

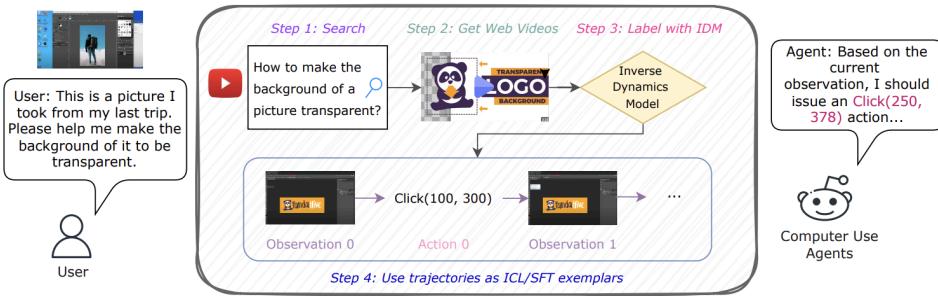
# 000 WATCH AND LEARN: LEARNING TO USE COMPUTERS 001 FROM ONLINE VIDEOS 002

003 **Anonymous authors**

004 Paper under double-blind review

## 005 ABSTRACT

006 Computer use agents (CUAs) need to plan task workflows grounded in diverse,  
007 ever-changing applications and environments, but learning is hindered by the  
008 scarcity of large-scale, high-quality training data in the target application. Existing  
009 datasets are domain-specific, static, and costly to annotate, while current synthetic  
010 data generation methods often yield simplistic or misaligned task demonstrations.  
011 To address these limitations, we introduce *Watch & Learn* (W&L), a framework  
012 that converts human demonstration videos readily available on the Internet into  
013 executable UI trajectories at scale. Instead of directly generating trajectories or  
014 relying on ad hoc reasoning heuristics, we cast the problem as an inverse dynamics  
015 objective: predicting the user’s action from consecutive screen states. This  
016 formulation reduces manual engineering, is easier to learn, and generalizes more  
017 robustly across applications. Concretely, we develop an inverse dynamics labeling  
018 pipeline with task-aware video retrieval, generate over 53k high-quality trajectories  
019 from raw web videos, and demonstrate that these trajectories improve CUAs  
020 both as in-context demonstrations and as supervised training data. On the chal-  
021 lenging OSWorld benchmark, UI trajectories extracted with W&L consistently  
022 enhance both general-purpose and state-of-the-art frameworks in-context, and de-  
023 liver stronger gains for open-source models under supervised training. These re-  
024 sults highlight web-scale human demonstration videos as a practical and scalable  
025 foundation for advancing CUAs towards real-world deployment.



042 Figure 1: W&L converts web-scale human demonstration videos into executable UI trajectories,  
043 providing scalable supervision and in-context exemplars for computer use agents.

## 044 1 INTRODUCTION

045 Computer use agents (CUAs) [Zheng et al. (2024a); Deng et al. (2023); Qin et al. (2025); Gou et al.  
046 (2025); OpenAI (2025b)] hold the promise of transforming how humans interact with software and  
047 the web, from everyday productivity tasks to enterprise-scale automation. To be effective, CUAs  
048 must both *plan* multi-step task workflows that incorporate domain knowledge, and *ground* these  
049 plans into concrete UI actions within diverse and ever-changing applications. Progress toward these  
050 capabilities hinges on access to high-quality task demonstrations, yet collecting annotated trajec-  
051 tories at scale is prohibitively expensive.

054 Meanwhile, the web is rich in human demonstration videos (e.g., YouTube tutorials, screencasts,  
 055 etc.), which naturally encode complex workflows across diverse applications. Unlocking this re-  
 056 source could provide CUAs with scalable supervision and rich priors for expert-level planning.  
 057 However, existing synthetic data generation approaches have fallen short of realizing this vision.

058 Prior efforts fall into three main categories: *Offline synthesis* attempts to recover trajectories from  
 059 videos using pipelines that combine multimodal large language models (MLLMs) with UI element  
 060 detectors and transition parsers. Despite substantial engineering, systems such as MONDAY (Jang  
 061 et al., 2025b) and TongUI (Zhang et al., 2025) achieve only modest action labeling accuracies  
 062 ( $\sim 70\%$  for MONDAY), reflecting the limitations of multi-stage heuristics. *Online synthesis* gen-  
 063 erates trajectories through random exploration in real-world environments and later retrofits them  
 064 with pertinent task instructions (Murty et al., 2024; Sun et al., 2025). While scalable in principle,  
 065 this approach produces low-complexity demonstrations that are less aligned with human goals and  
 066 can be costly as they require online exploration. *Hybrid approaches*, such as Explorer (Pahuja et al.,  
 067 2025), generate task proposals and then execute and refine them online, but still rely on MLLMs for  
 068 action grounding—thereby sharing similar limitations to offline synthesis methods.

069 Overall, these approaches either rely on brittle heuristics, are costly as they rely on explorations in  
 070 real environments, or generate low-complexity demonstrations misaligned with human intent. To  
 071 address these limitations, this work introduces **Watch & Learn (W&L)**, a framework that converts  
 072 human demonstration videos readily available online into executable UI trajectories at scale (Figure 1).  
 073 Instead of directly generating trajectories or depending on complex multi-stage pipelines, we  
 074 frame the problem as an *inverse dynamics* objective: given two consecutive observations ( $O_t, O_{t+1}$ ),  
 075 predict the intermediate action  $a_t$  that produced the transition. This formulation is easier to learn,  
 076 avoids hand-crafted heuristics, and generalizes robustly across applications. In robotics, inverse  
 077 dynamics modeling is a well-established method for recovering actions from state transitions (e.g.,  
 078 VPT (Baker et al., 2022), DreamGen (Jang et al., 2025a)); here, we demonstrate that the same prin-  
 079 ciple can be adapted effectively for CUAs. From our experiments, this simple formulation yields a  
 080 highly accurate model of user behavior, sidestepping the complexity of conventional pipelines.

081 To scale this approach to the web, we construct a large state-transition corpus of 500k state transition  
 082 data from real-world web interactions. Each example consists of an observation at time  $t$ , an action,  
 083 and the resulting observation at  $t + 1$ . Training an inverse dynamics model (IDM) on this corpus  
 084 allows us to directly map visual transitions into structured actions. We further design a retrieval  
 085 framework that retrieves YouTube videos relevant to target tasks (for in-context learning) or gen-  
 086 eral video tutorials (for supervised fine-tuning). Applying the IDM to these videos transforms raw  
 087 demonstrations into high-quality trajectories, covering a broad spectrum of real-world workflows.

088 Beyond data collection, W&L uncovers a different role for CUAs. In addition to effectively using  
 089 UI trajectories in training, we demonstrate that the extracted trajectories can also serve as *in-context*  
 090 *exemplars* during inference, enabling CUAs to leverage planning and grounding priors enriched with  
 091 domain knowledge on the fly. This dual role (training and in-context guidance) enables flexible inte-  
 092 gration with both open-source models and general-purpose agents. To illustrate the effectiveness of  
 093 this approach, we evaluate W&L on OSWorld (Xie et al., 2024), a challenging benchmark requiring  
 094 both domain familiarity and strong planning and grounding capabilities. On OSWorld, trajectories  
 095 extracted from web-scale videos deliver consistent gains: in-context use improves general-purpose  
 096 models and state-of-the-art agentic frameworks by up to 3 percentage points, while training with  
 097 them yields even larger improvements for open-weight models (up to 11 percentage points). Im-  
 098 portantly, these benefits are achieved without any manual annotation, demonstrating that web-scale  
 099 human workflows can serve as a practical and scalable foundation for advancing CUAs towards  
 100 real-world deployment.

100 In summary, our contributions are three-fold: (i) We develop a scalable inverse dynamics labeling  
 101 pipeline, coupled with a task-aware video retrieval framework, that transforms raw web videos into  
 102 high-quality trajectories. Overall, without any manual effort, we generate 53,125 trajectories with  
 103 high-accuracy action labels. (ii) We show that these video-derived trajectories can serve as *in-context*  
 104 *demonstrations* at inference time, improving general-purpose CUAs without retraining. (iii) We also  
 105 demonstrate that these trajectories provide effective *training data*, offering a scalable supervision  
 106 signal that substantially improves open-source CUAs.

108 

## 2 RELATED WORK

111 

### 2.1 DATA SYNTHESIS FOR COMPUTER USE AGENTS

114 While human-curated UI control datasets have been collected (Deng et al., 2023; Lü et al., 2024;  
 115 Rawles et al., 2023; Li et al., 2024), their limited size and diversity remains a key bottleneck for  
 116 CUAs. Recent work has focused on synthesizing data from exploration, tutorials, or self-play.

117 Exploration-based approaches such as BAGEL (Murty et al., 2024), NNetNav (Murty et al., 2025),  
 118 Explorer (Pahuja et al., 2025), and OS-Genesis (Sun et al., 2025) generate training data by letting  
 119 agents explore websites and retroactively labeling their interactions with task instructions. This  
 120 paradigm yields scalable but often noisy data, with alignment and accuracy depending heavily  
 121 on heuristics or MLLM labeling. Other methods leverage online resources: Synatra (Ou et al.,  
 122 2024) and AgentTrek (Xu et al., 2025) transform textual tutorials into executable trajectories, while  
 123 TongUI (Zhang et al., 2025) aggregates a massive corpus of multimodal tutorials (text and screen-  
 124 cast videos) into GUI interaction data. These approaches demonstrate that web-scale instructional  
 125 content can provide diverse coverage across applications, but they rely primarily on off-the-shelf  
 126 MLLMs to label trajectories, which often introduces brittleness or misalignment.

127 Another line of work integrates synthesis into the training loop itself. OpenWebVoyager (He et al.,  
 128 2025) improves through online exploration and feedback; WebRL (Qi et al., 2025) generates new  
 129 instructions from failed tasks to form a self-evolving curriculum; SCA (Qi et al., 2025) has agents  
 130 self-generate and verify new tasks in a code-as-task format; and ZeroGUI (Yang et al., 2025) pro-  
 131 poses a fully automated online learning framework for GUI agents, where VLMs generate tasks  
 132 and rewards that drive reinforcement learning without manual annotations. These strategies enable  
 133 continual improvement without additional human data, but often produce simplistic or narrow task  
 134 distributions. Moreover, the process can be expensive as it involves multiple iterations of data gen-  
 135 eration and training.

136 Our framework, *Watch & Learn*, also leverages web videos like TongUI (Zhang et al., 2025), but dif-  
 137 fers in its technical strategy. Instead of relying on MLLMs to label tutorial steps, we train an inverse  
 138 dynamics model (IDM) that can accurately infer user actions from consecutive screen states. This  
 139 produces highly reliable UI trajectories that not only provide stronger supervised training signals  
 140 but also serve as more effective in-context exemplars at inference time. By combining web-scale  
 141 video mining with accurate action labeling, our approach complements prior work and highlights  
 142 the value of extracting accurate cues from video-based supervision for CUAs.

144 

### 2.2 IN-CONTEXT LEARNING FOR AGENTS

147 In-Context Learning (ICL) has emerged as a pivotal test-time scaling paradigm for large language  
 148 models, enabling them to adapt to new tasks without explicit parameter updates (Dong et al., 2022).  
 149 This approach is particularly useful for enhancing LLM-powered agentic systems (Su et al., 2025).

150 Despite being generally helpful, the effectiveness of ICL is heavily influenced by the scale of the  
 151 LLMs and the size of their context window, particularly for long-horizon, multi-step tasks. While in-  
 152 cluding more ICL examples usually brings performance gains (Agarwal et al., 2024), this method in-  
 153 curs significant computational overhead and latency with long demonstration trajectories. Therefore,  
 154 efficiently selecting demonstration sequences (Gupta et al., 2025) or abstracting them in high-level  
 155 workflows (Wang et al., 2024; Zheng et al., 2024b) has become a promising research direction. For  
 156 computer-use agents, where tasks are often long and complex, one major challenge is the model’s  
 157 inability to plan effectively. Several pieces of work have leveraged ICL to address this specific  
 158 problem (Holt et al., 2025; Zhao et al., 2025).

159 Another important direction is to develop data-centric frameworks to adapt LLM agents to any  
 160 given environments without human annotations (Su et al., 2025). However, such methods require  
 161 generating large amounts of synthetic data, and the potential for using publicly available web-scale  
 162 video data as ICL examples still remains underexplored.

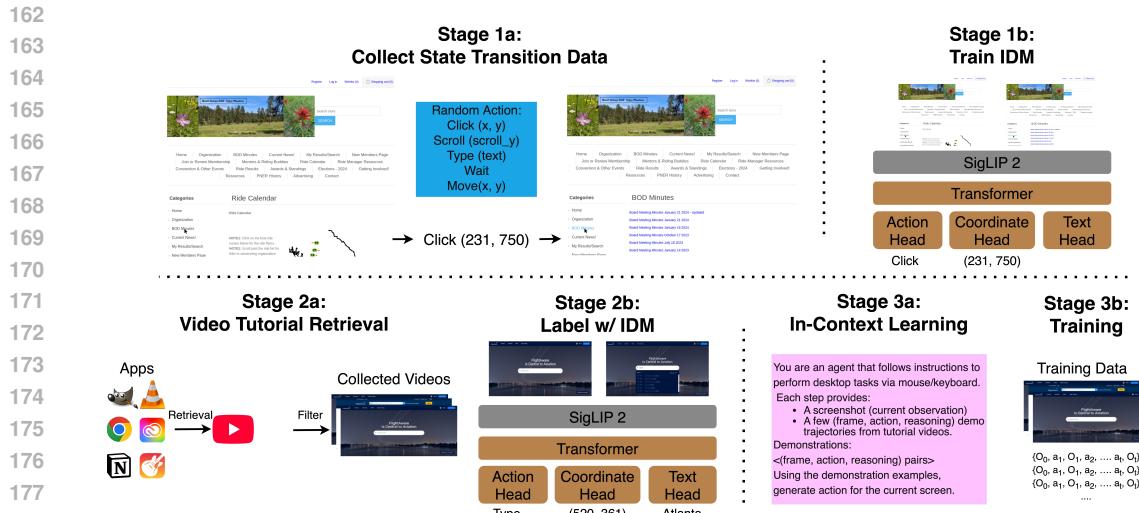


Figure 2: **Method overview.** Our framework converts web-scale human demonstration videos into executable trajectories for CUAs. We first collect a large-scale state-transition dataset of screen observations and user actions, and train an inverse dynamics model (IDM) to recover actions from consecutive screenshots. This IDM is then applied to tutorial videos to extract step-by-step trajectories. A retrieval module selects task-relevant or general demonstrations, which are used in two ways: (i) as in-context exemplars that provide application-specific knowledge at inference time, and (ii) as supervised training data to improve open-source CUAs.

### 3 METHOD

Computer use agents must operate the user interface of many diverse and ever-changing applications where internal UI representations such as HTML or accessibility trees are often incomplete, inconsistent, or unavailable. To maximize generality and scalability, we focus on a *vision-only* setting: models observe raw screen pixels and output structured user actions. This mirrors how humans interact with computers, by visually perceiving the interface and deciding where to click or what to type, while avoiding brittle dependencies on application-specific APIs or noisy UI representations.

At a high level, our framework works in three stages (see Figure 2). First, we construct a large-scale state-transition corpus from diverse computer interaction data and use it to train an inverse dynamics model (IDM), enabling the system to recover the underlying actions from consecutive screen observations. Second, we apply this IDM to web-scale tutorial videos, paired with a retrieval component that identifies either task-relevant videos (for inference-time use) or general tutorials (for training). This process automatically produces executable UI trajectories without manual labeling. Finally, we leverage these trajectories in two complementary ways: as *in-context exemplars*, which provide CUAs with planning and grounding priors as well as application-specific knowledge at inference time; and as *supervised training data*, which can be used to fine-tune models and improve their general knowledge.

#### 3.1 INVERSE DYNAMICS MODEL

A key component of our framework is an IDM that predicts the user action given two consecutive screen observations. Training such a model requires large-scale state-transition data, which is scarce in existing datasets. To address this gap, we construct our own corpus of transitions by synthesizing interactions at scale, complemented by existing human-collected datasets.

**State-transition data collection.** To obtain large-scale supervision, we built an automated data generation pipeline that interacts with live web pages and records state transitions. Inspired by WebDreamer (Gu et al., 2025), we randomly select entry points from the March 2025 Common Crawl index and launch browsing sessions that perform sequences of actions such as clicking, typing

216 text, scrolling, and moving the cursor. The action policy is not uniform: we weight the sampling  
 217 toward common interactions (e.g., clicks) while still ensuring that less frequent actions are covered.  
 218 Through this procedure, we collected around 500k synthetic transitions. To complement these, we  
 219 also incorporate 132k human-annotated transitions from the Mind2Web dataset (Deng et al., 2023),  
 220 yielding a training corpus of more than 630k ( $O_t, a_t, O_{t+1}$ ) triples.

221 **Model architecture.** The IDM takes as input two consecutive observations ( $O_t, O_{t+1}$ ) and outputs  
 222 the action  $a_t$  that caused the transition. We adopt a vision-only architecture consisting of a SigLIP-2  
 223 vision encoder followed by four Transformer (Vaswani et al., 2017) layers. On top of this backbone,  
 224 we attach three specialized prediction heads:

- 226 • **Action classification head:** a categorical predictor over five supported primitives: click,  
 227 scroll, type, wait, and move.
- 228 • **Coordinate head:** for location-based actions (click, move, type), the model predicts nor-  
 229 malized ( $x, y$ ) coordinates discretized into integers from 0 to 1000. This converts coordi-  
 230 nate regression into a classification problem, which proved to be more stable in training.
- 231 • **Language head:** for text entry actions, the model generates the string input using a GPT-2  
 232 small decoder (Radford et al., 2019) attached to the Transformer backbone.

233 Scroll and wait actions require no additional arguments; the model simply predicts their occurrence.

234 **Training and evaluation.** The IDM is trained with a multi-task objective: cross-entropy for action  
 235 class prediction, cross-entropy for discretized coordinates, and language modeling loss for text gen-  
 236 eration. Training is performed end-to-end over the 630k transition corpus. We evaluate the IDM  
 237 on the held-out test split of Mind2Web (Deng et al., 2023), which provides human-annotated tra-  
 238 jectories across diverse websites. This benchmark allows us to measure both action classification  
 239 accuracy and argument prediction quality in a realistic setting. As reported in Section 4.2.2, our  
 240 IDM trained on state transition data achieves stronger action accuracy than off-the-shelf foundation  
 241 models, validating its effectiveness as the core labeling module in our framework.

### 243 3.2 DATA GENERATION FROM VIDEOS

244 Once the IDM is trained, we retrieve suitable tutorial videos and apply the IDM.

245 **Video retrieval.** We build a retrieval framework that searches and downloads tutorial videos  
 246 from large video platforms such as YouTube. The retrieval procedure differs depending on  
 247 whether the goal is inference-time support or large-scale training data collection. *Inference-  
 248 time retrieval.* Given a task description and the target application, we form a natural language  
 249 search query. To refine the query, we prompt Gemini 2.5 Flash (Gemini Team, 2025) with  
 250 both the task instruction and the initial screen, asking it to generate a more specific query.  
 251 We then use the YouTube Search API to retrieve the top 15 videos. For example, a task in-  
 252 struction "Can you increase the max volume of the video to the 200% of  
 253 the original volume in VLC?" becomes the search query "vlc increase max  
 254 volume". Each retrieved video is paired with its title, which we treat as the candidate task descrip-  
 255 tion. *Training-time retrieval.* To construct a broad training dataset, we curate a list of 69 applications  
 256 spanning productivity, programming, design, screen editing, audio production, system utilities, and  
 257 science/data domains. For each one, we prompt Gemini 2.5 Flash to generate plausible task queries  
 258 and use them to search on video platforms, downloading the corresponding tutorial videos.

259 **Filtering.** Not all retrieved videos are usable. We sample frames at 1 frame per second and automatically  
 260 filter out segments that are not screencasts (e.g., talking-head segments), are zoomed in/out,  
 261 or are blurred due to transitions. Gemini 2.5 Flash is used as a classifier to perform this filtering. For  
 262 inference-time retrieval, we retain only the top 3 videos that pass filtering to minimize noise. For  
 263 training data collection, we keep all videos that satisfy the filter.

264 **Trajectory labeling.** After filtering, we segment each video into a sequence of frames  $\{O_0, O_1, \dots\}$   
 265 and apply the IDM to every consecutive pair  $(O_t, O_{t+1})$ , predicting the intermediate action  $a_t$  and  
 266 assembling a trajectory  $\tau = (O_0, a_0, O_1, a_1, \dots, O_T, a_T, O_{T+1})$ . In this way, raw human demon-  
 267 stration videos are transformed into structured, executable trajectories without manual annotation.

268  
 269 <sup>1</sup><https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent>

270 For inference-time usage, these trajectories are aligned with the task description and used as exemplars; for training-time usage, they are aggregated into a large corpus for supervised fine-tuning.  
 271  
 272

273 **3.3 APPLICATIONS OF TRAJECTORIES**  
 274

275 The trajectories extracted from videos can be used in two complementary ways: as in-context exemplars that guide models at inference time, and as supervised data that improve models via fine-tuning.  
 276  
 277

278 **3.3.1 IN-CONTEXT LEARNING**  
 279

280 For in-context learning (ICL), we transform each trajectory into a demonstration that can be inserted  
 281 directly into a model’s context window. Each trajectory consists of *(observation, action)* pairs, but  
 282 simply showing raw frames and actions may not provide sufficient signal. To improve performance,  
 283 we prompt Gemini 2.5 Flash to generate natural language rationales for each action in the trajectory,  
 284 yielding demonstrations of the form *(observation, action, reasoning)*. We format a small set of such  
 285 demonstrations (typically 3–5) into the input prompt of a general-purpose agent model. At inference  
 286 time, the agent is conditioned on these exemplars when predicting the next action for a new task,  
 287 allowing it to draw on planning and grounding priors as well as application-specific knowledge  
 288 distilled from real demonstrations, without additional training.  
 289

290 **3.3.2 SUPERVISED FINE-TUNING**  
 291

292 For supervised fine-tuning (SFT), we aggregate the automatically labeled trajectories into a large-  
 293 scale training corpus. Each trajectory is represented as a sequence of *(state,action)* pairs and used to  
 294 optimize a multimodal large language model with a standard sequence modeling objective. We train  
 295 two distinct model families. First, we fine-tune UI-TARS-1.5 (Qin et al. [2025]), a strong, open source  
 296 vision-language-action model designed specifically for computer use. This setting tests whether our  
 297 trajectories can improve a model that already incorporates domain-specific priors. Second, we fine-  
 298 tune Qwen 2.5-VL (Bai et al. [2025]), a state-of-the-art open-weight multimodal LLM. This setting  
 299 evaluates whether our data can also benefit general-purpose multimodal models that are not tailored  
 300 to computer use. Overall, these experiments demonstrate our data’s value as a versatile supervision  
 301 signal, capable of enhancing both specialized CUAs and large, open-source MLLMs.  
 302

303 **4 EXPERIMENTS**  
 304

305 **4.1 SETUP**  
 306

307 **4.1.1 MODELS**  
 308

309 We evaluate three classes of models.  
 310

**General-purpose multimodal models.** Gemini 2.5 Flash (Gemini Team [2025]), OpenAI o3 (OpenAI [2025a]), and Claude 4 Sonnet (Anthropic [2025]) are tested in the in-context learning setting.  
 311

**Agentic framework.** We use Jedi (Xie et al. [2025]), a state-of-the-art vision-only agentic framework  
 312 for OSWorld. Jedi couples an MLLM planner (OpenAI o3), which outputs natural-language action  
 313 steps, with the Jedi-7B grounding model, which maps those steps to executable UI actions. We  
 314 report results both with and without our trajectories provided as in-context exemplars to the agent.  
 315

**Open-source models.** We train UI-TARS-1.5-7B (Qin et al. [2025]) and Qwen 2.5-VL 7B (Bai et al. [2025]) with supervised fine-tuning on our 53,125 video-derived trajectories. This dual evaluation  
 316 highlights that our data improve both specialized CUAs and general-purpose multimodal models.  
 317

318 **4.1.2 DATASETS**  
 319

320 Our experiments involve three categories of data.  
 321

**State-transition corpus.** To train the IDM, we collect approximately 500k transitions from au-  
 322 tonomous web interactions and add 132k human-annotated transitions from Mind2Web (Deng et al.  
 323 [2023]), resulting in over 630k  $(O_t, a_t, O_{t+1})$  triples.  
 324

324 **Video-derived trajectories.** Once trained, the IDM is applied to retrieved and filtered YouTube  
 325 tutorials, producing 53,125 high-quality trajectories across 69 applications spanning productivity,  
 326 programming, design, screen editing, audio production, system utilities, and scientific/data domains.  
 327 The category distribution of these trajectories is summarized in Table 1.

328 As a data labeling baseline, we use TongUI (Zhang et al.  
 329 2025), which generates action annotations by prompting the  
 330 UI-TARS-7B agent. Unlike our video-derived trajectories,  
 331 these labels are often noisy and inaccurate due to reliance on  
 332 an imperfect web agent, but they serve as a useful point of  
 333 comparison for evaluating label quality.

334 **Evaluation benchmark.** We use *OSWorld-Verified* (Xie  
 335 et al. 2024), the most up-to-date version of OSWorld, as our  
 336 primary benchmark. It evaluates agents in real desktop and  
 337 operating system environments across productivity, program-  
 338 ming, design, and system utilities. Tasks must be solved under  
 339 interactive execution with a 50-step limit, stressing agents’  
 340 ability to plan, ground instructions in dynamic states, and  
 341 apply domain knowledge across diverse applications. This  
 342 makes OSWorld-Verified a comprehensive testbed for both in-  
 343 context learning and supervised fine-tuning.

## 344 4.2 RESULTS AND ANALYSIS

345 Table 2 summarizes our main results on OSWorld across both in-context learning and supervised  
 346 fine-tuning. We observe consistent improvements across all model categories. For **general-purpose**  
 347 **multimodal models** (Gemini 2.5 Flash, OpenAI o3, Claude 4 Sonnet), adding our W&L exem-  
 348 plars improves performance by +1.6 to +3.0 points. This shows that trajectories distilled from web  
 349 tutorials provide useful domain-specific priors that even strong foundation models can leverage at  
 350 inference time. For the **Jedi agentic framework**, which couples the o3 planner with Jedi grounding,  
 351 W&L yields a +2.2 point gain. This demonstrates that our trajectories can complement structured  
 352 planning pipelines by enriching them with exemplars that support both planning and grounding. For  
 353 **open-source CUAs**, supervised fine-tuning on our 53k video-derived trajectories yields even larger  
 354 gains. UI-TARS-7B improves by +3.8 points, while Qwen 2.5-VL sees the largest improvement,  
 355 from 1.9 to 13.0 (+11.1). This larger jump is expected because Qwen is a general-purpose mul-  
 356 timodal model not originally trained for computer use, so it benefits disproportionately from our  
 357 dataset, which provides task-specific supervision that was previously missing. Overall, these results  
 358 highlight the value of our dataset as a scalable supervision signal for both specialized CUAs and  
 359 broader multimodal models.

### 360 4.2.1 HOW MUCH DO LABELED TRAJECTORIES HELP IN IN-CONTEXT LEARNING?

361 We next analyze the contribution of accurate video labeling to in-context learning (ICL). Our frame-  
 362 work provides structured action annotations and natural language reasoning for each step. To isolate  
 363 the effect of each, we compare three variants: (i) consecutive frames only, (ii) frames paired with  
 364 predicted actions, and (iii) frames with both actions and reasoning generated by Gemini 2.5 Flash.

365 Ablations on OSWorld (Table 3) show that adding action labels provides a substantial boost over  
 366 using frames alone, and further gains are achieved when natural language reasoning is included. This  
 367 pattern holds consistently across all tested models. Figure 3 provides a qualitative example, showing  
 368 how labeled trajectories impact the original agent’s behavior. The improvement demonstrates that  
 369 labeled trajectories do more than supply visual context; they encode procedural knowledge that helps  
 370 models improve both planning and grounding for complex workflows.

### 371 4.2.2 HOW DOES LABEL ACCURACY IMPACT PERFORMANCE?

372 Action label accuracy is central to training CUAs: noisy annotations not only fail to help but can  
 373 actively degrade performance. We first compare our dedicated IDM against Gemini 2.5 Flash and  
 374 the TongUI labeling pipeline (based on UI-TARS-7B) on the held-out Mind2Web test set (Table 4).

| Category         | # Apps    | # Videos      |
|------------------|-----------|---------------|
| Productivity     | 11        | 8,691         |
| Programming      | 12        | 12,829        |
| Design           | 9         | 7,948         |
| Screen Editing   | 8         | 7,808         |
| Audio Production | 8         | 5,206         |
| System Utilities | 11        | 4,601         |
| Science & Data   | 10        | 6,042         |
| <b>Total</b>     | <b>69</b> | <b>53,125</b> |

375 Table 1: Distribution of collected  
 376 videos across 69 applications in 7  
 377 main categories.

| Category                      | Base Model                           | Method                                                               | Success Rate (%)                          |
|-------------------------------|--------------------------------------|----------------------------------------------------------------------|-------------------------------------------|
| <i>In-Context Learning</i>    |                                      |                                                                      |                                           |
|                               | Gemini 2.5 Flash (Gemini Team, 2025) | Base (w/o video)<br>w/ video; IDM: W&L                               | 19.0<br><b>22.0 (+3.0)</b>                |
| General Models                | OpenAI o3 (OpenAI, 2025a)            | Base (w/o video)<br>w/ video; Labeling: TongUI<br>w/ video; IDM: W&L | 21.8<br>21.1 (-0.7)<br><b>24.3 (+2.5)</b> |
|                               | Claude 4 Sonnet (Anthropic, 2025)    | Base (w/o video)<br>w/ video; IDM: W&L                               | 43.9<br><b>45.5 (+1.6)</b>                |
|                               | Jedi (Xie et al., 2025)              | Base (w/o video)<br>w/ video; IDM: W&L                               | 50.6<br><b>52.8 (+2.2)</b>                |
| <i>Supervised Fine-Tuning</i> |                                      |                                                                      |                                           |
| Open-Source Models            | Qwen 2.5VL 7B (Bai et al., 2025)     | Base (No SFT)<br>SFT; Labeling: TongUI<br>SFT; IDM: W&L              | 1.9<br>5.4 (+3.5)<br><b>13.0 (+11.1)</b>  |
|                               | UI-TARS-7B (Qin et al., 2025)        | Base (No SFT)<br>SFT; Labeling: TongUI<br>SFT; IDM: W&L              | 27.3<br>23.8 (-3.5)<br><b>31.1 (+3.8)</b> |

Table 2: Main results on OSWorld. W&L improves general multimodal models, an agentic framework, and open-source CUAs across both in-context learning and supervised fine-tuning.

|                                | Gemini 2.5 Flash | OpenAI o3   | Claude 4 Sonnet |
|--------------------------------|------------------|-------------|-----------------|
| Baseline (no exemplars)        | 19.0             | 21.8        | 43.9            |
| + Frames                       | 18.4             | 21.8        | 43.9            |
| + Frames + Actions             | 20.1             | 23.0        | 44.4            |
| + Frames + Actions + Reasoning | <b>22.0</b>      | <b>24.3</b> | <b>45.5</b>     |

Table 3: Ablation study on the effect of action labeling and reasoning in ICL exemplars (OSWorld success rates). Structured trajectories provide consistent gains over raw frames across all models.

Our IDM achieves the strongest results, substantially outperforming both baselines. TongUI offers some gains over Gemini, especially for structured actions such as `scroll` and `click`, but still falls short of our IDM. A remaining limitation is text decoding for `type` actions, where the margin is smaller.

These differences in labeling accuracy directly translate into downstream performance. TongUI, despite sharing our prompt format, relies on noisy labels that hurt both in-context learning and fine-tuning (Table 4). With o3, TongUI exemplars reduce success rates; in model training, they yield only marginal gains for Qwen and even lower UI-TARS performance (Table 2). In contrast, our IDM-derived labels consistently improve performance, underscoring that reliable supervision is key for effective action grounding.

#### 4.2.3 WHAT IS THE EFFECT OF RETRIEVAL QUALITY FOR IN-CONTEXT LEARNING?

We further examine the role of retrieval quality by comparing our method against a random retrieval baseline using o3 (Table 5). Interestingly, random retrieval neither improves nor degrades performance relative to the base model. This suggests that, while carefully retrieved exemplars provide useful signal, even randomly selected exemplars do not introduce significant noise. A likely explanation is that the action labels themselves remain highly accurate regardless of retrieval quality, ensuring

| ActionType                 | Gemini 2.5 Flash | TongUI | W&L IDM      |
|----------------------------|------------------|--------|--------------|
| click(x, y)                | 69.2%            | 72.7%  | <b>94.4%</b> |
| scroll(scroll-y)           | 50.5%            | 76.4%  | <b>93.7%</b> |
| type(text)                 | 77.2%            | 71.8%  | <b>78.5%</b> |
| wait(500ms)                | 92.3%            | 94.1%  | <b>97.5%</b> |
| move(x, y)                 | 65.8%            | 70.3%  | <b>89.2%</b> |
| <b>Action Accuracy</b>     | 72.8%            | 82.7%  | <b>91.6%</b> |
| <b>ActionType Accuracy</b> | 81.4%            | 88.9%  | <b>96.4%</b> |

Table 4: Comparison of action labeling accuracy on the Mind2Web test set. W&L’s IDM outperforms TongUI, achieving the best performance

|     | o3 (base) | o3 + Random | o3 + W&L           |
|-----|-----------|-------------|--------------------|
| ICL | 21.8      | 21.8        | <b>24.3 (+2.5)</b> |

Table 5: ICL results on OSWorld with o3. Random retrieval has little effect, while W&L yields strong gains.



486 REFERENCES  
487

488 Rishabh Agarwal, Avi Singh, Lei Zhang, Bernd Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,  
489 Ankesh Anand, Zaheer Abbas, Azade Nova, et al. Many-shot in-context learning. *Advances in  
490 Neural Information Processing Systems*, 37:76930–76966, 2024.

491 Anthropic. Claude opus 4 & claude sonnet 4 system card. Technical re-  
492 port, Anthropic, May 2025. URL <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2f47.pdf>.  
493

494 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
495 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,  
496 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,  
497 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv  
498 preprint arXiv:2502.13923*, 2025.  
499

500 Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon  
501 Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (VPT): Learning to act by  
502 watching unlabeled online videos. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and  
503 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL  
504 <https://openreview.net/forum?id=AXDNM76T1nc>.  
505

506 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and  
507 Yu Su. Mind2Web: Towards a generalist agent for the web. *In NeurIPS*, 2023.  
508

509 Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,  
510 Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. *arXiv preprint arXiv:2301.00234*,  
511 2022.

512 Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long  
513 context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.  
514

515 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and  
516 Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI agents.  
517 *In The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=kxnoqaisCT>.  
518

519 Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari  
520 Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your LLM secretly a world model of  
521 the internet? model-based planning for web agents. *CoRR*, abs/2411.06559, 2025. doi: 10.48550/  
522 ARXIV.2411.06559. URL <https://doi.org/10.48550/arXiv.2411.06559>.  
523

524 Shivanshu Gupta, Sameer Singh, Ashish Sabharwal, Tushar Khot, and Ben Bogin. Leveraging in-  
525 context learning for language model agents. *arXiv preprint arXiv:2506.13109*, 2025.  
526

527 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhenzhong  
528 Lan, and Dong Yu. OpenWebVoyager: Building multimodal web agents via iterative real-world  
529 exploration, feedback and optimization. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova,  
530 and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association  
531 for Computational Linguistics (Volume 1: Long Papers)*, pp. 27545–27564, Vienna, Austria, July  
532 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/  
533 2025.acl-long.1336. URL <https://aclanthology.org/2025.acl-long.1336/>.  
534

535 Samuel Holt, Max Ruiz Luyten, Thomas Pouplin, and Mihaela van der Schaar. Improving llm agent  
536 planning with in-context learning via atomic fact augmentation and lookahead search. *arXiv  
537 preprint arXiv:2506.09171*, 2025.

538 Joel Jang, Seonghyeon Ye, Zongyu Lin, Jiannan Xiang, Johan Bjorck, Yu Fang, Fengyuan Hu,  
539 Spencer Huang, Kaushil Kundalia, Yen-Chen Lin, et al. Dreamgen: Unlocking generalization in  
robot learning through video world models. *arXiv preprint arXiv:2505.12705v2*, 2025a.

540 Yunseok Jang, Yeda Song, Sungryull Sohn, Lajanugen Logeswaran, Tiange Luo, Dong-Ki Kim,  
 541 Kyunghoon Bae, and Honglak Lee. Scalable Video-to-Dataset Generation for Cross-Platform  
 542 Mobile Agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern  
 543 Recognition (CVPR)*, 2025b.

544 Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyam-  
 545 agundlu, and Oriana Riva. On the effects of data scale on UI control agents. In *The Thirty-eighth  
 546 Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.  
 547 URL <https://openreview.net/forum?id=yUEBXN3cvX>.

548 Xing Han Lù, Zdeněk Kasner, and Siva Reddy. WebLINX: Real-world website navigation with  
 549 multi-turn dialogue, 2024. URL <https://arxiv.org/abs/2402.05930>.

550 Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. BAGEL: Boot-  
 551 strapping agents by guiding exploration with language. 2024. URL <https://arxiv.org/abs/2403.08140>.

552 Shikhar Murty, , Hao Zhu, Dzmitry Bahdanau, and Christopher D Manning. Nnetnav: Unsuper-  
 553 vised learning of browser agents through environment interaction in the wild. *arXiv preprint  
 554 arXiv:2410.02907*, 2025.

555 OpenAI. Openai o3 and o4-mini system card. Technical report, OpenAI, April 2025a. URL  
 556 <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

557 OpenAI. Introducing operator. <https://openai.com/index/introducing-operator/>, 2025b. Accessed: April 12, 2025.

558 Tianyue Ou, Frank F. Xu, Aman Madaan, Jiarui Liu, Robert Lo, Abishek Sridhar, Sudipta Sen-  
 559 gupta, Dan Roth, Graham Neubig, and Shuyan Zhou. Synatra: Turning indirect knowledge into  
 560 direct demonstrations for digital agents at scale. In *The Thirty-eighth Annual Conference on Neu-  
 561 ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=KjNEzWRIgn>.

562 Vardaan Pahuja, Yadong Lu, Corby Rosset, Boyu Gou, Arindam Mitra, Spencer Whitehead,  
 563 Yu Su, and Ahmed Hassan Awadallah. Explorer: Scaling exploration-driven web trajectory  
 564 synthesis for multimodal web agents. In *Findings of the Association for Computational Lin-  
 565 guistics: ACL 2025*, pp. 6300–6323, Vienna, Austria, July 2025. Association for Computa-  
 566 tional Linguistics. ISBN 979-8-89176-256-5. URL <https://aclanthology.org/2025.findings-acl.326/>.

567 Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Jiadai Sun, Xinyue Yang, Yu Yang,  
 568 Shuntian Yao, Wei Xu, Jie Tang, and Yuxiao Dong. WebRL: Training LLM web agents via  
 569 self-evolving online curriculum reinforcement learning. In *The Thirteenth International Confer-  
 570 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=oVKEAFjEqv>.

571 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao  
 572 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native  
 573 agents. *arXiv preprint arXiv:2501.12326*, 2025.

574 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language  
 575 models are unsupervised multitask learners. 2019.

576 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy P Lillicrap. An-  
 577 droidInTheWild: A large-scale dataset for android device control. In *Thirty-seventh Confer-  
 578 ence on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL  
 579 <https://openreview.net/forum?id=j4b315k0i1>.

580 Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arik. Learn-by-  
 581 interact: A data-centric framework for self-adaptive agents in realistic environments. *arXiv  
 582 preprint arXiv:2501.10893*, 2025.

594 Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,  
 595 Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and  
 596 Zhiyong Wu. OS-genesis: Automating GUI agent trajectory construction via reverse task syn-  
 597 thesis. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar  
 598 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics*  
 599 (*Volume 1: Long Papers*), pp. 5555–5579, Vienna, Austria, July 2025. Association for Com-  
 600 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.277. URL  
 601 <https://aclanthology.org/2025.acl-long.277/>

602 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  
 603 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

604 Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent Workflow Memory.  
 605 2024. URL <https://arxiv.org/abs/2409.07429>

606 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing  
 607 Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio  
 608 Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. OSWorld: Benchmarking multimodal  
 609 agents for open-ended tasks in real computer environments. In *The Thirty-eight Conference on*  
 610 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=tN61DTr4Ed>

611 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,  
 612 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and  
 613 Caiming Xiong. Scaling Computer-Use Grounding via User Interface Decomposition and Syn-  
 614 thesis. *arXiv preprint arXiv:2505.13227*, 2025. URL <https://arxiv.org/abs/2505.13227>

615 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong,  
 616 and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. In  
 617 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=EEqYUccwsV>

618 Chenyu Yang, Shiqian Su, Shi Liu, Xuan Dong, Yue Yu, Weijie Su, Xuehui Wang, Zhaoyang Liu,  
 619 Jinguo Zhu, Hao Li, Wenhui Wang, Yu Qiao, Xizhou Zhu, and Jifeng Dai. Zerogui: Automat-  
 620 ing online gui learning at zero human cost, 2025. URL <https://arxiv.org/abs/2505.23762>

621 Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu,  
 622 Song-Chun Zhu, and Qing Li. Tongui: Building generalized gui agents by learning from multi-  
 623 modal web tutorials. *arXiv preprint arXiv:2504.12679*, 2025.

624 Xinran Zhao, Hanie Sedghi, Bernd Bohnet, Dale Schuurmans, and Azade Nova. Improving large  
 625 language model planning with action sequence similarity. *arXiv preprint arXiv:2505.01009*, 2025.

626 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web  
 627 agent, if grounded. In *Forty-first International Conference on Machine Learning*, 2024a. URL  
 628 <https://openreview.net/forum?id=piEcKJ2D1B>

629 Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar  
 630 prompting with memory for computer control. 2024b. URL <https://arxiv.org/abs/2306.07863>

631  
 632  
 633  
 634  
 635  
 636  
 637  
 638  
 639  
 640  
 641  
 642  
 643  
 644  
 645  
 646  
 647