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ABSTRACT

Non-rehearsal class incremental learning (CIL) is pivotal in real-world scenar-
ios such as data streaming applications and data security. Despite the remark-
able progress in research on CIL, it remains an extremely challenging task due
to three conundrums: increasingly large model complexity, non-smooth repre-
sentation shift during incremental learning and inconsistency between stage-wise
sub-problem optimization and global inference. In this work, we propose the Dis-
criminative Representation Learning (DRL) method to deal with these challenges
specifically. To conduct incremental learning effectively and yet efficiently, our
DRL is built upon a pre-trained large model with excellent representation learning
capability, and increasingly augments the model by learning a lightweight adapter
with a small amount of parameter learning overhead in each incremental learning
stage. While the adapter is responsible for adapting the model to new classes of
data involved in current learning stage, it can inherit and propagate the representa-
tion capability from the current model via parallel connection between them. As a
result, such design can guarantee a smooth representation shift between different
stages of incremental learning. Furthermore, to alleviate the issue of the training-
inference inconsistency induced by the stage-wise sub-optimization, we design the
Margin-CE loss, which imposes a hard margin between classification boundaries
to push for more discriminative representation learning, thereby narrowing down
the gap between stage-wise local optimization over a subset of data and global
inference on all classes of data. Extensive experiments on six benchmarks reveal
that our DRL consistently outperforms other state-of-the-art methods throughout
the entire CIL period while maintaining high efficiency in both training and infer-
ence phases.

1 INTRODUCTION

Deep neural networks have achieved great improvement in many fields He et al. (2015); Ren et al.
(2016); Ran et al. (2022); Zhan et al. (2022); Li et al. (2022), and the characteristic training process
of deep neural networks is supervised or self-supervised learning He et al. (2021) with pre-collected
datasets (e.g., ImageNet Deng et al. (2009)). However, this conventional process struggles with
scenarios where the training data is in a streaming format Dong et al. (2022); Ning et al. (2021) ,
necessitating incremental learning Zhou et al. (2023a; 2024b), such as class incremental learning
(CIL) Tian et al. (2023); Zhao et al. (2023); Li et al. (2023), task incremental learning Van de Ven
et al. (2022); Abati et al. (2020), incremental object detection Zhang et al. (2024b), etc. Among the
aforementioned methods, non-rehearsal CIL Li & Hoiem (2017); Rebuffi et al. (2017); Zhu et al.
(2021) becomes critical, especially in the sequence or privacy-sensitive scene Dong et al. (2022);
Shokri & Shmatikov (2015); Chamikara et al. (2018). The objective of non-rehearsal CIL is to
acquire new knowledge yet not forget the old one. However, it suffers lower discriminal represen-
tation and poor performance, as it cannot access previous datasets, leading to catastrophic forget-
ting French (1999).

To mitigate the catastrophic forgetting in non-rehearsal CIL, numerous methods have been
proposed. Kirkpatrick et al. introduced regularization-based methods that incorporate ex-
plicit regularization terms to balance the old and new knowledge by keeping the unified
model parameters close to the learned ones, such as EWC Kirkpatrick et al. (2017) and some
more advanced versions Ritter et al. (2018); Schwarz et al. (2018); Chaudhry et al. (2018a).
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Figure 1: Performance comparison in terms of
both classification accuracy and inference complex-
ity by model size between different methods on
ImageNet-A B0 Inc20. The size of circles denotes
the model size during inference.

However, these methods do not effectively inherit
the capabilities of the previous model, resulting
in an inability to alleviate the problem of catas-
trophic forgetting. Additionally, the added con-
straints may reduce the model’s plasticity Yan et al.
(2021) too. Some researchers utilize dynamic net-
work architecture according to the training stage
to balance the catastrophic forgetting and plastic-
ity, such as combining multiple networks Aljundi
et al. (2017), iterative pruning Mallya & Lazebnik
(2018), dynamically expanding sub-network Yoon
et al. (2017); Schwarz et al. (2018); Douillard et al.
(2022), etc. Among these methods, DER Yan
et al. (2021) preserves the previously trained model
to alleviate catastrophic forgetting and expands a
new model for each stage. FOSTER Wang et al.
(2022a), recognizing the excessive number of mod-
els in inference for DER, employs knowledge dis-
tillation (KD) to compress the model and limit its size. However, this approach requires additional
model parameters and a complex training process. Relying solely on KD to inherit the capabilities
of the previous model has a limited effect on reducing forgetting. Recently, many researchers Zhou
et al. (2024b); Zheng et al. (2023); Wang et al. (2022d) have insight that the use of large Pre-
Trained Model (PTM) can significantly improve the CIL performance. Building on PTM, Zhou et
al. proposed EASE Zhou et al. (2024c), which retains all trained models in memory to alleviate
catastrophic forgetting and expands an independent PTM with a learning adapter Hu et al. (2022)
to acquire new knowledge. However, the models stored in memory are cumbersome (see Figure 1)
and suboptimal due to the lack of interaction between different stages during training. Additionally,
current methods widely use cross-entropy loss (CELoss) for supervision during each training stage.
A potential problem with this training approach is the inconsistent separation granularity between
the training and inference phases, which has yet to be resolved.

To address the aforementioned problems, we propose a discriminative representation learning
method consisting of an Incremental Parallel Adapter (IPA) network and a Margin Cross-Entropy
Loss (Margin-CE loss), which achieves a better stability-plasticity trade-off with high efficiency.
Our IPA is built upon a PTM and dynamically expands a parallel adapter for each stage. Further-
more, we find that the features of the trained model are beneficial for the current stage. For instance,
essential features representing a ‘dog’ can also assist in defining a ‘cat.’ Therefore, we propose a
learning transfer gate to selectively inherit this robust representation ability. Thanks to this gate, we
can achieve strong plasticity with exceptional efficiency. To alleviate the issue of training-inference
inconsistency induced by stage-wise sub-optimization, Margin-CE loss imposes a margin between
the classification boundaries for different classes to optimize inter-class separability, thereby yield-
ing more discriminative representation learning.

Finally, we carried out experiments on six benchmark datasets, and the results verified the state-of-
the-art (SOTA) performance of DRL. On ImageNet-A, our method achieves an accuracy of 68.79%,
which is 3.45% higher than the current SOTA. On VTAB, ObjectNet, we achieve 95.73%, 72.69%
accuracy, and 2.12%, 1.85% higher than the current SOTA. Our main contributions are:

• We propose a novel incremental parallel adapter network that achieves a better stability-
plasticity trade-off with high training and inference efficiency. The IPA is established on
PTM. It achieves superior plasticity through an parallel adapter and a learnable transfer
gate, while mitigating catastrophic forgetting by isolating the trained parameters.

• Furthermore, we propose a margin cross-entropy loss to enhance the discriminative rep-
resentation ability by mitigating the inconsistency between stage-wise sub-problem opti-
mization and global inference. The Margin-CE loss is simple, yet effective, and can be
seamlessly integrated into other methods.

• Our approach achieves new state-of-the-art performance on all six benchmarks, including
commonly CIL benchmarks and out-of-distribution benchmarks which have large domain
gaps from pre-trained model’s datasets.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The rest of this paper is organized as follows. First, we investigate the current CIL methods in
Section 2. Followed by the presentation of the preliminaries in Section 3.1, and the introduction of
our IPA and Margin-CE loss in Sections 3.2 and 3.3 respectively. Comprehensive evaluations are
exhibited in Section 4. Finally, We conclude the paper with a summary of our method.

2 RELATED WORKS

Class incremental learning. CIL is essential in data streaming application scenarios, where the
learning system is required to continually incorporate new class knowledge without forgetting exist-
ing ones Zhou et al. (2023a); Wang et al. (2023c); Zhuang et al. (2023; 2022); Liu et al. (2021); Zhao
et al. (2021a); Dong et al. (2022); Gao et al. (2022); Wang et al. (2023a); Goswami et al. (2023).
Based on the accessibility of a portion of the training data from previous stages, these methods
are categorized into rehearsal-based Aljundi et al. (2019b); Liu et al. (2020); Zhao et al. (2021b);
Chaudhry et al. (2018b) and non-rehearsal CIL Douillard et al. (2020); Simon et al. (2021); Tao
et al. (2020); Kirkpatrick et al. (2017); Aljundi et al. (2019a; 2018); Zenke et al. (2017); Zhao et al.
(2020); Yu et al. (2020); Shi et al. (2022); Pham et al. (2022). Rehearsal-based methods address
catastrophic forgetting by retaining a small set of old training examples in memory. However, stor-
ing exemplars of old tasks is not always desirable due to data security and privacy concerns Shokri
& Shmatikov (2015); Ning et al. (2021); Dong et al. (2022). Consequently, many researchers have
shifted their focus to non-rehearsal CIL, which fine-tunes the model without relying on exemplars.
Some of these researchers have proposed regularization-based methods, such as EWC Kirkpatrick
et al. (2017) and some more advanced versions Ritter et al. (2018); Schwarz et al. (2018); Chaudhry
et al. (2018a). These methods introduce explicit regularization terms to balance old and new knowl-
edge by constraining the unified model parameters to remain close to the learned values. However,
these methods do not effectively inherit the capabilities of the previous model, resulting in an in-
ability to alleviate the problem of catastrophic forgetting. Additionally, the added constraints may
reduce the model’s plasticity too.

Dynamic network-based methods. As representatives of non-rehearsal learning methods Qu
et al. (2021), dynamic network-based methods address catastrophic forgetting by allocating spe-
cific model parameters to each stage. Recently, expandable networks Yan et al. (2021); Wang et al.
(2022a); Douillard et al. (2022); Chen & Chang (2023); Hu et al. (2023); Huang et al. (2023) have
demonstrated strong performance among their competitors. However, many of these methods rely
on expanding the backbone network or large modules, resulting in cumbersome networks after mul-
tiple incremental stages, which lack flexibility and efficiency. In contrast, our method utilizes small
parallel sub-networks and adopts different strategies to enhance network efficiency, and significantly
improve the performance with little computational cost.

Pre-trained model-based methods. Pre-trained model-based (PTM-based) methods, which par-
ticularly leverage the PTM’s strong representational capabilities, have become a hot topic re-
cently Zhou et al. (2024b); Wang et al. (2023b); McDonnell et al. (2024). These methods are gen-
erally divided into prompt-based Wang et al. (2022c;d); Smith et al. (2023); Wang et al. (2022b)
and adapter-based approaches. Recently, L2P Wang et al. (2022d) and DualPrompt Wang et al.
(2022c) have utilized prompt tuning based on PTM for incremental learning tasks. However,
these methods still utilize a unified prompts pool which needs to be updated. This action directs
to prompt-level forgetting and representation ability will be restricted. Other methods, such as
APER Zhou et al. (2024a) and EASE Zhou et al. (2024c), expand an independent PTM with a
trainable adapter Houlsby et al. (2019); Hu et al. (2022) to fine-tune the model for each stage and
employ a prototype-based classifier to maintain the generalizability of PTM in inference. However,
these methods utilize all stage models in inference, which is inefficient and inadequate due to the
lack of interaction between models at different stages.

Loss functions in CIL. Existing CIL methods employ various loss functions for supervision.
Typical methods involve classification losses for recognition (e.g., cross-entropy loss Zhou et al.
(2024a;c); Smith et al. (2023); Wang et al. (2022d)), regularization losses (e.g., distillation loss Wen
et al. (2024); Li et al. (2024); Li & Hoiem (2017); Hinton et al. (2015), elastic weight consolidation
loss Kirkpatrick et al. (2017); Magistri et al. (2024), or gradient-based loss Elsayed & Mahmood
(2024)), as well as proxy losses for sub-module objectives (e.g., feature selection and discriminative
enhancement losses Wang et al. (2022d); Douillard et al. (2022); Zhang et al. (2024a); Goswami
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Figure 2: Comparison of different CIL methods. We select the three representative methods, DER, FOSTER,
and EASE. ‘1B’ denotes the total parameters of a model (e.g., ViT-B/16). a) DER creates a new model for
each stage, while b) FOSTER utilizes KD to compress the model to limit the model size. c) EASE expands
a PTM with a learning adapter to reduce the trainable parameters for each stage. However, both DER and
EASE require maintaining all the trained models in memory for inference, which is cumbersome. FOSTER
necessitates an extra training step, and the compressing process brings further catastrophic forgetting. d) shows
our network, which inherits the old feature to eliminate catastrophic forgetting and expands an adapter with few
trainable parameters to learn new knowledge. It utilizes the unified model to predict which is more efficient for
inference.

et al. (2024)). In the previous discussion, softmax cross-entropy loss (CELoss) is widely used in
a stage-wise manner across various methods Zhou et al. (2024a;c). However, a potential problem
with this training approach is the inconsistent separation granularity between the training and infer-
ence phases. Our proposed Margin-CE loss can eliminate this inconsistency, resulting in significant
performance improvement.

In summary, our DRL addresses the limitations of existing incremental learning methods by propos-
ing IPA and Margin-CE loss to improve the model representation. This approach offers improved
performance and resource efficiency compared to existing methods, achieving better stability-
plasticity trade-off in the CIL.

3 METHOD

3.1 PRELIMINARIES

CIL aims to train a model with the training samples arriving in sequence. This incremental process
can be divided into T stages. For the stage t ∈ {1,2,...,T}, the training samples belonging to the
stage t are represented as D t = {X t ,Y t}, where X t is the input data, and Y t corresponds to the
associated label. The classes across different stages do not overlapped, i.e., Y 1 ∩Y 2 ∩...∩Y T = ∅.
The non-rehearsal CIL satisfies D1 ∩D2 ∩ ...∩DT = ∅. During the training of the model at the t-th
stage, We can only access the data Dt, while the stage identity t is not available during inference.
After each stage, the trained model is evaluated on all previously seen classes, i.e., Y 1∪Y 2∪...∪Y t.

The modeling of CIL can be formulated as f(x) = X → Y , which aims to minimize the empirical
risk: ∑

(x,y)∈D1 ...∪DT
L(f(x), y) (1)

Here, we decouple our model into the embedding module Φ(·) : RD → Rd and classifier layer
W ∈ Rd×|Y |, where d represents the embedding dimension and Y represents the label space. The
model output is then denoted as f(x) = W⊤Φ(x). Since our DRL is based on PTM, for the t-th
stage, the embedding module can be further parameterized Θ = {θot , θnt }, where θot and θnt are the
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parameters of the trained model (e.g., PTM) and the new expanding network (e.g., adapter Zhou
et al. (2024c)) respectively. Furthermore, for the l-th transformer block Dosovitskiy (2020), where
l ∈ {1, ..., L} and L represents the total number of blocks (e.g, L = 12 in ViT-B/16), the parameters
are denoted as {θolt , θnl

t }. The classifier layer can be further decomposed into a combination of
W = [w1, ...,w|Y |]. The classifier weight for class i is wi and , wi ∈ Rd×1.

Following the EASE Zhou et al. (2024c), in the training phase, the logit for the class i is:

zi = s · cos(wi,Φ(x)) (2)

Where s is a learnable scale factor during the training phase. The logit zi is passed to the softmax
function to obtain the output probability:

pi =
ezi∑
j e

zj
=

es·cos(wi,Φ(x))∑
j e

s·cos(wj ,Φ(x))
(3)

During inference, the prototype-based classifier extracts the final [CLS] token as the class center
ci (i.e., prototype) for the i-th class and directly replaces the wi, it then utilizes cosine distance to
calculate the predicted probability, as follows:

p̂i = cos(ci,Φ(x)) =
c⊤i Φ(x)

∥ci∥2 · ∥Φ(x)∥2
(4)

3.2 INCREMENTAL PARALLEL ADAPTER

Figure 3: Details of each block in our IPA.

PTM-based methods demonstrate promising
performance in CIL. Consequently, many re-
searchers Wang et al. (2022a;c) have sought to
make slight adjustments to PTMs, such as APER
and EASE. However, these methods either suffer
from a poor stability-plasticity trade-off Wang
et al. (2022d;c) or a cumbersome structure during
inference Yan et al. (2021); Wang et al. (2022a);
Zhou et al. (2024c). Here, we propose Incremental
Parallel Adapter (IPA) to alleviate those problems.
Building on PTM, IPA achieves a better stability-
plasticity trade-off with high efficiency. The details
of IPA are shown in Figure 3 which mainly consists
of three parts: the trained network parameterized
by θo = {θo1 , ...θol ...θoL}, the efficient sub-
network parameterized by θe = {θe1 , ...θel ...θeL},
and the learnable transfer gate parameterized by
θg = {θg1 , ...θgl ...θgL}. Consequently, θn = {θe, θg}. For the l-th block during training, where
l ∈ {1, ..., L}, the θol is fixed while θnl is learnable. In each training stage of CIL, we freeze the
trained model in previous stage, and augment it with a new learnable Incremental Parallel Adapter.
In particular, we design a transfer gate to connect two IPA adapters between two adjacent stages for
smooth representation shift, as shown in Figure 3.

The trained model in previous stage is utilized to extract fundamental features by freezing the trained
parameters, which can be either a PTM or a model trained in previous stage. Freezing the parameters
θo helps to retain the representation ability of the trained model and effectively reduces catastrophic
forgetting. Following the APER and EASE, we utilize the Vision Transformer (ViT), pre-trained on
ImageNet Deng et al. (2009), as the trained network(i.e., ViT-B/16-IN21K Dosovitskiy (2020)) in
the first stage. Trained with over 11 million images across 21,000 categories, the ViT-B/16-IN21K
offers strong representational capabilities and enhances the discriminative power for incremental
tasks.

The newly inserted IPA adapter is utilized to learn new knowledge, and each sub-network is dy-
namically expanded with each new stage. To prevent the network from becoming cumbersome after
multiple incremental stages, each block is designed as a small, trainable module. Specifically, the
sub-network consists of an adapter and an attention module. The adapter is a 1x1 convolutional layer
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Wdown ∈ Rd×r for downsampling, followed by an activation function, and another 1x1 convolu-
tional layer Wup ∈ Rr×d for upsampling. This bottleneck-like structure, consisting solely of two
1x1 convolutions, makes the adapter extremely lightweight. The input to the l-th adapter for the t-th
task is the output from the l-1 block (e.g., fel−1

t in Figure 3), and the output is denoted as f êl
t . The

attention module aims to enhance the correlations between features (or tokens). Traditionally, the
attention module Vaswani et al. (2023) requires three additional 1x1 convolutional layers to generate
the Q, K, V and utilizes Q, K to calculate the attention matrix Ae, i.e., Ae = softmax(QK⊤

√
d1

),
where d1 is the dimension of Q, K. However, this traditional approach results in more trainable
parameters. Given that the PTM inherently possesses strong representational capabilities, and the
attention matrix Ao in the PTM encapsulates the relationships among features. We propose that the
Ae can be replaced by the one in PTM (i.e., Ae = Ao) without losing the plasticity. Finally, f êl

t

is treated as V, and the output is computed as f ēl
t = Aol

t f êl
t . This attention module functions as a

unique form of cross-attention between the trained network and the new sub-network.

The learnable transfer gate addresses the issue of non-smooth representation shift by designing a
transfer gate to transfer the features from the trained model to the sub-network. A naive approach
would be to directly sum the old and new features. However, we have found that shallow and deep
layers in the trained model exhibit different characteristics, and the sub-network should selectively
inherit the knowledge from the trained model. Therefore, we have developed a learnable transfer
gate for each block to preserve essential knowledge and enhance plasticity. Specifically, the gate
includes downsample and upsample layers identical to those in the sub-network, followed by a
sigmoid activation function, which constrains its output to a range between 0 and 1. The input of
the l-th gate for task t, denoted as fol

t−1, is the output of the l-th block of the trained network, and
the output is the weight mask Ml

t. Finally, we fuse the features of the trained network and the
sub-network as follows: fel

t = (1−Ml
t)f

ēl
t +Ml

tf
ol
t−1.

Generally, the sub-network and the transfer gate can be integrated into each block. However, we
have found that fusing the features of the last block reduces plasticity. Therefore, we have removed
the transfer gate from the L-th block and independently introduced two lightweight linear layers in
place of the original Feedforward Network (FFN) in the L-th block to enhance plasticity.

During inference, we obtain the embedding representation for the t-th task as Ft =
[feL

0 ,feL
1 , ...,feL

t ]. Following the EASE Zhou et al. (2024c), we employ the “semantic-guided
prototype complement strategy” to synthesize new features for old classes without accessing any
old class instance and classify them using Formula 4. More details can be found in the supplemen-
tary A.1.

3.3 MARGIN-CE LOSS

Figure 4: Compare the differences between CELoss
and Margin-CE loss during training.

Inconsistency between stage-wise sub-problem
optimization and global inference. We train
our IPA model by cross-entropy loss in a stage-
wise manner, in each stage the model being op-
timized individually towards the involved classes
in the current stage. A potential problem of
such training manner is the inconsistent separa-
tion granularity between training and inference
phases. More fine-grained classification between
all involved categories during inference demands
more discriminative representation learning than
that in one training stage with a small portion of
categories. To alleviate such problem, we pro-
pose the Margin-CE loss to optimize the represen-
tation learning and enhance the separability be-
tween classes, which is inspired by SVM classifier Platt (1998).

Margin-CE loss. Similar to SVM, our proposed Margin-CE loss imposes a margin between the
classification boundaries for different classes to optimize the inter-class separability, thereby yield-
ing more discriminative representation learning (see Figure 4). Specifically, our Margin-CE loss

6
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introduces a logit anchor k to cross-entropy loss and defines the losses for the positive class and
negative classes respectively:

Lpos = −
∑

i
yi log(p

pos
i ), Lneg = − log(pneg) (5)

Where, i is the groundtruth label, and the pposi , pneg calculate as follows:

pposi =
ezi

ezi + ek
=

es·cos(wi,Φ(x))

es·cos(wi,Φ(x)) + ek
(6)

pneg =
e−k∑C

j,j ̸=i e
zj + e−k

=
e−k∑

j,j ̸=i e
s·cos(wj ,Φ(x)) + e−k

(7)

Additionally, most CIL tasks involve single-label classification. Therefore, we can simplify Equa-
tion 5 for single-label classification tasks as follows:

Lpos = − log(ppos), Lneg = − log(pneg) (8)

Figure 4 illustrates the differences between CELoss and Margin-CE loss. Here, we consider binary
classification as an example and let w1,w2 ∈ R2×2 represent the classifier weights for the first and
second classes, respectively. For the image x1 , which belong to the first class, let fx1 = Φ(x1).
From Formula 3, it can be inferred that as long as fx1 falls within the upper half of the region in
Figure 4.a, the class will be predicted correctly. In contrast, our Margin-CE Loss requires that fx1

fall within the upper half of the region in Figure 4.b to be classified as a correct prediction. The
difference between these two conditions introduces a margin, which provides stronger supervision
during training and results in more discriminative features. Based on Formula 6 and Formula 7, we
note that the logit anchor must satisfy 0 ≤ k < s because cos(wi,Φ(x)) ∈ [−1, 1].

In order to balance Lpos and Lneg , we set λ as the loss weight, and the Margin-CE loss is defined
as:

Lm = Lpos + λLneg (9)

Given that the pre-trained model has a good feature distribution, we can alleviate overfitting by
transferring it to the current stage. Therefore, knowledge distillation (KD) is utilized, resulting in
the final loss function:

Lfinal = Lm + αLkd (10)

Here, α is the loss weight of Lkd with Lkd being the loss of the final embedding (such as the final
[CLS] token in ViT) between the PTM and the sub-network. For simplicity, we use cosine distance
as the metric for Lkd.

4 EXPERIMENTS

In this section, to illustrate its superiority, we compare DRL with state-of-the-art methods on six
benchmark datasets across different pre-trained models and data split settings. Moreover, an ablation
study is conducted, which demonstrates the robustness of our proposed approach. Finally, the paper
also provides visualization and parameter analysis, illustrating the effectiveness of DRL. Additional
experimental results are included in the supplementary material (see Section A.3).

Datasets. We evaluate the performance on six datasets, such as CIFAR100 Krizhevsky et al. (2009),
ImageNet-R Hendrycks et al. (2021a), and ImageNet-A Hendrycks et al. (2021b), ObjectNet Barbu
et al. (2019), OmniBench Zhang et al. (2022), and VTAB Zhai et al. (2019). These datasets in-
clude typical CIL benchmarks (the first two datasets) as well as out-of-distribution datasets (the
last four datasets) which have a large domain gap with ImageNet (i.e., the pre-trained model’s
dataset). There are 100 classes in CIFAR100, 200 classes in ImageNet-R, ImageNet-A, Object-
Net, 300 classes in OmniBench, and 50 classes in VTAB. Ablations and visualizations are primar-
ily conducted on ImageNet-A and VTAB because ImageNet-A contains challenging samples that
ImageNet pre-trained models cannot handle, while VTAB contains diverse classes from multiple
complex realms. In accordance with the benchmark settings in Rebuffi et al. (2017); Wang et al.
(2022d); Zhou et al. (2023a), the class split is denoted by ‘B-m Inc-n’. Here, m is the number of
classes in the initial stage, and n is the number of classes in each incremental stage.
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Table 1: Comparison of average and last Top-1 accuracy across six benchmark datasets using ViT-B/16-IN21K
as the pre-trained model. ‘IN-R/A’ stands for ‘ImageNet-R/A’. Best performances are highlighted in bold. All
methods are implemented without using exemplars.

Method CIFAR B0 Inc5 IN-R B0 Inc5 IN-A B0 Inc20 ObjNet B0 Inc10 Omni B0 Inc30 VTAB B0 Inc10
Ā AT Ā AT Ā AT Ā AT Ā AT Ā AT

Finetune 38.90 20.17 21.61 10.79 24.28 14.51 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter Chen et al. (2022) 60.51 49.32 47.59 40.28 45.41 41.10 50.22 35.95 62.32 50.53 48.91 45.12
LwF Li & Hoiem (2017) 46.29 41.07 39.93 26.47 37.75 26.84 33.01 20.65 47.14 33.95 40.48 27.54
SDC Yu et al. (2020) 68.21 63.05 52.17 49.20 29.11 26.63 39.04 29.06 60.94 50.28 45.06 22.50
L2P Wang et al. (2022d) 85.94 79.93 66.53 59.22 49.39 41.71 63.78 52.19 73.36 64.69 77.11 77.10
DualPrompt Wang et al. (2022c) 87.87 81.15 63.31 55.22 53.71 41.67 59.27 49.33 73.92 65.52 83.36 81.23
CODA-Prompt Smith et al. (2023) 89.11 81.96 64.42 55.08 53.54 42.73 66.07 53.29 77.03 68.09 83.90 83.02
SimpleCIL Zhou et al. (2024a) 87.57 81.26 62.58 54.55 59.77 48.91 65.45 53.59 79.34 73.15 85.99 84.38
APER w/ Finetune Zhou et al. (2024a) 87.67 81.27 70.51 62.42 61.01 49.57 61.41 48.34 73.02 65.03 87.47 80.44
APER w/ VPT-S Zhou et al. (2024a) 90.43 84.57 66.63 58.32 58.39 47.20 64.54 52.53 79.63 73.68 87.15 85.36
APER w/ Adapter [paper] Zhou et al. (2024a) 90.65 85.15 72.35 64.33 60.47 49.37 67.18 55.24 80.75 74.37 85.95 84.35
APER w/ Adapter [code] Zhou et al. (2024a) 91.20 85.41 70.91 62.28 64.63 53.85 69.86 57.22 80.89 74.45 90.20 86.16
EASE Zhou et al. (2024c) 91.51 85.80 78.31 70.58 65.34 55.04 70.84 57.86 81.11 74.85 93.61 93.55

DRL 92.01 86.91 78.87 72.20 68.79 59.25 72.69 60.29 81.26 74.98 95.73 95.01

Evaluation Metric. Following the benchmark protocol Rebuffi et al. (2017), we denote the Top-1
accuracy after the t-th stage as At. We use AT (the performance after the last stage) and Ā =
1
T Σ

T
t=1At (average performance along incremental stages) as measurements.

Comparison methods. For comparison, we select state-of-the-art PTM-based CIL methods:
L2P Wang et al. (2022d), DualPrompt Wang et al. (2022c), CODA-Prompt Smith et al. (2023),
APER Zhou et al. (2024a), and EASE Zhou et al. (2024c). Our method is also compared to conven-
tional CIL methods, all utilizing the same PTM, such as LwF Li & Hoiem (2017), SDC Yu et al.
(2020), iCaRL Rebuffi et al. (2017), DER Yan et al. (2021), FOSTER Wang et al. (2022a), and
MEMO Zhou et al. (2023b). It is important to note that all the methods are initialized with a same
PTM.

Training details. Experiments are conducted on an NVIDIA V100 GPU, and other methods are
reproduced using PyTorch Paszke et al. (2019). Following Wang et al. (2022d); Zhou et al. (2024a),
two representative models, ViT-B/16-IN21K and ViT-B/16-IN1K, are considered as the pre-trained
models. These models are pre-trained on ImageNet21K and ImageNet1K, respectively. For DRL,
the model is trained using an SGD Robbins & Monro (1951) optimizer with a batch size of 48 over
20 epochs. A learning rate of 0.01 is employed with cosine annealing, while α and λ are set to 0.5
and 2, respectively. More details are included in the supplementary material A.2.

4.1 COMPARISON TO OTHER METHODS

This section presents a comprehensive comparison of DRL with other state-of-the-art methods using
ViT-B/16-IN21K on six benchmark datasets. As illustrated in Table 1, DRL consistently outperforms
all other methods across the benchmarks. Notably, DRL significantly exceeds the performance of
existing state-of-the-art methods such as EASE, APER, and DualPrompt. On out-of-distribution
datasets with a large domain gap from ImageNet, DRL shows an approximate 2% improvement
over the current SOTA, EASE. For instance, on ImageNet-A, VTab, and ObjectNet, DRL achieves
Ā scores of 68.79%, 95.73%, and 72.69%, outperforming the current SOTA by 3.45%, 2.12%,
and 1.85%, respectively. In terms of AT , DRL records scores of 59.25%, 95.01%, and 60.29%,
surpassing the current SOTA by 4.21%, 1.46%, and 2.43%, respectively.

Additionally, we also include performance results using ViT-B/16-IN1K in Table 2. DRL notably
outperforms the second-best method by 2.37% on ObjNet and 3.68% on ImageNet-A. The results
in Tables 1 and 2 demonstrate that DRL consistently outperforms the current SOTA across different
data splits and pre-trained models.

4.2 ABLUTION STUDY

In this section, we conduct an ablation study to investigate the effectiveness of each component in
DRL.

We display the effectiveness of different components in Table 3. Here, we take EASE as our baseline,
and the ‘CE, KD, BCE, MCE’ represent the model trained with ‘Lce, Lkd, binary cross-entropy loss,
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Lm’, respectively. DRL stands for ‘IPA+MCE+KD’. To ensure a fair comparison, given that IPA’s fi-
nal loss function includes Lkd, we conducted an additional experiment labeled ‘Baseline+CE+KD’.
The results indicate that our IPA with transfer gate significantly improves performance and yields
comparable results to the baseline (refer to ‘IPA+CE’ and ‘Baseline+CE’). Furthermore, the pro-
posed Margin-CE loss proves effective, achieving a 1.45% improvement on ImageNet-A (refer to
‘IPA+CE+KD’ and ‘DRL’).

The ablation study of loss weight α and λ are showed in Table 4, reflecting the stability of our
Margin-CE loss for λ ∈ [1, 3]

Table 2: Comparison to SOTA classical CIL meth-
ods with ViT-B/16-IN1K as the pre-trained model.
All methods are deployed without exemplars.

Method ObjNet B0 Inc20 IN-A B0 Inc20
Ā AT Ā AT

iCaRL Rebuffi et al. (2017) 33.43 19.18 29.22 16.16
LUCIR Hou et al. (2019) 41.17 25.89 31.09 18.59
DER Yan et al. (2021) 35.47 23.19 33.85 22.27
FOSTER Wang et al. (2022a) 37.83 25.07 34.82 23.01
MEMO Zhou et al. (2023b) 38.52 25.41 36.37 24.46
FACT Zhou et al. (2022) 60.59 50.96 60.13 49.82
SimpleCIL Zhou et al. (2024a) 62.11 51.13 59.67 49.44
APER w/ SSF Zhou et al. (2024a) 68.75 56.79 63.59 52.67
EASE Zhou et al. (2024c) 70.44 58.37 65.74 57.28

DRL 72.81 61.00 69.42 59.97

Table 3: Effectiveness of each component in the
proposed approach on Imagenet-A and VTab using
ViT-B/16-IN21K as the pre-trained model.All meth-
ods are deployed without exemplars.

IN-A B0 Inc20 VTAB B0 Inc10
Ā AT Ā AT

Baseline+CE 65.34 55.04 93.56 93.58
Baseline+CE+KD 44.12 33.18 86.59 85.15
IPA+CE+w/o Gate 61.58 51.09 93.24 91.68
IPA+CE+KD w/o Gate 66.45 55.62 94.31 93.30
IPA+CE+KD 67.24 57.12 94.72 94.03
IPA+CE+KD+BCE 67.32 56.92 94.55 93.04
DRL(IPA+MCE+KD) 68.96 59.38 95.73 95.01

Table 4: Effectiveness of the loss weight on
Imagenet-A and VTAB using ViT-B/16-IN21K as the
pre-trained model.

Method α λ
ImageNet-A B0 Inc20 VTAB B0 Inc20
Ā AT Ā AT

DRL 0 2 67.285 57.01 94.90 93.97
DRL 0.5 2 68.960 59.38 95.73 95.01
DRL 1 2 68.735 58.72 95.21 94.30
DRL 3 2 68.112 57.47 94.73 93.72
DRL 5 2 67.508 56.35 94.17 93.22

DRL 0.5 0.5 65.52 54.97 94.65 93.75
DRL 0.5 1 68.46 58.07 95.00 94.16
DRL 0.5 2 68.96 59.38 95.73 95.01
DRL 0.5 3 68.17 58.06 95.40 94.49
DRL 0.5 5 67.16 57.47 94.93 94.16

Table 5: Generalization experiments of Margin-CE
loss on Imagenet-A and VTAB utilizing ViT-B/16-
IN21K as the pre-trained model. We simply re-
place the CELoss in the original methods with our
Margin-CE loss.

ImageNet-A B0 Inc20 VTAB B0 Inc10
Ā AT Ā AT

APER+CE 64.63 53.85 90.20 86.16
ESN+CE 52.66 41.54 86.34 69.23
EASE+CE 65.34 55.04 93.56 93.55

APER+MCE 65.54 54.25(+0.4) 92.57 88.84(+2.68)
ESN+MCE 53.94 42.92(+1.38) 88.77 72.61(+3.38)
EASE+MCE 67.71 58.85(+3.81) 95.36 94.57(+0.98)

Figure 5: DRL: t-SNE Visualization of stage 1 for
VTAB Dataset with B0 Inc10 Setting

Figure 6: DRL: t-SNE Visualization of stage 2 for
VTAB Dataset with B0 Inc10 Setting
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Figure 7: DRL w/o Margin-CE loss: t-SNE Visual-
ization of stage 1 for VTAB Dataset with B0 Inc10
Setting

Figure 8: DRL w/o Margin-CE loss: t-SNE Visual-
ization of stage 2 for VTAB Dataset with B0 Inc10
Setting

4.3 MORE INVESTIGATION OF DRL

Efficient analysis. This section analyzes the efficiency of our approach by examining the number
of network parameters during training and testing. Let ‘1B’ denote the total number of parameters
for ViT-B/16. Figure 2 demonstrates that our IPA comprises only 0.6% of trainable parameters,
while requiring only (1 + 0.006t)B parameters for inference, indicating efficiency in both training
and testing phases. More results show in Figure 1.

Visualization. In this section, we employ t-SNE Van der Maaten & Hinton (2008) to visualize the
learned decision boundaries on the VTAB dataset between two incremental stages, as illustrated in
Figure 5 and 6. For clarity, we represent the classes from the first and second incremental stages, with
each stage comprising 10 classes (VTAB B0 Inc10). As inferred from these figures, DRL exhibits
competitive performance, effectively separating instances into their respective classes. Furthermore,
Figure 7 and Figure 8 indicate that the representation is less discriminal without Margin-CE loss
(‘DRL w/o Margin-CE loss’ refers to training with CELoss instead of Margin-CE loss).

Generalization experiments. To verify Margin-CE loss’s generalization, we integrate it into var-
ious methods. We selected three representative methods: APER, ESN, and EASE. APER is a
prototype-based classifier similar to ours, ESN is network-based, and EASE represents the cur-
rent state-of-the-art. All employed Cross-Entropy Loss (CELoss) for training. Experiments were
conducted by replacing the original methods’ CELoss with Margin-CE loss. Table 5 shows that
Margin-CE loss consistently achieves significant improvement.

5 CONCLUSION

In this paper, we propose a novel non-rehearsal CIL method, Discriminative Representation Learn-
ing (DRL), which consists of an IPA and a Margin-CE loss. IPA chieves a better stability-plasticity
trade-off with high efficiency. Experiments on various datasets demonstrate that our method
achieves new state-of-the-art performance. Overall, our work presents a promising direction for
future research in CIL and its application in real-world scenarios.
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A SUPPLEMENTARY MATERIALS

A.1 INFERENCE DETAILS

Facing the continual data stream, we freeze the trained model Φ(·) and extract the center c of each
class:

ci =
1

N

∑
j

I(yj = i)Φ(xj) (A1)

Here, N is the number of images in class i, and I(·) is the indicator function that outputs 1 if
the expression holds and 0 otherwise. The embedding representation for class i in the t-th task is
denoted as Fi

t = [f
eiL
0 ,f

eiL
1 , ...,f

eiL
t ], where f

eiL
t is the embedded [CLS] token in the L-th block.

Note that the for the classes in the t-1 stage, we cannot obtain the feiL
t since we do not have access to

the previous data. Therefor, we employ the “semantic-guided prototype complement strategy Zhou
et al. (2024c)” to synthesize new features for old classes without accessing any instances of those
classes.

A.2 TRAINING DETAILS

For DRL, the model is trained using an SGD optimizer,with momentum and weight decay parameters
set to 0.9 and 0.0005, respectively. For all six benchmarks, k is set to 2, and r is set to 48 in Wdown

and Wup. In the L-th block of the sub-network, the first lightweight linear layer is Wfirst ∈
R768×768 and the second linear layer is Wsecond ∈ R768×768.

A.3 EXTRA EXPERIMENTS

In this section, we conduct extra experiments to verify the effectiveness of our method.

There are many methods to fuse old and new features using the transfer gate (Section 3.2). We
consider three approaches and investigate the effectiveness of our learning transfer gate, presenting
the results in Table A1. Here, ‘DRL+sum’ denotes fel

t = f ēl
t +fol

t−1 , ‘DRL + mask-PTM’ denotes
fel
t = f ēl

t + Ml
tf

ol
t−1, and ‘DRL + mask-ALL’ denotes fel

t = (1 − Ml
t)f

ēl
t + Ml

tf
ol
t−1. The

results confirm that our learning transfer gate is effective, achieving a performance increase of 1.04%
compared to directly summing the old features (i.e., ‘DRL + mask-ALL’ vs. ‘DRL + sum’).

Secondly, Table A2 indicates that utilizing Ao to replace Ae does not affect the plasticity. The
attention matrix Ao in PTM relationships among the features that can be directly reused to
our sub-network. Here, ‘reuse attention’ denotes Ae = Ao, ‘self-attention’ denotes Ae =

softmax(
f êt f

ê
t ⊤√
d1

), ‘project attention’ denotes the standard attention with learned Q,K,V. Com-
pared to the two methods ‘self-attention’ and ‘project attention’, using A0 to replace Ae can further
reduce the number of training parameters and the computational complexity of the network, thereby
making our IPA more efficient.

Table A1: Ablation experiments on the gate branch
on Imagenet-A and VTAB using ViT-B/16-IN21K as
the pre-trained model.

ImageNet-A B0 Inc20 VTAB B0 Inc10
Ā AT Ā AT

DRL + sum 68.349 58.52 94.50 93.97
DRL + mask-PTM 67.296 57.27 94.52 93.83
DRL + mask-ALL 68.960 59.38 (+0.86) 95.73 95.01 (+1.04)

Table A2: Ablation experiments on the attention
strategy in adapter on ImageNet-A and VTAB using
ViT-B/16-IN21K as the pre-trained model.

ImageNet-A B0 Inc20 VTAB B0 Inc10
Ā AT Ā AT

project+attention 68.78 59.76 95.57 95.14
self-attention 68.62 59.56 95.74 95.05
reuse attention 68.96 59.38 95.73 95.01

Furthermore, we investigate the influence of the logit anchor k with different values. Noting that
the anchor must satisfy 0 ≤ k < s0, where s is a learning scale factor, we conduct experiments
with values in the set {0, 0.5, 1, 2, 3, 5, 10, 20}. Table A3 shows that performance remains stable
when the anchor is in the range [0,5]. Based on Formula 6, If the value of k is too close to s, the
experimental results will not be favorable. The experimental results also confirm this conclusion.
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Table A3: Ablation experiments on the anchor k us-
ing ViT-B/16-IN21K as the pre-trained model.

Method k learned s ImageNet-A B0 Inc20 learned s VTAB B0 Inc10
Ā AT Ā AT

DRL 0 12.62 68.07 58.27 9.25 95.72 94.78
DRL 0.5 13.13 68.97 58.4 9.88 95.82 94.83
DRL 1 13.77 68.98 59.26 9.48 95.76 94.95
DRL 2 14.41 68.96 59.38 11.09 95.73 95.01
DRL 3 14.59 69.41 59.59 12.25 95.54 94.74
DRL 5 15.62 68.88 58.54 12.41 95.55 94.79
DRL 10 19.77 67.36 57.28 16.56 95.59 94.96
DRL 20 23.04 66.20 55.51 23.32 95.49 94.83

Table A4: Ablation experiments on the variations in
the feature dimension of the last block using ViT-B/16-
IN21K as the pre-trained model.

Method ImageNet-A B0 Inc20 VTAB B0 Inc10
Ā AT Ā AT

768→192→768 68.91 59.23 95.616 94.88
768→384→768 68.78 59.04 95.506 94.92
768→768→768 68.96 59.38 95.73 95.01

768→1536→768 68.98 59.24 95.632 95.14
768→2304→768 68.98 59.83 95.560 94.94

Finally, Table A4 presents the results of experiments conducted with different configurations of the
two lightweight linear layers used to replace the feedforward network (FFN) in the L-th block. Here,
‘768→384→768’ denotes the first linear layer is Wfirst ∈ R768×384 and the second linear layer
is Wsecond ∈ R384×768, and so on for others. The results reveal that utilizing ‘768→768→768’
can perform well in our IPA. This also demonstrates the effectiveness of our DRL, as the learned
representation is more discriminative and achieves good plasticity with fewer training parameters.

Figure A1: DRL: t-SNE Visualization of stage 1 for
CIFAR100 Dataset with B0 Inc5 Setting

Figure A2: DRL: t-SNE Visualization of stage 2 for
CIFAR100 Dataset with B0 Inc5 Setting

A.4 VISUALIZATION.

In this section, we also employ t-SNE Van der Maaten & Hinton (2008) to visualize the learned
decision boundaries on the CIFAR100 dataset between two incremental stages, as illustrated in Fig-
ure A1 and A2. Each stage comprises 5 classes (CIFAR100 B0 Inc5). Based on these figures, DRL
demonstrates competitive performance by effectively distinguishing instances into their respective
classes.
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