Under review as a conference paper at ICLR 2025

DRL: DISCRIMINATIVE REPRESENTATION LEARNING
FOR CLASS INCREMENTAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Non-rehearsal class incremental learning (CIL) is pivotal in real-world scenar-
ios such as data streaming applications and data security. Despite the remark-
able progress in research on CIL, it remains an extremely challenging task due
to three conundrums: increasingly large model complexity, non-smooth repre-
sentation shift during incremental learning and inconsistency between stage-wise
sub-problem optimization and global inference. In this work, we propose the Dis-
criminative Representation Learning (DRL) method to deal with these challenges
specifically. To conduct incremental learning effectively and yet efficiently, our
DRL is built upon a pre-trained large model with excellent representation learning
capability, and increasingly augments the model by learning a lightweight adapter
with a small amount of parameter learning overhead in each incremental learning
stage. While the adapter is responsible for adapting the model to new classes of
data involved in current learning stage, it can inherit and propagate the representa-
tion capability from the current model via parallel connection between them. As a
result, such design can guarantee a smooth representation shift between different
stages of incremental learning. Furthermore, to alleviate the issue of the training-
inference inconsistency induced by the stage-wise sub-optimization, we design the
Margin-CE loss, which imposes a hard margin between classification boundaries
to push for more discriminative representation learning, thereby narrowing down
the gap between stage-wise local optimization over a subset of data and global
inference on all classes of data. Extensive experiments on six benchmarks reveal
that our DRL consistently outperforms other state-of-the-art methods throughout
the entire CIL period while maintaining high efficiency in both training and infer-
ence phases.

1 INTRODUCTION

Deep neural networks have achieved great improvement in many fields [He et al.[(2015); [Ren et al.
(2016); |Ran et al.| (2022)); Zhan et al.|(2022); |Li et al.| (2022), and the characteristic training process
of deep neural networks is supervised or self-supervised learning He et al.| (2021) with pre-collected
datasets (e.g., ImageNet Deng et al.| (2009)). However, this conventional process struggles with
scenarios where the training data is in a streaming format |Dong et al|(2022); Ning et al.| (2021}) ,
necessitating incremental learning Zhou et al.| (2023a; [2024b)), such as class incremental learning
(CIL) [Tian et al.[(2023)); [Zhao et al.| (2023); |Li et al. (2023), task incremental learning |Van de Ven
et al.| (2022)); /Abati et al|(2020), incremental object detection |[Zhang et al.| (2024b)), etc. Among the
aforementioned methods, non-rehearsal CIL L1 & Hoiem| (2017); Rebuffi et al.| (2017); |Zhu et al.
(2021)) becomes critical, especially in the sequence or privacy-sensitive scene |Dong et al.| (2022);
Shokri & Shmatikov| (2015); (Chamikara et al.| (2018). The objective of non-rehearsal CIL is to
acquire new knowledge yet not forget the old one. However, it suffers lower discriminal represen-
tation and poor performance, as it cannot access previous datasets, leading to catastrophic forget-
ting [French| (1999).

To mitigate the catastrophic forgetting in non-rehearsal CIL, numerous methods have been
proposed.  Kirkpatrick et al. introduced regularization-based methods that incorporate ex-
plicit regularization terms to balance the old and new knowledge by keeping the unified
model parameters close to the learned ones, such as EWC [Kirkpatrick et al.[ (2017) and some
more advanced versions Ritter et al.| (2018)); [Schwarz et al.| (2018); (Chaudhry et al. (2018a).
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However, these methods do not effectively inherit
the capabilities of the previous model, resulting
in an inability to alleviate the problem of catas-
trophic forgetting. Additionally, the added con-
straints may reduce the model’s plasticity|Yan et al.
(2021)) too. Some researchers utilize dynamic net-
work architecture according to the training stage
to balance the catastrophic forgetting and plastic-
ity, such as combining multiple networks |Aljundi 45
et al.|(2017), iterative pruning Mallya & Lazebnik 1 2 3 4 5 6 7 8 9 10
(2018), dynamically expanding sub-network [Yoon Incremental Stage
et al.|(2017);|Schwarz et al.|(2018)); Douillard et al. ) ) )
(2022), etc. Among these methods, DER |Yan Figure 1 Pgrformance comparison in terms of
et al.[(2021)) preserves the previously trained model both ClaSSlﬁca“?n accuracy and inference complex-
to alleviate catastrophic forgetting and expands a ity by model size between different methods on
mageNet-A BO Inc20. The size of circles denotes
new model for pgch stage. FQSTER Wang et al| e model size during inference.
(2022a)), recognizing the excessive number of mod-
els in inference for DER, employs knowledge dis-
tillation (KD) to compress the model and limit its size. However, this approach requires additional
model parameters and a complex training process. Relying solely on KD to inherit the capabilities
of the previous model has a limited effect on reducing forgetting. Recently, many researchers Zhou
et al.| (2024b); Zheng et al.| (2023)); Wang et al.| (2022d) have insight that the use of large Pre-
Trained Model (PTM) can significantly improve the CIL performance. Building on PTM, Zhou et
al. proposed EASE [Zhou et al| (2024c)), which retains all trained models in memory to alleviate
catastrophic forgetting and expands an independent PTM with a learning adapter [Hu et al.| (2022)
to acquire new knowledge. However, the models stored in memory are cumbersome (see Figure |1)
and suboptimal due to the lack of interaction between different stages during training. Additionally,
current methods widely use cross-entropy loss (CELoss) for supervision during each training stage.
A potential problem with this training approach is the inconsistent separation granularity between
the training and inference phases, which has yet to be resolved.
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To address the aforementioned problems, we propose a discriminative representation learning
method consisting of an Incremental Parallel Adapter (IPA) network and a Margin Cross-Entropy
Loss (Margin-CE loss), which achieves a better stability-plasticity trade-off with high efficiency.
Our IPA is built upon a PTM and dynamically expands a parallel adapter for each stage. Further-
more, we find that the features of the trained model are beneficial for the current stage. For instance,
essential features representing a ‘dog’ can also assist in defining a ‘cat’ Therefore, we propose a
learning transfer gate to selectively inherit this robust representation ability. Thanks to this gate, we
can achieve strong plasticity with exceptional efficiency. To alleviate the issue of training-inference
inconsistency induced by stage-wise sub-optimization, Margin-CE loss imposes a margin between
the classification boundaries for different classes to optimize inter-class separability, thereby yield-
ing more discriminative representation learning.

Finally, we carried out experiments on six benchmark datasets, and the results verified the state-of-
the-art (SOTA) performance of DRL. On ImageNet-A, our method achieves an accuracy of 68.79%,
which is 3.45% higher than the current SOTA. On VTAB, ObjectNet, we achieve 95.73%, 72.69%
accuracy, and 2.12%, 1.85% higher than the current SOTA. Our main contributions are:

* We propose a novel incremental parallel adapter network that achieves a better stability-
plasticity trade-off with high training and inference efficiency. The IPA is established on
PTM. It achieves superior plasticity through an parallel adapter and a learnable transfer
gate, while mitigating catastrophic forgetting by isolating the trained parameters.

 Furthermore, we propose a margin cross-entropy loss to enhance the discriminative rep-
resentation ability by mitigating the inconsistency between stage-wise sub-problem opti-
mization and global inference. The Margin-CE loss is simple, yet effective, and can be
seamlessly integrated into other methods.

* Our approach achieves new state-of-the-art performance on all six benchmarks, including
commonly CIL benchmarks and out-of-distribution benchmarks which have large domain
gaps from pre-trained model’s datasets.
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The rest of this paper is organized as follows. First, we investigate the current CIL methods in
Section 2| Followed by the presentation of the preliminaries in Section and the introduction of
our /PA and Margin-CE loss in Sections [3.2] and [3.3] respectively. Comprehensive evaluations are
exhibited in Section[d] Finally, We conclude the paper with a summary of our method.

2 RELATED WORKS

Class incremental learning. CIL is essential in data streaming application scenarios, where the
learning system is required to continually incorporate new class knowledge without forgetting exist-
ing ones|Zhou et al.|(2023a)); [Wang et al.|(2023c));|[Zhuang et al.| (2023};|2022)); |L1u et al.[(2021));|Zhao
et al.| (2021a)); Dong et al.| (2022)); |Gao et al.| (2022); [Wang et al.| (2023a); |Goswami et al|(2023).
Based on the accessibility of a portion of the training data from previous stages, these methods
are categorized into rehearsal-based |Aljundi et al. (2019b)); |Liu et al.| (2020); |[Zhao et al.| (2021b);
Chaudhry et al.| (2018b) and non-rehearsal CIL Douillard et al.| (2020); |Simon et al.| (2021); |Tao
et al.| (2020); Kirkpatrick et al.[|(2017); |Aljundi et al.|(2019a; |2018)); Zenke et al.| (2017); Zhao et al.
(2020); [Yu et al.| (2020); |Shi et al.| (2022); [Pham et al.| (2022)). Rehearsal-based methods address
catastrophic forgetting by retaining a small set of old training examples in memory. However, stor-
ing exemplars of old tasks is not always desirable due to data security and privacy concerns [Shokri
& Shmatikov| (2015); Ning et al.| (2021); Dong et al.|(2022). Consequently, many researchers have
shifted their focus to non-rehearsal CIL, which fine-tunes the model without relying on exemplars.
Some of these researchers have proposed regularization-based methods, such as EWC |Kirkpatrick
et al.|(2017) and some more advanced versions Ritter et al.|(2018));|Schwarz et al.| (2018)); |(Chaudhry
et al.|(2018a). These methods introduce explicit regularization terms to balance old and new knowl-
edge by constraining the unified model parameters to remain close to the learned values. However,
these methods do not effectively inherit the capabilities of the previous model, resulting in an in-
ability to alleviate the problem of catastrophic forgetting. Additionally, the added constraints may
reduce the model’s plasticity too.

Dynamic network-based methods. As representatives of non-rehearsal learning methods [Qu
et al. (2021), dynamic network-based methods address catastrophic forgetting by allocating spe-
cific model parameters to each stage. Recently, expandable networks Yan et al.| (2021); [Wang et al.
(2022a); Douillard et al.[(2022)); |(Chen & Chang| (2023); Hu et al.| (2023)); Huang et al.[(2023)) have
demonstrated strong performance among their competitors. However, many of these methods rely
on expanding the backbone network or large modules, resulting in cumbersome networks after mul-
tiple incremental stages, which lack flexibility and efficiency. In contrast, our method utilizes small
parallel sub-networks and adopts different strategies to enhance network efficiency, and significantly
improve the performance with little computational cost.

Pre-trained model-based methods. Pre-trained model-based (PTM-based) methods, which par-
ticularly leverage the PTM’s strong representational capabilities, have become a hot topic re-
cently [Zhou et al.| (2024b)); [Wang et al.| (2023b)); McDonnell et al.| (2024). These methods are gen-
erally divided into prompt-based [Wang et al.| (2022cfd); [Smith et al.| (2023)); Wang et al.| (2022b)
and adapter-based approaches. Recently, L2P |Wang et al. (2022d) and DualPrompt [Wang et al.
(2022c) have utilized prompt tuning based on PTM for incremental learning tasks. However,
these methods still utilize a unified prompts pool which needs to be updated. This action directs
to prompt-level forgetting and representation ability will be restricted. Other methods, such as
APER [Zhou et al| (2024a) and EASE |Zhou et al.| (2024c), expand an independent PTM with a
trainable adapter [Houlsby et al.| (2019); |Hu et al.| (2022) to fine-tune the model for each stage and
employ a prototype-based classifier to maintain the generalizability of PTM in inference. However,
these methods utilize all stage models in inference, which is inefficient and inadequate due to the
lack of interaction between models at different stages.

Loss functions in CIL. Existing CIL methods employ various loss functions for supervision.
Typical methods involve classification losses for recognition (e.g., cross-entropy loss |Zhou et al.
(2024a;c); Smith et al.|(2023)); Wang et al.|(2022d)), regularization losses (e.g., distillation lossWen
et al.| (2024); Li et al.| (2024)); L1 & Hoiem|(2017); Hinton et al.|(2015)), elastic weight consolidation
loss [Kirkpatrick et al.| (2017)); Magistri et al.| (2024), or gradient-based loss [Elsayed & Mahmood
(2024)), as well as proxy losses for sub-module objectives (e.g., feature selection and discriminative
enhancement losses [Wang et al.| (2022d)); Douillard et al.| (2022); |[Zhang et al. (2024a)); Goswami
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Figure 2: Comparison of different CIL methods. We select the three representative methods, DER, FOSTER,
and EASE. ‘1B’ denotes the total parameters of a model (e.g., ViT-B/16). a) DER creates a new model for
each stage, while b) FOSTER utilizes KD to compress the model to limit the model size. c) EASE expands
a PTM with a learning adapter to reduce the trainable parameters for each stage. However, both DER and
EASE require maintaining all the trained models in memory for inference, which is cumbersome. FOSTER
necessitates an extra training step, and the compressing process brings further catastrophic forgetting. d) shows
our network, which inherits the old feature to eliminate catastrophic forgetting and expands an adapter with few
trainable parameters to learn new knowledge. It utilizes the unified model to predict which is more efficient for
inference.

(2024)). In the previous discussion, softmax cross-entropy loss (CELoss) is widely used in
a stage-wise manner across various methods [Zhou et al| (2024alc). However, a potential problem
with this training approach is the inconsistent separation granularity between the training and infer-
ence phases. Our proposed Margin-CE loss can eliminate this inconsistency, resulting in significant
performance improvement.

In summary, our DRL addresses the limitations of existing incremental learning methods by propos-
ing IPA and Margin-CE loss to improve the model representation. This approach offers improved
performance and resource efficiency compared to existing methods, achieving better stability-
plasticity trade-off in the CIL.

3 METHOD

3.1 PRELIMINARIES

CIL aims to train a model with the training samples arriving in sequence. This incremental process
can be divided into T stages. For the stage ¢ € {1,2,...,T}, the training samples belonging to the
stage ¢ are represented as D* = {X? Y}, where X! is the input data, and Y corresponds to the
associated label. The classes across different stages do not overlapped, i.e., Y/ NY?N..nY T = 0.
The non-rehearsal CIL satisfies D! N D?N...N DT = (). During the training of the model at the ¢-th
stage, We can only access the data D?, while the stage identity ¢ is not available during inference.
After each stage, the trained model is evaluated on all previously seen classes, i.e., YIUY2U...UY?.

The modeling of CIL can be formulated as f(x) = X — Y, which aims to minimize the empirical

risk:
Z(xvy)ED’,“UDT L(f(x)ay) (1)

Here, we decouple our model into the embedding module ®(-) : RP — R and classifier layer

W ¢ RVl where d represents the embedding dimension and Y represents the label space. The
model output is then denoted as f(x) = W T ®(x). Since our DRL is based on PTM, for the ¢-th
stage, the embedding module can be further parameterized © = {67,607 }, where 67 and 6} are the
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parameters of the trained model (e.g., PTM) and the new expanding network (e.g., adapter Zhou
et al.| (2024c)) respectively. Furthermore, for the [-th transformer block |Dosovitskiy| (2020), where
[ €{1,..., L} and L represents the total number of blocks (e.g, L = 12 in ViT-B/16), the parameters
are denoted as {67',0;'}. The classifier layer can be further decomposed into a combination of
W = [wy, ..., w)y|]. The classifier weight for class i is w; and , w; € R4xT,

Following the EASE Zhou et al.[(2024c), in the training phase, the logit for the class i is:

zi = s cos(wy, (x)) (2)
Where s is a learnable scale factor during the training phase. The logit z; is passed to the softmax
function to obtain the output probability:

zi s-cos(w;,P(x))

e e
pi = Zj 0% = Zj es-cos(w;,®(x))

3)

During inference, the prototype-based classifier extracts the final [CLS] token as the class center
c; (i.e., prototype) for the i-th class and directly replaces the w;, it then utilizes cosine distance to
calculate the predicted probability, as follows:

-
c; P(x)
. — cos(c:. P — i T\ 4
po = ol ¥ = e, et @
3.2 INCREMENTAL PARALLEL ADAPTER
PTM-based methods demonstrate promising
performance in CIL. Consequently, many re- s " o
searchers |Wang et al.| (2022alc) have sought to g fios f;
make slight adjustments to PTMs, such as APER | o 4

and EASE. However, these methods either suffer
from a poor stability-plasticity trade-off Wang
et al.| (2022dic) or a cumbersome structure during

’
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inference |Yan et al.| (2021); [Wang et al| (20224); ‘\ [ %ﬂ’f‘ “e““‘j
Zhou et al|(2024c). Here, we propose Incremental g p.~— | [fAdd&Nomj P I
Parallel Adapter (IPA) to alleviate those problems. Sub-network: @ \ | |Multi-Head, . - - 0P/ \up/
Building on PTM, IPA achieves a better stability-  fanapre.0 | -2HCpien ,'li; \ Eﬁ\m
plasticity trade-off with high efficiency. The details  prozen:c70 1 ‘ I ' 1
of IPA are shown in Figure [3| which mainly consists o - f‘,_,H
t-1 t

of three parts: the trained network parameterized
by 6° = {0°,...0°...0°c}, the efficient sub-
network parameterized by ¢ = {6°,...6°...0° },
and the learnable transfer gate parameterized by
09 = {69, ...09:...09- }. Consequently, 0™ = {6¢,609}. For the [-th block during training, where
1 €{1,..,L}, the 6° is fixed while ™ is learnable. In each training stage of CIL, we freeze the
trained model in previous stage, and augment it with a new learnable Incremental Parallel Adapter.
In particular, we design a transfer gate to connect two /PA adapters between two adjacent stages for
smooth representation shift, as shown in Fi gure

Figure 3: Details of each block in our /PA.

The trained model in previous stage is utilized to extract fundamental features by freezing the trained
parameters, which can be either a PTM or a model trained in previous stage. Freezing the parameters
0° helps to retain the representation ability of the trained model and effectively reduces catastrophic
forgetting. Following the APER and EASE, we utilize the Vision Transformer (ViT), pre-trained on
ImageNet Deng et al|(2009), as the trained network(i.e., ViT-B/16-IN21K Dosovitskiy| (2020)) in
the first stage. Trained with over 11 million images across 21,000 categories, the ViT-B/16-IN21K
offers strong representational capabilities and enhances the discriminative power for incremental
tasks.

The newly inserted IPA adapter is utilized to learn new knowledge, and each sub-network is dy-
namically expanded with each new stage. To prevent the network from becoming cumbersome after
multiple incremental stages, each block is designed as a small, trainable module. Specifically, the
sub-network consists of an adapter and an attention module. The adapter is a 1x1 convolutional layer
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W gown € RIX" for downsampling, followed by an activation function, and another 1x1 convolu-
tional layer W,,,, € R"*4 for upsampling. This bottleneck-like structure, consisting solely of two
1x1 convolutions, makes the adapter extremely lightweight. The input to the [-th adapter for the ¢-th
task is the output from the I-1 block (e.g., f;'~* in Figure , and the output is denoted as f;*. The
attention module aims to enhance the correlations between features (or tokens). Traditionally, the
attention module|Vaswani et al.|(2023)) requires three additional 1x1 convolutional layers to generate

the Q, K, V and utilizes Q, K to calculate the attention matrix A®, i.e., A¢ = softmax(Q—\/Ig),
where d; is the dimension of Q, K. However, this traditional approach results in more trainable
parameters. Given that the PTM inherently possesses strong representational capabilities, and the
attention matrix A° in the PTM encapsulates the relationships among features. We propose that the
A€ can be replaced by the one in PTM (i.e., A® = A°) without losing the plasticity. Finally, fté’
is treated as 'V, and the output is computed as f7' = A9 f£'. This attention module functions as a
unique form of cross-attention between the trained network and the new sub-network.

The learnable transfer gate addresses the issue of non-smooth representation shift by designing a
transfer gate to transfer the features from the trained model to the sub-network. A naive approach
would be to directly sum the old and new features. However, we have found that shallow and deep
layers in the trained model exhibit different characteristics, and the sub-network should selectively
inherit the knowledge from the trained model. Therefore, we have developed a learnable transfer
gate for each block to preserve essential knowledge and enhance plasticity. Specifically, the gate
includes downsample and upsample layers identical to those in the sub-network, followed by a
sigmoid activation function, which constrains its output to a range between 0 and 1. The input of
the [-th gate for task ¢, denoted as ftoil, is the output of the /-th block of the trained network, and
the output is the weight mask M!. Finally, we fuse the features of the trained network and the
sub-network as follows: f{' = (1 — M}) fi* + MLFY .

Generally, the sub-network and the transfer gate can be integrated into each block. However, we
have found that fusing the features of the last block reduces plasticity. Therefore, we have removed
the transfer gate from the L-th block and independently introduced two lightweight linear layers in
place of the original Feedforward Network (FFN) in the L-th block to enhance plasticity.

During inference, we obtain the embedding representation for the ¢-th task as F; =
s, fit, ..., fi*]. Following the EASE Zhou et al|(2024c), we employ the “semantic-guided
prototype complement strategy” to synthesize new features for old classes without accessing any
old class instance and classify them using Formula ] More details can be found in the supplemen-

tary [AT]

3.3 MARGIN-CE LOSS

Inconsistency between stage-wise sub-problem

optimization and global inference. . We train PP >l 56, <6, PP > 05 5 0 < 6, <arecos()

our /PA model by cross-entropy loss in a stage- ie.,0<6; <90° k ¢
. . . s.t. O, = 90° — arccos(-)

wise manner, in each stage the model being op- s

timized individually towards the involved classes
in the current stage. A potential problem of
such training manner is the inconsistent separa-
tion granularity between training and inference
phases. More fine-grained classification between
all involved categories during inference demands
more discriminative representation learning than
that in one training stage with a small portion of
categories. To alleviate such problem, we pro-
pose the Margin-CE loss to optimize the represen-
tation learning and enhance the separability be-
tween classes, which is inspired by SVM classifier Platt| (1998)).

a) Train: CELoss b) Train: Margin-CE loss

Figure 4: Compare the differences between CELoss
and Margin-CE loss during training.

Margin-CE loss. Similar to SVM, our proposed Margin-CE loss imposes a margin between the
classification boundaries for different classes to optimize the inter-class separability, thereby yield-
ing more discriminative representation learning (see Figure [). Specifically, our Margin-CE loss
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introduces a logit anchor £ to cross-entropy loss and defines the losses for the positive class and
negative classes respectively:

L == yilog(p}™), L' = —log(p"*) ©)

Where, 7 is the groundtruth label, and the p?°®, p™©9 calculate as follows:

eZi es~cos(wi,©(x))

p‘;)os — — (6)

e%i + ek es-cos(w;,®(x)) + ek

E_k e—k

S € e Dy g €8P0 4 ek

Additionally, most CIL tasks involve single-label classification. Therefore, we can simplify Equa-
tion 3] for single-label classification tasks as follows:

LPos — _ log(ppos)7 Led — — log(pneg) (8)

Figure [ illustrates the differences between CELoss and Margin-CE loss. Here, we consider binary
classification as an example and let wy, wy € R?*?2 represent the classifier weights for the first and
second classes, respectively. For the image x; , which belong to the first class, let £, = ®(x1).
From Formula [3] it can be inferred that as long as f,, falls within the upper half of the region in
Figure [da, the class will be predicted correctly. In contrast, our Margin-CE Loss requires that f;,
fall within the upper half of the region in Figure f]b to be classified as a correct prediction. The
difference between these two conditions introduces a margin, which provides stronger supervision
during training and results in more discriminative features. Based on Formula[6|and Formula[7} we
note that the logit anchor must satisfy 0 < k < s because cos(w;, ®(x)) € [-1,1].

In order to balance LP°® and L™°9, we set A as the loss weight, and the Margin-CE loss is defined
as:
L,, = LP° + \L"%Y 9)

Given that the pre-trained model has a good feature distribution, we can alleviate overfitting by
transferring it to the current stage. Therefore, knowledge distillation (KD) is utilized, resulting in
the final loss function:

Lyinat = Ly + aLlipg (10

Here, « is the loss weight of L4 with Ly, being the loss of the final embedding (such as the final
[CLS] token in ViT) between the PTM and the sub-network. For simplicity, we use cosine distance
as the metric for L.

4 EXPERIMENTS

In this section, to illustrate its superiority, we compare DRL with state-of-the-art methods on six
benchmark datasets across different pre-trained models and data split settings. Moreover, an ablation
study is conducted, which demonstrates the robustness of our proposed approach. Finally, the paper
also provides visualization and parameter analysis, illustrating the effectiveness of DRL. Additional
experimental results are included in the supplementary material (see Section[A.3).

Datasets. We evaluate the performance on six datasets, such as CIFAR100 Krizhevsky et al.|(2009),
ImageNet-R |[Hendrycks et al.|(2021a), and ImageNet-A Hendrycks et al.| (2021b), ObjectNet |Barbu
et al.| (2019), OmniBench [Zhang et al.| (2022), and VTAB [Zhai et al,| (2019). These datasets in-
clude typical CIL benchmarks (the first two datasets) as well as out-of-distribution datasets (the
last four datasets) which have a large domain gap with ImageNet (i.e., the pre-trained model’s
dataset). There are 100 classes in CIFAR100, 200 classes in ImageNet-R, ImageNet-A, Object-
Net, 300 classes in OmniBench, and 50 classes in VTAB. Ablations and visualizations are primar-
ily conducted on ImageNet-A and VTAB because ImageNet-A contains challenging samples that
ImageNet pre-trained models cannot handle, while VTAB contains diverse classes from multiple
complex realms. In accordance with the benchmark settings in [Rebuffi et al.| (2017); Wang et al.
(2022d); [Zhou et al.| (20234a), the class split is denoted by ‘B-m Inc-n’. Here, m is the number of
classes in the initial stage, and n is the number of classes in each incremental stage.
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Table 1: Comparison of average and last Top-1 accuracy across six benchmark datasets using ViT-B/16-IN21K
as the pre-trained model. ‘IN-R/A’ stands for ‘ImageNet-R/A’. Best performances are highlighted in bold. All
methods are implemented without using exemplars.

CIFARBOInc5 IN-RBOInc5 IN-ABOInc20 ObjNet BOIncl0 Omni BOInc30 VTAB BO Incl10

Method A A A A A Ar A A A A A Ag
Finetune 38.90 20.17 21.61 10.79 24.28 14.51 19.14 8.73 23.61 10.57 34.95 21.25
Finetune Adapter|/Chen et al.|(2022) 60.51 49.32 47.59 4028 4541 41.10 5022 35.95 62.32 50.53 48091 45.12
LwF|Li & Hoiem|(2017) 46.29 41.07 3993 2647 3775 26.84 33.01 20.65 47.14 3395 4048 27.54
SDC]|Yu et al. (2020} 68.21 63.05 52.17 49.20 29.11 26.63 39.04 29.06 60.94 50.28 45.06 22.50
L2P{Wang et al.|(2022d} 85.94 79.93 66.53 59.22 49.39 41.71 63.78 52.19 7336  64.69 77.11 77.10
DualPrompt|Wang et al.|(2022c¢) 87.87 81.15 63.31 5522 5371 41.67 59.27 49.33 7392 65.52 83.36 81.23
CODA-Prompt|Smith et al.|[(2023) 89.11 81.96 64.42 5508 53.54 4273 66.07 53.29 77.03  68.09 83.90 83.02
SimpleCIL|Zhou et al.|(2024a} 87.57 81.26 62.58 54.55 59.77 4891 65.45 53.59 79.34  73.15 85.99 84.38
APER w/ Finetune|Zhou et al. |(2024a) 87.67 81.27 70.51 6242 61.01 4957 6141 48.34 73.02 65.03 8747 80.44
APER w/ VPT-S|Zhou et al.|(2024a) 90.43 84.57 66.63 58.32 5839 4720 64.54 52.53 79.63 73.68 87.15 85.36

APER w/ Adapter [paper|[|Zhou et al.|(2024a) 90.65 85.15 7235 64.33 6047 4937 67.18 55.24 80.75 7437 8595 8435
APER w/ Adapter [code]|Zhou et al.[(2024a) 9120 8541 7091 6228 64.63 53.85 69.86 57.22 80.89 7445 9020  86.16
EASE|Zhou et al. |(2024c} 91.51 8580 7831 70.58 6534 5504 70.84 57.86 81.11 7485 93.61 9355

DRL 92.01 8691 7887 7220 68.79 59.25 7269 6029 81.26 7498 9573 95.01

Evaluation Metric. Following the benchmark protocol Rebuffi et al.[(2017)), we denote the Top-1
accuracy after the ¢-th stage as A;. We use Agp (the performance after the last stage) and A =
%EleAt (average performance along incremental stages) as measurements.

Comparison methods. For comparison, we select state-of-the-art PTM-based CIL methods:
L2P [Wang et al.| (2022d)), DualPrompt [Wang et al.| (2022c), CODA-Prompt |Smith et al.| (2023),
APER [Zhou et al.|(2024a), and EASE [Zhou et al.| (2024c). Our method is also compared to conven-
tional CIL methods, all utilizing the same PTM, such as LwF |Li & Hoiem!| (2017), SDC |Yu et al.
(2020), iCaRL [Rebuffi et al| (2017), DER |Yan et al.| (2021), FOSTER [Wang et al.| (2022a), and
MEMO [Zhou et al.| (2023b)). It is important to note that all the methods are initialized with a same
PTM.

Training details. Experiments are conducted on an NVIDIA V100 GPU, and other methods are
reproduced using PyTorch |Paszke et al.|(2019). Following Wang et al.| (2022d); Zhou et al.| (2024a),
two representative models, ViT-B/16-IN21K and ViT-B/16-IN1K, are considered as the pre-trained
models. These models are pre-trained on ImageNet21K and ImageNet1K, respectively. For DRL,
the model is trained using an SGD |Robbins & Monro| (1951) optimizer with a batch size of 48 over
20 epochs. A learning rate of 0.01 is employed with cosine annealing, while o and A are set to 0.5
and 2, respectively. More details are included in the supplementary material [A.2]

4.1 COMPARISON TO OTHER METHODS

This section presents a comprehensive comparison of DRL with other state-of-the-art methods using
ViT-B/16-IN21K on six benchmark datasets. As illustrated in Table[I| DRL consistently outperforms
all other methods across the benchmarks. Notably, DRL significantly exceeds the performance of
existing state-of-the-art methods such as EASE, APER, and DualPrompt. On out-of-distribution
datasets with a large domain gap from ImageNet, DRL shows an approximate 2% improvement
over the current SOTA, EASE. For instance, on ImageNet-A, VTab, and ObjectNet, DRL achieves
A scores of 68.79%, 95.73%, and 72.69%, outperforming the current SOTA by 3.45%, 2.12%,
and 1.85%, respectively. In terms of A7, DRL records scores of 59.25%, 95.01%, and 60.29%,
surpassing the current SOTA by 4.21%, 1.46%, and 2.43%, respectively.

Additionally, we also include performance results using ViT-B/16-IN1K in Table |2} DRL notably
outperforms the second-best method by 2.37% on ObjNet and 3.68% on ImageNet-A. The results
in Tables[T]and [2]demonstrate that DRL consistently outperforms the current SOTA across different
data splits and pre-trained models.

4.2 ABLUTION STUDY

In this section, we conduct an ablation study to investigate the effectiveness of each component in
DRL.

We display the effectiveness of different components in Table[3] Here, we take EASE as our baseline,
and the ‘CE, KD, BCE, MCE’ represent the model trained with ‘L., L4, binary cross-entropy loss,
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L,,’, respectively. DRL stands for ‘IPA+MCE+KD’. To ensure a fair comparison, given that /PA’s fi-
nal loss function includes L4, we conducted an additional experiment labeled ‘Baseline+CE+KD’.
The results indicate that our /PA with transfer gate significantly improves performance and yields
comparable results to the baseline (refer to ‘IPA+CE’ and ‘Baseline+CE’). Furthermore, the pro-
posed Margin-CE loss proves effective, achieving a 1.45% improvement on ImageNet-A (refer to
‘IPA+CE+KD’ and ‘DRL).

The ablation study of loss weight o and X are showed in Table [ reflecting the stability of our
Margin-CE loss for A € [1, 3]

Table 2: Comparison to SOTA classical CIL meth- Table 3: Effectiveness of each component in the
ods with ViT-B/16-INIK as the pre-trained model, ~ Proposed approach on Imagenet-A and VTab using
All methods are deployed without exemplars ViT-B/16-IN21K as the pre-trained model. All meth-

ods are deployed without exemplars.

ObjNet BO Inc20  IN-A B0 Inc20

Method

A Ar A Ar IN-AB0Inc20 VTAB BO Inc10
iCaRL[Rebuffi et al.|(2017) 3343 1918 2922 1616 A Ar A Ar
LUCIR]Hou et al.[(2019} 4117 2589 3109 18.59 p
DER|Yan et alJ2021] 3547 2319 3385 2227 g'asei}nﬂglé KD 46&451'?‘2‘ gg'?g gg'gg gg'? 2
FOSTER|Wang et al.|(2022a) 37.83 2507 3482 2301 aseline+(E+. . . - .
MEMO(Zhou et al.|(2023b} 3852 2541 3637 2446 IPA+CE+w/o Gate 6158 51.09 9324  91.68
FACT|Zhou et al.|(2022} 60.59 5096  60.13 49.82 IPA+CE+KD w/o Gate 66.45 55.62 94.31 93.30
SimpleCIL [Zhou e al. |(2024a) 62.11 5113 59.67 49.44 IPA+CE+KD 6724 5712 9472  94.03
APER w/ SSF|[Zhou et al.|(2024a)  68.75 56.79 63.59 52.67 IPA+CE+KD+BCE 67.32 56.92 94.55 93.04
EASEZhou et al.|(2024c) 70.44 58.37 65.74 57.28 DRL(IPA+MCE+KD) 68.96 59.38 95.73 95.01
DRL 7281  6L00 6942 59.97

. . Table 5: Generalization experiments of Margin-CE
Table 4: Effectlveness_ of _the loss weight on loss on Imagenet-A and VTAB utilizing ViT-B/16-
Imager}et—A and VTAB using ViT-B/16-IN21K as the IN21K as the pre-trained model. We simply re-
pre-trained model. place the CELoss in the original methods with our
Margin-CE loss.

ImageNet-A BO Inc20  VTAB B0 Inc20

teted 2 A Ar A Ar ImageNet-A B0 Inc20  VTAB B0 Inc10
DRL 0 2 67285 5701 9490 93.97 e et- e b "
DRL 05 2 68960 59.38 9573 95.01 T T
DRL 1 2 68735 58.72 9521 9430 APER+CE  64.63 53.85 90.20 86.16
DRL 3 2 68112 57.47 9473 93.72 ESN+CE 52.66 41.54 86.34 69.23
DRL 5 2 67508 56.35 94.17 9322 EASE+CE  65.34 55.04 93.56 93.55
DRL 05 05 6552 54.97 9465  93.75 APER+MCE  65.54  5425(+04) 9257 88.84(+2.68)
DRL 05 1 6846 58.07 9500 94.16 ESN+MCE  53.94 42.92(+1.38) 88.77 72.61(+3.38)
DRL 05 2 6896 59.38 9573 95.01 EASE+MCE  67.71 58.85(+3.81) 95.36 94.57(+0.98)
DRL 05 3 6817 58.06 9540  94.49
DRL 05 5 6716 57.47 9493  94.16
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Figure 5: DRL: t-SNE Visualization of stage 1 for Figure 6: DRL: t-SNE Visualization of stage 2 for
VTAB Dataset with BO Inc10 Setting VTAB Dataset with BO Inc10 Setting
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Figure 7: DRL w/o Margin-CE loss: t-SNE Visual- Figure 8: DRL w/o Margin-CE loss: t-SNE Visual-
ization of stage 1 for VTAB Dataset with BO Inc10 ization of stage 2 for VTAB Dataset with BO Inc10
Setting Setting

4.3 MORE INVESTIGATION OF DRL

Efficient analysis. This section analyzes the efficiency of our approach by examining the number
of network parameters during training and testing. Let ‘1B’ denote the total number of parameters
for ViT-B/16. Figure [2] demonstrates that our /PA comprises only 0.6% of trainable parameters,
while requiring only (1 + 0.006¢)B parameters for inference, indicating efficiency in both training
and testing phases. More results show in Figure

Visualization. In this section, we employ t-SNE [Van der Maaten & Hinton| (2008)) to visualize the
learned decision boundaries on the VTAB dataset between two incremental stages, as illustrated in
Figure|and[f] For clarity, we represent the classes from the first and second incremental stages, with
each stage comprising 10 classes (VTAB B0 Inc10). As inferred from these figures, DRL exhibits
competitive performance, effectively separating instances into their respective classes. Furthermore,
Figure [/| and Figure [§| indicate that the representation is less discriminal without Margin-CE loss
(‘DRL w/o Margin-CE loss’ refers to training with CELoss instead of Margin-CE loss).

Generalization experiments. To verify Margin-CE loss’s generalization, we integrate it into var-
ious methods. We selected three representative methods: APER, ESN, and EASE. APER is a
prototype-based classifier similar to ours, ESN is network-based, and EASE represents the cur-
rent state-of-the-art. All employed Cross-Entropy Loss (CELoss) for training. Experiments were
conducted by replacing the original methods’ CELoss with Margin-CE loss. Table [5| shows that
Margin-CE loss consistently achieves significant improvement.

5 CONCLUSION

In this paper, we propose a novel non-rehearsal CIL method, Discriminative Representation Learn-
ing (DRL), which consists of an /PA and a Margin-CE loss. IPA chieves a better stability-plasticity
trade-off with high efficiency. Experiments on various datasets demonstrate that our method
achieves new state-of-the-art performance. Overall, our work presents a promising direction for
future research in CIL and its application in real-world scenarios.
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A SUPPLEMENTARY MATERIALS

A.1 INFERENCE DETAILS

Facing the continual data stream, we freeze the trained model ®(-) and extract the center ¢ of each
class:

1
¢ = zjjﬂyj =i)2(x;) (A1)

Here, N is the number of images in class ¢, and I(-) is the indicator function that outputs 1 if
the expression holds and 0 otherwise. The embedding representation for class ¢ in the ¢-th task is

denoted as Fi = | 517 N 2, . IL], where f; L is the embedded [CLS] token in the L-th block.

Note that the for the classes in the ¢-1 stage, we cannot obtain the f;” since we do not have access to
the previous data. Therefor, we employ the “semantic-guided prototype complement strategy Zhou
et al.| (2024c)” to synthesize new features for old classes without accessing any instances of those
classes.

A.2 TRAINING DETAILS

For DRL, the model is trained using an SGD optimizer,with momentum and weight decay parameters
set to 0.9 and 0.0005, respectively. For all six benchmarks, k is set to 2, and 7 is set to 48 in W go.n
and W,,,. In the L-th block of the sub-network, the first lightweight linear layer is W ¢;rq; €
R768X768 and the second linear layer is W eeong € R768% 768,

A.3 EXTRA EXPERIMENTS

In this section, we conduct extra experiments to verify the effectiveness of our method.

There are many methods to fuse old and new features using the transfer gate (Section [3.2). We
consider three approaches and investigate the effectiveness of our learning transfer gate, presenting
the results in TableH Here, ‘DRL+sum’ denotes fi' = f' + £, , ‘DRL + mask-PTM’ denotes
o= ff' + MLf,, and ‘DRL + mask-ALL’ denotes f;* = (1 — ML) ff" + MLf? . The
results confirm that our learning transfer gate is effective, achieving a performance increase of 1.04%
compared to directly summing the old features (i.e., ‘DRL + mask-ALL’ vs. ‘DRL + sum’).

Secondly, Table indicates that utilizing A to replace A° does not affect the plasticity. The
attention matrix A° in PTM relationships among the features that can be directly reused to
our sub-network. Here, ‘reuse attention’ denotes A = A, ‘self-attention’ denotes A® =

S0 ftmaoc(f‘\fﬁélT ), ‘project attention’ denotes the standard attention with learned Q, K, V. Com-

pared to the two methods ‘self-attention’ and ‘project attention’, using A° to replace A° can further
reduce the number of training parameters and the computational complexity of the network, thereby
making our /PA more efficient.

Table Al: Ablation experiments on the gate branch Table A_Z: Ablation experiments on the attent@on
on Imagenet-A and VTAB using ViT-B/16-IN21K as strategy in adapter on ImageNet-A and VTAB using
the pre-trained model. ViT-B/16-IN21K as the pre-trained model.

ImageNet-A BOInc20  VTAB B0 Inc10 ImageNet-A BO Inc20  VTAB BO Inc10
A Ar A Ar A Ar A Ar
DRL + sum 68.349 58.52 94.50 93.97 project+attention  68.78 59.76 95.57 95.14
DRL + mask-PTM ~ 67.296 57.27 94.52 93.83 self-attention 68.62 59.56 9574  95.05
DRL + mask-ALL ~ 68.960 59.38 (+0.86) 95.73 95.01 (+1.04) reuse attention 68.96 59.38 95.73 95.01

Furthermore, we investigate the influence of the logit anchor & with different values. Noting that
the anchor must satisfy 0 < k < s0, where s is a learning scale factor, we conduct experiments
with values in the set {0, 0.5, 1, 2, 3, 5, 10, 20}. Table shows that performance remains stable
when the anchor is in the range [0,5]. Based on Formula |6} If the value of & is too close to s, the
experimental results will not be favorable. The experimental results also confirm this conclusion.
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Table A4: Ablation experiments on the variations in
Table A3: Ablation experiments on the anchor k us-  the feature dimension of the last block using ViT-B/16-

ing ViT-B/16-IN21K as the pre-trained model. IN21K as the pre-trained model.
Metod k leameqs IUENEABOIN o VIAB BOInci0 Method ImageNet-A B0 Inc20  VTAB BO Inc10
A Ar A Ar

DRL 0 1262 68.07 5827 925 9572 9478

DRL 05 L3 6T 584 o8 9582 943 7681925768  68.91 59.23 95.616  94.88
DRL 2 1441 6896 5938 1100 9573 9501 768—:384—768  68.78 59.04 95.506  94.92
DRL 3 1459 69.41 59.59 1225 9554 9474 768—768—768  68.96 59.38 95.73  95.01
DRL 5 1562 68.88 5854 1241 9555 9479 768-—1536—768 63.98 59.24 95.632  95.14
DRL 20 2i0i 6620 553 23 o540 oass 76852304768 6898 5083 95560 94.94

Finally, Table [A4] presents the results of experiments conducted with different configurations of the
two lightweight linear layers used to replace the feedforward network (FFN) in the L-th block. Here,
“768—384—768" denotes the first linear layer is W f;,.5; € R7%8*384 and the second linear layer
is Weeona € R384%768 and so on for others. The results reveal that utilizing “768—768—768’
can perform well in our /PA. This also demonstrates the effectiveness of our DRL, as the learned
representation is more discriminative and achieves good plasticity with fewer training parameters.

3‘&*&’ ig ‘%
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Figure A1: DRL: t-SNE Visualization of stage 1 for Figure A2: DRL: t-SNE Visualization of stage 2 for
CIFAR100 Dataset with BO Inc5 Setting CIFAR100 Dataset with BO Inc5 Setting

A.4 VISUALIZATION.

In this section, we also employ t-SNE [Van der Maaten & Hinton| (2008) to visualize the learned
decision boundaries on the CIFAR100 dataset between two incremental stages, as illustrated in Fig-
ure[AT]and[A2] Each stage comprises 5 classes (CIFAR100 BO Inc5). Based on these figures, DRL
demonstrates competitive performance by effectively distinguishing instances into their respective
classes.
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