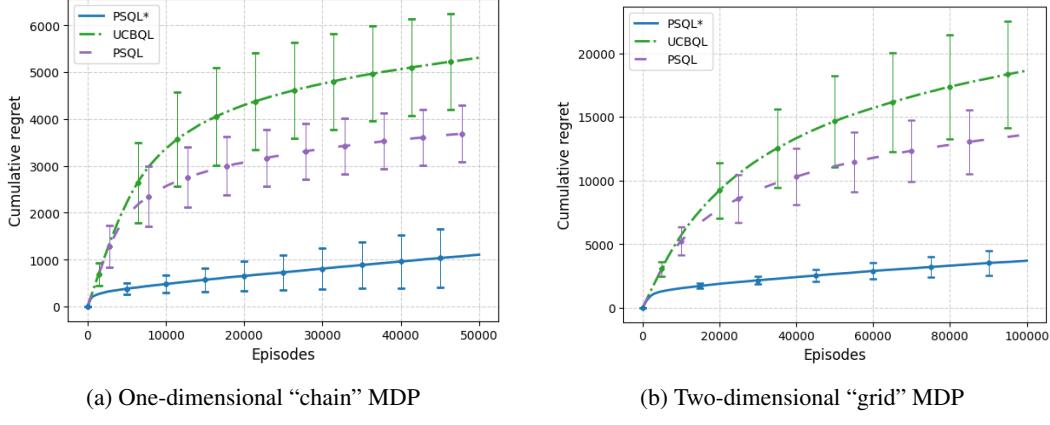


Figure 3: Regret comparison: x-axes denotes episode index, y-axes denotes cumulative regret

B BAYESIAN INFERENCE BASED INTERPRETATION FOR Q-LEARNING

In this section, we describe the mathematical steps for calculating the updated posterior distribution from (8).

First, in Proposition B.1, we derive the well-known result that solving the optimization problem in (6) gives the posterior distribution as expected by Bayes rule. Let $\theta \in \Theta$ be the Bayesian parameter that we are inferring with Δ_Θ be the space of distributions on Θ . Let $p(\theta)$, $\ell(\theta, \cdot)$, and $q(\theta)$ be the current prior distribution on θ , the negative log likelihood function and the posterior distribution to be calculated.

Proposition B.1 (Also in Khan & Rue (2023); Knoblauch et al. (2022)). *Let $KL(q(\theta)||p(\theta)) = \int_\theta q(\theta) \log(\frac{q(\theta)}{p(\theta)})$. Given log likelihood function $\ell(\theta, z)$, and prior $p(\theta)$, the distribution q that maximizes ELBO objective,*

$$\max_{q \in \Delta_\Theta} \mathbb{E}_{\theta \sim q} [\ell(\theta, z)] - KL(q(\theta)||p(\theta)) \quad (14)$$

is given by the Bayes rule

$$q^{\text{Bayes}}(\theta) \propto p(\theta) \cdot \exp(\ell(\theta, z)). \quad (15)$$

Proof. Note that the ELBO objective function is equivalent to

$$\begin{aligned} & - \int_\theta \log(\exp(-\ell(\theta, z))q(\theta)) - \int_\theta \log\left(\frac{q(\theta)}{p(\theta)}\right) q(\theta) \\ &= - \int_\theta \log\left(\frac{q(\theta)}{p(\theta) \exp(\ell(\theta, z))}\right) q(\theta), \end{aligned}$$

which is maximized when $q(\theta) = q^{\text{Bayes}}(\theta)$. \square

Now, we study the calculation of the posterior distribution of $Q_h(s, a)$ after observing $n + 1$ visits of (h, s, a) in Lemma B.1.

Lemma B.1. *Consider the following maximization problem (regularized ELBO) over the space Δ_Θ of distributions over a parameter θ .*

$$\max_{q \in \Delta_\Theta} \mathbb{E}_{\theta \sim q} [\ell(\theta, z)] - KL(q(\theta)||p(\theta)) + \lambda_n \mathcal{H}(q(\theta)), \quad (16)$$

Then, if $p(\cdot)$ is given by the pdf of the Gaussian distribution $\mathcal{N}(\hat{\mu}_{n-1}, \frac{\sigma^2}{n-1})$, and $\ell(\theta, z) = \log(\phi_\theta(z))$ where $\phi_\theta(z) = \Pr(z|\theta)$ is the pdf of the Gaussian distribution $\mathcal{N}(\theta, \frac{\sigma^2}{H+1})$, and $\lambda_n = \frac{H}{n}$; then the optimal solution $q(\cdot)$ to (16) is given by the Gaussian distribution $\mathcal{N}(\hat{\mu}_n, \frac{\sigma^2}{n})$, where

$$\hat{\mu}_n = (1 - \alpha_n)\hat{\mu}_{n-1} + \alpha_n z, \text{ with } \alpha_n = \frac{H+1}{H+n}.$$

Proof. Denote the objective value at a given distribution q as $rELBO(q)$. Then,

$$\begin{aligned}
rELBO(q) &= \int_{\theta} \log(\exp(\ell(\theta, z))q(\theta) - \int_{\theta} \log\left(\frac{q(\theta)}{p(\theta)}\right) q(\theta) - \lambda_n \int_{\theta} \log(q(\theta))q(\theta) \\
&= - \int_{\theta} \log\left(\frac{q(\theta)^{1+\lambda_n}}{p(\theta) \exp(\ell(\theta, z))}\right) q(\theta),
\end{aligned}$$

which is maximized at distribution q with $q(\theta) \propto (p(\theta) \exp(\ell(\theta, z)))^{1/(\lambda_n+1)}$. Then,

$$\begin{aligned}
q(\theta) &\propto \exp \left[\frac{1}{\lambda_n + 1} \left(-\frac{(n-1)(\theta - \hat{\mu}_{n-1})^2}{2\sigma^2} - \frac{(H+1)(z-\theta)^2}{2\sigma^2} \right) \right] \\
&\propto \exp \left[-\frac{n}{H+n} \left(\frac{\theta^2(H+n) - 2\theta((n-1)\hat{\mu}_{n-1} + (H+1)z)}{2\sigma^2} \right) \right] \\
&\propto \exp \left[-n \left(\frac{\theta^2 - 2\theta\hat{\mu}_n}{2\sigma^2} \right) \right] \\
&\propto \exp \left[-n \left(\frac{(\theta - \hat{\mu}_n)^2}{2\sigma^2} \right) \right]
\end{aligned}$$

where $\hat{\mu}_n = \frac{n-1}{H+n} \hat{\mu}_{n-1} + \frac{H+1}{H+n} z = (1 - \alpha_n) \hat{\mu}_{n-1} + \alpha_n z$.

C MISSING PROOFS FROM SECTION 4

C.1 OPTIMISM

Lemma C.1 (Unabridged version). *The samples from the posterior distributions and the mean of the posterior distributions as defined in Algorithm 1, 2 satisfy the following properties: for any episode $k \in [K]$ and index $h \in [H]$,*

(a) (Posterior distribution mean) For any given s, a , with probability at least $1 - \frac{2(k-1)\delta}{\kappa H} - \frac{\delta}{\kappa H}$,

$$\hat{Q}_{k,h}(s, a) \geq Q_h^*(s, a) - \sqrt{\sigma(N_{k,h}(s, a))^2}. \quad (17)$$

(b) (Posterior distribution sample) For any given s, a , with probability at least p_1 ($p_1 = \Phi(-1)$) conditioned on (17) being true

$$\tilde{Q}_{k,b}(s, a) \geq Q_i^*(s, a). \quad (18)$$

(c) (In Algorithm 2) With probability at least $1 - \frac{2k\delta}{KH}$, the following holds for all episodes $k' \leq k$

$$\overline{V}_{k,h}(s_{k,h}) > V_h^*(s_{k,h}). \quad (19)$$

Here δ is a parameter of the algorithm used to define the number of samples J used to compute the target \bar{V} .

Proof. We prove the lemma statement via induction over k, h .

918 **Base case:** $k = 1, h \in [H]$. Note that $n_{1,h}(s, a) = 0$ for all $s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]$. Therefore,
919 $\hat{Q}_{1,h}(s, a) = H$ for all s, a, h ((17) is trivially true). As $Q_h^*(s, a) \leq H$ for all s, a, h , therefore
920 $\tilde{Q}_{1,H}(s, a) \geq Q_H^*(s, a)$, with probability at least $1/2 (> p_1)$, i.e. (18) is true. By the choice of J and
921 Lemma E.2, (19) also follows.
922

923 **Induction hypothesis:** Given $k > 1, 1 \leq h \leq H$, assume that the statements (a),(b), and (c) are
924 true for $1 \leq k' \leq k - 1, h' \in [H]$, and for $k' = k, h + 1 \leq h' \leq H$.
925

926 **Induction step:** For k, h , we show (17) holds with probability $1 - \frac{2(k-1)\delta}{KH} - \frac{\delta}{KH}$, (18) holds with
927 probability at least $p_1 = \Phi(-1)$ in the event (17) holds , and finally (19) holds with probability
928 $1 - \frac{2k\delta}{KH}$.
929

930 In case $n_{k,h}(s, a) = 0$, then $\hat{Q}_{k,h}(s, a) = H$ and $b_{k,h}(s, a) > 0$ and therefore by the same reasoning
931 as in the base case, the induction statement holds. For the rest of the proof we consider $n_{k,h}(s, a) > 0$.
932

933 Let $n = N_{k,h}(s, a)$, then Algorithm 1 implies,

$$934 \quad \hat{Q}_{k,h}(s, a) = \alpha_n^0 H + \sum_{i=1}^n \alpha_n^i \left(r_{k_i,h} + \bar{V}_{k_i,h+1}(s_{k_i,h+1}) \right), \quad (20)$$

937 To prove the induction step for (17), consider the following using (12) and Bellman optimality
938 equation.

$$939 \quad \begin{aligned} \hat{Q}_{k,h}(s, a) - Q_h^*(s, a) &= \sum_{i=1}^n \alpha_n^i \left(r_{k_i,h} - r_h(s, a) + \bar{V}_{k_i,h+1}(s_{k_i,h+1}) - P_{h,s,a} V_h^* \right) \\ 940 &= \sum_{i=1}^n \alpha_n^i \left(r_{k_i,h} - r_h(s, a) + V_{h+1}^*(s_{k_i,h+1}) - P_{h,s,a} V_h^* \right) \\ 941 &\quad + \sum_{i=1}^n \alpha_n^i \left(\bar{V}_{k_i,h+1}(s_{k_i,h+1}) - V_{h+1}^*(s_{k_i,h+1}) \right) \\ 942 &\quad \text{(using (19) from induction hypothesis for } h+1 \leq H, \text{ with probability } 1 - \frac{2(k-1)\delta}{KH}) \\ 943 &\quad \text{(note that this is trivially true when } h+1 = H+1 \text{ since } \bar{V}_{k,H+1} = V_{h+1}^* = 0) \\ 944 &\geq \sum_{i=1}^n \alpha_n^i \left(r_{k_i,h} - r_h(s, a) + V_{h+1}^*(s_{k_i,h+1}) - P_{h,s,a} V_h^* \right) \\ 945 &\quad \text{(using Corollary D.2 with probability } 1 - \frac{\delta}{KH}) \\ 946 &\geq -4 \sqrt{\frac{H^3 \log(KH/\delta)}{n_{k,h}(s, a) + 1}} \\ 947 &= -\sqrt{\sigma(N_{k,h}(s, a))^2}, \end{aligned} \quad (21)$$

948 Therefore, with a union bound we have with probability $1 - \frac{2(k-1)\delta}{KH} - \frac{\delta}{KH}$,

$$949 \quad \hat{Q}_{k,h}(s, a) \geq Q_h^*(s, a) - \sqrt{\sigma(N_{k,h}(s, a))^2} \quad (22)$$

950 When (22) holds, then from the definition of cumulative density of Gaussian distribution we get,
951

$$952 \quad \Pr \left(\tilde{Q}_{k,h}(s, a) \geq \hat{Q}_{k,h}(s, a) + \sqrt{\sigma(N_{k,h}(s, a))^2} \right) \geq \Phi(-1).$$

953 Now, we show $\tilde{Q}_{k,h}(s, \hat{a}) \geq Q_h^*(s, a^*) = V_h^*(s)$ with probability at least $\Phi(-1) - \delta - \delta/H$, where
954

$$955 \quad \hat{a} = \arg \max_{a \in \mathcal{A}} \hat{Q}_{k,h}(s, a) + \sigma(N(s, a)), \text{ and } a^* = \arg \max_{a \in \mathcal{A}} Q_h^*(s, a).$$

972 By the definition of \hat{a} and properties of Gaussian distribution:
 973

$$\underbrace{\tilde{Q}_{k,h}(s, \hat{a}) \geq \hat{Q}_{k,h}(s, \hat{a}) + \sigma(N(s, \hat{a}))}_{\text{with probability at least } \phi(-1)} \geq \underbrace{\hat{Q}_{k,h}(s, a^*) + \sigma(N(s, a^*))}_{\text{with probability at least } 1 - 2(k-1)\delta/KH - \delta/KH} \geq Q_{k,h}^*(s, a^*).$$

977 Setting $J \geq \frac{\log(KH/\delta)}{\log(1/(1-p_1))}$ in Algorithm 1, we use Lemma E.2 to show that with probability $1 - \frac{\delta}{KH}$
 978

$$\bar{V}_{k,h}(s_{k,h}) \geq V_h^*(s_{k,h}). \quad (23)$$

981 Finally we use a union bound to combine (22) and (23) to prove (19) holds with probability at least
 982 $1 - \frac{2k\delta}{KH}$.
 983 \square
 984

985 C.2 ACTION MISMATCH BOUND 986

987 **Lemma C.2** (Bounding action mismatch). *For a given $k, h, s_{k,h}$, and let $\hat{a} := \arg \max_a \hat{Q}_{k,h}(s_{k,h}, a) + \sqrt{\sigma(N_{k,h}(s_{k,h}, a))^2}$,*

$$990 \sigma(N_{k,h}(s_{k,h}, \hat{a}))^2 < 2\sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2 \log(1/\delta), \quad \text{with probability at least } p_2,$$

991 where $p_2 = \Phi(-2) - (A)\delta$, and δ as defined in Theorem 2.
 992

993 *Proof.* Consider the following partition of A actions:
 994

$$\begin{aligned} \bar{\mathcal{A}} &:= \left\{ a : 2\sigma(N(s, a))^2 \log(1/\delta) > \sigma(N(s, \hat{a}))^2 \right\}, \\ \underline{\mathcal{A}} &:= \left\{ a : 2\sigma(N(s, a))^2 \log(1/\delta) \leq \sigma(N(s, \hat{a}))^2 \right\}. \end{aligned}$$

995 Clearly, $\hat{a} \in \bar{\mathcal{A}}$. We prove that with probability at least $\Phi(-2) - A\delta$, we have $\tilde{a} \in \bar{\mathcal{A}}$, so that
 1000 $\sigma(N(s, \tilde{a}))^2 < 2\sigma(N(s, a))^2 \log(1/\delta)$.

1001 By definition of \hat{a} , we have that for all a ,
 1002

$$1003 \hat{Q}(s, a) + \sqrt{\sigma(N(s, a))^2} \leq \hat{Q}(s, \hat{a}) + \sqrt{\sigma(N(s, \hat{a}))^2}.$$

1004 Also, by construction of $\underline{\mathcal{A}}$, we have that for $\forall a \in \underline{\mathcal{A}}$,

$$1006 \hat{Q}(s, a) + \sqrt{\sigma(N(s, a))^2} + \sqrt{2\sigma(N(s, a))^2 \log(1/\delta)} \leq \hat{Q}(s, \hat{a}) + \sqrt{\sigma(N(s, \hat{a}))^2} + \sqrt{\sigma(N(s, \hat{a}))^2}$$

1007 From Gaussian tail bounds (see Corollary D.1) we have for $\forall a \in \underline{\mathcal{A}}$,
 1008

$$1009 \Pr \left(\tilde{Q}(s, a) \leq \hat{Q}(s, a) + \sqrt{\sigma(N(s, a))^2} + \sqrt{2\sigma(N(s, a))^2 \log(1/\delta)} \right) \geq 1 - A\delta$$

1011 so that $\forall a \in \underline{\mathcal{A}}$,

$$1012 \Pr \left(\tilde{Q}(s, a) \leq \hat{Q}(s, \hat{a}) + 2\sqrt{\sigma(N(s, \hat{a}))^2} \right) \geq 1 - A\delta$$

1014 Also for the Gaussian random variable $\tilde{Q}(s, \hat{a})$, we have with probability at least $\Phi(-2)$,
 1015

$$1016 \tilde{Q}(s, \hat{a}) > \hat{Q}(s, \hat{a}) + 2\sqrt{\sigma(N(s, \hat{a}))^2},$$

1017 Using a union bound on the last two events,, we get
 1018

$$1019 \tilde{Q}(s, \hat{a}) > \max_{a \in \underline{\mathcal{A}}} \tilde{Q}(s, a), \quad \text{with probability at least } \Phi(-2) - A\delta. \quad (24)$$

1021 Since \hat{a} is in $\bar{\mathcal{A}}$, in the above scenario, the action \tilde{a} that maximizes $\tilde{Q}(s, \cdot)$ must be in $\bar{\mathcal{A}}$. Therefore,
 1022 $\sigma(N(s, \tilde{a}))^2 < 2\sigma(N(s, a))^2 \log(1/\delta)$ with probability $\Phi(-2) - A\delta$.
 1023 \square
 1024

1026 **Proposition C.1** (High probability action mismatch). *For a given $k, h, s_{k,h}$, let $\hat{a} :=$
 1027 $\arg \max_a \hat{Q}_{k,h}(s_{k,h}, a)$. Then,*

1029
$$\sigma(N_{k,h}(s_{k,h}, \hat{a})) < \sigma(N_{k,h}(s_{k,h}, a_{k,h})) \sqrt{2 \log(1/\delta)} + \frac{1}{p_2} \mathbb{E}_{a_{k,h}}[\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \sqrt{2 \log(1/\delta)}].$$
 1030

1031 where $p_2 = \Phi(-2) - (A)\delta$, and δ as defined in Theorem 2. Here $\mathbb{E}_{a_{k,h}}[\cdot]$ denotes expectation over
 1032 $a_{k,h}$ given $s_{k,h}$ and the history before round k, h .

1034 *Proof.* This follows by using previous lemma along with Lemma E.1 with $\tilde{X} =$
 1035 $\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \sqrt{2 \log(1/\delta)}$, $X^* = \sigma(N_{k,h}(s_{k,h}, \hat{a}))$, and $\underline{X} = 0$. \square
 1036

1038 C.3 TARGET ESTIMATION ERROR BOUND

1040 The following lemma characterizes the target estimation error.

1042 **Lemma C.3** (Target estimation error). *In Algorithm 1, with probability $1 - 2\delta$, the following holds
 1043 for all $k \in [K]$ and $h \in [H]$,*

$$\begin{aligned} 1044 \quad & \bar{V}_{k,h}(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \\ 1045 \quad & \leq 4\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \log(JKH/\delta) + \frac{4}{p_2} \mathbb{E}_{k,h}[\sigma(N_{k,h}(s_{k,h}, a_{k,h}))] \log(JKH/\delta) \\ 1046 \quad & =: \frac{1}{p_2} F(k, h, \delta), \\ 1047 \end{aligned}$$

1050 where $p_2 = \Phi(-2) - (A)\delta$ and δ as defined in Theorem 2, J is defined in (11), and $\mathbb{E}_a[\cdot]$ denotes
 1051 expectation over the randomness in the action taken at k, h conditioned on all history at the start
 1052 of the h_{th} step in the episode k (i.e., only randomness is that in the sampling from the posterior
 1053 distribution).

1055 *Proof.* We have $\arg \hat{a} = \max_a \hat{Q}_{k,h}(s_{k,h}, a)$. For the remainder of the proof, we drop k, h from the
 1056 subscript and denote $a_{k,h}$ by \tilde{a} . From Algorithm 1, $\bar{V}(s)$ is the maximum of J samples drawn from a
 1057 Gaussian distribution with mean as $\hat{Q}(s, \hat{a})$ and standard deviation as $\sigma(N(s, \hat{a}))^2$. Using Gaussian
 1058 tail bounds (Corollary D.1) along with a union bound over J samples, for any $\delta \in (0, 1)$, with
 1059 probability at least $1 - \delta$,

$$\begin{aligned} 1061 \quad & \bar{V}(s) \leq \hat{Q}(s, \hat{a}) + \sqrt{2\sigma(N(s, \hat{a}))^2 \log(J/\delta)} \\ 1062 \quad & \leq \tilde{Q}(s, \hat{a}) + \sqrt{2\sigma(N(s, \hat{a}))^2 \log(J/\delta)} + \sqrt{2\sigma(N(s, \hat{a}))^2 \log(1/\delta)} \\ 1063 \end{aligned}$$

1065 where $\tilde{Q}(s, \hat{a})$ is the sample corresponding to the \hat{a} action drawn by the algorithm at the k, h . Using
 1066 a union bound to combine the statements, with probability at least $1 - 2\delta$ we have,

$$\begin{aligned} 1068 \quad & \bar{V}(s) \leq \tilde{Q}(s, \hat{a}) + 2\sqrt{2\sigma(N(s, \hat{a}))^2 \log(J/\delta)} \\ 1069 \quad & \leq \tilde{Q}(s, \tilde{a}) + 2\sqrt{2\sigma(N(s, \hat{a}))^2 \log(J/\delta)}. \end{aligned} \tag{25}$$

1071 To complete the proof, we use Proposition C.1, and an union bound over all k, h to have the following
 1072 with probability at least $1 - 2\delta$

$$\begin{aligned} 1075 \quad & \bar{V}_{k,h}(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \\ 1076 \quad & \leq 4\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \sqrt{\log(JKH/\delta) \log(KH/\delta)} + \frac{4}{p_2} \mathbb{E}_{k,h}[\sigma(N_{k,h}(s_{k,h}, a_{k,h}))] \sqrt{\log(JKH/\delta) \log(KH/\delta)}. \\ 1077 \end{aligned}$$

1078

\square

1080 C.4 OPTIMISM ERROR BOUND
1081
10821083 **Corollary C.1** (Optimism error bound). *In Algorithm 1, with probability $1 - 3\delta$, the following holds
1084 for any $k \in [K]$ and $h \in [H]$,*
1085

1086
$$\begin{aligned} V_h^*(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \\ 1087 \leq 4\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \log(JKH/\delta) + \frac{4}{p_2} \mathbb{E}_{k,h}[\sigma(N_{k,h}(s_{k,h}, a_{k,h}))] \log(JKH/\delta) \\ 1088 \\ 1089 =: \frac{1}{p_2} F(k, h, \delta), \end{aligned}$$

1090
1091

1092 where $p_2 = \Phi(-2) - (A)\delta$ and δ as defined in Theorem 2, J is defined in (11), and $\mathbb{E}_a[\cdot]$ denotes
1093 expectation over the randomness in the action taken at k, h conditioned on all history at the start
1094 of the h_{th} step in the episode k (i.e., only randomness is that in the sampling from the posterior
1095 distribution).

1096

1097 *Proof.* From Lemma C.3, we have with probability at least $1 - 2\delta$,

1098
$$\begin{aligned} \bar{V}_{k,h}(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \\ 1099 \leq 4\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \log(JKH/\delta) + \frac{4}{p_2} \mathbb{E}_{k,h}[\sigma(N_{k,h}(s_{k,h}, a_{k,h}))] \log(JKH/\delta) \\ 1100 \\ 1101 =: \frac{1}{p_2} F(k, h, \delta). \end{aligned}$$

1102
1103

1104 Further, Lemma C.1 (c) gives with probability at least $1 - \delta$,

1105
$$V_h^*(s_{k,h}) \leq \bar{V}_{k,h}(s_{k,h}).$$

1106
1107

1108 We complete the proof via a union bound. \square
1109
11101111 **Corollary C.2.** *With probability $1 - \delta$, the following holds for all $h \in [H]$,*
1112

1113
$$\sum_{k=1}^K V_h^*(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \leq O\left(\sqrt{H^2 SAT}\chi\right),$$

1114
1115

1116 where $\chi = \log(JSAT/\delta)$.
11171118 *Proof.* From Corollary C.1, we have for all k, h simultaneously, with probability $1 - 3\delta$,

1119
$$\begin{aligned} \bar{V}_{k,h}(s_{k,h}) - \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) \\ 1120 \leq 4\sigma(N_{k,h}(s_{k,h}, a_{k,h})) \log(JKH/\delta) + \frac{4}{p_2} \mathbb{E}_{k,h}[\sigma(N_{k,h}(s_{k,h}, a_{k,h}))] \log(JKH/\delta). \end{aligned}$$

1121
1122

1123 By combining the definition of the variance in (10) with Corollary D.4, the result follows easily. \square
1124
11251126 C.5 POSTERIOR MEAN ESTIMATION ERROR BOUND
11271128 **Lemma 4** (Posterior mean estimation error). *With probability at least $1 - \delta$, for all $k, h, s, a \in$
1129 $[K] \times [H] \times \mathcal{S} \times \mathcal{A}$,*

1130
$$\hat{Q}_{k,h}(s, a) - Q_h^*(s, a) \leq \sqrt{\sigma(N_{k,h}(s, a))^2 \eta} + \alpha_n^0 H + \sum_{i=1}^n \alpha_n^i \left(\bar{V}_{k_i, h+1}(s_{k_i, h+1}) - V_{h+1}^*(s_{k_i, h+1}) \right),$$

1131

1132 where $n = N_{k,h}(s, a)$, and $\eta = \log(SAKH/\delta)$. And, $\alpha_n^i = \alpha_i \prod_{j=i+1}^n (1 - \alpha_j)$, $i > 0$, with
1133 $\alpha_n^0 = \prod_{j=1}^n (1 - \alpha_j)$.

Proof. First consider a fixed k, h, s, a . From (12) and Bellman optimality equation, we have (assume $n = N_{k,h}(s, a) \geq 1$),

$$\begin{aligned}
\hat{Q}_{k,h}(s, a) - Q_h^*(s, a) &= \sum_{i=1}^n \alpha_n^i \left(r_{k_i, h} - r_h(s, a) + \bar{V}_{k_i, h+1}(s_{k_i, h+1}) - P_{h, s, a} V_h^* \right) \\
&= \sum_{i=1}^n \alpha_n^i \left(r_{k_i, h} - r_h(s, a) + V_{h+1}^*(s_{k_i, h+1}) - P_{h, s, a} V_h^* \right) \\
&\quad + \sum_{i=1}^n \alpha_n^i \left(\bar{V}_{k_i, h+1}(s_{k_i, h+1}) - V_{h+1}^*(s_{k_i, h+1}) \right) \\
&\quad \text{(Using Corollary D.1 with probability } 1 - \delta) \\
&\leq \sqrt{\sigma(N_{k,h}(s, a))^2 \log(1/\delta)} + \sum_{i=1}^n \alpha_n^i \left(\bar{V}_{k_i, h+1}(s_{k_i, h+1}) - V_{h+1}^*(s_{k_i, h+1}) \right).
\end{aligned} \tag{26}$$

When $N_{k,h}(s, a) = 0$, then trivially $\widehat{Q}_{k,h}(s, a) - Q_h^*(s, a) \leq H = \alpha_n^0 H$, and for $N_{k,h}(s, a) > 0$, then $\alpha_n^0 = 0$. Combining these two cases and with a union bound over all s, a, h, k , we complete the proof. \square

C.6 CUMULATIVE ESTIMATION ERROR BOUND

Lemma 5 (Cumulative estimation error.). *With probability at least $1 - \delta$, the following holds for all $h \in [H]$,*

$$\sum_{k=1}^K \left(\tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^{\pi_k}(s_{k,h}) \right) \leq O\left(H^2 \sqrt{SAT} \log(JSAT/\delta)\right).$$

Proof. For the purpose of writing this proof, define $\phi_{k,h} := \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^*(s_{k,h})$, $\delta_{k,h} := \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^{\pi_k}(s_{k,h})$, and $\beta_{k,h} := \bar{V}_{k,h}(s_{k,h}) - V_h^*(s_{k,h})$. Clearly $\delta_{k,h} \geq \phi_{k,h}$. Further, $v(n_{k,h}) \leftarrow \sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2$.

Now consider,

$$\begin{aligned}
\tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^{\pi_k}(s_{k,h}) &\leq \tilde{V}_{k,h}(s_{k,h}) - Q_h^{\pi_k}(s_{k,h}, a_{k,h}) \\
&= \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - Q_{k,h}^*(s_{k,h}, a_{k,h}) + Q_{k,h}^*(s_{k,h}, a_{k,h}) - Q_1^{\pi_k}(s_{k,1}, a_{k,1}) \\
&\quad (\text{from Lemma 4 with probability } 1 - \delta, \text{ with } n \leftarrow N_{k,h}(s_{k,h}, a_{k,h})) \\
&\leq \alpha_n^0 H + \sqrt{2v(n_{k,h})\eta} + \sum_{i=1}^n \alpha_n^i \beta_{k_i, h+1} + P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) \\
&= \alpha_n^0 H + \sqrt{2v(n_{k,h})\eta} + \sum_{i=1}^n \alpha_n^i \beta_{k_i, h+1} - \phi_{k,h+1} + \delta_{k,h+1} \\
&\quad + P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) - (V_{h+1}^*(s_{k,h+1}) - V_{h+1}^{\pi_k}(s_{k,h+1})) \\
&\quad \text{From Lemma C.3 with probability } 1 - 2\delta \\
&\leq \alpha_n^0 H + \sqrt{2v(n_{k,h})\eta} + \frac{1}{p_2} \sum_{i=1}^n \alpha_n^i F(k_i, h+1, \delta) + m_{k,h} \\
&\quad + \sum_{i=1}^n \alpha_n^i \phi_{k_i, h+1} - \phi_{k,h+1} + \delta_{k,h+1},
\end{aligned} \tag{27}$$

where

$$m_{k,h} \coloneqq P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) - (V_{h+1}^*(s_{k,h+1}) - V_{h+1}^{\pi_k}(s_{k,h+1})).$$

Now, we club all episodes together to have:

$$\begin{aligned} 1186 \quad \sum_{h=1}^K \delta_{k,h} &\leq \sum_{h=1}^K \alpha_n^0 H + \sum_{h=1}^K \sqrt{4v(n_{k,h})\eta} + \frac{1}{p_2} \sum_{h=1}^K \sum_{i=1}^n \alpha_n^i F(k_i, h+1, \delta/KH) + \sum_{h=1}^H \sum_{k=1}^K m_{k,h} \\ 1187 \end{aligned}$$

$$+ \sum_{k=1}^K \sum_{i=1}^n \alpha_n^i \phi_{k_i, h+1} - \sum_{k=1}^K \phi_{k, h+1} + \sum_{k=1}^K \delta_{k, h+1}.$$

From Lemma E.5 (c), it follows $(a_{k,h} = \{\phi_{k,h}, F(k, h, \delta/KH)\}) \sum_{k=1}^K \sum_{i=1}^n \alpha_n^i a_{k,h+1} \leq (1 + 1/H) \sum_{k=1}^K a_{k,h+1}$. Further from the initialization,

$$\sum_{k=1}^K \alpha_{n_k, h}^0 H \leq \sum_{k=1}^K \mathbb{I}\{n_{k,h} = 0\} H \leq SAH = HSA.$$

Therefore, we have,

$$\begin{aligned} \sum_{k=1}^K \delta_{k,h} &\leq \sum_{k=1}^K SAH + \sum_{k=1}^K \left(\sqrt{4v(n_{k,h})\eta} + m_{k,h} \right) + (1 + 1/H) \frac{1}{p_2} \sum_{k=1}^K F(k, h+1, \delta/KH) + \\ &\quad + (1 + 1/H) \sum_{k=1}^K \phi_{k,h+1} - \sum_{k=1}^K \phi_{k,h+1} + \sum_{k=1}^K \delta_{k,h+1}. \end{aligned}$$

Unrolling the above H times to have with a union bound over $k, h \in [K] \times [H]$ with probability $1 - \delta$ (δ is scaled by $1/KH$ due to the union bound):

$$\begin{aligned} \sum_{k=1}^K \tilde{Q}_{k,1}(s_{k,1}, a_{k,1}) - V_1^{\pi_k}(s_{k,1}) &\leq eSAH^2 + e \sum_{h=1}^H \sum_{k=1}^K \left(\sqrt{4v(n_{k,h})\eta} + m_{k,h} \right) \\ &\quad + \frac{e}{p_2} \sum_{h=1}^H \sum_{k=1}^K F(k, h+1, \delta/KH), \end{aligned} \quad (28)$$

where we have used $\delta_{k,h} \geq \phi_{k,h}$ and $\delta_{k,H+1} = 0$. Now, we analyze each term on the right hand side of (28) one by one. From Corollary D.3,

$$\sum_{h=1}^H \sum_{k=1}^K \sqrt{4v(n_{k,h})\eta} \leq O\left(\sqrt{H^4 SAT\eta}\right).$$

From Corollary D.4 with probability at least $1 - \delta$,

$$\begin{aligned} \frac{1}{p_2} \sum_{h=1}^H \sum_{k=1}^K \sum_{i=1}^n F(k_i, h+1, \delta/KH) &\leq \frac{1+H}{H p_2} \sum_{h=1}^H \sum_{k=1}^K F(k, h+1, \delta/KH) \\ &\leq O(1) \cdot \sum_{h=1}^H \sum_{k=1}^K \sqrt{v(n_{k,h})\chi \log(KH/\delta)} \end{aligned} \quad (29)$$

$$\leq O\left(\sqrt{H^4 SAT}\chi\right), \quad (30)$$

where $\chi = \log(JSAT/\delta)$.

Finally, from Lemma D.1, we have with probability $1 - \delta$

$$\sum_{h=1}^H \sum_{k=1}^K m_{k,h} \leq O\left(\sqrt{H^4 T \log(KH/\delta)}\right).$$

Combining the above, we complete the proof. \square

Theorem 2. *The cumulative regret of PSQL (Algorithm 1,2) in K episodes satisfies*

$$Reg(K) := (\sum_{k=1}^K V_1^*(s_{k,1}) - V_1^{\pi_k}(s_{k,1})) \leq O\left(H^2 \sqrt{SAT}\chi\right),$$

with probability at least $1 - \delta$, where $\chi = \log(JSAT/\delta)$ and $T = KH$.

1242 *Proof.* First we combine Corollary C.2 and Lemma 5 to get with probability at least $1 - \delta$ ($\chi = \log(JSAT/\delta)$),

$$1245 \quad \sum_{k=1}^K V_1^*(s_{k,1}) - V_1^{\pi_k}(s_{k,1}) \leq O\left(\sqrt{H^4 SAT}\chi\right).$$

1248 Observing that the rewards are bound, there $|\sum_{k=1}^K \sum_{h=1}^H R_h(s_{k,h}, a_{k,h}) - \sum_{k=1}^K V_1^{\pi_k}(s_{k,1})| \leq$
 1249 $O(H\sqrt{T \log(1/\delta)})$ with probability at least $1 - \delta$. This completes the proof of the theorem. \square
 1250

1251 D CONCENTRATION RESULTS

1254 **Corollary D.1.** *For a given $k, h, s, a \in [K] \times [H] \times \mathcal{S} \times \mathcal{A}$ (let $n = N_{k,h}(s, a)$), with probability
 1255 $1 - \delta$, it holds,*

$$1257 \quad |\tilde{Q}_{k,h}(s, a) - \hat{Q}_{k,h}(s, a)| \leq \sqrt{2\sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2 \log(1/\delta)}. \quad (31)$$

1259 *Proof.* The result directly follows from Lemma E.6. \square
 1260

1261 **Corollary D.2.** *For some given $k, h, s, a \in [K] \times [H] \times \mathcal{S} \times \mathcal{A}$, the following holds with probability
 1262 at least $1 - \delta$ (with $n = N_{k,h}(s, a)$),*

$$1264 \quad \left| \sum_{i=1}^n \alpha_n^i (r_{k_i,h} - R(s, a) + V_{h+1}^*(s_{k_i,h+1}) - P_{s,a}V_{h+1}^*) \right| \leq 4\sqrt{\frac{H^3 \log(1/\delta)}{n+1}}.$$

1267 *Proof.* Let k_i denote the index of the episode when (s, a) was visited for the i_{th} time at step h . Set
 1268 $x_i = \alpha_n^i (r_{k_i,h} - R(s, a) + V(s_{i+1}) - P_{s,a} \cdot V)$ and consider filtration \mathcal{F}_i as the σ -field generated
 1269 by all random variables in the history set $\mathcal{H}_{k_i,h} \cdot r_{k_i,h} - R(s, a) + V(s_{i+1}) - P_{s,a} \cdot (V) \leq H+1$.
 1270 Using the definition of the learning rate (Lemma E.5 (b)), we have $\sum_i^n x_i^2 \leq H(H+1)^2/n$.
 1271 We apply Azuma-Hoeffding inequality (see Lemma E.3) combined with a union bound over all
 1272 $(s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$ and all possible values of $n \leq K$ to get the following with probability at
 1273 least $1 - \delta$,

$$1275 \quad \left| \sum_{i=1}^n x_i \right| \leq 2\sqrt{\frac{2H^3 \log(1/\delta)}{n}}.$$

1278 We complete the proof using the observation $\frac{1}{n+1} \geq \frac{1}{2n}$, $n \geq 1$. \square
 1279

1280 **Lemma D.1.** *with probability at least $1 - \delta$, the following holds*

$$1281 \quad \sum_{k=1}^K \sum_{h=1}^H P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) - (V_{h+1}^*(s_{k,h+1}) - V_{h+1}^{\pi_k}(s_{k,h+1})) \leq H^2 \sqrt{2T \log(1/\delta)}$$

1285 *Proof.* For $x_{k,h} = P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) - (V_{h+1}^*(s_{k,h+1}) - V_{h+1}^{\pi_k}(s_{k,h+1}))$ and filtration
 1286 set $\mathcal{H}_{k,h}$ where k is the episode index, $\{x_{k,h}, \mathcal{H}_{k,h}\}$ forms a martingale difference sequence with
 1287 $|x_{k,h}| \leq H$. We complete the proof using Lemma E.3 and a union bound. \square
 1288

1290 **Lemma D.2.** *Let $\mathcal{D}_{k,h}$ be the distribution of actions at time step k, h conditioned on the history at
 1291 the start of step h of the k_{th} episode, then with probability at least $1 - \delta$, for some h*

$$1293 \quad \sum_{k=1}^K \mathbb{E}_{a \sim \mathcal{D}_{k,h}} \left[\frac{1}{\sqrt{n_{k,h}(s_{k,h}, a) + 1}} \right] - \frac{1}{\sqrt{n_{k,h}(s_{k,h}, a_{k,h}) + 1}} \leq O\left(\sqrt{SAT \log(K)} \log(1/\delta)\right)$$

1296 *Proof.* For brevity of exposition, let $\mathbb{E}[Z_k] \leftarrow \mathbb{E}_{a \sim \mathcal{D}_{k,h}} \left[\frac{1}{\sqrt{n_{k,h}(s_{k,h}, a) + 1}} \right]$, $Z_k \leftarrow \frac{1}{\sqrt{n_{k,h}(s_{k,h}, a_{k,h}) + 1}}$, and $\mathcal{F}_k \leftarrow \mathcal{H}_{k,h}$. Consider,

$$\begin{aligned}
 \sum_{k=1}^K (\mathbb{E}[Z_k] - Z_k)^2 &\leq (\mathbb{E}[Z_k])^2 + Z_k^2 && \text{(By Jensen's inequality for } f(x) = x^2\text{)} \\
 &\leq \sum_{k=1}^K Z_k^2 + \sum_{k=1}^K \mathbb{E}[Z_k^2] && \text{(by linearity of expectation)} \\
 &= \sum_{k=1}^K Z_k^2 + \mathbb{E} \left[\sum_{k=1}^K Z_k^2 \right] \\
 &\leq \sum_{s,a} \sum_{j=1}^K \frac{1}{j+1} + \mathbb{E} \left[\sum_{s,a} \sum_{j=1}^K \frac{1}{j+1} \right] \\
 &\leq 2SA \log(K).
 \end{aligned}$$

1317 To bound $\sum_{k=1}^K (\mathbb{E}[Z_k] - Z_k)$, we apply Bernstein inequality for martingale, Lemma E.4, with
1318 $K = 1$, $d = 2SA \log(K)$ to get the required result. \square

1319 **Lemma D.3.**

$$\sum_{k=1}^K \frac{1}{\sqrt{N_{k,h}(s_{k,h}, a_{k,h}) + 1}} \leq O(\sqrt{SAK})$$

1324 *Proof.*

$$\begin{aligned}
 \sum_{k=1}^K \frac{1}{\sqrt{N_{k,h}(s_{k,h}, a_{k,h}) + 1}} &\leq \sum_{k=1}^K \frac{\sqrt{2}}{\sqrt{N_{k,h}(s_{k,h}, a_{k,h})}} \\
 &\leq O(1) \sum_{s,a} \sum_{k=1}^{N_{K,h(s,a)}} \sqrt{\frac{1}{k}} \\
 &\leq O(\sqrt{SAK}).
 \end{aligned}$$

\square

1335 **Corollary D.3.** *The following holds,*

$$\sum_{h=1}^H \sum_{k=1}^K \sqrt{4\sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2 \eta} \leq O(\sqrt{H^4 SAT \eta}).$$

1340 *Proof.* From Lemma D.3 and (10), we get the result. \square

1342 **Corollary D.4.** *Let $\mathcal{D}_{k,h}$ be the distribution of actions at time step k, h conditioned on the history at
1343 the start of step h of the k_{th} episode, then with probability at least $1 - \delta$*

$$\begin{aligned}
 &\sum_{k=1}^K \frac{4}{p_2} \mathbb{E}_{a \sim \mathcal{D}_{k,h}} \left[\sqrt{\sigma(N_{k,h}(s_{k,h}, a))^2 \log(JKH/\delta)} \right] + \sqrt{2\sigma(N_{k,h}(s_{k,h}, a_{k,h}))^2 \log(JKH/\delta)} \\
 &\leq O(\sqrt{H^2 SAT} \chi), \\
 &\chi = \log(JSAT/\delta).
 \end{aligned}$$

1350 *Proof.* Using Lemma D.2, we have with probability $1 - \delta$,

$$1352 \sum_{k=1}^K \mathbb{E}_{a \sim \mathcal{D}_{k,h}} \left[\frac{1}{\sqrt{n_{k,h}(s_{k,h}, a) + 1}} \right] - \frac{1}{\sqrt{n_{k,h}(s_{k,h}, a_{k,h}) + 1}} \leq O \left(\sqrt{SA \log(K)} \log(1/\delta) \right)$$

1354 From Lemma D.3 and (10),

$$1356 \sum_{k=1}^K \frac{4}{p_2} \sqrt{\sigma(N_{k,h}(s_{k,h}, a))^2} \log(JKH/\delta) \leq O \left(\sqrt{H^2 SAT} \chi \right),$$

1359 which dominates the remaining terms. \square

E TECHNICAL PRELIMINARIES

1363 **Lemma E.1** (High confidence from constant probability). *For some fixed scalars X^* , \underline{X} , and*
 1364 *$p, \delta \in (0, 1)$, suppose that $\tilde{X} \sim \mathcal{D}$ satisfies $\tilde{X} \geq X^*$ with probability at least p , $\tilde{X} \geq \underline{X}$ with*
 1365 *probability at least $1 - \delta$, and $\mathbb{E}[\tilde{X}] \geq \underline{X}$. Then, with probability at least $1 - 2\delta$,*

$$1367 \tilde{X} \geq X^* - \frac{1}{p} (\mathbb{E}_{\mathcal{D}}[\tilde{X}] - \underline{X}). \quad (32)$$

1369 *Proof.* For the purpose of this proof, a symmetric sample \tilde{X}^{alt} also drawn from distribution \mathcal{D} but
 1370 independent of \tilde{X} . Let \mathcal{O}^{alt} denotes the event when $\tilde{X}^{\text{alt}} \geq X^*$ (occurring with probability p).

1372 Consider (using notation $\mathbb{E}[\cdot] \leftarrow \mathbb{E}_{\mathcal{D}}[\cdot]$)

$$1374 X^* - \tilde{X} \leq \mathbb{E} [\tilde{X}^{\text{alt}} \mid \mathcal{O}^{\text{alt}}] - \tilde{X} \leq \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X} \mid \mathcal{O}^{\text{alt}}], \quad (33)$$

1376 where the last inequality holds with probability $1 - \delta$ by definition of \underline{X} . The law of total expectation
 1377 suggests,

$$1378 \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X}] = \Pr(\mathcal{O}^{\text{alt}}) \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X} \mid \mathcal{O}^{\text{alt}}] + \Pr(\overline{\mathcal{O}}^{\text{alt}}) \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X} \mid \overline{\mathcal{O}}^{\text{alt}}],$$

1380 where $\overline{\mathcal{O}}^{\text{alt}}$ is the compliment of the event \mathcal{O}^{alt} . Now, $\mathbb{E} [\tilde{X}^{\text{alt}} \mid \overline{\mathcal{O}}^{\text{alt}}] = \mathbb{E} [\tilde{X}^{\text{alt}} \mid \tilde{X}^{\text{alt}} < X^*] \leq$
 1381 $\mathbb{E}[\tilde{X}^{\text{alt}}] = \mathbb{E}[\tilde{X}] \geq \underline{X}$, where the last inequality is by the assumption made in the lemma. Therefore,
 1382 the second term in the above is non-negative, and we have
 1383

$$1384 \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X}] \geq \Pr(\mathcal{O}^{\text{alt}}) \mathbb{E} [\tilde{X}^{\text{alt}} - \underline{X} \mid \mathcal{O}^{\text{alt}}]. \quad (34)$$

1386 Using $\frac{1}{\Pr(\mathcal{O}^{\text{alt}})} \leq \frac{1}{p}$, $\mathbb{E}[\tilde{X}^{\text{alt}}] = \mathbb{E}[\tilde{X}]$, and a union bound to combine (33) and (34), we complete the
 1387 proof. \square

1389 **Lemma E.2.** *Let $q^{(1)}, q^{(2)}, \dots, q^{(M)}$ be M i.i.d. samples such that for any i , $q^{(i)} \geq V^*$ with
 1390 probability p . Then with probability at least $1 - \delta$,*

$$1391 \max_{i \in M} q^{(i)} \geq V^*,$$

1393 when M is at least $\frac{\log(1/\delta)}{\log(1/(1-p))}$.

1395 *Proof.* For a given index i , the probability that $q^{(i)} < V^*$ is at most $1 - p$. Therefore, by independence
 1396 of samples, the probability of $\max_{i \in M} q^{(i)} < V^*$ is at most $(1 - p)^M$. Therefore, the lemma statement
 1397 follows by setting $M = \frac{\log(1/\delta)}{\log(1/(1-p))}$. \square

1399 **Lemma E.3** (Corollary 2.1 in Wainwright (2019)). *Let $(\{A_i, \mathcal{F}_i\}_{i=1}^{\infty})$ be a martingale difference
 1400 sequence, and suppose $|A_i| \leq d_i$ almost surely for all $i \geq 1$. Then for all $\eta \geq 0$,*

$$1402 \mathbb{P} \left[\left| \sum_{i=1}^n A_i \right| \geq \eta \right] \leq 2 \exp \left(\frac{-2\eta^2}{\sum_{i=1}^n d_i^2} \right). \quad (35)$$

1404 In other words, with probability at most δ , we have,
 1405

$$1406 \quad 1407 \quad 1408 \quad 1409 \quad 1410 \quad 1411 \quad 1412 \quad 1413 \quad 1414 \quad 1415 \quad 1416 \quad 1417 \quad 1418 \quad 1419 \quad 1420 \quad 1421 \quad 1422 \quad 1423 \quad 1424 \quad 1425 \quad 1426 \quad 1427 \quad 1428 \quad 1429 \quad 1430 \quad 1431 \quad 1432 \quad 1433 \quad 1434 \quad 1435 \quad 1436 \quad 1437 \quad 1438 \quad 1439 \quad 1440 \quad 1441 \quad 1442 \quad 1443 \quad 1444 \quad 1445 \quad 1446 \quad 1447 \quad 1448 \quad 1449 \quad 1450 \quad 1451 \quad 1452 \quad 1453 \quad 1454 \quad 1455 \quad 1456 \quad 1457$$

$$|\sum_{i=1}^n A_i| \geq \sqrt{\frac{\ln(2/\delta) \sum_{i=1}^n d_i^2}{2}} \quad (36)$$

Lemma E.4 (Lemma A8 in Cesa-Bianchi & Lugosi (2006)). *Let $(\{A_i, \mathcal{F}_i\}_{i=1}^\infty)$ be a martingale difference sequence, and suppose $|A_i| \leq K$ almost surely for all $i \geq 1$. Let $S_i = \sum_{j=1}^i A_j$ be the associated martingale. Denote the sum of the conditional variances by*

$$v_n^2 = \sum_{t=1}^n \mathbb{E}[A_t^2 | \mathcal{F}_{t-1}]$$

Then for all constants $t, d > 0$,

$$\mathbb{P}\left[\max_i S_i \geq t \& v_n^2 \leq d\right] \leq \exp\left(-\frac{t^2}{2(d + Kt/3)}\right).$$

Lemma E.5 (Lemma 4.1 in Jin et al. (2018)). *The following holds:*

- (a) $\frac{1}{\sqrt{n}} \leq \sum_{i=1}^n \frac{\alpha_n^i}{\sqrt{i}} \leq \frac{2}{\sqrt{n}}$.
- (b) $\max_{i \in n} \alpha_n^i \leq \frac{2C}{t}$ and $\sum_{i=1}^n (\alpha_n^i)^2 \leq \frac{2C}{t}$.
- (c) $\sum_{n=i}^\infty \alpha_n^i \leq 1 + 1/C$.

Lemma E.6 (Gaussian tail bound). *For a Gaussian random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, it follows with probability at least $1 - \delta$,*

$$Pr(|X - \mu| \leq \sigma \sqrt{2 \log(1/\delta)})$$

Proof. The proof follows by instantiating Chernoff-style bounds for the given Gaussian random variable. \square

F SHARPER REGRET USING BERNSTEIN CONCENTRATION

In this section, we provide a sketch of the extension of Algorithm 1 to a randomized Q-learning procedure that uses Bernstein concentration based variance. This extension closely follows that in Jin et al. (2018) using some of the techniques developed in the proof of Theorem 2.

We want to account for the variance in the transitions. To this end, we define some additional notations. The variance in transition for any (s, a) is defined using the variance operator \mathbb{V}_h as below,

$$[\mathbb{V}_h V_{h+1}]_{s,a} := \mathbb{E}_{s' \sim P_{h,s,a}} [V_{h+1}(s') - [P_{h,s,a} V_{h+1}]_{s,a}]^2. \quad (37)$$

The empirical variance for any (s, a) for any $n \leftarrow N_{k,h}(s, a)$ is given by,

$$\hat{\mathbb{V}}_n \bar{V}_{h+1}(s, a) = \frac{1}{n} \sum_{i=1}^n \left[\bar{V}_{k_i, h+1}(s_{k_i, h+1}) - \frac{1}{n} \sum_{i=1}^n \bar{V}_{k_i, h+1}(s_{k_i, h+1}) \right]^2 \quad (38)$$

$$\sqrt{v_b(n, h, s, a)} := \min \left\{ c \left(\sqrt{\frac{H}{n+1}} \cdot (\hat{\mathbb{V}}_n \bar{V}_{h+1}(s, a) + H) \eta + \frac{\sqrt{H^7 S A \eta} \cdot \tau}{n+1} \right), \sqrt{64 \frac{H^3}{n+1}} \right\}. \quad (39)$$

Theorem F.1. *The cumulative regret of Algorithm 3 in K episode satisfies with probability at least $1 - \delta$,*

$$\sum_{k=1}^K V_1^*(s_{k,1}) - \sum_{k=1}^K \sum_{h=1}^H R_h(s_{k,h}, a_{k,h}) \leq O\left(\sqrt{H^3 S A T \eta \chi}\right),$$

where $\chi = \log(J S A T / \delta)$ and $\eta = \log(S A K H / \delta)$.

1458 **Algorithm 3** Randomized Q-learning

1459 1: **Input:** Parameters: $\delta \in (0, 1)$. Set $J := J(\delta)$.

1460 2: **Initialize:** $\hat{Q}_{H+1}(s, a) = \hat{V}_{H+1}(s) = 0$, $\forall (s, a) \in \mathcal{S} \times \mathcal{A}$, and $\hat{Q}_h(s, a) = \hat{V}_h(s) = H$ & $N_h(s, a) = 0$, $N_h^{\text{tar}}(s) = 0$, $\mu_h(s, a) = \gamma_h(s, a) = 0 \forall (s, a, h) \in \mathcal{S} \times \mathcal{A} \times [H]$.

1461 3: **for** episodes $k = 1, 2, \dots$ **do**

1462 4: Observe s_1 .

1463 5: **for** step $h = 1, 2, \dots, H$ **do**

1464 6: /* Play arg max action of the sample of Q_h */

1465 7: Sample $\forall a \in \mathcal{A} \hat{Q}_h(s_h, a) \sim \mathcal{N}(\hat{Q}_h(s_h, a), v_b(N_h(s_h, a), h, s_h, a))$.

1466 8: Play $a_h = \arg \max_{a \in \mathcal{A}} \hat{Q}_h(s_h, a)$.

1467 9: Use observations to construct one step lookahead target z */

1468 10: Observe r_h and s_{h+1} .

1469 11: $z \leftarrow \text{ConstructTarget}(r_h, s_{h+1}, \hat{Q}_{h+1}, N_{h+1})$.

1470 12: /* Use the observed reward and next state to update Q_h distribution */

1471 13: $n := N_h(s_h, a_h) \leftarrow N_h(s_h, a_h) + 1$.

1472 14: $\hat{Q}_h(s_h, a_h) \leftarrow (1 - \alpha_n) \hat{Q}_h(s_h, a_h) + \alpha_n z$.

1473 15: $\mu_h(s_h, a_h) \leftarrow \mu_h(s_h, a_h) + (z - r_h)$.

1474 16: $\gamma_h(s_h, a_h) \leftarrow \gamma_h(s_h, a_h) + (z - r_h)^2$.

1475 17: Calculate $b_{h+1}(s_h, a_h) \leftarrow (\gamma_h(s_h, a_h) - \mu_h(s_h, a_h)^2)/n$.

1476 18: $\sqrt{v_b(n, h, s_h, a_h)} \leftarrow \min\{c(\sqrt{\frac{H}{n+1} \cdot (b_{h+1}(s_h, a_h) + H)\eta} + \sqrt{\frac{H^7 S A \eta \chi}{n+1}}), \sqrt{64 \frac{H^3}{n+1}}\}$.

1477 19: **end for**

1478 20: **end for**

1483 F.1 PROOF OF THEOREM F.1

1484 The main mathematical reasoning closely follows that in the proof of Theorem 2 of Jin et al. (2018)
 1485 with specific differences arising due to constant probability optimism and the definition of $\bar{V}_{k,h}$. For
 1486 any k, h, s, a with $n = N_{k,h}(s, a)$, we have $v_b(n, h, s, a) \leq 64 \frac{H^3}{n+1}$. Therefore, Corollary C.2 and
 1487 Lemma 5 apply as they are. Hence, we get with probability at least $1 - \delta$ for all h

1488
$$\sum_{k=1}^K r_{k,h} := \sum_{k=1}^K V_h^*(s_{k,h}) - V_h^{\pi_k}(s_{k,h}) \leq O\left(\sqrt{H^4 S A T} \chi\right), \quad (40)$$

1489 where $\chi = \log(JSAT/\delta)$. Further, following the steps and notations of the proof of Lemma 5
 1490 (see (28), we have with probability at least $1 - \delta$,

1491
$$\begin{aligned} \sum_{k=1}^K \tilde{Q}_{k,1}(s_{k,1}, a_{k,1}) - V_1^{\pi_k}(s_{k,1}) &\leq e S A H^2 + e \sum_{h=1}^H \sum_{k=1}^K \left(\sqrt{4v_b(n, h, s_{k,h}, a_{k,h})\eta} + m_{k,h} \right) \\ &\quad + \frac{e}{p_2} \sum_{h=1}^H \sum_{k=1}^K F(k, h+1, \delta/KH). \end{aligned} \quad (41)$$

1501 Due to our observation that $v_b(n, h, s_{k,h}, a_{k,h}) \leq 64 \frac{H^3}{n+1}$, Lemma D.2 and Corollary D.4 hold,
 1502 therefore we get from (41),

1503
$$\sum_{k=1}^K \tilde{Q}_{k,1}(s_{k,1}, a_{k,1}) - V_1^{\pi_k}(s_{k,1}) \leq e S A H^2 + \sum_{h=1}^H \sum_{k=1}^K O\left(\sqrt{v_b(n, h, s_{k,h}, a_{k,h})\chi} + m_{k,h}\right),$$

1504 where $\chi = \log(JSAT/\delta)$. We wish to bound

1505
$$\sum_{k=1}^K \sum_{h=1}^H v_b(n, h, s_{k,h}, a_{k,h}) \quad (42)$$

1506
$$\leq \sum_{k=1}^K \sum_{h=1}^H c\left(\sqrt{\frac{H}{n+1} \cdot (\hat{V}_n \bar{V}_{h+1}(s_{k,h}, a_{k,h}) + H)\eta} + \frac{\sqrt{H^7 S A \eta} \cdot \tau}{n+1}\right), \quad (43)$$

1512 Consider,

$$1514 \quad \sum_{k=1}^K \sum_{h=1}^H \frac{\sqrt{H^7 S A \eta} \chi}{N_{k,h}(s_{k,h}, a_{k,h}) + 1} \leq O(\sqrt{H^9 S^3 A^3 \chi^5}). \quad (44)$$

1517 Further,

$$1519 \quad \sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{H}{n+1} \cdot (\hat{\mathbb{V}}_n \bar{V}_{k,h+1}(s_{k,h}, a_{k,h}) + H)} \\ 1520 \quad \leq \sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{H}{n+1} \cdot \hat{\mathbb{V}}_n \bar{V}_{k,h+1}(s_{k,h}, a_{k,h})} + \sum_{k=1}^K \sum_{h=1}^H \sqrt{\frac{H^2}{n+1}} \\ 1521 \quad \leq \sqrt{\sum_{k=1}^K \sum_{h=1}^H \hat{\mathbb{V}}_n \bar{V}_{k,h+1}(s_{k,h}, a_{k,h}) H + \sqrt{H^3 S A T \eta}}, \quad (45)$$

1528 where the last inequality follows from Lemma D.3. Since we have Lemma F.5, we can follow the
1529 steps in (C.16) of Jin et al. (2018) to get
1530

$$1531 \quad \sum_{k=1}^K \sum_{h=1}^H \hat{\mathbb{V}}_n \bar{V}_{k,h+1}(s_{k,h}, a_{k,h}) \leq O(HT).$$

1534 This gives us
1535

$$1536 \quad \sum_{k=1}^K \sum_{h=1}^H v_b(n, h, s_{k,h}, a_{k,h}) \leq O(\sqrt{H^3 S A T \eta} + \sqrt{H^9 S^3 A^3 \chi^5})$$

1539 Thus we have,
1540

$$1541 \quad \sum_{k=1}^K \tilde{Q}_{k,1}(s_{k,1}, a_{k,1}) - V_1^{\pi_k}(s_{k,1}) \leq O(\sqrt{H^3 S A T \eta} \chi + \sqrt{H^9 S^3 A^3 \chi^5})$$

1544 Finally, combining with Corollary C.2, we complete the proof.
1545

1546 F.2 SUPPORTING LEMMA

1548 **Corollary F.1** (Corollary of Lemma 4). *We have for all $s, a, h, k \in \mathcal{S} \times \mathcal{A} \times [H] \times [K]$ with
1549 probability at least $1 - \delta$,*
1550

$$1551 \quad \hat{Q}_{k,h}(s, a) - Q_h^*(s, a) \leq O\left(\sqrt{\frac{H^3 \eta}{n+1}}\right) + \alpha_n^0 H + \sum_{i=1}^n \alpha_n^i \left(\bar{V}_{k_i, h+1}(s_{k_i, h+1}) - V_{h+1}^*(s_{k_i, h+1})\right), \quad (46)$$

1554 where $n = N_{k,h}(s, a)$, and $\eta = \log(S A K H / \delta)$.
1555

1556 *Proof.* The proof follows from using (39) in place of $\sigma(N_{k,h}(s, a))^2$ in Lemma 4. □
1557

1559 **Lemma F.1** (Based on Lemma C.7 in Jin et al. (2018)). *Suppose (46) in Corollary F.1 holds. For
1560 any $h \in [H]$, let $\beta_{k,h} := \bar{V}_{k,h}(s_{k,h}) - V_h^*(s_{k,h})$ and let $w = (w_1, \dots, w_k)$ be non-negative weight
1561 vectors, then we have with probability at least $1 - \delta$,*

$$1562 \quad \sum_{k=1}^K w_k \beta_{k,h} \leq O(S A \|w\|_\infty \sqrt{H^7} \chi^2 + \sqrt{S A \|w\|_1 \|w\|_\infty H^5} \chi),$$

1563 where $\chi = \log(J S A T / \delta)$.
1564

1566 *Proof.* For any fixed k, h , let $n \leftarrow N_{k,h}(s_{k,h}, a_{k,h})$ and $\phi_{k,h} = \tilde{Q}_{k,h}(s_{k,h}, a_{k,h}) - V_h^*(s_{k,h})$. Then
 1567 we have

$$\begin{aligned}
 \beta_{k,h} &= \bar{V}_{k,h}(s_{k,h}) - V_h^*(s_{k,h}) \\
 &\quad (\text{from Lemma C.3 with probability at least } 1 - 2\delta) \\
 \leq \phi_{k,h} &+ \frac{1}{p_2} F(k, h, \delta) \\
 &\quad (\text{from Lemma C.5 with probability } 1 - \delta) \\
 \leq \hat{Q}_{k,h}(s_{k,h}, a_{k,h}) &- Q_h^*(s_{k,h}, a_{k,h}) + \sqrt{2v(n)\eta} + \frac{1}{p_2} F(k, h, \delta) \\
 &\quad (\text{from Corollary F.1 with probability } 1 - \delta) \\
 \leq \alpha_n^0 H + O\left(\sqrt{\frac{H^3\eta}{n+1}}\right) &+ \sum_{i=1}^n \alpha_n^i \beta_{k_i, h+1} + \frac{1}{p_2} F(k, h, \delta) \tag{47}
 \end{aligned}$$

1580 We now compute the summation $\sum_{k=1}^K w_k \beta_{k,h}$. We follow the proof of Lemma C.7 in Jin et al.
 1581 (2018), with the only difference being the term $\sum_{k=1}^K \frac{w_k}{p_2} F(k, h, \delta)$, which we bound below. From
 1582 the proof of Corollary D.4.

$$\begin{aligned}
 \sum_{k=1}^K \frac{w_k}{p_2} F(k, h, \delta) &\leq \frac{\|w\|_\infty}{p_2} O(SA\sqrt{H^5 \log^4(JSAK/\delta)}) + \sum_{k=1}^K \frac{2w_k}{p_2} \left(\sqrt{\frac{H^3 \chi \log(KH/\delta)}{N_{k,h} + 1}} \right) \\
 &\leq O(SA\|w\|_\infty \sqrt{H^5 \chi^4} + \sqrt{SA\|w\|_1\|w\|_\infty H^3 \chi}),
 \end{aligned}$$

1589 where $\chi = \log(JSAT/\delta)$. Other terms are evaluated in the same way as the proof of Lemma C.7
 1590 in Jin et al. (2018). \square

1591 **Lemma F.2** (Based on Lemma C.3 of Jin et al. (2018)). *For any episode $k \in [K]$ with probability
 1592 $1 - \delta/K$, if Corollary F.1 holds for all $k' < k$, then for all $s, a, h \in \mathcal{S} \times \mathcal{A} \times [H]$:*

$$\left| [\mathbb{V}_h V_{h+1}]_{s,a} - \hat{\mathbb{V}}_n \bar{V}_{h+1}(s, a) \right| \leq O\left(\frac{SA\sqrt{H^9}\chi^2}{n} + \sqrt{\frac{H^7 SA \chi^2}{n}}\right),$$

1596 where $n = N_{k,h}(s_{k,h}, a_{k,h})$, $\chi = \log(JSAT/\delta)$.

1598 *Proof.* The proof is almost identical to that of Lemma C.3 of Jin et al. (2018) except we use Lemma F.1
 1599 instead of Lemma C.7 of Jin et al. (2018). \square

1600 **Lemma F.3.** (Bernstein concentration) *For some given $k, h, s, a \in [K] \times [H] \times \mathcal{S} \times \mathcal{A}$, the following
 1601 holds with probability at least $1 - \delta$ (with $n = N_{k,h}(s, a)$),*

$$\left| \sum_{i=1}^n \alpha_n^i (r_{k_i, h} - R(s, a) + V_{h+1}^*(s_{k_i, h+1}) - P_{s,a} V_{h+1}^*) \right| \leq \sqrt{v_b(n, h, s, a)},$$

1606 where

$$v_b(n, h, s, a) := \min \left\{ c \left(\sqrt{\frac{H}{n+1} \cdot (\hat{\mathbb{V}}_n \bar{V}_{h+1}(s, a) + H)\eta} + \frac{\sqrt{H^7 SA \eta} \cdot \tau}{n+1} \right), 64 \frac{H^3}{n+1} \right\}.$$

1610 *Proof.* Let k_i denote the index of the episode when (s, a) was visited for the i th time at step h . Set
 1611 $x_i = \alpha_n^i (r_{k_i, h} - R_h(s, a))$, $y_i = \alpha_n^i (V(s_{k_{i+1}}) - P_{s,a} V)$ and consider filtration \mathcal{F}_i as the σ -field
 1612 generated by all random variables in the history set $\mathcal{H}_{k_i, h}$. We apply Azuma-Hoeffding (Lemma E.3)
 1613 to calculate $|\sum_{i=1}^n x_i|$ and Azuma-Bernstein for $|\sum_{i=1}^n y_i|$. Consider with probability $1 - \delta$,

$$\begin{aligned}
 \left| \sum_{i=1}^n \alpha_n^i (V(s_{k_{i+1}}) - P_{s,a} V) \right| &\leq O(1) \cdot \left[\sum_{i=1}^n \sqrt{(\alpha_n^i)^2 [\mathbb{V}_h V_{h+1}^*]_{s,a} \eta} + \frac{H^2 \eta}{n} \right] \\
 &\leq O(1) \cdot \left[\sum_{i=1}^n \sqrt{\frac{H}{n} [\mathbb{V}_h V_{h+1}^*]_{s,a} \eta} + \frac{H^2 \eta}{n} \right].
 \end{aligned}$$

1620 Using Lemma F.2 and a suitable union bound, we have with probability $1 - \delta$,
 1621

$$\begin{aligned} 1622 \left| \sum_{i=1}^n \alpha_n^i (V(s_{k_{i+1}}) - P_{s_i, a_i} \cdot V) \right| &\leq O(1) \cdot \left[\sum_{i=1}^n \sqrt{\frac{H}{n+1} (\hat{\mathbb{V}}_n \bar{V}_{h+1}(s, a) + H) \eta} + \frac{\sqrt{H^7 S A \eta} \cdot \chi}{n+1} \right] \\ 1623 &\leq \sqrt{v_b(n, h, s, a)}. \end{aligned}$$

1624 where the last term dominates the concentration of $|\sum_{i=1}^n x_i|$. \square
 1625

1626 **Lemma F.4** (Based on Lemma C.1). *The samples from the posterior distributions and the mean of
 1627 the posterior distributions as defined in Algorithm 3 satisfy the following properties: for any episode
 1628 $k \in [K]$ and index $h \in [H]$,*
 1629

1630 (a) (Posterior distribution mean) For any given s, a , with probability at least $1 - \frac{2(k-1)\delta}{KH} - \frac{\delta}{KH}$,
 1631

$$1632 \hat{Q}_{k,h}(s, a) \geq Q_h^*(s, a) - \sqrt{v_b(n, h, s, a)}. \quad (48)$$

1633 (b) (Posterior distribution sample) For any given s, a , with probability at least p_1 ($p_1 = \Phi(-1)$),
 1634

$$1635 \tilde{Q}_{k,h}(s, a) \geq Q_h^*(s, a). \quad (49)$$

1636 (c) (In Algorithm 2) With probability at least $1 - \frac{2k\delta}{KH}$,

$$1637 \bar{V}_{k,h}(s_{k,h}) \geq V_h^*(s_{k,h}). \quad (50)$$

1638 *Proof.* The proof is identical to that of Lemma C.1 except that we use Lemma F.3 instead of
 1639 Corollary D.2. \square
 1640

1641 **Lemma F.5** (Based on Lemma C.6 of Jin et al. (2018)). *With probability at least $1 - 4\delta$, we have the
 1642 following for all $k, h \in [K] \times [H]$,*
 1643

$$\begin{aligned} 1644 \hat{\mathbb{V}}_n \bar{V}_{k,h}(s_{k,h}, a_{k,h}) - \mathbb{V}_h V_{h+1}^{\pi_k}(s_{k,h}, a_{k,h}) &\leq 2H P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}) \\ 1645 &\quad + O\left(\frac{SA\sqrt{H^9\chi^4}}{n} + \sqrt{\frac{H^7 S A \chi^2}{n}}\right), \end{aligned}$$

1646 where $n = N_{k,h}(s_{k,h}, a_{k,h})$ and $\chi = \log(JSAT/\delta)$.
 1647

1648 *Proof.* Consider,
 1649

$$\begin{aligned} 1650 \hat{\mathbb{V}}_n \bar{V}_{k,h}(s_{k,h}, a_{k,h}) - \mathbb{V}_h V_{h+1}^{\pi_k}(s_{k,h}, a_{k,h}) &\leq \left| \hat{\mathbb{V}}_n \bar{V}_{k,h}(s_{k,h}, a_{k,h}) - \mathbb{V}_h V_{h+1}^*(s_{k,h}, a_{k,h}) \right| \\ 1651 &\quad + \left| \mathbb{V}_h V_{h+1}^*(s_{k,h}, a_{k,h}) - \mathbb{V}_h V_{h+1}^{\pi_k}(s_{k,h}, a_{k,h}) \right|, \end{aligned}$$

1652 where for the first term we apply Lemma F.2 (which holds when Corollary F.1 and Lemma F.1 hold)
 1653 and for the second term we have from the definition of variance,
 1654

$$1655 \left| \mathbb{V}_h V_{h+1}^*(s_{k,h}, a_{k,h}) - \mathbb{V}_h V_{h+1}^{\pi_k}(s_{k,h}, a_{k,h}) \right| \leq 2H P_{s_{k,h}, a_{k,h}} \cdot (V_{h+1}^* - V_{h+1}^{\pi_k}).$$

1656 \square
 1657

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673