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Abstract
Recent approaches to representation learning have
successfully demonstrated the benefits in hyper-
bolic space, driven by an excellent ability to
make hierarchical relationships. In this work, we
demonstrate that the properties of hyperbolic ge-
ometry serve as a valuable alternative to learning
hierarchical affinity for spatial propagation tasks.
We propose a Hyperbolic Affinity learning Mod-
ule (HAM) to learn spatial affinity by considering
geodesic distance on the hyperbolic space. By
simply incorporating our HAM into conventional
spatial propagation tasks, we validate its effec-
tiveness, capturing the pixel hierarchy of affinity
maps in hyperbolic space. The proposed method-
ology can lead to performance improvements in
explicit propagation processes such as depth com-
pletion and semantic segmentation.

1. Introduction
The goal of an affinity map is to model the pixel-wise rela-
tions of given input images for low-level vision tasks, such
as the image segmentation task (Shi & Malik, 2000; Jiang
et al., 2018; Liu et al., 2017) and the scene depth compu-
tation (Cheng et al., 2018; Park et al., 2020; Cheng et al.,
2020; Lin et al., 2022; Choe et al., 2021; Shin et al., 2023),
etc. In early works (Weickert, 1998; Levin et al., 2004;
Yatziv & Sapiro, 2006; Farbman et al., 2010; Shi & Malik,
2000), the pixel-wise relation is based on parametric models
driven by low-level information in images, including dis-
tinctive local keypoints or edge boundaries. With the advent
of convolution neural networks (CNNs), it is now feasible to
define pixel-wise affinity, considering scene contexts using
learned parameters and convolution kernels.

Recently, learning affinity from CNNs was primarily devel-
oped for spatial propagation tasks, called Spatial Propaga-
tion Networks (SPNs) (Maire et al., 2016; Liu et al., 2017;
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Figure 1. Comparison results between baseline and HAM. (a) Ex-
amples of spatial propagation from a conventional method (Cheng
et al., 2018) and our method with two initial seeds and an RGB
image. (b) Visualizing pixel features to construct affinity map on
the 2D Poincaré ball using UMAP (McInnes et al., 2018). The
red boxes indicate affinity visualization using PCA (Jolliffe, 1986).
Further details and examples are reported in Sec. 5.3.

Bertasius et al., 2017). Starting with these pioneering stud-
ies, several works (Cheng et al., 2018; Jiang et al., 2018)
have addressed an inherent problem of existing SPNs, lim-
ited local receptive fields. To solve this problem, the studies
adopt either pyramidal encoder-decoder networks (Jiang
et al., 2018) or iterative propagation schemes (Cheng et al.,
2018).

Nonetheless, as shown in Fig. 1-(a), these works still suffer
from the bleeding error at object boundaries where noises
or smooth intensity changes occur in images. This demon-
strates that ill-defined affinities cause inevitable errors by
invading another region, especially the nearby boundary.

To alleviate the vagueness of measuring pixel affinity, a
hierarchical structure was proposed as a solution in several
pioneer studies. Specifically, previous studies build tree
structures for the pixel distance computation to design an
edge-preserving filter (Bao et al., 2013; Dai et al., 2015),
conduct non-local cost aggregation (Yang, 2012; 2014), and
measure the image boundary connectivity (Tu et al., 2016).
Unfortunately, these interesting ideas cannot be formulated
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to address the problem in conventional SPNs because it is
hard to embed tree structures into Euclidean space without
high distortion, as demonstrated in (Linial et al., 1995).

In terms of hierarchical representation, hyperbolic em-
bedding is well-known to continuously embed tree struc-
tures with arbitrarily low distortion (Krioukov et al., 2010;
Sarkar, 2012) and has been proposed as an alternative way
to learn hierarchical representations and graph-structured
data (Nickel & Kiela, 2017; 2018; Tifrea et al., 2019). Com-
pared to Euclidean space, the volume of hyperbolic space
grows exponentially with the radius, allowing exponentially-
growing hierarchies and tree-like structures to be embedded
with low distortion (Sala et al., 2018). By adopting hy-
perbolic embedding in learning frameworks, hierarchical
relations can be further formulated due to their ability to
represent hierarchical data.

Taking full advantage of the hyperbolic property, in this
paper, we first propose a Hyperbolic Affinity learning Mod-
ule (HAM) to construct hierarchical pixel affinity maps for
spatial propagation tasks. Our design relies on two key in-
sights: (1) applying the hyperbolic geometry into the image
pixel domain (2) specializing the hyperbolic neural oper-
ation to account for the hierarchical relationship among
pixels. In particular, while a conventional operation in Eu-
clidean space cannot impose a hierarchical relation on pix-
els, HAM can construct a priority-based hierarchy using our
novel geodesic weight and β-priority. The geodesic weight
provides more attention to the geodesic-closest pixels to
keep the hierarchical structure and selectively aggregate im-
portant pixels. The β-priority rearranges the pixels along
with the hyperbolic distances, which implicitly supports the
positional information for transformed pixel features. To
demonstrate the validity and efficacy, we conduct extensive
experiments and analysis on spatial propagation tasks, in-
cluding depth completion and semantic segmentation, even
with the same number of parameters as traditional SPNs.

2. Related Work
Spatial Propagation Network. Propagating initial seeds
(i.e., user-scribble or initial prediction) and finding the opti-
mal groupings of pixels (i.e., affinity maps) are necessary for
low-level vision tasks: image segmentation (Shi & Malik,
2000), object semantic segmentation (Jiang et al., 2018; Liu
et al., 2017), colorization (Levin et al., 2004), video recogni-
tion (Wang et al., 2018), and depth completion (Cheng et al.,
2018; 2019). With the advent of CNN era, learning affinities
from CNNs for spatial propagation has received high inter-
est. Due to the hierarchical nature of the features (Zeiler &
Fergus, 2014), SPNs learn task-specific affinity with high-
level features inferred with feature extractor (Fig. 4). This
mechanism is successfully applied to various vision tasks
with the highly engineered implementation of CNNs, such

as depth completion (Cheng et al., 2018; Park et al., 2020;
Lin et al., 2022) and semantic segmentation (Liu et al.,
2017; Jiang et al., 2018; Bertasius et al., 2017). Despite
their success, inferred affinity maps have difficulty handling
boundary ambiguities due to an inherent problem of the
conventional convolution operations that only cover grid
data in the Euclidean space.

Hyperbolic Neural Network. Existing neural architec-
tures that utilize hyperbolic geometry can be divided into
two approaches. The first approach focuses on learning
hyperbolic embeddings that lead to promising performances
in various Natural Language Processing (NLP) (Nickel &
Kiela, 2018; Tifrea et al., 2019; Nickel & Kiela, 2017).
The second approach establishes deep hyperbolic neural
networks, whose representative works include the hyper-
bolic multi-layer perceptrons (Ganea et al., 2018), hyper-
bolic graph convolutional neural networks (Dai et al., 2021;
Chami et al., 2019; Liu et al., 2019), hyperbolic attention
networks (Gulcehre et al., 2019), and hyperbolic convolu-
tion layers (Ryohei et al., 2021).

In the visual perception tasks, several studies have shown
that the hyperbolic embeddings can provide a better alterna-
tive (e.g., image few-shot (Khrulkov et al., 2020; Gao et al.,
2021; Ma et al., 2022), action search (Long et al., 2020)
metric learning (Yan et al., 2021; Ermolov et al., 2022), 3D
voxel-grid biomedical image (Hsu et al., 2021), and seman-
tic segmentation (GhadimiAtigh et al., 2022)). The most
relevant work to this paper would be (GhadimiAtigh et al.,
2022) which takes hyperbolic representation to the pixel-
level; however, they concentrate on hierarchical relations
among semantic classes, i.e., label hierarchy as (Liu et al.,
2020; Long et al., 2020). By contrast, we design a new
convolutional operation in the hyperbolic space to repre-
sent hierarchical property at the pixel-level, and it can be
plugged into the standard SPNs (Jiang et al., 2018; Cheng
et al., 2018) without any additional learnable parameters.

3. Mathematical Preliminaries
In this section, we review a definition of a hyperbolic embed-
ding on a Poincaré ball and the details of the fundamental
arithmetic operations (Sec. 3.1). We then discuss the reason
why hyperbolic geometry is effective for the spatial propaga-
tion task (Sec. 3.2). Lastly, we provide a quantification anal-
ysis of hyperbolicity that indicates a tree-likeliness of the
embedded features to verify the validity of utilizing hyper-
bolic representation for pixel affinity construction (Sec. 3.3).

3.1. Background of Hyperbolic Geometry

The hyperbolic space is a Riemannian manifold with a con-
stant negative sectional curvature equipped with hyperbolic
geometry. To model this space, we follow a Poincaré ball
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model to differentiably connect Euclidean space and hyper-
bolic space, which is employed in most preceding works
(Nickel & Kiela, 2017; Ryohei et al., 2021; Khrulkov et al.,
2020; Ermolov et al., 2022; GhadimiAtigh et al., 2022). The
Poincaré ball model (Dnκ, gκ) with curvature κ is defined
by a manifold Dnκ = {x ∈ Rn | κ‖x‖ < 1} equipped with
a metric gκ, where ‖ · ‖ denotes the Euclidean norm. The
induced distance between two points u, v ∈ Dnκ is given by

dκ(u, v) =
1√
κ

cosh−1

(
1 +

2κ‖u− v‖2

(1− κ‖u‖2)(1− κ‖v‖2)

)
,

(1)
Since hyperbolic spaces are not vector spaces in a tradi-
tional sense, we use the formalism of Möbius gyrovector
space (Ungar, 2008; 2001) which is a generalization of Eu-
clidean vector spaces to models of hyperbolic space.

Möbius addition. For a pair (u, v) ∈ Dnκ , the equation of
the Möbius addition is defined as follows:

u⊕κv =
(1 + 2κ〈u, v〉+ κ‖v‖2)u+ (1− κ‖u‖2)v

1 + 2κ〈u, v〉+ κ2‖u‖2‖v‖2
, (2)

where 〈·, ·〉 is the Euclidean inner product.

Exponential and logarithmic mapping. To emembed
Euclidean vectors into the hyperbolic space, one first needs
to define a mapping function from Rn to Dnκ , and vice versa.
The exponential and the logarithmic mapping are bijective
functions which have appealing forms at an origin, namely
for x ∈ Rn and u ∈ Dnκ :

expκ0 (x) = tanh(
√
κ‖x‖) x√

κ‖x‖
, (3)

logκ0 (u) = tanh−1(
√
κ‖u‖) u√

κ‖u‖
, (4)

Möbius multiplication. For an arbitrary function f :
Rn → Rm in Euclidean space, the Möbius version of f
is a function that maps from Dn to Dm in the hyperbolic
space using Eq (3). Similarly, we can derive the Möbius
matrix-vector multiplication between the matrix M and in-
put u, which is defined as:

M⊗κu=(1/
√
κ) tanh

(
‖Mu‖
‖u‖

tanh−1(
√
κ‖u‖)

)
Mu

‖Mu‖
.

(5)

Note that the Möbius scalar multiplication also can be ob-
tained by projecting x in the tangent space at 0, multiplying
this projection by the scalar in the tangent space.

3.2. Rationale: Hyperbolic Representation for Affinity

In order to explain the hyperbolic representation as being a
pixel affinity module, we offer theoretical insights, specifi-
cally highlighting the essential role of hyperbolic geometry
in pixel-wise relationships through remarks and conjecture.
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Figure 2. (a) An illustration of the feature embedding into Eu-
clidean and hyperbolic space. (b) Comparison of the ratio distance
(RD, Eq (8)) between Euclidean and hyperbolic space. l denotes
the distance from the origin, ||p|| = ||q|| = l.

Remark 3.1. [Distinction property] Let n-dimensional
x, y ∈ Rn are unit vectors and points u, v are obtained
by projecting x, y from the tangent space at 0 with the ex-
ponential map Eq (3) in Poincaré ball Dn1 with curvature
1. Since the x, y are unit vectors, the points u, v ∈ Dn1 are
defined as below:

u = tx, v = ty (6)

where t = tanh(1) ' 0.7616. Now, we can compute the
hyperbolic distance dκ=1 with Euclidean distance dE =
||x− y|| as below:

dκ=1(u, v) ' cosh−1(1 + 6.5774 ∗ dE(x, y)2) (7)

Since x, y are unit vectors in Euclidean space, the distance
ranges from 0 to 2. According to the Eq (7), if dE is close
to 0, which means that two pixels belong to the same label
in the spatial propagation, dκ=1 also has almost zero values.
In contrast, if the two pixels are irrelevant, the hyperbolic
distance has at least 2x larger distances than the Euclidean
distance between corresponding points. In practice, the
bleeding error occurs when gradients at edge boundaries are
smoothly changed. Here, hyperbolic feature embedding is
helpful for alleviating vagueness by boosting the distinction.
Note that this distinction property of hyperbolic features
can be observed in Fig. 1-(b) and Fig. 2-(a).
Remark 3.2. [Exponential growth property] The surface
area of an (n − 1)-dimensional sphere of radius r in n-
dimensional Euclidean space Rn is SRn(r) = αnr

n−1,
and n-dimensional hyperbolic space Hn is SHn(r) =
αn sinh(r)n−1 where αn = πn/2/(n/2)! is the volume
of a ball of unit radius. The growth of the surface is poly-
nomial in Euclidean space, but it is exponential (SHn(r) ∼
αne

r(n−1)) for hyperbolic space.

To ease understanding of the exponentially growing hyper-
bolic distance, we can consider two points, p and q, on
a unit disk, which have the same length from the origin
(||p|| = ||q|| = l) and its ratio distance (RD) is defined as:

RD(p, q) =
dE/H(p, q)

dE/H(q, 0) + dE/H(p, 0)
, (8)
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Table 1. Calculate relative δ-hyperbolicity on various dataset using
learned features to construct affinity or similarity map within SPNs.
Results are averaged across testset of size 1000 and the standard
deviation for all the experiments did not exceed 0.002.

Depth Completion Semantic Segmentation

NYUv2 KITTI ScanNet Pascal-VOC Pascal-Context ADE20K

δhyp 0.326 0.263 0.271 0.237 0.198 0.259

where dE and dH denote Euclidean and hyperbolic dis-
tance (Eq (1)), respectively. As these points move toward
the outside of the disk, Euclidean and hyperbolic spaces
have different RD values. According to Fig. 2-(b), the ratio
value is constant in Euclidean space; however, it goes to 1 in
the hyperbolic space. This nature of hyperbolic space is the
key property to constructing robust affinity in the hyperbolic
space by enlarging the distance (i.e., low affinity).

Conjecture 3.3. Hyperbolic representation alleviates the
bleeding problem by enhancing the distinction between unre-
lated pixel features. The distinction property (Remark 3.1)
and the exponential growth property (Remark 3.2) compar-
ing Euclidean space guarantee high-fidelity pixel relations
for spatial propagation tasks.

3.3. Pixel-level Hyperbolicity

To compute the hyperbolicity of the pixel affinity map,
which is used to measure a “tree-likeness”, we follow the
quantitative analysis described in (Khrulkov et al., 2020;
Ermolov et al., 2022) to show the efficacy of the hyperbolic
embedding of the feature map extracted from images. They
adopt a relative δ hyperbolicity, δhyp(X), of which low
value denotes that the set X has an underlying hyperbolic
geometry, i.e., it is an approximately tree-like structure. As
shown in Tab. 1, the δhyp are significantly close enough
to 0. Therefore, it seems to be an appropriate choice to
apply hyperbolic embedding into pixel affinity construction.
Further details are reported in the supplemental materials.

4. Hyperbolic Affinity Learning
In this work, we design a hyperbolic neural operation to
take advantage of the representation power of the hyper-
bolic geometry. By embedding pixel features to hyperbolic
space and aggregating them, we can embed hierarchical
property in the pixel affinity. Instead of adopting a graph
neural network such as prior works (Chami et al., 2019; Liu
et al., 2019), we design a hyperbolic convolution operation
to utilize a local inductive bias and follow the affinity con-
struction mechanism of previous SPNs, which adopt simple
2D convolution layer to learn task-specific affinity.

For this, we first define the naı̈ve hyperbolic convolu-
tion (Ryohei et al., 2021) using concatenation operation and

Algorithm 1 Hyperbolic Affinity Learning Module
Input: image features F , a set of signed distance from a
center of the conv weight Ω, a bias term b, and convolution
kernel matrix W.
Function HAM(F , Ω, b, W)

1: for f(x,y) in F do
2: Projection: h(x,y) =M(f(x,y))
3: Concatenation: [h̄1, ...] = Cgeo

(i,j)∈Ω(h(x+i,y+j))

4: Geo-weight: [ḡ1, ...] = ∆dκ(h(x,y), [h̄(i,j)])

5: Convolution: h̃(x,y)=W ⊗κ [ḡ1 ⊗κ h̄1, ...]⊕κ b
6: end for

output Hyperbolic affinity features h̃(x,y) ∈ H̃

a fully connected layer in the hyperbolic space (Sec. 4.1). To
enhance the hierarchical relationships among pixel features,
we propose a specialized hyperbolic convolutional operation
for robust spatial propagation, called HAM (Sec. 4.2). We
lastly incorporate our method into the conventional SPN
formulations (Sec. 4.3). The overall algorithm scheme is
described in Fig. 3 and Algorithm 1.

4.1. Hyperbolic Convolution Layer

Given image feature maps F in Euclidean space, we pixel-
wisely embed an image feature vector at a pixel (x, y) (i.e.,
f(x,y)∈RC ) into the hyperbolic space. Here, we utilize an ex-
ponential mappingM(·)= expκ0 (·) on the Poincaré ball DCκ
as a bijective function between the Euclidean space and the
hyperbolic space via Poincaré curvature κ.

The most intuitive way for the hyperbolic neural operation
to construct a pixel affinity map is to apply a conventional
convolution into features after passing through the bijective
mapping functions. However, to fully take advantage of
the hyperbolic representation, we concatenate hyperbolic
features to regularize expected values of vector norms and
aggregate them using Poincaré fully-connected layer. To
operate the hyperbolic convolution in these manners, we
adopt a generalization technique proposed in (Ryohei et al.,
2021) with a coefficient βn=B(n2 ,

1
n ), where B is a Beta

distribution as below:

Cβ(h1, . . .hN ) =M
(

(βnβ
−1
n1

fT1 , ..., βnβ
−1
nN

fTN )T
)
,

(9)
The points hi in the Poincare ball Dni

κ are projected back
fi=M−1(hi) with the scalar coefficient βn. Note that N
indicates the number of concatenated points, n =

∑N
i=1 ni.

Then, we can formulate a naı̈ve hyperbolic convolution with
hyperbolic feature h(x,y)=M(f(x,y)) for a 2-dimensional
image domain as below:

ĥ(x,y) = W ⊗κ Cβ(i,j)∈Ω(h(x+i,y+j))⊕κ b, (10)

where W∈RCout×Cin×γ×γ is a convolution weight ma-
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Figure 3. (a) Convolutional neural operation on the hyperbolic space utilizing Poincaré ball model. For instance, the green feature is the
nearest neighbor to the center feature (red) within a hyperbolic convolutional kernel. The orange point represents the adjacent pixel in
Euclidean space and the farthest neighbor in hyperbolic space. (b) Comparison propagation mechanism between hyperbolic and Euclidean
approach. The β-priority enhances the positional relation in the hyperbolic operation, and the Geo-weight prioritizes semantically close
pixel features. This allows HAM to achieve well-structured hierarchical affinity compared to Euclidean and naı̈ve approaches.

trix whose kernel size is γ, and b ∈ DCout
κ is a bias

term. Ω={(i, j)∈Z2 | (−γ′,−γ′), ..., (γ′, γ′), γ′=bγ2 c}
is a set of signed distances from a center of the con-
volution kernel to others. In particular, given h(x,y)

whose channel length is Cin on the Poincaré ball, the fea-
tures {h(x′,y′) | (x′, y′) ∈ Ω} are concatenated using the
β-concatenation. Then, naı̈ve hyperbolic convolution pro-
ceeds the convolution operation using Cβ(i,j)∈Ω(h(x′,y′)) and
convolution weight W.

4.2. Hyperbolic Affinity Learning Module

The Eq (10) assumes that the hyperbolic features h are
uniformly distributed in the hyperbolic space as if pixel
features f are on regular grids in the image domain. After
we embed pixel features into hyperbolic space with specific
curvatures, these features can actually be irregular and un-
ordered in hyperbolic space. In other words, the inherent
spatial relationship among pixels on the image domain is
distorted in hyperbolic space. To alleviate the issue, we
propose a β-priority and a geodesic weight, which considers
the relative importance of among pixels in hyperbolic space
and explicitly encourages semantically close features.

β-priority. In the Poincaré ball, hyperbolic features can
have hierarchical properties (Sala et al., 2018; Nickel &
Kiela, 2017), and their similarity can be measured using
a normalized feature distance. It implies that a similarity
between pixel features f can be different from the similarity
between hyperbolic features h. To further exploit their hi-
erarchical relations in hyperbolic space, we need to assign
a priority for the closer hyperbolic features h=M(f). Ac-
cordingly, we apply a hyperbolic convolution along with
their inverse distances as:

[
h̄1, ..., h̄γ2

]
= Cgeo

(i,j)∈Ω(h(x+i,y+j)), (11)

where Cgeo
(i,j)∈Ω(·) is a sorted concatenation that rearranges

features in the order of the normalized distance between
a reference pixel (x, y) and its neighbors (x + i, y + j),
where h̄i denotes the i-th closest neighbor (Fig. 3-(b)). The
operation allows informative feature selection, endowing
convolution filters in hyperbolic space with consistent posi-
tional relations.

Geodesic weight. In addition, we assign weight values
based on the geodesic distances in the convolution operation.
HAM learns to consider hierarchical relationships between a
reference pixel and aggregated pixels through the additional
weights. To do this, we normalize the geodesic distances
among pixels and adopt weighted aggregation ḡ(x+i,y+j)⊗κ
h̄(x+i,y+j) as follows:

ḡ(x+i,y+j) = ∆dκ(h(x,y),h(x+i,y+j)), (12)

where ∆dκ(·, ·) is a normalized distance between two points
on the Poincaré ball defined as:

exp(dκ(h(x,y),h(x+i,y+j)))∑
(i′,j′)∈Ω exp(dκ(h(x,y),h(x+i′,y+j′)))

, (13)

With our β-priority and geodesic weight, HAM takes ad-
vantage of the hierarchical representations h̃(x,y) in the hy-
perbolic space modeled with the Poincaré ball, which is
formulated as follows:

h̃(x,y) = W⊗κCgeo
(i,j)∈Ω(ḡ(x+i,y+j) ⊗κ h̄(x+i,y+j))⊕κb,

(14)
The aggregated features h̃(x,y) are back-projected into the
Euclidean space, M−1(h̃(x,y)). Compared to the naı̈ve
hyperbolic convolutional operation (Eq (10)) that follows
pre-defined pixel orders in the Euclidean space, the proposed
HAM assigns higher weights to closely located points in
hyperbolic space. As a result, with geodesic information,
our method can focus more on spatial connectivity.
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Table 2. Quantitative results of depth estimation on NYUv2 (Silberman et al., 2012), Virtual-KITTIv2 (Cabon et al., 2020), and
ScanNet (Dai et al., 2017). CSPN (Cheng et al., 2018) is a baseline architecture for both the naı̈ve and HAM. (Unit: meter, Bold: Best)

NYUv2 ScanNet Virtual-KITTIv2

RMSE MAE iRMSE iMAE REL δ11.25 RMSE MAE iRMSE iMAE REL δ11.25 RMSE MAE iRMSE iMAE REL δ11.25

CSPN 0.116 0.048 0.018 0.007 0.017 0.993 0.080 0.027 0.027 0.009 0.014 0.993 12.233 8.261 0.035 0.023 0.606 0.529
Naı̈ve 0.108 0.043 0.017 0.006 0.015 0.994 0.078 0.027 0.026 0.009 0.014 0.993 10.946 7.266 0.034 0.022 0.539 0.542
Ours 0.102 0.036 0.016 0.006 0.014 0.994 0.073 0.024 0.027 0.009 0.013 0.993 9.612 6.661 0.030 0.021 0.489 0.561
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Figure 4. The orange-colored areas indicate propagation parts
where we replace the original affinity module with our HAM.
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Figure 5. Qualitative comparison on NYUv2 dataset (Silberman
et al., 2012) for depth completion. We display predicted depth
and their 3D mesh results. It shows that HAM helps to compute
correct dense depth in various shapes of regions, including slanted
objects, homogeneous surfaces, and thin structures.

HAM constructs pixel-level hierarchies through the pro-
posed hyperbolic embeddings based on their relation to the
hyperbolic space as shown in Fig. 1-(b). We observe that
well-separated foreground, background, and boundary pix-
els can be achievable from ours unlike the naı̈ve approach.

4.3. Incorporation of HAM with SPNs

We introduce the incorporation of HAM into conventional
CNN-based SPNs. For each propagation step t and an em-
bedded pixel p at (x, y), we formulate a spatial propagation
in the hyperbolic space as follows:

pt+1
(x,y) = A(x,y) � p0

(x,y) +
∑

(l,m)∈N(x,y)

A(l,m) � pt(l,m), (15)

where A is an affinity map that is back-projected to the
Euclidean space from the hyperbolic feature map H̃. The
� operator represents an element-wise product, and N(x,y)

indicates the locations of neighbor pixels in p. We position
HAM at the end of the affinity branch in the SPNs (Fig. 4),
where the convolutional features in the top layer have a more
hierarchical property than the features at the bottom layers.

5. Experiments
We conduct a variety of experiments on spatial propagation
tasks, including depth completion (Sec. 5.1) and seman-
tic segmentation (Sec. 5.2) as shown in Fig. 4. Moreover,
we provide ablation studies to describe the effects of each
component in HAM and the robustness of our method con-
cerning input sparsity and feature compression (Sec. 5.3).
Note that we describe details about the experimental setup,
more quantitative and qualitative results, and further analy-
sis in the supplemental materials.

5.1. Depth Completion

Given an RGB image and a sparse depth map (e.g., point
cloud), the depth completion task produces a dense depth
map at a camera viewpoint (Fig. 4 (a)). From this prob-
lem definition, the sparse depth samples can be regarded
as given seeds, and SPNs are trained to infer proper pixel
affinities to propagate depth values into entire pixels. A pio-
neering study, Convolutional Spatial Propagation Network
(CSPN) (Cheng et al., 2018), treats sparse depth samples as
seeds and infers affinity maps to operate N iterations of spa-
tial propagation. We select this fully convolutional model
as a baseline and replace convolutional layers in the affinity
branch with our HAM. With this baseline, we conduct the
depth completion task on the NYUv2, the ScanNet, and the
Virtual-KITTIv2. Note that we follow the original training
scheme in (Cheng et al., 2018) for a fair comparison.

We conduct our experiment on the NYUv2 dataset (Silber-
man et al., 2012) which provides RGB images and dense
depth pairs for 464 indoor scenes captured from RGB-D
sensors. Using an official train/test split, we generate ran-
dom depth samples as proposed in the baseline model, as
n Fig. 5. We compare the baseline model (CSPN) and naı̈ve
hyperbolic approach with our HAM using official evalua-
tion metrics (Eigen et al., 2014; Uhrig et al., 2017)1: RMSE,
MAE, iRMSE, iMAE, REL, and δ1

1.25. As shown in Tab. 2,
our method outperforms the baseline as well as the basic hy-
perbolic convolution operation. The strength of our method
is qualitatively supported by Fig. 5. The results show that
HAM preserves 3D shapes of slanted objects, homogeneous
surfaces, and thin structures well. According to our analysis
of pixel embeddings in Fig. 7-(a), we deduce pixel affinities

1The details are described in our supplementary material.
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Table 3. Quantitative semantic segmentation results on PASCAL VOC 2012 (Everingham et al., 2015). Following (Jiang et al., 2018), we
set simplified DeeplabV2 (Chen et al., 2018) models as our baseline. (Bold: Best, Underline: Second Best)

Semantic Segmentation (Unit: mIoU, Bold: Best, Underline: Second Best)

plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train TV mIoU Pix-Acc

Sim-Deeplab 79.37 35.94 76.15 59.38 65.21 82.15 76.67 81.82 27.05 68.79 47.99 75.10 67.83 74.66 78.46 48.56 70.49 40.47 80.76 68.47 66.39 90.06
DifNet 82.97 37.36 82.82 52.98 72.63 86.56 79.76 87.99 28.43 75.87 51.81 80.67 79.61 75.00 82.77 53.69 77.18 40.75 83.15 68.18 70.02 91.58
Naı̈ve 86.09 38.40 79.71 54.92 68.68 85.09 81.89 88.05 35.38 78.84 47.35 79.54 77.46 78.08 82.88 50.94 82.71 40.35 80.00 73.96 70.49 91.53
Ours 84.90 37.89 82.02 60.61 67.82 85.13 83.41 87.40 36.37 81.12 47.85 78.54 77.30 78.52 81.26 57.73 81.38 42.56 81.37 71.19 71.16 91.61

Input image GT Sim-Deeplab DifNet Naïve Ours

Figure 6. Qualitative results on Pascal VOC 2012 dataset (Evering-
ham et al., 2015). It demonstrates our HAM yields high accuracy
in the estimation of thin structures and objects’ boundaries, which
exhibits a similar tendency to the depth completion task.

Table 4. Quantitative semantic segmentation results on various
datasets. (Bold: Best, Underline: Second Best)

Pascal Context NYUv2 ADE20K
mIoU Pix-Acc mIoU Pix-Acc mIoU Pix-Acc

Sim-Deeplab 57.12 72.69 28.42 57.09 21.69 60.09
DifNet 59.77 74.19 28.91 57.48 23.30 63.21
Naı̈ve 60.18 74.51 28.19 56.78 23.44 63.92
Ours 60.30 74.81 30.45 58.97 25.28 63.94

are well clustered along with their hierarchy in hyperbolic
space, regardless of their shapes in Euclidean space.

Virtual-KITTIv2 (Cabon et al., 2020) is a photo-realistic
synthetic dataset with a dense depth map, and ScanNet (Dai
et al., 2017) provides images and depth maps in indoor envi-
ronments. We split the virtual-KITTIv2 into one scene
(Scene-02) for validation and the other scenes (Scene-
01,06,18,20) for training without any temporal overlap be-
tween them. For ScanNet, we follow the official train/test
split: 1,513 scenes for training and 100 scenes for the test.
We comply with the authors’ guideline of (Cheng et al.,
2018) for depth sampling on both datasets for both training
and evaluation. Tab. 2 turns out that HAM consistently out-
performs the comparison methods in almost metrics without
additional learnable parameters. Thanks to representation
power and spatially-varying weights based on hyperbolic ge-
ometry, there are significant margins in both datasets (about
10% lower RMSE) over the baseline method.

5.2. Semantic Segmentation

Semantic segmentation aims to perform pixel-wise classi-
fication, which can be formulated as spatial propagation.
In terms of spatial propagation, the semantic segmentation

needs to infer both an initial estimate and a similarity map
as an affinity, as illustrated in Fig. 4 (b).

DifNet (Jiang et al., 2018) presents a network that utilizes a
cascade of random walks to approximate a diffusion process.
It initially detects seed pixels from an input image and com-
putes similarity maps, and then propagates the seed infor-
mation to the whole semantic map along with the estimated
similarity maps. In this work, we select it as a baseline
network for our semantic segmentation task. For a fair com-
parison, we use an identical backbone network (Chen et al.,
2018) and take the same propagation process (i.e., 5 random
walks with 5 transition matrices for final estimation).

Augmented Pascal VOC 2012 (Everingham et al., 2015)
dataset provides 10,582 training, 1,449 validation, and 1,456
test images with pixel-level labels in 20 foreground object
classes and one background class. As shown in Tab. 3, our
HAM outperforms the baseline as well as the naı̈ve approach.
The performance of the naı̈ve is even worse than that of the
baseline method working in Euclidean space regarding pixel
accuracy. In particular, the qualitative results from our HAM
in Fig. 6 yield high accuracy when estimating thin structures
and objects’ boundaries. This tendency seems similar to the
depth completion task in Sec. 5.1. We will further describe
the fundamental reasons for this tendency regarding affinity
computation in Sec. 5.3.

We validate the scalability of our method on larger datasets,
i.e., NYUv2 (Silberman et al., 2012), Pascal-Context (Gupta
et al., 2013), and ADE20K (Zhou et al., 2017). Follow-
ing (Gupta et al., 2013), we conduct a semantic segmenta-
tion experiment on NYUv2 dataset (Silberman et al., 2012)
which provides 1,449 images and 40 category object labels.
We also report results on the PASCAL-Context dataset with
10,103 images. We use 34 object classes provided by (Mot-
taghi et al., 2014) and ResNet50 as the backbone to train all
methods for 200 epochs. ADE20K contains 22,210 images
from 150 classes and is split into 20,210 in the train set and
2000 images in the test set.

As reported in Tab. 4, our HAM outperforms the compari-
son methods, even with the increasing number of semantic
labels. It is particularly notable that the performance dif-
ference between ours and naı̈ve on NYUv2 and ADE20K
is about 2% without additional learnable parameters. We
observe that HAM is effective for thin-structure object.
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w/o𝛽𝛽-priorityw/oGeo-weight HAMInput image & GT

1

23

1
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3

(b) Semantic Segmentation

Input image

w/o  𝛽𝛽-priority
(a) Depth Completion

w/o  Geo-weight

GT Propagation direction

HAM

Figure 7. Affinity analysis. (a) Comparison of affinity maps where HAM captures boundary information well. Note that we use a Principle
Component Analysis (Jolliffe, 1986) for visualization. (b) Similarity maps visualization under three selected nodes ( 1 : person, 2 :

bicycle, and 3 : background). Nodes with more red highlights are more similar to the selected node.

Table 5. Ablation study on NYUv2 (Silberman et al., 2012) and PASCAL VOC 2012 datasets (Everingham et al., 2015). We report IoUs
for selected classes to highlight the effectiveness of each component in HAM. The mIoU represents the average over all the classes of
PASCAL VOC 2012 dataset. (Bold: Best)

Depth Completion (Unit: meter, Bold: Best) Semantic Segmentation (Unit: mIoU, Bold: Best)

RMSE MAE iRMSE iMAE REL δ11.25 δ21.25 boat bottle chair cow mbike plant train mIoU
w/o β-priority 0.1047 0.0403 0.0158 0.0059 0.0137 0.9942 0.9990 58.57 65.42 34.72 77.84 76.79 55.67 79.37 70.77

w/o Geo-weight 0.1050 0.0409 0.0162 0.0060 0.0140 0.9940 0.9990 60.26 64.85 32.07 78.98 75.83 56.16 80.23 70.91
Ours 0.1022 0.0395 0.0158 0.0059 0.0136 0.9942 0.9991 60.61 67.82 36.37 81.12 78.52 57.73 81.37 71.16

Table 6. Quantification analysis of Fig. 7. To quantify each affinity
and similarity map, we calculate the propagation cost calculated
with Eq (16) based on the ground truth and the inferenced affinity
of pixels on the propagation path.

Method Depth Completion Semantic Segmentation

w/o β-priority 0.85 0.31
w/o Geo-weight 0.81 0.33

Ours 0.76 0.25

5.3. Ablation Study

β-priority and geodesic weight. We conduct an ablation
study of HAM by intentionally omitting each component, β-
priority, and geodesic weight. As shown in Tab. 5 and Fig. 7,
both β-priority and geodesic weight consistently improve
the performances of depth completion as well as seman-
tic segmentation. We observe that β-priority is robust in
capturing thin structures due to their priority-based con-
catenation scheme that selects the most correlated signals.
Furthermore, in Fig. 7-(b), the geodesic weight emphasizes
the correlated attentions (red) and suppresses the redundant
similarities (blue), which is beneficial to cope with bound-
ary ambiguities in the semantic segmentation. Additionally,

to verify the numerical results of Fig. 7, we quantify each
affinity and similarity map in the following steps:

1. Sample pixels (i.e., seed) at sparse depth or initial se-
mantic and corresponding pixels at a certain distance.

2. Calculate a Propagation Cost between the ground truth
Dgt of the sampled pixels and the mean affinity Amean
on the propagation path as follows2:

Propagation Cost = cos(
π

2
Amean −

π

20
Dgt). (16)

3. Iterate 1000 times for (1) and (2) and average the cal-
culated cost for spatial propagation in the scene.

By doing this, we can compare the cost for propagation
between two points. As shown in Tab. 6, HAM has the
lowest value, which indicates it constructs the most high-
fidelity relationship between pixels and the most accurate
affinity and similarity map.

2Since the ranges of mean affinity and ground truth for the
NYUv2 depth dataset are 0≤Amean≤1 and 0≤Dgt≤10, respec-
tively, we normalize each value and utilize a periodic function to
make the cost value from 0 to 1.
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Analysis of affinity and similarity map. We provide fur-
ther analysis of our HAM with respect to the affinity and
similarity map. In the depth completion network, we follow
the visualization scheme in (Tang et al., 2020) to depict
the affinity map (i.e., the direction of pixel-wise propaga-
tion). As shown in Fig. 7-(a), our HAM captures the depth
boundaries well where usually uncertain in the original prop-
agation approaches, resulting in distinctive propagation.

In the semantic segmentation task, a similarity map repre-
sents a pixel-wise feature similarity that guides the diffusion
of initial seeds in a coarse-to-fine manner. According to
Fig. 7-(b), the inferred similarity maps using HAM can
identify fine-grained affinities among pixels. It also demon-
strates that our method can capture long-range connections
(node 1) and achieve robustness in identifying thin struc-
tures (node 2) as well as backgrounds (node 3). Based on
the observations, we argue that HAM takes advantage of
the hierarchical representation from pixel relation priority
and the spatial attention from the components, resulting in
reliable predictions at thin structures and sharp boundaries.
More examples are reported in the supplementary materials.

Sparsity and low-dimensional embedding. Existing hy-
perbolic embeddings (Nickel & Kiela, 2018; 2017) show
their usefulness in harsh condition, such as low-dimensional
setup. To check the robustness of input sparsity for the
depth completion task, we randomly drop depth points in
ground-truth depth maps with different ratios. We also tune
the number of iterations to converge the network toward
minimum errors. The results in Fig. 8-(a) support the claim
for the sparsity of input.

As shown in Fig. 8-(b), we set the different numbers of
channel dimensions in Euclidean features which are input
to our HAM. As the number of the dimensions decreases,
the performance notably drops in the baseline model (Jiang
et al., 2018). However, the performance drop in our network
is smaller than that of other methods, including the naı̈ve hy-
perbolic network. It demonstrates that HAM still produces
accurate similarity maps for spatial propagation.

Various spatial propagation schemes. Next, we apply
our HAM into different types of depth completion methods:
NLSPN (Park et al., 2020) and DYSPN (Lin et al., 2022)3.
The models follow a similar propagation scheme with CSPN,
constructing affinities with standard Euclidean CNNs. The
difference between CSPN and them is to adopt the non-
local spatial propagation with the deformable convolution
and the non-linear spatial propagation based on the dynamic
convolution filter, respectively. For these models, we also
replace the affinity branch with our HAM.

As shown in Fig. 8-(a) again, the application of HAM to

3Since no public codes are available, we implement DYSPN
ourselves with the almost similar performance of (Lin et al., 2022).

RMSE (↓) mIoU (↑)

(a) (b)

Sim-Deeplab
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Figure 8. Sparsity and low-dimensional embedding. (a) Depth
completion comparison results for various spatial propagation
schemes (Convolutional (C-SPN), Non-Local (NL-SPN), and
DYnamic (DY-SPN)) w.r.t. the number of samples. (b) Semantic
segmentation results w.r.t. the number of dimensions to generate
similarity maps.

all the methods consistently shows significant performance
gains, especially with sparser measurements (e.g., 100 and
250). This indicates that the HAM synergies well with
the trendy baselines. The reason for the noticeable gain by
HAM is that the limited offset of the deformable convolution
in NLSPN and the receptive fields in the dynamic attention
module of DYSPN cannot capture the long-range connection
among pixels. In addition, we point out that results from the
trendy models tend to be highly engineered for the specific
setup (i.e., 500 points as initial seeds) for the benchmark
result, which sometimes reveals the weakness of the sparser
setups like 16- and 32-line LiDARs. Therefore, we argue
that HAM is beneficial for real-world scenarios.

6. Conclusion
We present a Hyperbolic Affinity learning Module (HAM)
for robust spatial propagation. HAM is a differentiable layer
with a β-priority and a geodesic weight and is easily incor-
porated into conventional SPNs. Though HAM does not
require extra learnable parameters over baseline methods,
HAM achieves promising results for depth completion and
semantic segmentation on various datasets.
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Supplementary Material for
Learning Affinity with Hyperbolic Representation for Spatial Propagation

In this supplementary material, we first describe details of implementation and evaluation metrics used in our main
manuscript (Appendix A). We then provide quantification analysis on hyperbolicity that indicates a tree-likeliness of embed-
ded pixel features (Appendix C) on 2D Poincaré ball (Appendix B). We also introduce a toy example to check the long-range
connection (Appendix D) and carry out additional experiments on the depth completion task for the KITTI Depth Completion
(KITTI-DC) dataset (Uhrig et al., 2017) that provides higher resolution outdoor images than the NYUv2 dataset (Appendix E).
Moreover, we conduct an additional experiment on a large dataset, COCO-Stuff10K (Caesar et al., 2018) that involves a
more complex semantic object configuration than that of other datasets as described in the manuscript (Appendix F). Finally,
we represent extensive results evaluations and their examples on NYUv2 dataset (Silberman et al., 2012), Pascal VOC 2012
dataset (Everingham et al., 2015) (Figure F M and Table D F).

A. Experimental Details
A.1. Implementation Details

For implementation of our operation HAM, it requires several hyper-parameters to properly transform Euclidean features f
into hyperbolic features h and convolution them. We set the curvature κ to 0.1 and a size of the kernel γ to 3, and utilize
a 2-dimensional hyperbolic convolution operation for spatial propagation tasks. We optimize our methods using Adam
optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999 with the initial learning rate of 0.001, and it takes about 1 day
for training networks using 4 NVIDIA RTX 3090 GPU. According to (Chami et al., 2019), we observe that Euclidean
optimization is substantially more stable than Riemannian optimization (Becigneul & Ganea, 2019). Due to the exponential
and logarithmic maps which are mapping functions between Euclidean space and hyperbolic space, the parameters of
hyperbolic model can be optimized using Euclidean optimization.

A.2. Evaluation Metrics: Depth Completion

We introduce a depth quality evaluation metrics, proposed in (Eigen et al., 2014; Geiger et al., 2013; Uhrig et al., 2017).
Given a ground truth depth D = {d} and the predicted depth D̂ = {d̂}, the metrics are as follows:

• RMSE: Root mean squared error.
√

1
|D|
∑
d̂∈D̂ |d̂− d|2

• MAE: Mean absolute error. 1
|D|
∑
d̂∈D̂ |d̂− d|

• iRMSE: Root mean squared error of the inverse depth.
√

1
|D|
∑
d̂∈D̂ |

1
d̂
− 1

d |2

• iMAE: Mean absolute error of the inverse depth. 1
|D|
∑
d̂∈D̂ |

1
d̂
− 1

d |

• REL: Mean absolute relative error. 1
|D|
∑
d̂∈D̂ |

d̂−d
d |

• δi : percentage of predicted pixels where the relative error is within a threshold.

δi =
card

({
d̂ ∈ D̂ : max

{
d̂
d ,

d
d̂

}
< 1.25i

})
card (D)

where the card is the cardinality of a set. A higher δi indicates better prediction.

A.3. Evaluation Metrics: Semantic Segmentation

We provide details of evaluation metrics for semantic segmentation. Let xik be the number of predicted pixels as a class
i. Here, its ground-truth class denotes k whose number is Nclass. The total number of ground-truth pixels for all classes
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is Ti =
∑
k xik. In this work, we use standard metrics (Jiang et al., 2018; Mostajabi et al., 2015; Long et al., 2015) for

category-level segmentation including a pixel accuracy and a region intersection over union (IoU) as below:

• Pixel Accuracy:
1

Nclass

∑
i

xii
Ti

• Mean IoU:
1

Nclass

∑
i

xii
Ti +

∑
j xji − xii

.

B. Affinity Feature Embedding on 2D Poincaré Ball
In Figure 1 of the manuscript, we provide our own analysis of the feature embedding from ours and previous studies. For
more analysis, we provide the further details of pixel feature embedding on the 2D Poincaré ball. It shows interesting pixel
embedding distributions that result in the accurate spatial propagation operation under ambiguous regions.

As shown in Fig. 9, we show both the spatial propagation process of all methods (baseline (Cheng et al., 2018), naı̈ve
(Ryohei et al., 2021), and HAM) and pixel patch embeddings to analyze the causality of the different results. We can verify
the occurrences of bleeding error, which results from the ambiguity of boundary information as demonstrated in Fig. 13.

In Fig. 10, we provide additional feature embeddings on the Poincaré ball model and visualization of the corresponding
affinity maps that are omitted due to the space limit in the manuscript. Visually, it shows that well-separated foreground,
background, and boundary pixels can be achievable from ours, whereas not from the baseline and the naı̈ve approach.

Iteration 5% Iteration 20% Iteration 50% Iteration 100%

Baseline

HAM

Seed GT

RGB

Naïve

Figure 9. Example of spatial propagation from a conventional method (Cheng et al., 2018), naı̈ve approach and our HAM given two initial
seeds and a RGB image.
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HAMNaïveBaseline

(a)

(b)

Propagation 
direction

Figure 10. (a) Affinity visualization as an extension of Figure 1 of the manuscript. Note that we use a Principle Component Analysis (Jol-
liffe, 1986) for visualization. (b) Visualizing the pixel feature embedding on 2D Poincaré ball using UMAP (McInnes et al., 2018) based
on hyperboloid distance. We embed learned affinity features and inferred depth maps on 2D Poincaré ball.

C. Measure of Data Hyperbolicity: δ-hyperbolicity

Table 7. Calculate relative δ-hyperbolicity (δhyp) on various dataset (Silberman et al., 2012; Cabon et al., 2020; Dai et al., 2017; Geiger
et al., 2013; Gupta et al., 2013; Everingham et al., 2015; Zhou et al., 2017) using learned features to construct affinity or similarity map
within SPNs((Cheng et al., 2018; Jiang et al., 2018). Lower Values of δhyp indicate a higher degree of data hyperbolicity. Results are
averaged across testset of size 1000 and the standard deviation for all the experiments did not exceed 0.002.

Depth Completion Semantic Segmentation

NYUv2 KITTI vKITTIv2 ScanNet Pascal-VOC NYUv2 Pascal-Context ADE20K

δhyp 0.326 0.263 0.275 0.271 0.237 0.226 0.198 0.259

A concept of hyperbolicity is used to measure a “tree-likeness” of a graph in terms of distance metric. This metric is
based on the concept of Gromov δ-hyperbolicity (Bridson & Haefliger, 1999; Gromov, 1987), which captures fundamental
characteristics of negatively curved spaces such as the hyperbolic space and discrete spaces such as trees. A low δ-
hyperbolicity denotes that a set has an underlying hyperbolic geometry, i.e., it is an approximately tree-like structure.
Conversely, a high δ-hyperbolicity suggests that it obtains long cycles, or could not be embedded in a low dimensional
hyperbolic space without distortion. For instance, the Euclidean space Rn is∞-hyperbolic, while the standard Poincaré disk
D2 is known to have a δ-hyperbolicity of log(1+

√
2) ' 0.88 (Tifrea et al., 2019). Here, we can calculate the δ-hyperbolicity

for an arbitrate set in the following manner: Let X be an arbitrary metric space endowed with the distance function d, and
the Gromov product (Gromov, 1987) for points x, y, z ∈ X is defined as:

(y, z)x =
1

2
(d(x, y) + d(x, z)− d(y, z)). (17)

Then, the smallest value such that the following four-point condition holds for all points is defined as δ as follows:

(x, z)w ≥ min ((x, y)w, (y, z)w)− δ. (18)

For computing the δ-hyperbolicity, we follow an efficient method presented in (Fournier et al., 2015): For a set of points,
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we compute the matrix M of a pairwise Gromov product. The δ value is then defined as the largest entry in the matrix
(M ⊗M)−M . Here, ⊗ indicates the min-max matrix product defined as (A⊗B)ij = maxk min {Aik, Bkj}.

In order to verify the validity to use hyperbolic representation for affinity construction in spatial propagation tasks, we adopt
the procedure described in (Khrulkov et al., 2020; Ermolov et al., 2022), so called relative δ hyperbolicity which is defined
as δhyp(X) = 2δ(X)/diam(X), where diam(X) denotes a diameter of the set. To prove its validity and efficacy of the
hyperbolic embedding of the feature map extracted from images, we follow the quantitative analysis described in (Khrulkov
et al., 2020; Ermolov et al., 2022). They adopt a relative δ hyperbolicity, defined as δhyp(X) = 2δ(X)/diam(X) where
diam(X) denotes a diameter of a set. The relative δ hyperbolicity means how close the dataset is to hyperbolic. As shown
in Tab. 7, the δhyp are significantly closer to 0. Since the δhyp values for metric learning (Ermolov et al., 2022) and few-shot
learning (Khrulkov et al., 2020), which are computed based on ImageNet-pretrained features extracted from standard feature
extractors (e.g., VGG, ResNet, and visual transformers), are mostly 0.2∼0.4, our choice to apply hyperbolic embedding into
the spatial propagation tasks is also reasonable. Note that we measure the relative δ hyperbolicity using the feature map
from the original SPNs whose backbone is ImageNet-pretrained ResNet. Through our study of hyperbolicity, it seems to be
an appropriate choice to apply hyperbolic embedding into pixel affinity construction when spatial propagation.

D. Toy Example : Long-Range Connectivity

Table 8. Quantitative results on spatial corruptions. Parentheses mean performance gaps over the normal conditions (Table 1 and 2 of the
manuscript).

Depth Completion Semantic Segmentation

RMSE MAE mIoU

Baseline 0.2162 (+0.1003) 0.0896 (+0.0421) 65.80% (-4.22%)
Naı̈ve 0.1518 (+0.0442) 0.0594 (+0.0163) 66.67% (-3.82%)
Ours 0.1420 (+0.0387) 0.0547 (+0.0149) 67.42% (-3.54%)

Input image GT Baseline Naïve HAM

Figure 11. Qualitative results on long-range connectivity.

For more straightforward understanding of the long-range connectivity through our HAM, we design new experimental
setups. As shown in Figure Fig. 11, we intentionally mask out the part of depth (224(height) × 24(width) pixels) to
impose affinity uncertainty for the depth completion task. Similarly, we also mask out the center regions in the semantic
segmentation task (321(height) × 9(width) pixels). By omitting the part of the seeds, we test the ability of long-range spatial
propagation from previous studies and ours.

As in shown in the Tab. 8 and Fig. 11, it turns out that our method demonstrates less performance drop over the normal
condition (Table 1 and 2 of the manuscript). For each task, HAM achieves the better performance than the accuracy of both
the baseline networks (Jiang et al., 2018; Cheng et al., 2018) and the naı̈ve method (Ryohei et al., 2021). Both the naı̈ve and
HAM approaches construct affinities well due to the merit of the hyperbolic embedding, even between separated pixels in
Euclidean space. In particular, our HAM shows better performance than the naı̈ve method since the geodesic-awareness
enforces the selection of semantic features for the same classes.
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Table 9. Additional experiments for depth completion. Quantitative results of depth estimation on KITTI validation dataset. (Unit: meter,
Bold: Best)

KITTI Depth Completion

RMSE MAE iRMSE iMAE

CSPN 0.8229 0.2264 0.0026 0.0011
Naı̈ve 0.8489 0.2389 0.0025 0.0011
Ours 0.8182 0.2190 0.0024 0.0010

Input image GT

Error & Depth  (Baseline) Error & Depth (HAM)

Input image GT

Error & Depth  (Baseline) Error & Depth (HAM)

Figure 12. Qualitative results of KITTI-DC dataset (Uhrig et al., 2017).

E. More experiments for Depth Completion
E.1. Additional Experiment on Larger Dataset

To demonstrate the robustness of our method, we conduct additional experiments on outdoor dataset, the KITTI Depth
Completion dataset (Uhrig et al., 2017). The KITTI-DC dataset consists of over 90K RGB and LiDAR pairs. As follows (Park
et al., 2020), we exclude top 100 rows in images where are a region without LiDAR projection by cropping 240 (height) ×
1216 (width) patches for both training and test.

Our HAM is trained for 30 epochs with both L1 and L2 losses, and the initial learning rate is decayed by 0.5 at every 5
epochs after the first 10 epochs. In the training phase, we choose a batch size of 12. In the same experimental setup used in
the manuscript, we set the size of the kernel γ to 3 and utilize a 2-dimensional hyperbolic convolution operation. We also
conduct a variety of curvatures, i.e., κ ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, and obtain the best performance when κ = 1.5.

Due to the sparsity of the depth map in the KITTI-DC dataset (Geiger et al., 2013), we need to rearrange pixels on higher
curvature hyperbolic space than that of NYUv2 dataset. We observe that the Poincaré ball with the high curvature κ yields a
low variance affinity map because the geodesic distance distribution becomes smoother as the curvature κ increases. By
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smoothing the affinity among pixels, propagating initial depth points between two pixels which are located far away and
have big difference values works well.

As shown in Tab. 9-(a), our method outperforms the baseline with the fully convolutional layer (Cheng et al., 2018) as
well as the basic hyperbolic convolution layers (Ryohei et al., 2021). In particular, the qualitative results from our HAM
in Fig. 12 yield low error when estimating thin structures and objects’ boundaries.

E.2. Various Spatial Propagation Schemes: Further Details of Figure 8-(a) in the manuscript

We provide further details of the experiments on various propagation schemes. We show the quantitative and qualitative
results of applying HAM to convolutional propagation, non-local propagation, and dynamic (attention-based) propagation.

Convolution-based spatial propagation with HAM. Firstly, HAM with convolutional propagation method (CSPN)
shows significant improvement compared to baseline models as shown in Tab. 10. The gap becomes larger in rare
environments, e.g., the difference between baseline and our HAM w.r.t. RMSE is 0.014m for 500 sample points and 0.067m
for 100 sample points, respectively. Fig. 14 demonstrates CSPN with HAM is robust to propagation for thin structure, which
indicates it can construct high-fidelity affinities than baseline models.

Non-local spatial propagation with HAM. We conduct experiments with NLSPN (Park et al., 2020) that proposes a
non-local propagation with deformable convolution layers. Similar to our experiments in the main paper, we position our
HAM at the end of the affinity branch, which induces faithful spatial propagation. As shown in Tab. 11, our method shows
comparable performance in dense input setup, and shows significant improvement with respect to the sparse initial seeds
(i.e., 250 and 100). The qualitative results (Fig. 15) demonstrates that HAM preserves thin structures and homogeneous
surfaces, compared to other methods, which suffer from preserving connectivity in harsh condition. This experiment shows
that our HAM applies to affinity maps with non-local connectivity from deformable convolutions, and the HAM synergies
well with the non-local propagation approach.

Attention-based spatial propagation with HAM. We also provide quantitative results and examples of depth completion
tasks on DYSPN (Lin et al., 2022), which proposes an attention-based dynamic approach to fixed affinities and achieves
SoTA performance in the depth completion task. As shown in Tab. 12 below, the hyperbolic method demonstrates a
significant improvement in the sparse setup (sample 100 or 250), except dense sample setup. We argue that since the
DYSPN utilizes spatial and sequential attention to adjust the dynamic affinity map in the 2D image domain (i.e., Euclidean
space), the replacement of the affinity layer with our HAM does not show additional performance gain. It seems that we can
adopt dynamic hyperbolic representation (e.g., inference curvature for each iteration like (Gao et al., 2021)) for the spatial
propagation scheme. Note that the hyperbolic representation shows consistent improvement, especially in harsh conditions
(i.e., sparse environment of prior information). Fig. 16 indicates that HAM is robust to homogeneous surfaces, compared to
other methods that suffer from capturing depth boundaries in the sparse environment. This experiment shows that our HAM
is applicable for non-linear propagation scheme and the advantage of the hyperbolic layer is enlarged when our HAM is
adopted, compared to the naı̈ve approach.
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Table 10. Depth completion results w.r.t. the number of seed points. Note that the baseline is Convolutional Spatial Propagation
Network (CSPN (Cheng et al., 2018)), which adopts a recursive convolution operation.

Convolutional

Sample # Methods RMSE MAE iRMSE iMAE REL δ11.25

500 CSPN 0.116 0.048 0.018 0.007 0.017 0.993
500 Naı̈ve 0.108 0.043 0.017 0.006 0.015 0.994
500 Ours 0.102 0.040 0.016 0.006 0.014 0.994
250 CSPN 0.149 0.066 0.024 0.010 0.023 0.987
250 Naı̈ve 0.147 0.064 0.023 0.010 0.023 0.989
250 Ours 0.136 0.057 0.021 0.009 0.020 0.990
100 CSPN 0.366 0.203 0.056 0.030 0.068 0.918
100 Naı̈ve 0.319 0.161 0.050 0.025 0.056 0.949
100 Ours 0.299 0.146 0.048 0.023 0.051 0.953

Table 11. Depth completion results w.r.t. the number of seed points. Note that the baseline is Non-Local Spatial Propagation Network (NL-
SPN (Park et al., 2020)) by predicting the offset for each pixel to determine where the information should come from.

Non-Local

Sample # Methods RMSE MAE iRMSE iMAE REL δ11.25

500 NLSPN 0.094 0.037 0.014 0.005 0.013 0.995
500 Naı̈ve 0.099 0.042 0.016 0.007 0.015 0.995
500 Ours 0.097 0.041 0.015 0.006 0.014 0.995
250 NLSPN 0.129 0.057 0.020 0.009 0.020 0.991
250 Naı̈ve 0.126 0.055 0.020 0.009 0.019 0.991
250 Ours 0.124 0.051 0.019 0.008 0.018 0.992
100 NLSPN 0.327 0.171 0.051 0.026 0.056 0.934
100 Naı̈ve 0.291 0.161 0.047 0.025 0.055 0.951
100 Ours 0.258 0.134 0.039 0.020 0.045 0.965

Table 12. Depth completion results w.r.t. the number of seed points. Note that the baseline is Dynamic Spatial Propagation Network
(DYSPN (Lin et al., 2022)), which designs a non-linear propagation model with spatial-sequential attention.

Dynamic

Sample # Methods RMSE MAE iRMSE iMAE REL δ11.25

500 DYSPN 0.092 0.037 0.014 0.005 0.012 0.996
500 Naı̈ve 0.096 0.039 0.014 0.006 0.013 0.995
500 Ours 0.093 0.037 0.014 0.005 0.013 0.995
250 DYSPN 0.127 0.056 0.019 0.008 0.019 0.992
250 Naı̈ve 0.124 0.052 0.019 0.008 0.018 0.992
250 Ours 0.123 0.053 0.019 0.008 0.018 0.992
100 DYSPN 0.322 0.171 0.054 0.027 0.059 0.938
100 Naı̈ve 0.307 0.167 0.049 0.025 0.056 0.946
100 Ours 0.269 0.143 0.040 0.021 0.047 0.963
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Input image Baseline

Naïve HAM

Figure 13. An illustration of affinity maps from our baseline (Cheng et al., 2018), naı̈ve and HAM in NYUv2 dataset. It shows that affinity
maps from our HAM well preserve edge information (i.e., boundary) where smooth intensity changes occur. Note that red arrows indicate
object boundaries where noises or smooth intensity changes occur in images.
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Input image GTCSPN Naïve Ours

Figure 14. Qualitative comparison on NYUv2 (Silberman et al., 2012). We compare the baseline model (CSPN (Cheng et al., 2018)) and
naı̈ve with our HAM. Note that we visualize the case of 500 depth samples in Tab. 10. Our HAM particularly demonstrates the strength
for thin structures (e.g., red-colored rectangles).

Input image GTNLSPN Naïve Ours

Figure 15. Qualitative comparison on NYUv2 (Silberman et al., 2012). We compare the baseline model (NLSPN (Park et al., 2020)) and
naı̈ve with our HAM. Note that we visualize the case of 250 depth samples in Tab. 11. Our HAM particularly demonstrates the strength
for thin structures (e.g., red-colored rectangles).
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Input image GTDYSPN Naïve Ours

17,36,304,324,540

Figure 16. Qualitative comparison on NYUv2 (Silberman et al., 2012). We compare the baseline model (DYSPN (Lin et al., 2022)) and
naı̈ve with our HAM. Note that we visualize the case of 100 depth samples in Tab. 11. Our HAM particularly demonstrates the strength
for homogeneous surface and slanted objects (e.g., red-colored rectangles).

F. More Experiments for Semantic Segmentation
F.1. Additional Experiment on larger dataset

Semantic Segmentation (Unit: mIoU, Bold: Best)

cat parking
meter sheep frisbee sports

ball surfboard tennis
racket cup sandwich orange donut potted

plant curtain

Sim-Deeplab 70.01 54.18 44.45 33.97 19.11 34.22 11.98 22.92 54.45 25.39 25.97 21.93 34.18
DifNet 74.17 39.75 43.56 34.19 0.56 29.17 13.85 20.19 55.64 26.58 31.97 29.06 33.35
Naı̈ve 73.64 69.56 45.73 32.80 12.86 39.25 11.84 23.32 55.18 24.76 41.24 29.36 34.38
Ours 75.08 76.77 55.97 56.81 51.57 42.13 14.66 24.86 56.32 35.03 46.22 32.35 35.61

desk
stuff fruit hill playing

field railroad rug skyscraper tent towel wall
concrete

wall
stone car bird

Sim-Deeplab 24.70 20.65 13.92 55.85 44.80 6.30 24.05 3.64 4.93 3.57 10.08 66.98 44.91
DifNet 25.59 15.35 13.59 59.67 47.22 6.24 28.44 8.58 4.28 1.14 12.16 69.01 48.31
Naı̈ve 30.60 21.07 21.17 61.70 50.38 9.54 29.04 9.79 3.85 3.02 12.80 73.78 52.88
Ours 31.71 24.17 22.40 66.52 54.77 14.37 31.85 13.91 7.19 10.51 13.21 73.72 52.68

horse elephant wine glass pizza cake bed laptop fence pavement plastic road mIoU Pixel
Accuracy

Sim-Deeplab 56.39 77.19 58.99 70.77 23.84 28.39 47.05 29.43 25.95 0.07 46.08 23.93 60.84
DifNet 56.73 79.70 56.57 64.75 35.32 37.67 49.21 32.52 30.72 0.20 49.80 24.46 63.10
Naı̈ve 62.25 79.77 62.45 70.04 27.49 35.55 57.97 30.61 33.66 7.58 44.76 24.76 62.39
Ours 61.92 79.04 60.95 68.58 33.44 35.66 54.93 32.14 32.87 7.26 49.24 25.22 62.27

Table 13. Quantitative results of semantic segmentation on COCO-Stuff10K.

We provide more details of semantic segmentation results on the COCO-Stuff10K (Caesar et al., 2018), which consists
of 10,000 images from 171 classes, and is split into 9,000 images in the training set and 1,000 images in the test set.
We note that ResNet18 is utilized as the backbone to train our method and the comparison methods for 200 epochs. As
reported in Tab. 13, our HAM outperforms the comparison methods. We observe that our method obtains performance
gains for thin-structure and sharp boundaries of objects like surfboard, tent, cup, and fruit in the dataset. Compared to other
experiments in the main manuscript, the COCO-Stuff10K dataset contains a variety of classes in images, which requires
sophisticated connectivity among pixels. To handle this issue, it is necessary to selectively encode important features like
our HAM.
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Figure 17. Visualizations of similarity maps on Pascal VOC 2012 dataset (Everingham et al., 2015). We visualize similarity maps under
six selected nodes for each input image. Note that red colors on similarity maps represent highly similar nodes with respect to each
selected node.
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Input image GTSim-Deeplab DifNet Naïve HAM

Figure 18. Examples of semantic segmentation results on Pascal VOC 2012 dataset (Everingham et al., 2015).
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Input image GTSim-Deeplab DifNet Naïve HAM

Figure 19. More examples of semantic segmentation results on Pascal VOC 2012 dataset (Everingham et al., 2015).
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Input image GTSim-Deeplab DifNet Naïve HAM

Figure 20. More examples of semantic segmentation results on Pascal VOC 2012 dataset (Everingham et al., 2015).
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