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ABSTRACT

Bayesian posterior sampling techniques have demonstrated superior empirical
performance in many exploration-exploitation settings. However, their theoretical
analysis remains a challenge, especially in complex settings like reinforcement
learning. In this paper, we introduce Q-Learning with Posterior Sampling (PSQL),
a simple Q-learning-based algorithm that uses Gaussian posteriors on Q-values for
exploration, akin to the popular Thompson Sampling algorithm in the multi-armed
bandit setting. We show that in the tabular episodic MDP setting, PSQL achieves
a regret bound of Õ(H2

√
SAT ), closely matching the known lower bound of

Ω(H
√
SAT ). Here, S, A denote the number of states and actions in the underlying

Markov Decision Process (MDP), and T = KH with K being the number of
episodes and H being the planning horizon. Our work provides several new
technical insights into the core challenges in combining posterior sampling with
dynamic programming and TD-learning-based RL algorithms, along with novel
ideas for resolving those difficulties. We hope this will form a starting point for
analyzing this efficient and important algorithmic technique in even more complex
RL settings.

1 INTRODUCTION

In an online Reinforcement Learning (RL) problem, an agent interacts sequentially with an unknown
environment and uses the observed outcomes to learn an interaction strategy. The underlying
mathematical model for RL is a Markov Decision Process (MDP). In the tabular episodic setting,
the MDP has a finite state space S, a finite action space A and a planning horizon H . On taking an
action a in state s at step h, the environment produces a reward and next state from the (unknown)
reward model Rh(s, a) and transition probability model Ph(s, a) of the underlying MDP.

Q-learning (Watkins & Dayan, 1992) is a classic dynamic programming (DP)-based algorithm for RL.
The DP equations (aka Bellman equations) provide a recursive expression for the optimal expected
reward achievable from any state and action of the MDP, aka the Q-values, in terms of the optimal
value achievable in the next state. Specifically, for any given s ∈ S, a ∈ A, h ∈ [H], the Q-value
Qh(s, a) is given by:

Qh(s, a) = max
a∈A

Rh(s, a) +
∑
s′∈S

Ph(s, a, s
′)Vh+1(s

′), with (1)

Vh+1(s
′) := maxa′∈A Qh+1(s

′, a′),

with VH+1(s) = 0, ∀ s. The optimal action in state s is then given by the argmax action in the above.

When the reward and transition models of the MDP are unknown, the Q-learning algorithm uses the
celebrated Temporal Difference (TD) learning idea (Sutton, 1988) to construct increasingly accurate
estimates of Q-values using past observations. The key idea here is to construct an estimate of the
right hand side of the Bellman equation, aka target, by bootstrapping the current estimate V̂h+1 for
the next step value function. That is, on playing an action a in state s at step h, and observing reward
rh and next state s′, the target z is typically constructed as: z := rh + V̂h+1(s

′).

And the estimate Q̂h(s, a) for Qh(s, a) is updated to fit the Bellman equations using the Q-learning
update rule1

Q̂h(s, a)← (1− αn)Q̂h(s, a) + αnz. (2)
1Or, Q̂h(s, a)← Q̂h(s, a)+αn(z− Q̂h(s, a)) where z− Q̂h(s, a) is called the Temporal Difference (TD).
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Here αn is an important parameter of the Q-learning algorithm, referred to as the learning rate. It is
typically a function of the number of previous visits n for the state s and action a.

There are several ways to interpret the Q-learning update rule. The traditional frequentist interpretation
popularized by Mnih et al. (2015) interprets this update as a gradient descent step for a least squares
regression error minimization problem. We propose a more insightful interpretation of Q-learning
obtained using Bayesian inference theory (details in Section 3.1). Specifically, if we assume a
Gaussian prior

N (Q̂h(s, a),
σ2

n−1 )

on the Q-value Qh(s, a), and a Gaussian likelihood function N (Qh(s, a), σ
2) for the target z, then

using Bayes rule, one can derive the Bayesian posterior as the Gaussian distribution

N (Q̂h(s, a),
σ2

n ), where Q̂h(s, a)← (1− αn)Q̂h(s, a) + αnz (3)

Importantly, the Bayesian posterior tracks not just the mean but also the variance or uncertainty in the
Q-value estimate. Intuitively, the state and actions with a small number of past visits (i.e., small n)
have large uncertainty in their current Q-value estimate, and should be explored more. The posterior
sampling approaches implement this idea by simply taking a sample from the posterior, which is likely
to be closer to the mean (less exploration) for actions with small posterior variance, and away from
the mean (more exploration) for those with large variance. This uncertainty quantification is useful for
managing the exploration-exploitation tradeoff for regret minimization. The exploration methodology
is distinct from algorithms that use additive bonuses or randomized perturbations in the estimates.

Figure 1: Performance comparison of
PSQL∗(a heuristic derived from PSQL),
UCBQL (Jin et al., 2018); Staged-
RandQL(Tiapkin et al., 2023), and
RLSVI (Russo, 2019) in a chain MDP
environment (for details, and more experi-
ments, see Appendix A).

Following this intuition, we introduce Q-learning
with Posterior Sampling (PSQL) algorithm that main-
tains a posterior on Q-values for every state and ac-
tion. Then, to decide an action in any given state, it
simply generates a sample from the posterior for each
action, and plays the arg max action of the sampled
Q-values.

Popularized by their success in the multi-armed ban-
dit settings (Thompson, 1933; Chapelle & Li, 2011;
Kaufmann et al., 2012; Agrawal & Goyal, 2017),
and in deep reinforcement learning regimes (Osband
et al., 2016a; Fortunato et al., 2017; Azizzadenesheli
et al., 2018; Li et al., 2021b; Fan & Ming, 2021; Sasso
et al., 2023), the posterior sampling approaches are
generally believed to be more efficient in managing
the exploration-exploitation tradeoff than their UCB
(Upper Confidence Bound) counterparts. Our pre-
liminary experiments (see Figure 1) suggest that this
is also the case for our Q-learning approach in the
tabular RL setting. 2 However, obtaining provable
guarantees for posterior sampling approaches have
historically been more challenging.

Several previous works (e.g., Li et al. (2021a); Jin
et al. (2018)) use UCB-based exploration bonuses to design optimistic Q-learning algorithms with
near-optimal regret bounds.3. For the posterior sampling based approaches however, the first tractable
Q-learning based algorithm with provable regret bounds was provided only recently by Tiapkin et al.
(2023) for the Staged-RandQL algorithm. However, the Staged-RandQL (and RandQL) algorithm
presented in their work deviated from the natural approach of putting a posterior on Q-values, and
instead derived a Dirichlet Bayesian posterior on the transition probabilities, which is conceptually
closer to some model-based posterior sampling algorithms, e.g., the PSRL algorithm in Agrawal &

2For the empirical study reported here, we implement a vanilla version of posterior sampling with Q-learning.
The PSQL algorithm presented later modifies the target computation as described later in Section 3, for the sake
of theoretical analysis.

3The algorithm from Jin et al. (2018) is referred as UCBQL in the text and experiments

2
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Jia (2017). RandQL implements sampling from the implied distribution on Q-estimates in a more
efficient way via learning rate randomization, so that it qualifies as a model-free algorithm.

Another closely related approach with provable regret bounds is the RLSVI (Randomized Least
Squared Value Iteration) algorithm by Osband et al. (2016b; 2019); Russo (2019); Zanette et al.
(2020); Agrawal et al. (2021); Xiong et al. (2022). The RLSVI algorithm is an approximate value
iteration-based approach that can be interpreted as maintaining “empirical posteriors" over the value
functions by injecting noise. However, in the tabular setting considered here, RLSVI reduces to a
model-based algorithm. (See Section 2.1 for further comparisons.) There are several other model-
based posterior sampling algorithms in the literature with near optimal regret bounds (Osband et al.,
2013; Osband & Van Roy, 2017; Ouyang et al., 2017; Agrawal & Jia, 2022; Agarwal & Zhang, 2022;
Tiapkin et al., 2022). Model-based algorithms directly estimate the reward and/or transition model,
instead of the implied optimal value functions, or policy parameters. In many settings, model-based
algorithms can be more sample efficient. But, model-free approaches like Q-learning have gained
popularity in practice because of their simplicity and flexibility, and underlie most successful modern
deep RL algorithms (e.g., DQN Mnih et al. (2013), DDQN van Hasselt et al. (2015), A3C Mnih et al.
(2016)). Provable regret bounds for a simple posterior sampling based Q-learning algorithm like
PSQL, therefore, still remains a problem of significant interest.

Our contributions are summarized as follows.

• We propose the Q-learning with Posterior Sampling (PSQL) algorithm that is the first Q-
learning algorithm with natural and efficient exploration provided by the Bayesian posterior
sampling approach. Our preliminary experiments demonstrate promising empirical perfor-
mance of this simple algorithm compared to contemporary approaches. (See Section 3 for
algorithm design and Appendix A for experiments.)

• We provide a novel derivation of Q-learning as a solution to a Bayesian inference problem
with a regularized Evidence Lower Bound (ELBO) objective. Besides forming the basis of
our PSQL algorithm design, this derivation provides a more insightful interpretation of the
learning rates introduced in some previous works on Q-learning (e.g., Jin et al. (2018)) to
obtain provable regret bounds. (See Section 3.1.)

• We prove a near-optimal regret bound of Õ(H2
√
SAT ) for PSQL which closely match

the known lower bound of Ω(H
√
SAT ) (Jin et al., 2018). Our result improves the regret

bounds available for the closely related approach of RLSVI (Russo, 2019) and matches
those recently derived by Tiapkin et al. (2023) for a more complex posterior sampling based
algorithm Staged-RandQL. (See Section 2, 4.)

• Our regret analysis reveals several key difficulties in combining posterior sampling with
DP and TD-learning-based algorithms due to error accumulation in the bootstrapped target;
along with novel ideas for overcoming these challenges. (See Section 4.1.)

2 OUR SETTING AND MAIN RESULT

In the online reinforcement learning setting, the algorithm interacts with environment in K sequential
episodes, each containing H steps. At step h = 1, . . . , H of each episode k, the algorithm observes
the current state sk,h, takes an action ak,h and observes a reward rk,h and the next state sk,h+1.

The reward and next state are generated by the environment according to a fixed underlying MDP
(S,A, R, P ), so that Pr(sk,h+1 = s′|sk,h = s, ak,h = a) = Ph(s, a, s

′),E[rk,h|sk,h = s, ak,h =
a] = Rh(s, a). However, the reward functions and the transition probability distributions Rh, Ph, h =
1, . . . ,H are apriori unknown to the algorithm. The goal is to minimize total regret compared to the
optimal value given by the dynamic programming equation (1). Specifically, let πk denote the policy
used by the algorithm in episode k, so that ak,h = πk(sk,h). We aim to bound regret, defined as

Reg(K) :=
∑K

k=1(V1(sk,1)− V πk(sk,1)) (4)

for any set of starting states sk,1, k = 1, . . . ,K.

Since the algorithm can only observe the environment’s response at a visited state and action, a
main challenge in this problem is managing the exploration-exploitation tradeoff. This refers to the

3
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dilemma between picking actions that are most likely to be optimal according to the observations
made so far, versus picking actions for that allow visiting less-explored states and actions. The
two main approaches for managing exploration-exploitation tradeoffs are the optimistic approaches
based on UCB and posterior sampling approaches (aka Thompson Sampling in multi-armed bandit
settings).

In this paper, we present a Q-learning algorithm with posterior sampling (PSQL) that achieves the
following regret bound. Here Õ(·) hides absolute constants and logarithmic factors.

Theorem 1 (Informal). The cumulative regret of our PSQL (Algorithm 1 ) in K episodes with horizon
H is bounded as Reg(K) ≤ Õ

(
H2
√
SAT

)
, where T = KH .

2.1 RELATED WORKS

Algorithm Regret Comments

U
C

B UCBQL (Jin et al., 2018) Õ(H1.5
√
SAT ) Q-learning with UCB

Q-EarlySettled-Advantage (Li et al., 2021a) Õ(H
√
SAT ) Q-learning with UCB

Po
st

er
io

rs
am

pl
. Conditional Posterior Sampling (Dann et al., 2021) Õ(HSA

√
T ) computationally intractable

RLSVI (Russo, 2019) Õ(H3S1.5
√
AT ) approximate value iteration

C-RLSVI (Agrawal et al., 2021) Õ(H2S
√
AT ) approximate value iteration

Staged RandQL (Tiapkin et al., 2023) Õ(H2
√
SAT ) randomized learning-rates

PSQL [this work] Õ(H2
√
SAT ) Gaussian posteriors on Q-values

Lower bound (Jin et al., 2018) Ω(H
√
SAT ) -

Table 1: Comparison of our regret bound to related works ( Dann et al. (2021) is in function
approximation setting).

Our work falls under the umbrella of online episodic reinforcement learning on regret minimization
in tabular setting. In the category of the Upper Confidence Bound (UCB)-based algorithms, there is a
huge body of research both on model-based (Bartlett & Tewari, 2012; Azar et al., 2017; Fruit et al.,
2018; Zanette & Brunskill, 2019; Zhang et al., 2020; Boone & Zhang, 2024), and model-free (Jin
et al., 2018; Bai et al., 2019; Ménard et al., 2021; Zhang & Xie, 2023; Agrawal & Agrawal, 2024)
algorithms. In-fact, Jin et al. (2018) were the first to provide a near-optimal worst-case regret bound
of Õ(

√
H3SAT ), subsequently improved to Õ(H

√
SAT ) by Zhang et al. (2020); Li et al. (2021a).

Motivated by the superior empirical performance of Bayesian posterior sampling approaches com-
pared to their UCB counterparts (Chapelle & Li, 2011; Kaufmann et al., 2012; Osband et al., 2013;
Osband & Van Roy, 2017; Osband et al., 2019) there have been several attempts at deriving provable
regret bounds for these approaches in the episodic RL setting. Among model-based approaches, near
optimal regret bounds have been established for approaches that use (typically Dirichlet) posteriors
on transition models (Ouyang et al., 2017; Agrawal & Jia, 2017; Tiapkin et al., 2022). There have
been relatively limited studies on model-free, sample-efficient and computationally efficient Bayesian
algorithms. Dann et al. (2021) proposed one such framework but is computationally intractable. Our
work aims to fill this gap.

A popular approach closely related to posterior sampling is Randomized Least Square Value It-
eration (RLSVI) (Osband et al., 2016b; 2019; Russo, 2019; Zanette et al., 2020) and RLSVI-like
approaches (Agrawal et al., 2021; Xiong et al., 2022; Ishfaq et al., 2021; 2023; 2024). In RLSVI,
the exploration is carried out by injecting randomized uncorrelated noise to the reward samples,
followed by a re-fitting of a Q-function estimate by solving a least squares problem on all the past
data, incurring heavy computation and storage costs. This process has been interpreted as forming an
approximate posterior distribution over value functions. RLSVI too enjoys a “superior-than-UCB”
empirical performance. In contrast to Q-learning (or TD-learning approaches in general) these ap-
proaches do not bootstrap on the older estimates and hence their techniques are not broadly applicable
in our analysis. However, its worst-case regret bounds (Russo, 2019) remain suboptimal (see Table 1)
in their dependence on the size of the state space.

More recently, Tiapkin et al. (2023) proposed (RandQL and Staged-RandQL) algorithms that are
model-free, tractable and enjoy Õ(H2

√
SAT ) regret by randomizing the learning rates of the Q-

4
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learning update rule. Their algorithmic design is based on Dirichlet posteriors on transition models
and efficient implementation of the implied distribution on Q-value estimates via learning rate
randomization. Our algorithm is much simpler with far lesser randomized sampling steps and in our
preliminary experiments (see Figure 1 and Section A), our PSQL approach with simple Gaussian
based posteriors shows better/comparable performance compared to these algorithms.

In Table 1 we provide a detailed comparison of our results with the above-mentioned related work on
posterior sampling algorithms for RL.

3 ALGORITHM DESIGN

We first present a Bayesian posterior-based derivation of the Q-learning update rule, which forms the
basis for our algorithm design.

3.1 POSTERIOR DERIVATION

An insightful interpretation of the Q-learning update rule can be obtained using Bayesian inference.
Let θ denote the Bayesian parameter that we are inferring, which in our case is the quantity Qh(s, a).
Given a prior p on θ, log likelihood function ℓ(θ, ·), and a sample z, the Bayesian posterior q is given
by the Bayes rule:

q(θ) ∝ p(θ) · exp(ℓ(θ, z)) (5)

which can also be derived as an optimal solution of the following optimization problem (see Chapter
10 in Bishop & Nasrabadi (2006)), whose objective is commonly referred to as Evidence Lower
Bound (ELBO):

max
q

Eθ∼q[ℓ(θ, z)]−KL(q||p) (6)

where KL(·||·) =
∫
θ
q(θ) log( q(θ)p(θ) ) denotes KL-divergence function. It is well known that when p(·)

is Gaussian, say N (µ̂, σ2

n−1 ), and the likelihood given θ is Gaussian N (θ, σ2), then the posterior q(·)
is given by the Gaussian distribution

N (µ̂, σ2

n ), with µ̂← (1− αn)µ̂+ αnz (7)

with αn = 1
n . Therefore, substituting θ as Qh(s, a) and µ̂ as Q̂h(s, a), the above yields the Q-learning

learning update rule (2) with learning rate αn = 1
n .

A caveat is that the above assumes z to be an unbiased sample from the target distribution, whereas in
Q-learning, z is biased due to bootstrapping. In a recent work, Jin et al. (2018) observed that in order
to account for this bias and obtain theoretical guarantees for Q-learning, the learning rate needs to
be adjusted to αn = H+1

H+n . In fact, Bayesian inference can also provide a meaningful interpretation
of this modified learning rate proposed in Jin et al. (2018). Consider the following “regularized"
Bayesian inference problem (Khan & Rue, 2023) which adds an entropy term to the ELBO objective
in (6):

max
q

Eθ∼q[ℓ(θ, z)]−KL(q||p) + λnH(q) (8)

whereH(q) denotes the entropy of the posterior. We show in Lemma B.1 (refer Appendix B) that for
the choice of λn = H

n , when the prior p(θ) is Gaussian N (µ̂, σ2

n−1 ), and the likelihood of z given θ

is Gaussian N (θ, σ2

H+1 ), then the posterior q(·) is given by the Gaussian distribution in (7) with the
same learning rate αn = H+1

H+n as suggested in Jin et al. (2018).

Substituting θ as Qh(s, a) and µ̂ has Q̂h(s, a) in (8), we derive that given a Gaussian prior
N (Q̂h(s, a),

σ2

n−1 ) over Qh(s, a), Gaussian likelihood N (Qh(s, a),
σ2

H+1 ) on target z, the following
posterior maximizes the regularized ELBO objective:

N (Q̂h(s, a),
σ2

n ), where Q̂h(s, a)← (1− αn)Q̂h(s, a) + αnz, (9)

where αn = H+1
H+n , and n is the number of samples for s, a observed so far.

5
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The entropy regularization term of (8) introduces extra uncertainty in the posterior. Intuitively, this
makes sense for Q-learning as the target z is bootstrapped on previous interactions and likely has
additional bias. The weight λn of this entropy term decreases as the number of samples increases
and the bootstrapped target is expected to have lower bias. This derivation may be of independent
interest as it provides an intuitive explanation of the modified learning rate schedule proposed ( H+1

H+n

as compared to 1
n ) in Jin et al. (2018), where it was motivated mainly by the mechanics of regret

analysis. The above posterior derivation forms the basis of our algorithm design presented next.

3.2 ALGORITHM DETAILS

A detailed pseudo-code of our PSQL algorithm is provided as Algorithm 1,2. It uses the current
Bayesian posterior to generate samples of Q- values at the current state and all actions, and plays the
arg max action. Specifically, at a given episode k, let sh be the current state observed in the beginning
of the episode and for action a, let Nh(sh, a) be the number of visits of state sh and action a before
this episode. Let Q̂h(sh, a) be the current estimate of the posterior mean, and

σ(n) = σ2

n+1
:= 64 H3

n+1 log(KH/δ). (10)

Then, the algorithm samples for each a,

Q̃h(sh, a) ∼ N (Q̂h(sh, a), σ(Nh(sh, a))
2)

and plays the arg max action ah := argmaxa Q̃h(sh, a).

The algorithm then observes a reward rh and the next state sh+1, computes a target z, and updates
the posterior mean estimate using the Q-learning update rule. A natural setting of the target would be
rh +maxa′ Q̃h+1(sh+1, a

′), which we refer to as the “vanilla version" or PSQL*. However, due to
unresolvable difficulties in regret analysis discussed later in Section 4, the PSQL algorithm computes
the target in a slightly optimistic manner (rh + V h+1(s)) as we describe later in this section. Our
experiments (Appendix A) show that although this modification does impact performance, PSQL still
remains significantly superior to its UCB counterpart.

Algorithm 1 Q-learning with Posterior Sampling (PSQL)

1: Initialize: Q̂H+1(s, a) = V̂H+1(s) = 0, Q̂h(s, a) = V̂h(s) = H,Nh(s, a) = 0 ∀s, a, h.
2: for episodes k = 1, 2, . . . do
3: Observe s1.
4: for step h = 1, 2, . . . ,H do

5: Sample Q̃h(sh, a) ∼ N (Q̂h(sh, a), σ(Nh(sh, a))
2), for all a ∈ A.

6: Play ah := argmaxa∈A Q̃h(sh, a).
7: Observe rh and sh+1.
8: z ← ConstructTarget(h, rh, sh+1, Q̂h+1, Nh+1).
9: n := Nh(sh, ah)← Nh(sh, ah) + 1, αn := H+1

H+n .
10: Q̂h(sh, ah)← (1− αn)Q̂h(sh, ah) + αnz.
11: end for
12: end for

Algorithm 2 ConstructTarget(h, r, s′, Q̂, N)

Return r, if h = H + 1.
Set â = argmaxa Q̂(s′, a) + σ(N(s′, a)). Set J := J(δ) as in (11).
/* Take maximum of the J samples from the posterior of target Vh+1 */
Sample Ṽ j ∼ N

(
Q̂(s′, â), σ(N(s′, â))2

)
, for j ∈ [J(δ)], a ∈ A .

V (s′)← maxj Ṽ
j .

Return z := r + V (s′).

6
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Specifically, given reward rh = r and next state sh+1 = s′, a value function estimate V h+1(s
′) is

computed as the maximum of J samples from the posterior on Qh+1(s
′, â), with â being the arg max

action of posterior mean + standard deviation. That is, let

â := argmax
a

Q̂h+1(s
′, a) + σ(Nh+1(s

′, a)), and V h+1(s
′) = max

j∈J
Ṽ j ,

with J = J(δ) := log(SAT/δ)
log(4/(4−p1))

, p1 = Φ(−1)− δ
H − δ. (11)

Observe that the above procedure computes a V h+1(s
′) that is more optimistic than single sample

maximum (i.e., "vanilla version" maxa′ Q̃h(s
′, a′)). However, the optimism is limited only to the

target computation not to the main decision-making in Line 6, marking an important departure from
UCB based optimism (e.g., Jin et al. (2018)). Multiple sampling from the posteriors is a common
technique considered in the past works (Tiapkin et al., 2022; Agrawal & Jia, 2017; Agrawal et al.,
2017) to aid analysis. Finally, the algorithm uses the computed target z = rh + V h+1(sh+1) to
update the posterior mean via the Q-learning update rule, with αn = H+1

H+n :

Q̂h(s, a)← (1− αn)Q̂h(s, a) + αz.

Let n = Nk,h(s, a), then Algorithm 1 implies (α0
n := Πn

j=1(1− αj) and αi
n := αiΠ

n
j=i+1(1− αj)),

Q̂k,h(s, a) = α0
nH +

n∑
i=1

αi
n

(
rki,h + V ki,h+1(ski,h+1)

)
. (12)

4 REGRET ANALYSIS

We prove the following regret bound for PSQL.
Theorem 2. The cumulative regret of PSQL (Algorithm 1,2) in K episodes satisfies

Reg(K) := (
∑K

k=1 V
∗
1 (sk,1)− V πk

1 (sk,1)) ≤ O
(
H2
√
SATχ

)
,

with probability at least 1− δ, where χ = log(JSAT/δ) and T = KH .

4.1 CHALLENGES AND TECHNIQUES.

Most of the unique challenges for the theoretical analysis of Q-learning with posterior sampling are
associated with the bootstrapped nature of TD-learning itself. As shown in (12), mean estimate at the
given step h depends on a weighted average of the past next-step h+ 1 estimates, causing the errors
at h+ 1 of the past estimates propagate to the estimate at step h. In model-based methods(e.g., Azar
et al. (2017); Osband & Van Roy (2017); Zanette et al. (2020)) such issues are non-existent as they
recalculate their estimates from scratch at each time step.

Optimism dies down under recursion. One difficulty in analyzing Bayesian posterior sampling
algorithms is the absence of high probability optimism (the property that the estimates upper bound
the true parameters). Observe that the regret of an algorithm in any episode k can be decomposed as:

V ∗
1 (sk,1)− V πk

1 (sk,1) ≤ (V ∗
1 (sk,1)− Q̃k,1(sk,1, ak,1))︸ ︷︷ ︸

Optimism error

+(Q̃k,1(sk,1, ak,1)− V πk
1 (sk,1))︸ ︷︷ ︸

Estimation error

. (13)

In algorithms like UCBQL (Jin et al., 2018), there is no optimism error since the UCB estimate
is a high-confidence upper bound on the optimal value function. Prior posterior sampling ap-
proaches (Agrawal & Goyal, 2012; 2017; Russo, 2019; Agrawal et al., 2021) were able to bound
optimism error by proving a constant probability optimism, and then boosting to high probability by
a statistical argument. However, due to the recursive nature of Q-learning, their techniques do not
directly apply.

To see this, suppose that if we have a constant probability p of optimism of posteriors on value
functions in state H . The optimism of stage H − 1 value requires optimism of stage H value; leading
to p2 probability of optimism in stage H − 1. Continuing this way, we get an exponentially small
probability of optimism for stage 1.
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Multiple sampling from the posteriors only partially helps. To get around the issues with constant
probability optimism, many posterior sampling algorithms (e.g., model-based PSRL Agrawal & Jia
(2022), MNL-bandit Agrawal et al. (2017),Tiapkin et al. (2022),Ishfaq et al. (2021) etc.) taking
max over multiple (say J) samples from the posterior in order to get high probability optimism. We
follow a similar modification, with differences described later in the section. We believe that, due
to bootstrapping nature of Q-learning (or TD-learning methods in general), merely taking multiple
samples for either decision-making and the target construction would lead to exponential (in H)
accumulation of errors, even for J as small as 2. Below, we provide a rough argument.

We expect the bias of Q̃h (sample from the posterior distribution) to track Q∗
h with error that scales

as standard deviation of Q̃h) (lets call that error as ϵ). Now, suppose J samples are used in decision-
making (i.e., we take multiple samples from the posterior distributions at Line 6 of Algorithm 1).
We incur regret whenever the bias of maxj Q̃

j exceeds Q∗. Using the standard techniques, this
error at step H has an error bound of ϵ

√
J log(1/δ) with probability 1− δ. This error subsequently

propagates multiplicatively via bootstrapping of Bellman equation. For the step H − 1, the optimism
error contribution will be ϵ

√
J2 log(1/δ) with probability 1− δ. Continuing this argument, at step 1,

the cumulative optimism error will be of the order ϵ
√
JH log(1/δ), i.e., exponential in H for any

J ≥ 2.

The usual trick of obtaining high probability optimism by taking multiple samples from the posterior
doesn’t work for Q-learning, at least not without further novel ideas.

Our techniques. The design of target computation procedure is pivotal to PSQL. Our algorithm
design is characterized by two key items: (1) using optimistic posterior sampling in target computation
only; (2) using the argmax action â of the posterior mean (with a standard deviation offset) in our
target computation.

First is motivated by the observation that to break the recursive multiplicative decay in constant
probability of optimism, we just need to ensure high probability optimism of the next-stage value
function estimate used in the target computation. Second is motivated by the previous discussion
that merely taking multiple samples may lead to exponential error. In our analysis, we show that the
action â is a special action, whose standard deviation is close to the the played action ah with constant
probability (Lemma C.2). As a result, we are able to demonstrate that as in the standard Q-learning
V h(sh) (defined with â) cannot be too far from Q̃h(sh, ah). Intuitively they are tracking the similar
quantities. In summary, our algorithm uses a combination of vanilla (single-sample) and optimistic
(multiple-sample) posterior sampling for action selection and target computation, respectively.

4.2 PROOF SKETCH

We provide a proof sketch for Theorem 2. All the missing details from this section are in Appendix C.
Here, we use Q̃k,h, Q̂k,h, V k,h, Nk,h, to denote the values of Q̃h, Q̂h, V h, Nh, respectively at the
beginning of episode k of Algorithm 1, 2. And, as before, sk,h, ak,h denote the state and action
visited at episode k, step h.

Following the regret decomposition in (13) we bound the regret by bounding optimism error and
estimation error. We introduce several new technical ideas to this end. Leveraging our algorithm
design, we first prove that V k,h is a tracking upper bound (optimistic estimate) to V ∗

h . Second and
the most crucial bit is to show that deviation of V k,h(sk,h) from the sample used in decision-making,
Q̃k,h(sk,h, ak,h), can be tractably bounded across rounds of interactions. This combined with the
optimism of V k,h, naturally bounds the optimism error. Third we demonstrate the estimation error
has a recursive structure, i.e., error at step h depends on error at h + 1 and terms attributed to
stochasticity in the model; and deviation of V k,h(sk,h) from Q̃k,h(sk,h, ak,h). Therefore, first two
parts are utilized to prove estimation error bound.

(a) V k,h used in the target, is an optimistic estimate of V ∗
h

Lemma 1 (Abridged). For any episode k and index h, the following holds with probability at least
1− δ/KH ,

V k,h(sk,h) ≥ V ∗
h (sk,h),

where δ is a parameter of PSQL used to define the number of samples J used to compute the target.
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The above is an abridged version of Lemma C.1. The proof of which inductively uses the optimism
and estimation error bounds available for the next stage (h+ 1) to bound the estimation error in the
posterior mean Q̂h(s, a). Then, anti-concentration (i.e., lower tail bounds) of the Gaussian posterior
distribution provides the desired constant probability optimism.

(b) V k,h(sk,h) used in the target, is not far away from Q̃k,h(sk,h, ak,h). The following lemma is
an abridged version of Lemma C.3 and tells us that the gap is of the order of σ(Nk,h(sk,h, ak,h))

which goes down (see (10)) as sk,h, ak,h is visited often with rate 1/
√
Nk,h(sk,h, ak,h). This is

central to our analysis.
Lemma 2 (Abridged). In Algorithm 1, with probability 1− 2δ, the following holds for all k ∈ [K]
and h ∈ [H],

V k,h(sk,h)− Q̃k,h(sk,h, ak,h) ≤ Õ(σ(Nk,h(sk,h, ak,h))),

where Õ(·) hides multiplicative logarithmic terms.

The challenge here is that V k,h+1(sk,h+1) is obtained by sampling from the posterior
of Q̃(sk,h+1, ·) at action â (:= argmaxa Q̂k,h(sk,h, a) + σ(Nk,h(sk,h, a))) and not ak,h+1

(:= argmaxa Q̃k,h(sk,h, a)). To get around this difficulty, we show in Lemma C.2 that
σ(Nk,h(sk,h, â))

2 < 2σ(Nk,h(sk,h, ak,h))
2 log(1/δ) with a non-zero probability. Finally, using

a probability boosting argument (Lemma E.1) we prove Lemma 2. Combined with Lemma 1 to
obtain a high probability optimism error bound.
Lemma 3 (Optimism error). In Algorithm 1, with probability 1 − 2δ, the following holds for all
k ∈ [K] and h ∈ [H],

V ∗
h (sk,h)− Q̃k,h(sk,h, ak,h) ≤ Õ(σ(Nk,h(sk,h, ak,h))),

where Õ(·) hides multiplicative logarithmic terms.

(c) Bounding estimation error. In Q-learning, an estimate of the next stage value function (here,
V h+1) is used to compute the target in order to update the Q-value for the current stage (here, the
posterior mean Q̂h). As a result, the error in the posterior mean for stage h depends on the error in
the value function estimates for h+ 1.
Lemma 4 (Posterior mean estimation error). With probability at least 1 − δ, for all k, h, s, a ∈
[K]× [H]× S ×A,

Q̂k,h(s, a)−Q∗
h(s, a) ≤

√
σ(Nk,h(s, a))2η + α0

nH +
∑n

i=1 α
i
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)
,

where n = Nk,h(s, a), and η = log(SAKH/δ). And, αi
n = αiΠ

n
j=i+1(1 − αj), i > 0, with

α0
n = Πn

j=1(1− αj).

Conceivably, we should be able to apply the above lemma inductively to obtain an estimation error
bound (Lemma 5). Lemma 2 again plays a crucial role in the above recursive bound.
Lemma 5 (Cumulative estimation error.). With probability at least 1− δ, the following holds for all
h ∈ [H], ∑K

k=1

(
Q̃k,h(sk,h, ak,h)− V πk

h (sk,h)
)
≤ O

(
H2
√
SAT log(JSAT/δ)

)
.

(c) Putting it all together. To obtain the final regret bound, we simply sum up the optimism error
bound in Lemma 3 for K episodes and add it to the cumulative estimation error bound above.

5 CONCLUSION

We presented a posterior sampling-based approach for incorporating exploration in Q-learning. Our
PSQL algorithm is derived from an insightful Bayesian inference framework and shows promising
empirical performance in preliminary experiments. (Detailed experimental setup and empirical results
on additional environments are provided in Appendix A.) We proved a Õ(H2

√
SAT ) regret bound

9
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in a tabular episodic RL setting that closely matches the known lower bound. Future directions
include a theoretical analysis of the vanilla version of PSQL (called PSQL* in experiments) that uses
a single sample from next stage posterior in the target computation. The vanilla version outperforms
Algorithm 1 empirically but is significantly harder to analyze. Another avenue is tightening the H
dependence in the regret bound; Appendix F outlines a sketch for improving it by

√
H although at

the expense of making the algorithm more complex. Further refinements are potentially achievable
using techniques from Li et al. (2021a); Zhang et al. (2020).
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The Use of Large Language Models Commonly availaible LLM tools were only used to help
to improve english writing, grammar and typeset in Latex. LLMs were not used to generate any
research ideas or analysis present in this work.

A EXPERIMENTS

In section 4, we proved that our Q-learning with posterior sampling algorithm PSQL enjoys regret
bounds comparable to its UCB-counterparts, e.g., Jin et al. (2018). In this section, we present empirical
results that validate our theory and compare the empirical performance of the posterior sampling
approach against several benchmark UCB-based and randomized algorithms for reinforcement
learning.

For the empirical studies, we use the vanilla version of posterior sampling, which we denote as
PSQL* (see Figure 1). In this vanilla version, the target computation at a step h is the default
z = rh+maxa′ Q̃h+1(sh+1, a

′). As discussed in Section 3.2, PSQL modified this target computation
to make it slightly optimistic, to deal with the challenges in theoretical analysis. Later, we also
compare the empirical performance of PSQL and PSQL*. While the modified target computation
does slightly deteriorate the performance of PSQL, in our experiments, it still performs significantly
better compared to the benchmark UCB-based approach Jin et al. (2018).

Specifically, we compare the posterior sampling approach to the following three alorithms.

• UCBQL Jin et al. (2018) (Hoeffding version): the seminal work which gave the first UCB
based Q-learning regret analysis.

• RLSVI Russo (2019): a popular randomized algorithm that implicitly maintains posterior
distributions on Value functions.

• Staged-RandQL Tiapkin et al. (2023): a recently proposed randomized Q-learning based
algorithm that uses randomized learning rates to motivate exploration.

Environment description. We report the empirical performance of RL algorithms on two tabular
environments described below. In each environment, we report each algorithm’s average performance
over 10 randomly sampled instances.

• (One-dimensional “chain” MDP:) An instance of this MDP is defined by two parameters
p ∈ [0.7, 0.95] and S ∈ {7, 8, 9, . . . , 14}. In a random instance, p,&S are chosen randomly
from the given ranges. The resultant MDP environment is a chain in which the agent starts
at state 0 (the far-left state), and state S (the right-most state) is the goal state. At any given
step h in an episode, the agent can take “left” or “right” action. The transitions are to the
state in the direction of the action taken with probability p, and in the opposite direction
with probability 1− p.

• (Two-dimensional “grid-world” MDP, similar to FrozenLake environment in the popular
Gymnasium library:) A random instance of this MDP is defined by a 4 × 4 grid with a
random number of “hole” states placed at on the grid uniformly at random that the agent
must avoid or else the episode ends without any reward. The agent starts at the upper-left
corner, and the goal state is the bottom-right corner of the grid. There is at least one feasible
path from the starting state to the goal state that avoids all hole states. At any given time
step, the agent can take the "left", "right", "bottom" and "up" actions. After an action is
taken, the agent has 1/3 probability to transit to the direction of the action taken, and 1/3
probability each to transit to the two perpendicular directions.

In both the above environments, the goal state carries the reward of (H − h)/H , where H is the
duration of the episode and h is the time index within the episode at which the goal state is reached.
No other state has any reward. The duration of an episode is set at H = 32 for all experiments.

Findings. We observed that the performance of all the algorithms is sensitive to constants in the
exploration bonuses or in the posterior variances. These constants were tuned such that the respective
algorithms performed the best in the two environments. We made the following parameter choices
for the algorithmic simulations for a fair comparison:
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• δ is fixed for all algorithms as 0.05.

• In UCBQL Jin et al. (2018), the Q-function estimates are initialized as the maximum value
of any state in the environment (=: Vmax). The exploration bonus for any h, s, a with visit
counts as n is given by √

c
V 2
max log(SAT/δ)

n
,

with c = 0.01

• In PSQL and PSQL*, the Q-function posterior means are initialized as Vmax (same as
UCBQL) and the standard deviation of the posterior for any h, s, a with n visits is given by√

c
V 2
max

max{1, n}
,

with c = 0.02.

• In RLSVI Russo (2019), the per-reward perturbation is a mean zero Gaussian with standard
deviation for any h, s, a with n visits is given by,√

c
V 2
max log(SAT/δ)

n+ 1
,

with c = 0.005.

• In Staged-RandQL Tiapkin et al. (2023), for the initialization of the Q-function estimates,
we use a tighter upper bound of (H − h)/H at step h available in our environment, instead
of the default H − h suggested in their paper. We use n0 = 1/S and r0 = 1 as in their
paper.

Our results are summarized in Figure 2 and 3. The error bars represent one standard deviation interval
around the mean cumulative regret of an algorithm over 10 runs on randomly generated instances of
the environment. We observe that the randomized/posterior sampling algorithms PSQL*, RLSVI,

(a) One-dimensional “chain” MDP (b) Two-dimensional “grid” MDP

Figure 2: Regret comparison: x-axes denotes episode index, y-axes denotes cumulative regret

and Staged-RandQL, have lower regret than their UCB counterpart: UCBQL. Also, PSQL* has
significantly lower regret than the other two randomized algorithms.

A direct practical implication is that, PSQL* enjoys a shorter learning time (number of episodes
after which the cumulative regret is below the specified threshold (Osband et al., 2019)). Further, the
variance across different runs is also the lowest of all, suggesting PSQL* enjoys higher robustness.

In Figure 3, we compare the performance of PSQL*, the single sample vanilla version of posterior
sampling, with the PSQL algorithm for which we provided regret bounds. As we explained in Section
4.1 (Challenges and Techniques), in order to achieve optimism in the target, PSQL computed the next
state value by taking the max over multiple samples from the posterior of empirical mean maximizer
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action â = argmaxa Q̂h(sh, a) + σ(Nh(sh, a)). This introduces some extra exploration, and as a
result, we observe that PSQL* displays a more efficient exploration-exploitation tradeoff, PSQL still
performs significantly better than the UCB approach. These observations motivate an investigation
into the theoretical analysis of the vanilla version, which we believe will require significantly new
techniques.

(a) One-dimensional “chain” MDP (b) Two-dimensional “grid” MDP

Figure 3: Regret comparison: x-axes denotes episode index, y-axes denotes cumulative regret

B BAYESIAN INFERENCE BASED INTERPRETATION FOR Q-LEARNING

In this section, we describe the mathematical steps for calculating the updated posterior distribution
from (8).

First, in Proposition B.1, we derive the well-known result that solving the optimization problem in (6)
gives the posterior distribution as expected by Bayes rule. Let θ ∈ Θ be the Bayesian parameter that
we are inferring with ∆Θ be the space of distributions on Θ. Let p(θ), ℓ(θ, ·), and q(θ) be the the
current prior distribution on θ, the negative log likelihood function and the posterior distribution to be
calculated.
Proposition B.1 (Also in Khan & Rue (2023); Knoblauch et al. (2022)). Let KL(q(θ)||p(θ)) =∫
θ
q(θ) log( q(θ)p(θ) ). Given log likellihood function ℓ(θ, z), and prior p(θ), the distribution q that

maximizes ELBO objective,

max
q∈∆Θ

Eθ∼q[ℓ(θ, z)]−KL(q(θ)||p(θ)) (14)

is given by the Bayes rule
qBayes(θ) ∝ p(θ) · exp(ℓ(θ, z)). (15)

Proof. Note that the ELBO objective function is equivalent to

−
∫
θ

log(exp(−ℓ(θ, z)q(θ)−
∫
θ

log

(
q(θ)

p(θ)

)
q(θ)

= −
∫
θ

log

(
q(θ)

p(θ) exp(ℓ(θ, z))

)
q(θ),

which is maximized when q(θ) = qBayes(θ).

Now, we study the calculation of the posterior distribution of Qh(s, a) after observing n+ 1 visits of
(h, s, a) in Lemma B.1.
Lemma B.1. Consider the following maximization problem (regularized ELBO) over the space ∆Θ

of distributions over a parameter θ.

max
q∈∆Θ

Eθ∼q[ℓ(θ, z)]−KL(q(θ)||p(θ)) + λnH(q(θ)), (16)
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Then, if p(·) is given by the pdf of the Gaussian distributionN (µ̂n−1,
σ2

n−1 ), and ℓ(θ, z) = log(ϕθ(z))

where ϕθ(z) = Pr(z|θ) is the pdf of the Gaussian distribution N (θ, σ2

H+1 ), and λn = H
n ; then the

optimal solution q(·) to (16) is given by the Gaussian distribution N (µ̂n,
σ2

n ), where

µ̂n = (1− αn)µ̂n−1 + αnz, with αn =
H + 1

H + n
.

Proof. Denote the objective value at a given distribution q as rELBO(q). Then,

rELBO(q) =

∫
θ

log(exp(ℓ(θ, z)q(θ)−
∫
θ

log

(
q(θ)

p(θ)

)
q(θ)− λn

∫
θ

log(q(θ))q(θ)

= −
∫
θ

log

(
q(θ)1+λn

p(θ) exp(ℓ(θ, z))

)
q(θ),

which is maximized at distribution q with q(θ) ∝ (p(θ) exp(ℓ(θ, z)))1/(λn+1) Then,

q(θ) ∝ exp

 1

λn + 1

(
− (n− 1) (θ − µ̂n−1)

2

2σ2
− (H + 1)(z − θ)2

2σ2

)
∝ exp

− n

H + n

(
θ2(H + n)− 2θ((n− 1)µ̂n−1 + (H + 1)z)

2σ2

)
∝ exp

−n(θ2 − 2θµ̂n

2σ2

)
∝ exp

−n( (θ − µ̂n)
2

2σ2

)
where µ̂n = n−1

H+n µ̂n−1 +
H+1
H+nz = (1− αn)µ̂n−1 + αnz.

C MISSING PROOFS FROM SECTION 4

C.1 OPTIMISM

Lemma C.1 (Unabridged version). The samples from the posterior distributions and the mean of the
posterior distributions as defined in Algorithm 1, 2 satisfy the following properties: for any episode
k ∈ [K] and index h ∈ [H],

(a) (Posterior distribution mean) For any given s, a, with probability at least 1− 2(k−1)δ
KH − δ

KH ,

Q̂k,h(s, a) ≥ Q∗
h(s, a)−

√
σ(Nk,h(s, a))2. (17)

(b) (Posterior distribution sample) For any given s, a, with probability at least p1 (p1 = Φ(−1))
conditioned on (17) being true,

Q̃k,h(s, a) ≥ Q∗
h(s, a). (18)

(c) (In Algorithm 2) With probability at least 1 − 2kδ
KH , the following holds for all episodes

k′ ≤ k
V k,h(sk,h) ≥ V ∗

h (sk,h). (19)

Here δ is a parameter of the algorithm used to define the number of samples J used to compute the
target V .

Proof. We prove the lemma statement via induction over k, h.
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Base case: k = 1, h ∈ [H]. Note that n1,h(s, a) = 0 for all s, a, h ∈ S × A × [H]. Therefore,
Q̂1,h(s, a) = H for all s, a, h ((17) is trivially true). As Q∗

h(s, a) ≤ H for all s, a, h, therefore
Q̃1,H(s, a) ≥ Q∗

H(s, a), with probability at least 1/2 (> p1), i.e. (18) is true. By the choice of J and
Lemma E.2, (19) also follows.

Induction hypothesis: Given k > 1, 1 ≤ h ≤ H , assume that the statements (a),(b), and (c) are
true for 1 ≤ k′ ≤ k − 1, h′ ∈ [H], and for k′ = k, h+ 1 ≤ h′ ≤ H .

Induction step: For k, h, we show (17) holds with probability 1− 2(k−1)δ
KH − δ

KH , (18) holds with
probability at least p1 = Φ(−1) in the event (17) holds , and finally (19) holds with probability
1− 2kδ

KH .

In case nk,h(s, a) = 0, then Q̂k,h(s, a) = H and bk,h(s, a) > 0 and therefore by the same reasoning
as in the base case, the induction statement holds. For the rest of the proof we consider nk,h(s, a) > 0.

Let n = Nk,h(s, a), then Algorithm 1 implies,

Q̂k,h(s, a) = α0
nH +

n∑
i=1

αi
n

(
rki,h + V ki,h+1(ski,h+1)

)
, (20)

To prove the induction step for (17), consider the following using (12) and Bellman optimality
equation.

Q̂k,h(s, a)−Q∗
h(s, a) =

n∑
i=1

αi
n

(
rki,h − rh(s, a) + V ki,h+1(ski,h+1)− Ph,s,aV

∗
h

)
=

n∑
i=1

αi
n

(
rki,h − rh(s, a) + V ∗

h+1(ski,h+1)− Ph,s,aV
∗
h

)
+

n∑
i=1

αi
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)

(using (19) from induction hypothesis for h+ 1 ≤ H , with probability 1− 2(k − 1)δ

KH
)

(note that this is trivially true when h+ 1 = H + 1 since V k,H+1 = V ∗
h+1 = 0)

≥
n∑

i=1

αi
n

(
rki,h − rh(s, a) + V ∗

h+1(ski,h+1)− Ph,s,aV
∗
h

)
(using Corollary D.2 with probability 1− δ

KH
)

≥ −4

√
H3log(KH/δ)

nk,h(s, a) + 1

= −
√
σ(Nk,h(s, a))2, (21)

Therefore, with a union bound we have with probability 1− 2(k−1)δ
KH − δ

KH ,

Q̂k,h(s, a) ≥ Q∗
h(s, a)−

√
σ(Nk,h(s, a))2 (22)

When (22) holds, then from the definition of cumulative density of Gaussian distribution we get,

Pr
(
Q̃k,h(s, a) ≥ Q̂k,h(s, a) +

√
σ(Nk,h(s, a))2

)
≥ Φ(−1).

Now, we show Q̃k,h(s, â) ≥ Q∗
h(s, a

∗) = V ∗
h (s) with probability at least Φ(−1)− δ − δ/H , where

â = argmax
a∈A

Q̂k,h(s, a) + σ(N(s, a)), and a∗ = argmax
a∈A

Q∗
h(s, a).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By the definition of â and properties of Gaussian distribution:

Q̃k,h(s, â) ≥ Q̂k,h(s, â) + σ(N(s, â))︸ ︷︷ ︸
with probability at least ϕ(−1)

≥ Q̂k,h(s, a
∗) + σ(N(s, a∗)) ≥ Q∗

k,h(s, a
∗)︸ ︷︷ ︸

with probability at least 1 − 2(k − 1)δ/KH − δ/KH

.

Setting J ≥ log(KH/δ)
log(1/(1−p1))

in Algorithm 1, we use Lemma E.2 to show that with probability 1− δ
KH

V k,h(sk,h) ≥ V ∗
h (sk,h). (23)

Finally we use a union bound to combine (22) and (23) to prove (19) holds with probability at least
1− 2kδ

KH .

C.2 ACTION MISMATCH BOUND

Lemma C.2 (Bounding action mismatch). For a given k, h, sk,h, and let â :=

argmaxa Q̂k,h(sk,h, a) +
√
σ(Nk,h(sk,h, a))2,

σ(Nk,h(sk,h, â))
2 < 2σ(Nk,h(sk,h, ak,h))

2 log(1/δ), with probability at least p2,

where p2 = Φ(−2)− (A)δ, and δ as defined in Theorem 2.

Proof. Consider the following partition of A actions:

A :=
{
a : 2σ(N(s, a))2 log(1/δ) > σ(N(s, â))2

}
,

A :=
{
a : 2σ(N(s, a))2 log(1/δ) ≤ σ(N(s, â))2

}
.

Clearly, â ∈ A. We prove that with probability at least Φ(−2) − Aδ, we have ã ∈ A, so that
σ(N(s, â))2 < 2σ(N(s, a))2 log(1/δ).

By definition of â, we have that for all a,

Q̂(s, a) +
√
σ(N(s, a))2 ≤ Q̂(s, â)+

√
σ(N(s, â))2.

Also, by construction of A, we have that for ∀a ∈ A,

Q̂(s, a) +
√
σ(N(s, a))2 +

√
2σ(N(s, a))2 log(1/δ) ≤ Q̂(s, â)+

√
σ(N(s, â))2 +

√
σ(N(s, â))2

From Gaussian tail bounds (see Corollary D.1) we have for ∀a ∈ A,

Pr
(
Q̃(s, a) ≤ Q̂(s, a) +

√
σ(N(s, a))2 +

√
2σ(N(s, a))2 log(1/δ)

)
≥ 1−Aδ

so that ∀a ∈ A,
Pr
(
Q̃(s, a) ≤ Q̂(s, â) + 2

√
σ(N(s, â))2

)
≥ 1−Aδ

Also for the Gaussian random variable Q̃(s, â), we have with probability at least Φ(−2),

Q̃(s, â) > Q̂(s, â) + 2
√
σ(N(s, â))2,

Using a union bound on the last two events„ we get

Q̃(s, â) > max
a∈A

Q̃(s, a), with probability at least Φ(−2)−Aδ. (24)

Since â is in A, in the above scenario, the action ã that maximizes Q̃(s, ·) must be in A. Therefore,
σ(N(s, â))2 < 2σ(N(s, a))2 log(1/δ) with probability Φ(−2)−Aδ.

19
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Proposition C.1 (High probability action mismatch). For a given k, h, sk,h, let â :=

argmaxa Q̂k,h(sk,h, a). Then,

σ(Nk,h(sk,h, â)) < σ(Nk,h(sk,h, ak,h))
√
2 log(1/δ) +

1

p2
Eak,h

[σ(Nk,h(sk.h, ak,h))
√
2 log(1/δ)].

where p2 = Φ(−2)− (A)δ, and δ as defined in Theorem 2. Here Eak,h
[·] denotes expectation over

ak,h given sk,h and the history before round k, h.

Proof. This follows by using previous lemma along with Lemma E.1 with X̃ =

σ(Nk,h(sk,h, ak,h))
√
2 log(1/δ), X∗ = σ(Nk,h(sk,h, â)), and X = 0.

C.3 TARGET ESTIMATION ERROR BOUND

The following lemma characterizes the target estimation error.

Lemma C.3 (Target estimation error). In Algorithm 1, with probability 1− 2δ, the following holds
for all k ∈ [K] and h ∈ [H],

V k,h(sk,h)− Q̃k,h(sk,h, ak,h)

≤ 4σ(Nk,h(sk,h, ak,h)) log(JKH/δ) +
4

p2
Ek,h[σ(Nk,h(sk,h, ak,h))] log(JKH/δ)

=:
1

p2
F (k, h, δ),

where p2 = Φ(−2)− (A)δ and δ as defined in Theorem 2, J is defined in (11), and Ea [·] denotes
expectation over the randomness in the action taken at k, h conditioned on all history at the start
of the hth step in the episode k (i.e., only randomness is that in the sampling from the posterior
distribution).

Proof. We have arg â = maxa Q̂k,h(sk,h, a). For the remainder of the proof, we drop k, h from the
subscript and denote ak,h by ã. From Algorithm 1, V (s) is the maximum of J samples drawn from a
Gaussian distribution with mean as Q̂(s, â) and standard deviation as σ(N(s, â))2 Using Gaussian
tail bounds ( Corollary D.1) along with a union bound over J samples, for any δ ∈ (0, 1), with
probability at least 1− δ,

V (s) ≤ Q̂(s, â) +
√
2σ(N(s, â))2 log(J/δ)

≤ Q̃(s, â) +
√
2σ(N(s, â))2 log(J/δ) +

√
2σ(N(s, â))2 log(1/δ)

where Q̃(s, â) is the sample corresponding to the â action drawn by the algorithm at the k, h. Using
a union bound to combine the statements, with probability at least 1− 2δ we have,

V (s) ≤ Q̃(s, â) + 2
√
2σ(N(s, â))2 log(J/δ)

≤ Q̃(s, ã) + 2
√
2σ(N(s, â))2 log(J/δ). (25)

To complete the proof, we use Proposition C.1, and an union bound over all k, h to have the following
with probability at least 1− 2δ

V k,h(sk,h)− Q̃k,h(sk,h, ak,h)

≤ 4σ(Nk,h(sk,h, ak,h))
√
log(JKH/δ) log(KH/δ) +

4

p2
Ek,h[σ(Nk,h(sk,h, ak,h))]

√
log(JKH/δ) log(KH/δ).
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C.4 OPTIMISM ERROR BOUND

Corollary C.1 (Optimism error bound). In Algorithm 1, with probability 1− 3δ, the following holds
for any k ∈ [K] and h ∈ [H],

V ∗
h (sk,h)− Q̃k,h(sk,h, ak,h)

≤ 4σ(Nk,h(sk,h, ak,h)) log(JKH/δ) +
4

p2
Ek,h[σ(Nk,h(sk,h, ak,h))] log(JKH/δ)

=:
1

p2
F (k, h, δ),

where p2 = Φ(−2)− (A)δ and δ as defined in Theorem 2, J is defined in (11), and Ea [·] denotes
expectation over the randomness in the action taken at k, h conditioned on all history at the start
of the hth step in the episode k (i.e., only randomness is that in the sampling from the posterior
distribution).

Proof. From Lemma C.3, we have with probability at least 1− 2δ,

V k,h(sk,h)− Q̃k,h(sk,h, ak,h)

≤ 4σ(Nk,h(sk,h, ak,h)) log(JKH/δ) +
4

p2
Ek,h[σ(Nk,h(sk,h, ak,h))] log(JKH/δ)

=:
1

p2
F (k, h, δ).

Further, Lemma C.1 (c) gives with probability at least 1− δ,

V ∗
h (sk,h) ≤ V k,h(sk,h).

We complete the proof via a union bound.

Corollary C.2. With probability 1− δ, the following holds for all h ∈ [H],

K∑
k=1

V ∗
h (sk,h)− Q̃k,h(sk,h, ak,h) ≤ O

(√
H2SATχ

)
,

where χ = log(JSAT/δ).

Proof. From Corollary C.1, we have for all k, h simultaneously, with probability 1− 3δ,

V k,h(sk,h)− Q̃k,h(sk,h, ak,h)

≤ 4σ(Nk,h(sk,h, ak,h)) log(JKH/δ) +
4

p2
Ek,h[σ(Nk,h(sk,h, ak,h))] log(JKH/δ).

By combining the definition of the variance in (10) with Corollary D.4, the result follows easily.

C.5 POSTERIOR MEAN ESTIMATION ERROR BOUND

Lemma 4 (Posterior mean estimation error). With probability at least 1 − δ, for all k, h, s, a ∈
[K]× [H]× S ×A,

Q̂k,h(s, a)−Q∗
h(s, a) ≤

√
σ(Nk,h(s, a))2η + α0

nH +
∑n

i=1 α
i
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)
,

where n = Nk,h(s, a), and η = log(SAKH/δ). And, αi
n = αiΠ

n
j=i+1(1 − αj), i > 0, with

α0
n = Πn

j=1(1− αj).
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Proof. First consider a fixed k, h, s, a. From (12) and Bellman optimality equation, we have (assume
n = Nk,h(s, a) ≥ 1),

Q̂k,h(s, a)−Q∗
h(s, a) =

n∑
i=1

αi
n

(
rki,h − rh(s, a) + V ki,h+1(ski,h+1)− Ph,s,aV

∗
h

)
=

n∑
i=1

αi
n

(
rki,h − rh(s, a) + V ∗

h+1(ski,h+1)− Ph,s,aV
∗
h

)
+

n∑
i=1

αi
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)

(Using Corollary D.1 with probability 1− δ)

≤
√

σ(Nk,h(s, a))2 log(1/δ) +

n∑
i=1

αi
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)
.

(26)

When Nk,h(s, a) = 0, then trivially Q̂k,h(s, a) − Q∗
h(s, a) ≤ H = α0

nH , and for Nk,h(s, a) > 0,
then α0

n = 0. Combining these two cases and with a union bound over all s, a, h, k, we complete the
proof.

C.6 CUMULATIVE ESTIMATION ERROR BOUND

Lemma 5 (Cumulative estimation error.). With probability at least 1− δ, the following holds for all
h ∈ [H], ∑K

k=1

(
Q̃k,h(sk,h, ak,h)− V πk

h (sk,h)
)
≤ O

(
H2
√
SAT log(JSAT/δ)

)
.

Proof. For the purpose of writing this proof, define ϕk,h := Q̃k,h(sk,h, ak,h) − V ∗
h (sk,h), δk,h :=

Q̃k,h(sk,h, ak,h) − V πk

h (sk,h), and βk,h := V k,h(sk,h) − V ∗
h (sk,h). Clearly δk,h ≥ ϕk,h. Further,

v(nk,h)← σ(Nk,h(sk,h, ak,h))
2.

Now consider,

Q̃k,h(sk,h, ak,h)− V πk

h (sk,h) ≤ Ṽk,h(sk,h)−Qπk

h (sk,h, ak,h)

= Q̃k,h(sk,h, ak,h)−Q∗
k,h(sk,h, ak,h) +Q∗

k,h(sk,h, ak,h)−Qπk
1 (sk,1, ak,1)

(from Lemma 4 with probability 1− δ, with n← Nk,h(sk,h, ak,h))

≤ α0
nH +

√
2v(nk,h)η +

n∑
i=1

αi
nβki,h+1 + Psk,h,ak,h

· (V ∗
h+1 − V πk

h+1)

= α0
nH +

√
2v(nk,h)η +

n∑
i=1

αi
nβki,h+1 − ϕk,h+1 + δk,h+1

+Psk,h,ak,h
· (V ∗

h+1 − V πk

h+1)− (V ∗
h+1(sk,h+1)− V πk

h+1(sk,h+1))

From Lemma C.3 with probability 1− 2δ

≤ α0
nH +

√
2v(nk,h)η +

1

p2

n∑
i=1

αi
nF (ki, h+ 1, δ) +mk,h

+

n∑
i=1

αi
nϕki,h+1 − ϕk,h+1 + δk,h+1, (27)

where
mk,h := Psk,h,ak,h

· (V ∗
h+1 − V πk

h+1)− (V ∗
h+1(sk,h+1)− V πk

h+1(sk,h+1)).

Now, we club all episodes together to have,
K∑

k=1

δk,h ≤
K∑

k=1

α0
nH +

K∑
k=1

√
4v(nk,h)η +

1

p2

K∑
k=1

n∑
i=1

αi
nF (ki, h+ 1, δ/KH)) +

H∑
h=1

K∑
k=1

mk,h
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+

K∑
k=1

n∑
i=1

αi
nϕki,h+1 −

K∑
k=1

ϕk,h+1 +

K∑
k=1

δk,h+1.

From Lemma E.5 (c), it follows (ak,h = {ϕk,h, F (k, h, δ/KH)})
∑K

k=1

∑n
i=1 α

i
nak,h+1 ≤ (1 +

1/H)
∑K

k=1 ak,h+1. Further from the initialization,

K∑
k=1

α0
nk,h

H ≤
K∑

k=1

I{nk,h = 0}H ≤ SAH = HSA.

Therefore, we have,

K∑
k=1

δk,h ≤
K∑

k=1

SAH +

K∑
k=1

(√
4v(nk,h)η +mk,h

)
+ (1 + 1/H)

1

p2

K∑
k=1

F (k, h+ 1, δ/KH)) +

+(1 + 1/H)

K∑
k=1

ϕk,h+1 −
K∑

k=1

ϕk,h+1 +

K∑
k=1

δk,h+1.

Unrolling the above H times to have with a union bound over k, h ∈ [K] × [H] with probability
1− δ (δ is scaled by 1/KH due to the union bound):

K∑
k=1

Q̃k,1(sk,1, ak,1)− V πk
1 (sk,1) ≤ eSAH2 + e

H∑
h=1

K∑
k=1

(√
4v(nk,h)η +mk,h

)

+
e

p2

H∑
h=1

K∑
k=1

F (k, h+ 1, δ/KH)), (28)

where we have used δk,h ≥ ϕk,h and δk,H+1 = 0. Now, we analyze each term on the right hand side
of (28) one by one. From Corollary D.3,

H∑
h=1

K∑
k=1

√
4v(nk,h)η ≤ O

(√
H4SATη

)
.

From Corollary D.4 with probability at least 1− δ,

1

p2

H∑
h=1

K∑
k=1

n∑
i=1

F (ki, h+ 1, δ/KH) ≤ 1 +H

Hp2

H∑
h=1

K∑
k=1

F (k, h+ 1, δ/KH)

≤ O(1) ·
H∑

h=1

K∑
k=1

√
v(nk,h)χ log(KH/δ) (29)

≤ O
(√

H4SATχ
)
, (30)

where χ = log(JSAT/δ).

Finally, from Lemma D.1, we have with probability 1− δ

H∑
h=1

K∑
k=1

mk,h ≤ O
(√

H4T log(KH/δ)
)
.

Combining the above, we complete the proof.

Theorem 2. The cumulative regret of PSQL (Algorithm 1,2) in K episodes satisfies

Reg(K) := (
∑K

k=1 V
∗
1 (sk,1)− V πk

1 (sk,1)) ≤ O
(
H2
√
SATχ

)
,

with probability at least 1− δ, where χ = log(JSAT/δ) and T = KH .
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Proof. First we combine Corollary C.2 and Lemma 5 to get with probability at least 1 − δ (χ =
log(JSAT/δ)),

K∑
k=1

V ∗
1 (sk,1)− V πk

1 (sk,1) ≤ O
(√

H4SATχ
)
.

Observing that the rewards are bound, there |
∑K

k=1

∑H
h=1 Rh(sk,h, ak,h) −

∑K
k=1 V

πk
1 (sk,1)| ≤

O(H
√
T log(1/δ)) with probability at least 1− δ. This completes the proof of the theorem.

D CONCENTRATION RESULTS

Corollary D.1. For a given k, h, s, a ∈ [K]× [H]× S ×A (let n = Nk,h(s, a)), with probability
1− δ, it holds,

|Q̃k,h(s, a)− Q̂k,h(s, a)| ≤
√

2σ(Nk,h(sk,h, ak,h))2 log(1/δ). (31)

Proof. The result directly follows form Lemma E.6.

Corollary D.2. For some given k, h, s, a ∈ [K]× [H]×S ×A, the following holds with probability
at least 1− δ (with n = Nk,h(s, a)),

|
n∑

i=1

αi
n

(
rki,h −R(s, a) + V ∗

h+1(ski,h+1)− Ps,aV
∗
h+1

)
| ≤ 4

√
H3 log(1/δ)

n+ 1
.

Proof. Let ki denote the index of the episode when (s, a) was visited for the ith time at step h. Set
xi = αi

n(rki,h−Rh(s, a)+V (si+1)−Psi,ai ·V ) and consider filtration Fi as the σ−field generated
by all random variables in the history setHki,h. rki,h−Rh(s, a)+V (si+1)−Psi,ai · (V ) ≤ H +1.
Using the definition of the learning rate (Lemma E.5 (b)), we have

∑n
i x

2
i ≤ H(H + 1)2/n.

We apply Azuma-Hoeffding inequality (see Lemma E.3) combined with a union bound over all
(s, a, h) ∈ S × A × [H] and all possible values of n ≤ K to get the following with probability at
least 1− δ,

|
n∑

i=1

xi| ≤ 2

√
2H3 log(1/δ)

n
.

We complete the proof using the observation 1
n+1 ≥

1
2n , n ≥ 1.

Lemma D.1. with probability at least 1− δ, the following holds

K∑
k=1

H∑
h=1

Psk,h,ak,h
· (V ∗

h+1 − V πk

h+1)− (V ∗
h+1(sk,h+1)− V πk

h+1(sk,h+1)) ≤ H2
√
2T log(1/δ)

Proof. For xk,h = Psk,h,ak,h
· (V ∗

h+1 − V πk

h+1) − (V ∗
h+1(sk,h+1) − V πk

h+1(sk,h+1)) and filtration
set Hk,h where k is the episode index, {xk,h,Hk,h} forms a martingale difference sequence with
|xk,h| ≤ H . We complete the proof using Lemma E.3 and a union bound.

Lemma D.2. Let Dk,h be the distribution of actions at time step k, h conditioned on the history at
the start of step h of the kth episode, then with probability at least 1− δ, for some h

K∑
k=1

Ea∼Dk,h

[
1√

nk,h(sk,h, a) + 1

]
− 1√

nk,h(sk,h, ak,h) + 1
≤ O

(√
SA log(K) log(1/δ)

)
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Proof. For brevity of exposition, let E[Zk] ← Ea∼Dk,h

[
1√

nk,h(sk,h,a)+1

]
, Zk ←

1√
nk,h(sk,h,ak,h)+1

, and Fk ← Hk,h. Consider,

K∑
k=1

(E[Zk]− Zk)
2 ≤ (E[Zk])

2 + Z2
k

(By Jensen’s inequality for f(x) = x2)

≤
K∑

k=1

Z2
k +

K∑
k=1

E[Z2
k ]

(by linearity of expectation)

=

K∑
k=1

Z2
k + E

 K∑
k=1

Z2
k


≤

∑
s,a

K∑
j=1

1

j + 1
+ E

∑
s,a

K∑
j=1

1

j + 1


≤ 2SA log(K).

To bound
∑K

k=1(E[Zk] − Zk), we apply Bernstein inequality for martingale, Lemma E.4, with
K = 1, d = 2SA log(K) to get the required result.

Lemma D.3.
K∑

k=1

1√
Nk,h(sk,h, ak,h) + 1

≤ O
(√

SAK
)

Proof.

K∑
k=1

1√
Nk,h(sk,h, ak,h) + 1

≤
K∑

k=1

√
2√

Nk,h(sk,h, ak,h)

≤ O(1)
∑
s,a

NK,h(s,a)∑
k=1

√
1

k

≤ O
(√

SAK
)
.

Corollary D.3. The following holds,

H∑
h=1

K∑
k=1

√
4σ(Nk,h(sk,h, ak,h))2η ≤ O

(√
H4SATη

)
.

Proof. From Lemma D.3 and (10), we get the result.

Corollary D.4. Let Dk,h be the distribution of actions at time step k, h conditioned on the history at
the start of step h of the kth episode, then with probability at least 1− δ

K∑
k=1

4

p2
Ea∼Dk,h

[√
σ(Nk,h(sk,h, a))2 log(JKH/δ)

]
+
√
2σ(Nk,h(sk,h, ak,h))2 log(JKH/δ)

≤ O
(√

H2SATχ
)
,

χ = log(JSAT/δ).
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Proof. Using Lemma D.2, we have with probability 1− δ,
K∑

k=1

Ea∼Dk,h

[
1√

nk,h(sk,h, a) + 1

]
− 1√

nk,h(sk,h, ak,h) + 1
≤ O

(√
SA log(K) log(1/δ)

)
From Lemma D.3 and (10),

K∑
k=1

4

p2

√
σ(Nk,h(sk,h, a))2 log(JKH/δ) ≤ O

(√
H2SATχ

)
,

which dominates the remaining terms.

E TECHNICAL PRELIMINARIES

Lemma E.1 (High confidence from constant probability). For some fixed scalars X∗, X , and
p, δ ∈ (0, 1), suppose that X̃ ∼ D satisfies X̃ ≥ X∗ with probability at least p, X̃ ≥ X with
probability at least 1− δ, and E[X̃] ≥ X . Then, with probability at least 1− 2δ,

X̃ ≥ X∗ − 1
p

(
ED[X̃]−X

)
. (32)

Proof. For the purpose of this proof, a symmetric sample X̃alt also drawn from distribution D but
independent of X̃ . Let Oalt denotes the event when X̃alt ≥ X∗ (occurring with probability p).

Consider (using notation E[·]← ED[·])

X∗ − X̃ ≤ E
[
X̃alt | Oalt

]
− X̃ ≤ E

[
X̃alt −X | Oalt

]
, (33)

where the last inequality holds with probability 1− δ by definition of X . The law of total expectation
suggests,

E
[
X̃alt −X

]
= Pr(Oalt)E

[
X̃alt −X | Oalt

]
+ Pr(Oalt

)E
[
X̃alt −X | Oalt

]
,

where Oalt
is the compliment of the event Oalt. Now, E

[
X̃alt | Oalt

]
= E

[
X̃alt | X̃alt < X∗

]
≤

E[X̃alt] = E[X̃] ≥ X , where the last inequality is by the assumption made in the lemma. Therefore,
the second term in the above is non-negative, and we have

E
[
X̃alt −X

]
≥ Pr(Oalt)E

[
X̃alt −X | Oalt

]
. (34)

Using 1
Pr(Oalt) ≤

1
p , E[X̃alt] = E[X̃], and a union bound to combine (33) and (34), we complete the

proof.

Lemma E.2. Let q(1), q(2), . . . q(M) be M i.i.d. samples such that for any i, q(i) ≥ V ∗ with
probability p. Then with probability at least 1− δ,

max
i∈M

q(i) ≥ V ∗,

when M is at least log(1/δ)
log(1/(1−p)) .

Proof. For a given index i, the probability that q(i) < V ∗ is at most 1−p. Therefore, by independence
of samples, the probability of maxi∈J q(i) < V ∗ is at most (1−p)M . Therefore, the lemma statement
follows by setting M = log(1/δ)

log(1/(1−p)) .

Lemma E.3 (Corollary 2.1 in Wainwright (2019)). Let ({Ai,Fi}∞i=1) be a martingale difference
sequence, and suppose |Ai| ≤ di almost surely for all i ≥ 1. Then for all η ≥ 0,

P

| n∑
i=1

Ai| ≥ η

 ≤ 2 exp

(
−2η2∑n
i=1 d

2
i

)
. (35)
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In other words, with probability at most δ, we have,

|
n∑

i=1

Ai| ≥

√
ln
(
2/δ
)∑n

i=1 d
2
i

2
(36)

Lemma E.4 (Lemma A8 in Cesa-Bianchi & Lugosi (2006)). Let ({Ai,Fi}∞i=1) be a martingale
difference sequence, and suppose |Ai| ≤ K almost surely for all i ≥ 1. Let Si =

∑i
j=1 Ai be the

associated martingale. Denote the sum of the conditional variances by

v2n =

n∑
t=1

E[A2
i | F1−1].

Then for all constants t, d > 0,

P
[
max

i
Si ≥ t& , v2n ≤ d

]
≤ exp

(
− t2

2(d+Kt/3)

)
.

Lemma E.5 (Lemma 4.1 in Jin et al. (2018)). The following holds:

(a) 1√
n
≤
∑n

i=1
αi

n√
i
≤ 2√

n
.

(b) maxi∈n α
i
n ≤ 2C

t and
∑n

i=1(α
i
n)

2 ≤ 2C
t .

(c)
∑∞

n=i α
i
n ≤ 1 + 1/C.

Lemma E.6 (Gaussian tail bound). For a Gaussian random variable X ∼ N (µ, σ2), it follows with
probability at least 1− δ,

Pr
(
|X − µ| ≤ σ

√
2 log(1/δ)

)
Proof. The proof follows by instantiating Chernoff-style bounds for the given Gaussian random
variable.

F SHARPER REGRET USING BERNSTEIN CONCENTRATION

In this section, we provide a sketch of the extension of Algorithm 1 to a randomized Q-learning
procedure that uses Bernstein concentration based variance. This extension closely follows that in Jin
et al. (2018) using some of the techniques developed in the proof of Theorem 2.

We want to account for the variance in the transitions. To this end, we define some additional
notations. The variance in transition for any (s, a) is defined using the variance operator Vh as below,

[VhVh+1]s,a := Es′∼Ph,s,a

[
Vh+1(s

′)− [Ph,s,aVh+1]s,a
]2

. (37)

The empirical variance for any (s, a) for any n← Nk,h(s, a) is given by,

V̂nV h+1(s, a) =
1

n

n∑
i=1

V ki,h+1(ski,h+1)−
1

n

n∑
i=1

V ki,h+1(ski,h+1)

2

(38)

√
vb(n, h, s, a) := min

{
c(

√
H

n+ 1
· (V̂nV h+1(s, a) +H)η +

√
H7SAη · τ
n+ 1

),

√
64

H3

n+ 1

}
. (39)

Theorem F.1. The cumulative regret of Algorithm 3 in K episode satisfies with probability at least
1− δ, ∑

k=1

V ∗
1 (sk,1)−

K∑
k=1

H∑
h=1

Rh(sk,h, ak,h) ≤ O
(√

H3SATηχ
)
,

where χ = log(JSAT/δ) and η = log(SAKH/δ).
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Algorithm 3 Randomized Q-learning
1: Input: Parameters: δ ∈ (0, 1). Set J := J(δ).
2: Initialize: Q̂H+1(s, a) = V̂H+1(s) = 0, ∀(s, a) ∈ S × A, and Q̂h(s, a) = V̂h(s) =

H &Nh(s, a) = 0, N tar
h (s) = 0, µh(s, a) = γh(s, a) = 0 ∀(s, a, h) ∈ S ×A× [H].

3: for episodes k = 1, 2, . . . do
4: Observe s1.
5: for step h = 1, 2, . . . ,H do

6: /* Play arg max action of the sample of Qh */
7: Sample ∀a ∈ A Q̃h(sh, a) ∼ N (Q̂h(sh, a), vb(Nh(sh, a), h, sh, a)).
8: Play ah = argmaxaA

Q̃h(sh, a).

9: Use observations to construct one step lookahead target z */
10: Observe rh and sh+1.
11: z ← ConstructTarget(rh, sh+1, Q̂h+1, Nh+1).

12: /*Use the observed reward and next state to update Qh distribution */
13: n := Nh(sh, ah)← Nh(sh, ah) + 1.
14: Q̂h(sh, ah)← (1− αn)Q̂h(sh, ah) + αnz.
15: µh(sh, ah)← µh(sh, ah) + (z − rh).
16: γh(sh, ah)← γh(sh, ah) + (z − rh)

2.
17: Calculate bh+1(sh, ah)← (γh(sh, ah)− µh(sh, ah)

2)/n.

18:
√
vb(n, h, sh, ah)← min{c(

√
H

n+1 · (bh+1(sh, ah) +H)η +

√
H7SAηχ

n+1 ),
√
64 H3

n+1}.
19: end for
20: end for

F.1 PROOF OF THEOREM F.1

The main mathematical reasoning closely follows that in the proof of Theorem 2 of Jin et al. (2018)
with specific differences arising due to constant probability optimism and the definition of V k,h. For
any k, h, s, a with n = Nk,h(s, a), we have vb(n, h, s, a) ≤ 64 H3

n+1 . Therefore, Corollary C.2 and
Lemma 5 apply as they are. Hence, we get with probability at least 1− δ for all h

K∑
k=1

rk,h :=

K∑
k=1

V ∗
h (sk,h)− V πk

h (sk,h) ≤ O
(√

H4SATχ
)
, (40)

where χ = log(JSAT/δ). Further, following the steps and notations of the proof of Lemma 5
(see (28), we have with probability at least 1− δ,

K∑
k=1

Q̃k,1(sk,1, ak,1)− V πk
1 (sk,1) ≤ eSAH2 + e

H∑
h=1

K∑
k=1

(√
4vb(n, h, sk,h, ak,h)η +mk,h

)

+
e

p2

H∑
h=1

K∑
k=1

F (k, h+ 1, δ/KH)). (41)

Due to our observation that vb(n, h, sk,h, ak,h) ≤ 64 H3

n+1 , Lemma D.2 and Corollary D.4 hold,
therefore we get from (41),
K∑

k=1

Q̃k,1(sk,1, ak,1)− V πk
1 (sk,1) ≤ eSAH2 +

H∑
h=1

K∑
k=1

O

(√
vb(n, h, sk,h, ak,h)χ+mk,h

)
,

where χ = log(JSAT/δ). We wish to bound
K∑

k=1

H∑
h=1

vb(n, h, sk,h, ak,h) (42)

≤
K∑

k=1

H∑
h=1

c(

√
H

n+ 1
· (V̂nV h+1(sk,h, ak,h) +H)η +

√
H7SAη · τ
n+ 1

), (43)
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Consider,

K∑
k=1

H∑
h=1

√
H7SAηχ

Nk,h(sk,h, ak,h) + 1
≤ O(

√
H9S3A3χ5). (44)

Further,

K∑
k=1

H∑
h=1

√
H

n+ 1
· (V̂nV k,h+1(sk,h, ak,h) +H)

≤
K∑

k=1

H∑
h=1

√
H

n+ 1
· V̂nV k,h+1(sk,h, ak,h) +

K∑
k=1

H∑
h=1

√
H2

n+ 1

≤

√√√√ K∑
k=1

H∑
h=1

V̂nV k,h+1(sk,h, ak,h)H +
√
H3SATη, (45)

where the last inequality follows from Lemma D.3. Since we have Lemma F.5, we can follow the
steps in (C.16) of Jin et al. (2018) to get

K∑
k=1

H∑
h=1

V̂nV k,h+1(sk,h, ak,h) ≤ O(HT ).

This gives us

K∑
k=1

H∑
h=1

vb(n, h, sk,h, ak,h) ≤ O(
√
H3SATη +

√
H9S3A3χ5)

Thus we have,

K∑
k=1

Q̃k,1(sk,1, ak,1)− V πk
1 (sk,1) ≤ O(

√
H3SATηχ+

√
H9S3A3χ5)

Finally, combining with Corollary C.2, we complete the proof.

F.2 SUPPORTING LEMMA

Corollary F.1 (Corollary of Lemma 4). We have for all s, a, h, k ∈ S × A × [H] × [K] with
probability at least 1− δ,

Q̂k,h(s, a)−Q∗
h(s, a) ≤ O

(√
H3η

n+ 1

)
+ α0

nH +

n∑
i=1

αi
n

(
V ki,h+1(ski,h+1)− V ∗

h+1(ski,h+1)
)
, (46)

where n = Nk,h(s, a), and η = log(SAKH/δ).

Proof. The proof follows from using (39) in place of σ(Nk,h(s, a))
2 in Lemma 4.

Lemma F.1 (Based on Lemma C.7 in Jin et al. (2018)). Suppose (46) in Corollary F.1 holds. For
any h ∈ [H], let βk,h := V k,h(sk,h)− V ∗

h (sk,h) and let w = (w1, . . . , wk) be non-negative weight
vectors, then we have with probability at least 1− δ,

K∑
k=1

wkβk,h ≤ O(SA||w||∞
√
H7χ2 +

√
SA||w||1||w||∞H5χ),

where χ = log(JSAT/δ).
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Proof. For any fixed k, h, let n← Nk,h(sk,h, ak,h) and ϕk,h = Q̃k,h(sk,h, ak,h)− V ∗
h (sk,h). Then

we have

βk,h = V k,h(sk,h)− V ∗
h (sk,h)

(from Lemma C.3 with probability at least 1− 2δ)

≤ ϕk,h +
1

p2
F (k, h, δ)

(from Lemma C.5 with probability 1− δ)

≤ Q̂k,h(sk,h, ak,h)−Q∗
h(sk,h, ak,h) +

√
2v(n)η +

1

p2
F (k, h, δ)

(from Corollary F.1 with probability 1− δ)

≤ α0
nH +O

(√
H3η

n+ 1

)
+

n∑
i=1

αi
nβki,h+1 +

1

p2
F (k, h, δ) (47)

We now compute the summation
∑K

k=1 wkβk,h. We follow the proof of Lemma C.7 in Jin et al.
(2018), with the only difference being the term

∑K
k=1

wk

p2
F (k, h, δ), which we bound below. From

the proof of Corollary D.4.

K∑
k=1

wk

p2
F (k, h, δ) ≤ ||w||∞

p2
O(SA

√
H5 log4(JSAK/δ)) +

K∑
k=1

2wk

p2

√H3χ log(KH/δ)

Nk,h + 1


≤ O(SA||w||∞

√
H5χ4 +

√
SA||w||1||w||∞H3χ),

where χ = log(JSAT/δ). Other terms are evaluated in the same way as the proof of Lemma C.7
in Jin et al. (2018).

Lemma F.2 (Based on Lemma C.3 of Jin et al. (2018)). For any episode k ∈ [K] with probability
1− δ/K, if Corollary F.1 holds for all k′ < k, the for all s, a, h ∈ S ×A× [H]:∣∣∣[VhVh+1]s,a − V̂nV h+1(s, a)

∣∣∣ ≤ O

(
SA
√
H9χ2

n
+

√
H7SAχ2

n

)
,

where n = Nk,h(sk,h, ak,h), χ = log(JSAT/δ).

Proof. The proof is almost identical to that of Lemma C.3 of Jin et al. (2018) except we Lemma F.1
instead of Lemma C.7 of Jin et al. (2018).

Lemma F.3. (Bernstein concentration) For some given k, h, s, a ∈ [K]× [H]×S×A, the following
holds with probability at least 1− δ (with n = Nk,h(s, a)),

|
n∑

i=1

αi
n

(
rki,h −R(s, a) + V ∗

h+1(ski,h+1)− Ps,aV
∗
h+1

)
| ≤

√
vb(n, h, s, a),

where

vb(n, h, s, a) := min

{
c(

√
H

n+ 1
· (V̂nV h+1(s, a) +H)η +

√
H7SAη · τ
n+ 1

), 64
H3

n+ 1

}
.

Proof. Let ki denote the index of the episode when (s, a) was visited for the ith time at step h. Set
xi = αi

n(rki,h−Rh(s, a)), yi = αi
n(V (ski+1

)−Psi,ai
·V ) and consider filtration Fi as the σ−field

generated by all random variables in the history setHki,h. We apply Azuma-Hoeffding (Lemma E.3)
to calculate |

∑n
i=1 xi| and Azuma-Bernstein for |

∑n
i=1 yi|. Consider with probability 1− δ,∣∣∣∣∣∣

n∑
i=1

αi
n(V (ski+1

)− Psi,ai
· V )

∣∣∣∣∣∣ ≤ O(1) ·

 n∑
i=1

√
(αi

n)
2[VhV ∗

h+1]s,aη +
H2η

n


≤ O(1) ·

 n∑
i=1

√
H

n
[VhV ∗

h+1]s,aη +
H2η

n

 .

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Using Lemma F.2 and a suitable union bound, we have with probability 1− δ,∣∣∣∣∣∣
n∑

i=1

αi
n(V (ski+1

)− Psi,ai
· V )

∣∣∣∣∣∣ ≤ O(1) ·

 n∑
i=1

√
H

n+ 1
(V̂nV h+1(s, a) +H)η +

√
H7SAη · χ
n+ 1


≤

√
vb(n, h, s, a).

where the last term dominates the concentration of |
∑n

i=1 xi|.

Lemma F.4 (Based on Lemma C.1). The samples from the posterior distributions and the mean of
the posterior distributions as defined in Algorithm 3 satisfy the following properties: for any episode
k ∈ [K] and index h ∈ [H],

(a) (Posterior distribution mean) For any given s, a, with probability at least 1− 2(k−1)δ
KH − δ

KH ,

Q̂k,h(s, a) ≥ Q∗
h(s, a)−

√
vb(n, h, s, a). (48)

(b) (Posterior distribution sample) For any given s, a, with probability at least p1 (p1 = Φ(−1)),

Q̃k,h(s, a) ≥ Q∗
h(s, a). (49)

(c) (In Algorithm 2) With probability at least 1− 2kδ
KH ,

V k,h(sk,h) ≥ V ∗
h (sk,h). (50)

Proof. The proof is identical to that of Lemma C.1 except that we use Lemma F.3 instead of
Corollary D.2.

Lemma F.5 (Based on Lemma C.6 of Jin et al. (2018)). With probability at least 1− 4δ, we have the
following for all k, h ∈ [K]× [H],

V̂nV k,h(sk,h, ak,h)− VhV
πk

h+1(sk,h, ak,h) ≤ 2HPsk,h,ak,h
· (V ∗

h+1 − V πk

h+1)

+O

(
SA
√
H9χ4

n
+

√
H7SAχ2

n

)
,

where n = Nk,h(sk,h, ak,h) and χ = log(JSAT/δ).

Proof. Consider,

V̂nV k,h(sk,h, ak,h)− VhV
πk

h+1(sk,h, ak,h) ≤
∣∣∣V̂nV k,h(sk,h, ak,h)− VhV

∗
h+1(sk,h, ak,h)

∣∣∣
+
∣∣∣VnV

∗
h+1(sk,h, ak,h)− VhV

πk

h+1(sk,h, ak,h)
∣∣∣ ,

where for the first term we apply Lemma F.2 (which holds when Corollary F.1 and Lemma F.1 hold)
and for the second term we have from the definition of variance,∣∣∣VnV

∗
h+1(sk,h, ak,h)− VhV

πk

h+1(sk,h, ak,h)
∣∣∣ ≤ 2HPsk,h,ak,h

· (V ∗
h+1 − V πk

h+1).
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