CONFIDENCE DIFFERENCE REFLECTS VARIOUS SUPER VISED SIGNALS IN CONFIDENCE-DIFFERENCE CLASSI FICATION

Anonymous authors

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

027 028 029

030

Paper under double-blind review

ABSTRACT

Training a precise binary classifier with limited supervision in weakly supervised learning scenarios holds considerable research significance in practical settings. Leveraging pairwise unlabeled data with confidence differences has been demonstrated to outperform learning from pointwise unlabeled data. We theoretically analyze the various supervisory signals reflected by confidence differences in confidence difference (ConfDiff) classification and identify challenges arising from noisy signals when confidence differences are small. To address this, we partition the dataset into two subsets with distinct supervisory signals and propose a consistency regularization-based risk estimator to encourage similar outputs for similar instances, mitigating the impact of noisy supervision. We further derive and analyze its estimation error bounds theoretically. Extensive experiments on benchmark and UCI datasets demonstrate the effectiveness of our method. Additionally, to effectively capture the influence of real-world noise on the confidence difference, we artificially perturb the confidence difference distribution and demonstrate the robustness of our method under noisy conditions through comprehensive experiments.

1 INTRODUCTION

Weakly supervised learning is an essential research field in machine learning, focusing on training accurate predictive models under conditions of low supervision or imprecise labeling. Due to the difficulty of obtaining precise supervision in real-world scenarios, weakly supervised learning holds significant research value and significance for effectively leveraging limited available supervision information. Consequently, the field of weakly supervised learning has increasingly attracted attention from experts and scholars in recent years, leading to the emergence of many typical weakly supervised learning methods, such as multi-instance learning [32; 30; 24; 19], positive and unlabeled (PU) learning [10; 5; 31; 16; 23], and others.

A prevalent idea in weakly supervised classification involves maximizing the utilization of pointwise weakly supervised information [4], thereby prompting the development of various techniques based on soft labels [18; 26], mixup [28; 21; 27; 9; 7; 13], and others. Nevertheless, it is undeniable that annotating pointwise information in real-world classification problems is a complex and laborious task, further compounded by the personal biases of annotators which frequently exacerbate the 044 probability of inaccuracies. In such scenarios, pairwise comparison information between data points may be more readily obtainable in real-world settings than pointwise information, and it often exhibits greater resistance to biases compared to pointwise semi-supervised information [1]. For instance, 046 in medical diagnosis, accurately determining whether a patient has a disease solely based on their 047 presented symptoms is challenging. However, comparing the symptoms of this patient with those of 048 others provides more accessible information and reduces the probability of misdiagnosis. Extensive research has been conducted on pairwise analysis in numerous binary classification problems, leading to the development of risk minimization functions capable of inducing binary classifiers across 051 various combinations of pairwise similarities, dissimilarities, and unlabeled data [1; 20; 14; 15; 22]. 052

In recent work, pairwise comparison (Pcomp) classification has shown that in tackling difficult point labeling tasks, people can more easily gather comparative information between two examples,

information. Consequently, the field of weakly supervised learning has increasingly attracted atte from experts and scholars in recent years, leading to the emergence of many typical weakly super learning methods, such as multi-instance learning [32; 30; 24; 19], positive and unlabeled learning [10; 5; 31; 16; 23], and others.
A prevalent idea in weakly supervised classification involves maximizing the utilization of poin weakly supervised information [4], thereby prompting the development of various techniques to on soft labels [18; 26], mixup [28; 21; 27; 9; 7; 13], and others. Nevertheless, it is undeniable annotating pointwise information in real-world classification problems is a complex and labo task, further compounded by the personal biases of annotators which frequently exacerbat

054 constituting a form of weakly supervised information [4]. However, in real-world application scenar-055 ios, individuals may not only distinguish which of two examples is more likely to be classified as 056 positive over the other but also gauge the extent of the disparity in their confidence levels regarding 057 positivity. In light of this framework, Wang et al. introduced a new pairwise weakly supervised 058 classification problem called confidence-difference (ConfDiff) classification, and proposed the corresponding ConfDiff method [22]. To establish confidence difference, the ConfDiff method first utilizes binary-labeled data to train a probability classifier. Subsequently, unlabeled data pairs are fed 060 into the classifier to generate posterior probabilities, from which confidence difference are computed 061 based on the differences between these posterior probabilities. However, through the analysis of the 062 various supervised signals in the ConfDiff method, we identify that ConfDiff method encourages 063 unlabeled data pairs to predict opposite classes from both experimental and theoretical perspectives. 064 This prediction direction is valid when the confidence difference is large. However, when the con-065 fidence difference is small, the instances may belong to the same or different classes, and such a 066 predictive tendency may lead to samples from the same class being incorrectly classified as belonging 067 to different classes, thereby introducing noisy supervisory signals. 068

To handle this problem, in this paper, we concentrate on mitigating the impact of inaccurate predictions 069 when confidence differences are small. Specifically, we analyze the different supervised signals induced by varying confidence differences in the ConfDiff method. We find that pairwise instances 071 with small confidence differences tend to introduce noisy supervised signals, while those with larger confidence differences provide more reliable supervision. Based on this observation, we propose 073 a ConfDiff classification method that incorporates consistency regularization. By partitioning the 074 dataset based on the accuracy of predictive information, we introduce a consistency regularization term 075 for the subset with relatively precise predictions, encouraging the model to produce similar outputs for pairs with small confidence differences. Meanwhile, for the subset with relatively imprecise 076 predictions, we preserve the benefit of reliable supervised signals. Experimental results demonstrate 077 that our method outperforms existing baselines in most cases and exhibits strong robustness even under artificial noise interference. 079

- In summary, this paper's key contributions can be outlined as follows:
 - We introduce a method for ConfDiff classification which aims to enhance the accuracy of weakly supervised classification by constructing risk estimator through Consistency **R**isk and **C**onsistency **R**egularization (CRCR).
 - We theoretically analyze various supervised signals reflected by different confidence differences in ConfDiff classification. Additionally, we theoretically estimate the error bounds of our proposed method.
 - We validate the effectiveness of our method through experiments by comparing it with existing baselines on datasets of varying scales. In addition, the robustness of our method is further validated under the influence of artificially added noise.

2 PRELIMINARIES

080

081

082

084

085

090 091

092 093

094

095 096

102 103

104

In this section, we briefly review the problem definitions of binary classification, binary classification with soft labels, and ConfDiff classification.

Formulation of binary classification Binary classification is a typical task in the field of supervised learning, where the goal is to induce a classifier to partition the data space into two categories. Formally, let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{-1, +1\}$ be the *d*-dimensional feature space and label space, respectively. The dataset $\mathcal{D}_{BC} = \mathcal{D}_{BC}^p \cup \mathcal{D}_{BC}^n$ for binary classification consists of a positive dataset \mathcal{D}_{BC}^p and a negative dataset \mathcal{D}_{BC}^n :

$$\mathcal{D}_{\mathrm{BC}}^{p} = \{ (\mathbf{x}_{i}^{p} \in \mathcal{X}, y_{i}^{p} = +1) \}_{i=1}^{n_{p}}, \ \mathbf{x}_{i}^{p} \stackrel{i.i.d.}{\sim} p(\mathbf{x}|y=+1),$$
$$\mathcal{D}_{\mathrm{BC}}^{n} = \{ (\mathbf{x}_{i}^{n} \in \mathcal{X}, y_{i}^{n} = -1) \}_{i=1}^{n_{n}}, \ \mathbf{x}_{i}^{n} \stackrel{i.i.d.}{\sim} p(\mathbf{x}|y=-1),$$

where n_p and n_n denote the number of positive and negative instances, respectively. Let π denotes the class prior p(y = +1) and $\ell : \mathbb{R} \times \mathcal{Y} \to \mathbb{R}_+$ denotes a binary loss function. Then binary classification induces a classifier $g : \mathcal{X} \to \mathbb{R}$ from \mathcal{D}_{BC} by minimizing the following classification risk:

$$R(g) = \pi \mathbb{E}_{p(\mathbf{x}|y=+1)}[\ell(g(\mathbf{x}), +1)] + (1-\pi)\mathbb{E}_{p(\mathbf{x}|y=-1)}[\ell(g(\mathbf{x}), -1)].$$
(1)

Formulation of binary classification with soft labels In binary classification, soft labels typically represent the confidence of each sample belonging to the positive class. Moreover, several studies have shown that using soft labels rather than hard labels can more accurately reflect the data distribution, thus enhancing the accuracy of training binary classifiers. Formally, let q_i denotes the positive confidence of \mathbf{x}_i , the dataset $\mathcal{D}_{BC-soft}$ for binary classification can be defined as follows:

$$\mathcal{D}_{\text{BC-soft}} = \{(\mathbf{x}_i, q_i)\}_{i=1}^n, \ \mathbf{x}_i \overset{i.i.d.}{\sim} p(\mathbf{x}), \ q_i = p(y_i = +1 | \mathbf{x}_i),$$

where $p(\mathbf{x}) = \pi p(\mathbf{x}|y=+1) + (1-\pi)p(\mathbf{x}|y=-1)$. Subsequently, the risk minimization objective function for binary classification with soft labels can be reformulated into the following form:

$$R_{\text{BC-soft}}(g) = \mathbb{E}_{p(\mathbf{x})}[q\ell(g(\mathbf{x}), +1) + (1-q)\ell(g(\mathbf{x}), -1)].$$

$$(2)$$

118 Formulation of confidence-difference (ConfDiff) classification Given that pairwise supervision 119 is typically more accessible than pointwise supervision and it's feasible to not only determine 120 which sample in an unlabeled data pair is more likely positive but also quantify the confidence 121 difference between them in practical scenarios, ConfDiff classification precisely serves as a weakly 122 supervised classification tailored to address this scenario. It specifically deals with weakly supervised 123 classification problems where training data comprises only pairwise unlabeled data and the confidence difference associated with each pair. Formally, let $c_i = c(\mathbf{x}_i, \mathbf{x}'_i) = p(y'_i = +1 | \mathbf{x}'_i) - p(y_i = +1 | \mathbf{x}_i)$ 124 be the confidence difference between pairwise unlabeled data $(\mathbf{x}_i, \mathbf{x}'_i)$ drawn from a independent 125 identically distribution probability density $p(\mathbf{x}, \mathbf{x}') = p(\mathbf{x})p(\mathbf{x}')$. Considering a pairwise dataset \mathcal{D} 126 drawn from the pairwise unlabeled data and the confidence differences between them: 127

$$\mathcal{D}_{\rm CD} = \{ \left((\mathbf{x}_i, \mathbf{x}'_i), c_i \right) \}_{i=1}^n, \ \mathbf{x}_i \overset{i.i.d.}{\sim} p(\mathbf{x}), \ \mathbf{x}'_i \overset{i.i.d.}{\sim} p(\mathbf{x}).$$

In a recent study, Wang et al. tackled the ConfDiff classification problem in such challenging
 scenarios [22]. They deduced an unbiased risk estimator for confidence-difference classification from
 Eq. 1 and trained a binary classifier solely utilizing unlabeled data and confidence differences by
 minimizing it. The classification risk can be expressed as:

$$R_{\rm CD}(g) = \frac{1}{2} \mathbb{E}_{p(\mathbf{x}, \mathbf{x}')} [\mathcal{L}(\mathbf{x}, \mathbf{x}') + \mathcal{L}(\mathbf{x}', \mathbf{x})], \tag{3}$$

where $\mathcal{L}(\mathbf{x}, \mathbf{x}') = (\pi - c(\mathbf{x}, \mathbf{x}'))\ell(g(\mathbf{x}), +1) + (1 - \pi - c(\mathbf{x}, \mathbf{x}'))\ell(g(\mathbf{x}'), -1)$. Then Eq. 3 can be refined as follows:

$$R_{\rm CD}(g) = \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} [(\pi - c(\mathbf{x},\mathbf{x}'))\ell(g(\mathbf{x}), +1) + (1 - \pi - c(\mathbf{x},\mathbf{x}'))\ell(g(\mathbf{x}'), -1) + (\pi + c(\mathbf{x},\mathbf{x}'))\ell(g(\mathbf{x}'), +1) + (1 - \pi + c(\mathbf{x},\mathbf{x}'))\ell(g(\mathbf{x}), -1)].$$
(4)

143

144 145

147

151 152

113 114

117

128 129

134 135

136

137 138

3 The Proposed Method

In this section, we introduce the proposed noisy ConfDiff method named CRCR.

146 3.1 ANALYSIS OF THE CONFDIFF METHOD

In the ConfDiff method, pairwise instances with confidence differences smaller than 0.5 are prone to introducing noise, while those with larger confidence differences (greater than 0.5) are considered to provide stronger and more reliable supervised signals. To explain this, we consider the general form of many commonly used losses for the prediction function g(x) and target y [29]:

$$\mathcal{L} = \left\{ \ell \left(g(\mathbf{x}), y \right) | \ell \left(g(\mathbf{x}), y \right) = h \left(g(\mathbf{x}) \right) - y g(x) \text{ for some function } h \right\},$$
(5)

(6)

Substituting the form of the loss function from Eq.5 into Eq.4, then the classification risk of ConfDiff
 method can be rewritten as follows and the proof details are presented in the Appendix B:

$$R_{\rm CD}(g) = \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[\Big(\frac{1}{2} - c(\mathbf{x},\mathbf{x}') \Big) \ell \big(g(\mathbf{x}), +1 \big) + \Big(\frac{1}{2} + c(\mathbf{x},\mathbf{x}') \big) \ell \big(g(\mathbf{x}'), +1 \big) \Big] \\ + \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[\Big(\frac{1}{2} + c(\mathbf{x},\mathbf{x}') \Big) \ell \big(g(\mathbf{x}), -1 \big) + \Big(\frac{1}{2} - c(\mathbf{x},\mathbf{x}') \big) \ell \big(g(\mathbf{x}'), -1 \big) \Big]$$

161
$$+\frac{1}{2}\mathbb{E}_{p(\mathbf{x},\mathbf{x}')}\Big[(1-2\pi)\big(g(\mathbf{x})+g(\mathbf{x}')\big)\Big].$$

Figure 1: The Accuracy for the binary classifier concerning different proportion of pairwise data with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$ on two benchmark datasets MNIST (left) and CIFAR-10 (right). (The value of the x-axis values $*\min(\pi, 1 - \pi)$ denotes the proportion of pairwise instances with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$.)

162

163

164

166

167 168

169 170

171

172

173

174

177

where the first and second terms denote the pairwise instance $(\mathbf{x}, \mathbf{x}')$ contrastive losses for positive and 178 negative class predictions, respectively; and the third term serves as a regularization. We first analyze 179 the critical components of the first term, where the weights $\frac{1}{2} - c(\mathbf{x}, \mathbf{x}')$ and $\frac{1}{2} + c(\mathbf{x}, \mathbf{x}')$ determine the contributions of \mathbf{x} and \mathbf{x}' to the positive class prediction loss, respectively. These weights exhibit 181 an inherent balance, as their sum equals 1, indicating that $\frac{1}{2}$ serves as a boundary distinguishing 182 the prediction directions. The weights lie on opposite sides of this boundary, ensuring that one of 183 \mathbf{x} or \mathbf{x}' is encouraged to predict more strongly as the positive class, while the other is encouraged to weaken its positive class tendency (i.e., predict as the negative class). In other words, the first 185 loss term ensures x and x' to adjust their predictions in opposite directions, thereby emphasizing the 186 predictive divergence of pairwise instances in the positive class predictions. Similarly, the second 187 loss term forces to diverge in their predictions for the negative class.

188 Referring to the definition of $c(\mathbf{x}, \mathbf{x}')$, if $|c(\mathbf{x}, \mathbf{x}')| > 0.5$, \mathbf{x} and \mathbf{x}' must belong to different classes; 189 and if $|c(\mathbf{x}, \mathbf{x}')| \leq 0.5$, \mathbf{x} and \mathbf{x}' can belong to the same class or different classes, as the posterior 190 difference is insufficient to surpass the classification threshold. So the prediction trend encouraged by 191 $R_{\rm CD}$ holds correctly for pairwise instances with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$. However, when $|c(\mathbf{x}, \mathbf{x}')| \leq 0.5$, 192 the prediction trend may lead to samples from the same class being predicted as belonging to different 193 classes, introducing erroneous supervisory signals. Accordingly, we consider that the pairwise instances whose confidence difference are greater than 0.5 contain more supervised signals, but the 194 other ones may result in noisy signals in the existing ConfDiff method. 195

To further validate this perspective, we conduct experiments on the MNIST and CIFAR-10 by varying the proportion of the pairwise instances with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$. The empirical results (see in Figure 1) illustrate the accuracy of the binary classifier under different proportions of the pairwise instances with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$. We observe a positive correlation between classification accuracy and the proportion value. Notably, when the proportion is 0, the classifier accuracy is approximately 0.5, indicating that the classifier performs nearly at random. These findings demonstrate that the pairwise instances with $|c(\mathbf{x}, \mathbf{x}')| > 0.5$ provide stronger and more reliable supervised signals and dominate the contribution to R_{CD} .

204 205

3.2 CRCR METHOD

206 207

Based on the discussion in Section 3.1, it is demonstrated that noise signals is introduced when 208 $|c(\mathbf{x},\mathbf{x}')| \leq 0.5$, while it remains more supervised signals when $|c(\mathbf{x},\mathbf{x}')| > 0.5$. To address 209 it, we propose setting a threshold θ to partition the dataset into two subsets: one with relatively 210 precise predictive information (denoted as D^{S}) and the other with comparatively imprecise predictive 211 information (denoted as D^{C}). For D^{C} , we aim to provide additional information to guide the 212 predictions of pairwise instances toward the correct direction. Specifically, for pairwise instances 213 with small confidence differences, we encourage the model to produce more similar outputs for these pairs. To achieve this, we introduce a consistency regularization term that encourages alignment 214 between the confidence difference and the model's outputs. Meanwhile, for D^S , we retain the original 215 strategy to preserve the accuracy of predictions driven by this strong guidance. Our objective is to

induce a classifier $g: \mathbb{R}^d \to \mathcal{Y}$ from \mathcal{D} by minimizing the expected risk with respect to the data distribution:

$$R_{\text{CRCR}}(g) = \frac{1}{2} \mathbb{E}_{p_{\mathcal{D}S}(\mathbf{x},\mathbf{x}')} [\left(\pi - c(\mathbf{x},\mathbf{x}')\right) \ell(g(\mathbf{x}), +1) + \left(1 - \pi - c(\mathbf{x},\mathbf{x}')\right) \ell(g(\mathbf{x}'), -1) \\ + \left(\pi + c(\mathbf{x},\mathbf{x}')\right) \ell(g(\mathbf{x}'), +1) + \left(1 - \pi + c(\mathbf{x},\mathbf{x}')\right) \ell(g(\mathbf{x}), -1)] \\ + \alpha \mathbb{E}_{p_{\mathcal{D}C}(\mathbf{x},\mathbf{x}')} [\left(\frac{1}{\log\left(|c(\mathbf{x},\mathbf{x}')| + \varepsilon\right)}\right) \cdot ||g(\mathbf{x}) - g(\mathbf{x}')||_{2}],$$
(7)

where α denotes the parameter of the consistency regularization term, and $\varepsilon = 1.1$ is a smoothing parameter introduced to mitigate numerical issues when $|c(\mathbf{x}, \mathbf{x}')|$ approaches or equals zero. Let $|\mathcal{D}^S| = n_1$ and $|\mathcal{D}^C| = n_2$. Then the risk estimator can be expressed as follows:

$$\hat{R}_{\text{CRCR}}(g) = \frac{1}{2n_1} \sum_{i=1}^{n_1} \left((\pi - c_i)\ell(g(\mathbf{x}_i), +1) \right) + (1 - \pi - c_i)\ell(g(\mathbf{x}'_i, -1) + (\pi + c_i)\ell(g(\mathbf{x}'_i), +1))$$

$$+(1-\pi+c_i)\ell(g(\mathbf{x}_i),-1)) + \frac{\alpha}{n_2}\sum_{i=1}^{n_2} \left(\frac{1}{\log(|c_i|+\varepsilon)} \cdot \|(g(\mathbf{x}_i)-g(\mathbf{x}'_i)\|_2\right).$$
(8)

3.3 ANALYSIS OF ERROR BOUND

Assuming there exists a constant C_g such that $\sup_{g \in G} ||G||_{\infty} \leq C_g$, and another constant C_ℓ such that $\sup_{|z|} \leq C_g$ and $\ell(z, y) \leq C_\ell$. Additionally, we presume the binary loss function $\ell(z, y)$ to be Lipschitz continuous with respect to both z and y, and to have a Lipschitz constant denoted by L_ℓ . $\Re_{n_1}(\mathcal{G})$ and $\Re_{n_2}(\mathcal{G})$ denote the Rademacher complexity of unlabeled data \mathcal{G} with size n_1 and n_2 , respectively.

Theorem 1. Let $g^* = \arg \min_{g \in \mathcal{G}} R(g)$ is the minimizer of the true classification risk in Eq.1 and $\hat{g}_{CRCR} = \arg \min_{g \in \mathcal{G}} \hat{R}_{CRCR}(g)$ denotes the minimizer of the risk form in Eq.8. Then for any $\delta > 0$, we believe that the following expression holds with a probability at least $1 - \delta$:

$$R(\hat{g}_{\text{CRCR}}) - R(g^*) \leq 8L_{\ell} \Re_{n_1}(\mathcal{G}) + \frac{4\alpha}{\log(\varepsilon)} \Re_{n_2}(\mathcal{G}) + \left(\frac{4C_{\ell}}{n_1} + \left|\frac{1}{\log(\varepsilon)} - \frac{1}{\log(\theta + \varepsilon)}\right| \frac{4\alpha C_g}{n_2}\right) \sqrt{2n \ln(2/\delta)}.$$
(9)

Due to the space limitation, the proof details are presented in the Appendix A. As $n_1, n_2 \to \infty$, the Rademacher complexities $\Re_{n_1}(\mathcal{G})$ and $\Re_{n_2}(\mathcal{G})$ decrease to zero, and the third term involving \sqrt{n}/n_1 and \sqrt{n}/n_2 also diminishes. Furthermore, the convergence rates of $\Re_{n_1}(\mathcal{G})$ and $\Re_{n_2}(\mathcal{G})$ are $O(1/\sqrt{n_1})$ and $O(1/\sqrt{n_2})$, while the third term's rate is dominated by $O(\sqrt{n}/n_1)$ and $O(\sqrt{n}/n_2)$. Consequently, as $n \to \infty$, $R(\hat{g}_{CRCR}) \to R(g^*)$, and the overall convergence rate is characterized by $O(\max(\sqrt{n}/n_1, \sqrt{n}/n_2))$.

3.4 EMPIRICAL RISK CORRECTION

It can potentially lead to severe overfitting problems when the empirical risk becomes negative due to the application of a revised unbiased form. Fortunately, risk correction functions $f(\cdot)$ can be utilized to mitigate this issue. Examples include the absolute value function or the rectified linear unit (ReLU) function. Consequently, the corrected risk estimator can be expressed as follows:

$$\tilde{R}_{\text{CRCR}}(g) = \frac{1}{2n_1} f\Big(\sum_{i=1}^{n_1} (\pi - c_i)\ell\big(g(\mathbf{x}_i), +1\big)\Big) + \frac{1}{2n_1} f\Big(\sum_{i=1}^{n_1} (1 - \pi - c_i)\ell\big(g(\mathbf{x}_i', -1\big)\Big) \\ + \frac{1}{2n_1} f\Big(\sum_{i=1}^{n_1} (\pi + c_i)\ell\big(g(\mathbf{x}_i'), +1\big)\Big) + \frac{1}{2n_1} f\Big(\sum_{i=1}^{n_1} (1 - \pi + c_i)\ell\big(g(\mathbf{x}_i), -1\big)\Big)$$

$$2n_1 \quad (\underbrace{1}_{i=1}) \quad (1) \quad$$

268
269
$$+\alpha \frac{1}{n_2} f\left(\sum_{i=1}^{n_2} \left(\frac{1}{\log(|c_i|+\varepsilon)} \cdot \|(g(\mathbf{x}_i) - g(\mathbf{x}'_i)\|_2\right)\right).$$
(10)

271	Table 1: Detailed characteristics of datasets.									
272	Dataset	#Instance	#Trainset	#Testset	#Fea	Pos Class	Neg Class	Backbone		
273	MNIST	70,000	15,000	5,000	28×28	0,2,4,6,8	1,3,5,7,9	3-layer MLP		
074	F-MNIST	70,000	15,000	5,000	28×28	0,2,4,6,8	1,3,5,7,9	3-layer MLP		
2/4	K-MNIST	70,000	15,000	5,000	28×28	0,2,4,6,8	1,3,5,7,9	3-layer MLP		
275	CIFAR-10	60,000	10,000	5,000	$3 \times 32 \times 32$	2,3,4,5,6,7	0,1,8,9	ResNet-34		
276	Optdigits	5,620	1,200	1,125	62	0,2,4,6,8	1,3,5,7,9	Linear		
277	Pendigits	10,992	2,500	2,199	16	0,2,4,6,8	1,3,5,7,9	Linear		
278										

Additionally, we report corresponding versions in the experiments that utilized absolute risk correction function (CRCR-ABS) and ReLU risk correction function (CRCR-ReLU).

- 4 **EXPERIMENTS**
- 283 284 285

287

288

308

310

311

312

313

314

315

316

317

323

279

280

281 282

270

286

4.1 EXPERIMENTAL SETTINGS

In this section, we empirically evaluate the proposed CRCR method.

289 **Datasets** For comprehensive experimentation, we employ four popular benchmark datasets, including MNIST [12], Kuzushiji-MNIST (K-MNIST)[3], Fashion-MNIST (F-MNIST)[25] and CIFAR-290 10[11]. Additionally, experiments are conducted on two UCI datasets[2], including Optdigits and 291 Pendigits. These datasets encompass more than just two labels, therefore, we categorize the class 292 labels into positive and negative classes, effectively transforming them into binary classification 293 datasets. Furthermore, for each dataset, we randomly selected $m\% \times n$ instances to add noise, where the noise ratio m is varied over [0, 50, 75, 100]. As a result, in our experiments, we generate 24 295 synthetic datasets in total. 296

Furthermore, we choose different models as backbones based on the varying feature dimensions 297 of each dataset. Specifically, for MNIST, K-MNIST and F-MNIST, we use a 3-layer multilayer 298 perceptron (MLP) with three hidden layers of width 300 equipped with the ReLU [17] activation 299 function and batch normalization [8]. For CIFAR-10, we train a ResNet-34 model [6] as the backbone. 300 For all UCI datasets, we use a linear model for training. The detailed information for each dataset is 301 presented in Table 1. 302

303 **Baseline methods** We employ seven state-of-the-art algorithms for comparison, including four 304 Pcomp methods (i.e., PcompTeacher, PcompABS, PcompReLU and PcompUnbiased) and three 305 ConfDiff methods (i.e., ConfDiffABS, ConfDiffReLU and ConfDiffUnbiased). Details of baselines 306 are described as follows: 307

- Pointwise Binary Classification with Pairwise Confidence Comparisons (Pcomp) [4]: A weakly supervised learning method that trains a binary classifier using pairwise comparison data, composed of unlabeled data pairs where one is more likely to be positive, instead of using pointwise data. Pcomp comprises four versions: PcompTeacher, PcompABS, PcompReLU, and PcompUnbiased. We use the code provided by its authors ¹.
- Binary Classification with **Conf**idence **Difference** (**ConfDiff**) [22]: A weakly supervised learning method that trains a binary classifier using pairwise comparison data, which consists of pairwise unlabeled data where the difference in the probabilities of being positive (confidence difference) is known. ConfDiff comprises three versions: ConfDiff-ABS, ConfDiff-ReLU, and ConfDiff-Unbiased. We utilize the publicly available code online².

318 **Implementation details** For each comparison method under every experimental configuration, we 319 execute the code five times, employing the logistic loss function and Adam optimizer consistently. 320 Specifically, during the training phase, each run is independently performed for 200 epochs with a 321 batch size of 256. In balanced scenarios (*i.e.*, $\pi = 0.5$), the learning rate is set to 10^{-3} across all 322

¹https://lfeng1995.github.io/codedata.html

²https://github.com/wwangwitsel/ConfDiff

datasets, with weight decay parameters set to 10^{-5} for MNIST, K-MNIST, F-MNIST, and Pendigits, 10⁻⁴ for Optdigits, and 10^{-3} for Pendigits. In imbalanced scenarios (*i.e.*, $\pi = 0.2$), the learning rate is set to 10^{-4} for MNIST and K-MNIST, and 10^{-3} for the remaining datasets, with weight decay parameters set to 10^{-4} for K-MNIST and Optdigits, and 10^{-5} for the remaining datasets. During the pretraining phase, each run is independently executed for 20 epochs with a batch size of 256. The learning rate and weight decay remain consistent with those in the training phase. All experiments are conducted on a server equipped with two Nvidia RTX 4090 GPUs.

332 4.2 CONSTRUCTION OF THE CONFIDENCE DIFFERENCES

331

333

346 347 348

349

350

351

352

353

354

355

356 357 358

359 360 361

In this subsection, we present the confidence differences construction method to address the challenge of fitting scenarios where precise posterior probabilities are difficult to obtain, along with a noise generation method to validate the robustness of our method under noisy conditions.

The confidence differences construction method. The ConfDiff method generates class posterior 337 probabilities using a logistic regression-based probabilistic classifier trained on labeled data and 338 calculates the confidence difference according to its definition. Although this generation method 339 benefits comprehensive experimental analysis, it fails to accurately reflect the posterior probability 340 distribution derived from manual annotations in real-world scenarios. Inspired by this, we incorporate 341 an a posterior probability construction method based on outlier detection into the probabilistic 342 classifier and computed confidence differences according to its definition to achieve a more uniform 343 and realistic distribution. Specifically, we apply Gaussian kernel-based probability density estimation 344 method to discrete posterior probabilities. 345

$$\hat{d}(\mathbf{x}_i) = \frac{1}{nh\sqrt{2\pi}} \sum_{j=1}^n \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_j)^2}{2h^2}\right),\tag{11}$$

where $\hat{d}(\mathbf{x}_i)$ represents the estimated probability density function at instance \mathbf{x}_i and $\exp\left(-\frac{(\mathbf{x}_i-\mathbf{x}_j)^2}{2h^2}\right)$ is the standard Gaussian kernel function. Furthermore, *h* denotes the kernel bandwidth, which controls the degree of smoothing. This parameter is adaptively set based on the standard deviation of the probability distributions used in our work. We identify instances with densities below the threshold *o* as outliers. (Notably, *o* is also adaptively determined based on different probability density distributions. In our work, it is set at the 2nd percentile of the probability density to avoid filtering out too many instances.) The posterior probabilities of remaining non-outlier instances, are then rescaled to ensure a more uniform distribution within the range [0, 1].

$$p(y_i = +1 | \mathbf{x}_i) = \begin{cases} \text{Scaling} \left(p(y_i = +1 | \mathbf{x}_i) \right), & \text{if } \hat{d}(\mathbf{x}_i) \le o \\ p(y_i = +1 | \mathbf{x}_i), & \text{otherwise} \end{cases}$$
(12)

where $Scaling(\cdot)$ denotes a scaling function as:

$$\operatorname{Scaling}\left(p(y_i = +1|\mathbf{x}_i)\right) = \begin{cases} \log(p(y_i = +1|\mathbf{x}_i) + \vartheta), & \text{if } p(y_i = +1|\mathbf{x}_i) \le 0.5\\ \log(1 - p(y_i = +1|\mathbf{x}_i) + \vartheta), & \text{otherwise} \end{cases}$$
(13)

where $\vartheta = e^{-10}$ is a smoothing parameter. Then, the confidence difference can be calculated according to its definition $c(\mathbf{x}_i, \mathbf{x}'_i) = p(y'_i = +1 | \mathbf{x}'_i) - p(y_i = +1 | \mathbf{x}_i)$.

The noise generation method. One straightforward method is to add noise directly to c. However, 365 this method overlooks the intrinsic logic behind the original construction of c. We might be more 366 interested in observing how the noise impacts the posterior probability distribution, thereby further 367 influencing c indirectly. Then, we focus on adding noise to the posterior probabilities generated by 368 the probabilistic classifier, thereby indirectly adding noise to c. In the real world, individuals tend to 369 exhibit smaller judgment biases towards more similar sample pairs, while generating larger biases 370 towards samples with lower similarity. Therefore, White Gaussian Noise (WGN) is introduced into 371 the posterior probabilities $p(y_i = +1 | \mathbf{x}_i)$ and $p(y'_i = +1 | \mathbf{x}'_i)$ provided by the probabilistic classifier 372 for the instance pair $(\mathbf{x}_i, \mathbf{x}'_i)$. Then, the noisy posterior probabilities are used to generate the label confidence difference, *i.e.*, $\tilde{c}_i = \tilde{c}(\mathbf{x}_i, \mathbf{x}'_i) = \tilde{p}(y'_i = +1|\mathbf{x}'_i) - \tilde{p}(y_i = +1|\mathbf{x}_i)$, where 373

$$\tilde{p}(y'_{i} = +1 | \mathbf{x}'_{i}) = p(y'_{i} = +1 | \mathbf{x}'_{i}) + \zeta'_{i}, \quad \zeta'_{i} \sim N(0, \sigma^{2})$$

$$\tilde{p}(y_{i} = +1 | \mathbf{x}_{i}) = p(y_{i} = +1 | \mathbf{x}_{i}) + \zeta_{i}, \quad \zeta_{i} \sim N(0, \sigma^{2}),$$
(14)

where ζ'_i and ζ_i represent the noise offsets which follow a standard Gaussian distribution $N(0, \sigma^2)$. In our experiments, we set $\sigma = 1/3$.

Table 2: Classification accuracy of each comparing method on six datasets (mean±std) when $\pi = 0.5$, where the best performance is shown in boldface.

81	m	Method	MNIST	K-MNIST	F-MNIST	CIFAR-10	Pendigits	Optdigits
		PcompUnbiased	0.815±0.007	0.588±0.087	0.813±0.066	0.752±0.005	0.775±0.018	0.795±0.020
		PcompReLU	0.719±0.108	0.692±0.012	0.614±0.132	0.794±0.009	0.746 ± 0.014	0.766±0.038
		PcompABS	0.830±0.005	0.727±0.015	0.837±0.010	0.828 ± 0.006	0.645±0.059	0.722±0.027
		PcompTeacher	0.882±0.024	0.708 ± 0.008	0.887±0.012	0.812±0.010	0.496±0.016	0.507±0.067
	0	ConfDiffUnbiased	0.723±0.072	0.576±0.029	0.771±0.085	0.848 ± 0.014	0.675±0.071	0.799±0.023
j.	Ū	ConfDiffReLU	0.929±0.003	0.771±0.025	0.912±0.020	0.848 ± 0.014	0.675±0.071	0.799±0.023
		ConfDiffABS	0.944±0.003	0.825±0.011	0.952 ± 0.004	0.848±0.014	0.675±0.071	0.799±0.023
		CRCR_Unbiased	0.777±0.034	0.769 ± 0.004	0.921±0.009	0.869±0.009	0.756±0.006	0.823±0.023
		CRCR_ReLU	0.919±0.019	0.685 ± 0.080	0.925±0.017	0.869±0.009	0.753±0.007	0.823±0.023
		CRCR_ABS	0.962±0.006	0.848±0.013	0.955±0.002	0.869±0.009	0.753±0.009	0.823±0.023
		PcompUnbiased	0.814±0.050	0.606 ± 0.086	0.855±0.061	0.733±0.010	0.760 ± 0.020	0.793±0.022
		PcompReLU	0.849 ± 0.008	0.722 ± 0.003	0.833±0.063	0.810 ± 0.008	0.756±0.036	0.772±0.017
		PcompABS	0.853±0.016	0.730±0.013	0.876±0.015	0.833±0.005	0.676±0.069	0.736±0.017
		PcompTeacher	0.898±0.019	0.723±0.018	0.907±0.021	0.812±0.007	0.495±0.017	0.503±0.068
	50	ConfDiffUnbiased	0.678±0.046	0.602 ± 0.021	0.794±0.034	0.833±0.013	0.675±0.073	0.792 ± 0.021
	50	ConfDiffReLU	0.933±0.002	0.766 ± 0.020	0.933±0.012	0.836±0.014	0.675±0.073	0.792 ± 0.021
		ConfDiffABS	0.937±0.004	0.819±0.007	0.953±0.007	0.834±0.013	0.675±0.073	0.792±0.021
		CRCR_Unbiased	0.845±0.043	0.779 ± 0.008	0.928 ± 0.001	0.859±0.003	0.759±0.029	0.821±0.022
		CRCR_ReLU	0.923±0.023	0.793±0.019	0.936±0.007	0.860±0.003	0.757±0.030	0.821±0.022
		CRCR_ABS	0.961±0.005	0.851±0.010	0.956±0.005	0.860±0.003	0.762±0.033	0.821±0.022
		PcompUnbiased	0.849±0.010	0.596±0.086	0.832±0.129	0.716±0.006	0.754±0.028	0.794±0.021
		PcompReLU	0.858±0.006	0.728±0.013	0.880±0.012	0.820 ± 0.008	0.743±0.038	0.783±0.018
		PcompABS	0.865 ± 0.008	0.734±0.017	0.874±0.011	0.836±0.003	0.688 ± 0.060	0.743±0.020
		PcompTeacher	0.908±0.010	0.735±0.013	0.920±0.018	0.813±0.008	0.495±0.018	0.501±0.069
	75	ConfDiffUnbiased	0.620 ± 0.084	0.560 ± 0.025	0.650 ± 0.051	0.844 ± 0.008	0.674±0.073	0.795±0.018
	15	ConfDiffReLU	0.922±0.019	0.778 ± 0.008	0.931±0.015	0.843±0.009	0.674±0.073	0.795±0.018
		ConfDiffABS	0.933±0.006	0.817±0.009	0.954±0.004	0.844±0.009	0.674±0.073	0.795±0.018
		CRCR_Unbiased	0.797±0.075	0.791±0.010	0.926±0.010	0.858 ± 0.003	0.723±0.033	0.819±0.022
		CRCR_ReLU	0.938±0.006	0.792±0.010	0.942 ± 0.005	0.858±0.003	0.721±0.035	0.819±0.022
		CRCR_ABS	0.962±0.003	0.851±0.006	0.959±0.001	0.858±0.003	0.756±0.009	0.819±0.022
		PcompUnbiased	0.832 ± 0.051	0.631±0.079	0.897±0.013	0.708 ± 0.014	0.735±0.024	0.796±0.015
		PcompReLU	0.862±0.015	0.726±0.012	0.883±0.017	0.827 ± 0.004	0.725±0.035	0.787±0.019
		PcompABS	0.865 ± 0.014	0.735±0.009	0.886±0.009	0.837±0.006	0.688±0.059	0.766±0.020
		PcompTeacher	0.914±0.011	0.738±0.020	0.921±0.011	0.812±0.010	0.495±0.018	0.499±0.070
	100	ConfDiffUnbiased	0.631±0.056	0.548 ± 0.022	0.573 ± 0.060	0.835 ± 0.012	0.669 ± 0.070	0.791 ± 0.021
	100	ConfDiffReLU	0.920±0.014	0.769 ± 0.008	0.923±0.032	0.834±0.012	0.669 ± 0.070	0.791±0.021
		ConfDiffABS	0.934±0.006	0.812±0.004	0.953±0.005	0.835±0.012	0.669±0.070	0.791±0.021
		CRCR_Unbiased	0.860 ± 0.081	0.804±0.009	0.910±0.030	0.851±0.007	0.751±0.008	0.815±0.019
		CRCR_ReLU	0.939±0.006	0.797±0.006	0.941±0.006	0.851±0.007	0.752 ± 0.008	0.815±0.019
		CRCR_ABS	0.960 ± 0.002	0.856±0.008	0.960 ± 0.002	0.851±0.007	0.752 ± 0.008	0.815±0.019

411

378

4.3 RESULT ANALYSIS

Table 2 and Table 3 present the results of all baselines on four benchmark datasets and two UCI datasets for class-balanced (*i.e.*, prior = 0.5) and class-imbalanced scenarios (*i.e.*, prior = 0.2), respectively. Accuracy is chosen as the evaluation metric, and experiments are conducted five times on all datasets, with average and variance results recorded. Overall, our method performs nearly optimally across all scenarios compared to the baseline methods, consistently achieving nearly the best results using the ABS risk correction function.

418 In scenarios with balanced classes, our method outperforms Pcomp by improving accuracy from 419 0.02 to 0.341 and surpasses ConfDiff from 0.01 to 0.387, as observed from a baseline perspective. 420 CRCR_ABS outperforms nearly all baselines, with the only observed exception being the results of 421 PcompUnbiased on the Pendigits dataset when no noise is added. This may be due to the fact that the 422 Pcomp method leverages only the information that one instance is more likely to be positive than another, without requiring knowledge of the exact difference between them. The posterior probability 423 distribution is simply reconstructed in the absence of noise, and this reconstruction function preserves 424 the monotonic increasing relationship of the posterior probabilities, without altering the relative 425 likelihood of positivity between instances. Moreover, compared to Pcomp and ConfDiff, our method 426 demonstrates increasingly stable and consistent accuracy as the noise ratio increases, with notable 427 improvements in both accuracy and standard deviation, especially when the noise ratio reaches 100%. 428 This indicates its ability to produce more competitive results in the presence of noise interference. 429

In scenarios with imbalanced classes, PcompReLU and ConfDiffReLU tend to exhibit random
 outcomes when confronted with imbalanced data augmented with noise. This phenomenon may be
 attributed to the introduced noise, which significantly increases the likelihood of predictions where

Table 3: Classification accuracy of each comparing method on six datasets (mean±std) when $\pi = 0.2$, 433 where the best performance is shown in boldface

_	m	Method	MNIST	K-MNIST	F-MNIST	CIFAR-10	Pendigits	Optdigits
		PcompUnbiased	0.744±0.037	0.555±0.076	0.748±0.047	0.634±0.021	0.820±0.025	0.813±0.024
		PcompReLU	0.800 ± 0.000	0.800 ± 0.000	0.800 ± 0.000	0.802 ± 0.003	0.819±0.020	0.816±0.007
		PcompABS	0.804 ± 0.009	0.800 ± 0.000	0.801±0.001	0.833 ± 0.004	0.797±0.023	0.805 ± 0.006
		PcompTeacher	0.788±0.074	0.695±0.046	0.883±0.026	0.813±0.020	0.482±0.212	0.684±0.097
	0	ConfDiffUnbiased	0.743±0.033	0.622±0.077	0.724±0.025	0.812±0.004	0.797±0.028	0.830±0.016
	0	ConfDiffReLU	0.800 ± 0.000	0.800 ± 0.000	0.846 ± 0.064	0.800 ± 0.000	0.797±0.028	0.830±0.016
		ConfDiffABS	0.910±0.015	0.841±0.014	0.940±0.010	0.800±0.001	0.797±0.028	0.830±0.016
		CRCR_Unbiased	0.816±0.043	0.597±0.055	0.886±0.009	0.841±0.012	0.823±0.005	0.838±0.017
		CRCR_ReLU	0.929±0.055	0.814±0.031	0.930±0.049	0.801±0.001	0.817±0.012	0.830±0.008
_		CRCR_ABS	0.916±0.022	0.856±0.006	0.922±0.007	0.812±0.017	0.784±0.024	0.825±0.005
		PcompUnbiased	0.742±0.015	0.547±0.038	0.768±0.070	0.623±0.017	0.818±0.025	0.810±0.027
		PcompReLU	0.800±0.000	0.801±0.002	0.800±0.000	0.801±0.003	0.806±0.023	0.821±0.007
		PcompABS	0.824±0.029	0.800±0.000	0.809±0.006	0.833±0.006	0.801±0.030	0.811±0.010
		PcompTeacher	0.822±0.061	0.707±0.062	0.902±0.014	0.797+0.033	0.483±0.211	0.682±0.096
	50	ConfDiffUnbiased	0.694±0.030	0.640±0.043	0.711±0.018	0.805±0.006	0.797±0.029	0.834±0.015
		ConfDiffReLU	0.800±0.000	0.800±0.000	0.821±0.046	0.800±0.001	0.797±0.029	0.834±0.015
		ConfDiffABS	0.891±0.025	0.818±0.010	0.938±0.014	0.801±0.002	0.797±0.029	0.834±0.015
		CRCR_Unbiased	0.794 ± 0.043	0.623 ± 0.079	0.880±0.016	0.789±0.035	0.795±0.025	0.843±0.023
		CRCR_ReLU	0.908 ± 0.063	0.815 ± 0.015	0.936 ± 0.043	0.811 ± 0.025	0.808 ± 0.021	0.838 ± 0.014
-		CRCK_ABS	0.916±0.013	0.830±0.029	0.950±0.011	0.850±0.017	0.822±0.019	0.835±0.011
		PcompUnbiased	0.753 ± 0.031	0.535 ± 0.048	0.775 ± 0.059	0.616 ± 0.038	$0.81/\pm0.01/$	0.813 ± 0.030
		PcompReLU Decemp A DS	0.804 ± 0.009	0.804 ± 0.007	0.800 ± 0.000	0.805 ± 0.012	0.822 ± 0.020	$0.82/\pm0.008$
		PCOMPABS	0.803 ± 0.014	0.800 ± 0.000	0.828 ± 0.010	0.832 ± 0.005	0.803 ± 0.038	0.813 ± 0.009
		ConfDiffUnbiased	0.840±0.061	0.714±0.055	0.908±0.019	0.795±0.044	0.482 ± 0.211	0.080±0.090
	75		0.704±0.058	0.050±0.020	0.743±0.088	0.804±0.004	0.790 ± 0.031 0.706±0.021	0.830 ± 0.016 0.830±0.016
		ConfDiffABS	0.862+0.030	0.800±0.000	0.000 ± 0.000	0.800 ± 0.000	0.790 ± 0.031 0.796±0.031	0.830 ± 0.010 0.830+0.016
		CRCR Unbiased	0.792+0.047	0.640+0.028	0.861+0.023	0.772+0.020	0.811+0.030	0.836+0.022
		CRCR ReLU	0.92 ± 0.047 0.901+0.055	0.817 ± 0.028	0.801±0.055	0.828 ± 0.020	0 827+0 008	0.836 ± 0.022 0.836±0.017
		CRCR ABS	0.914±0.008	0.819±0.024	0.947±0.001	0.853±0.004	0.819±0.011	0.839±0.012
-		PcompUnbiased	0.752±0.021	0.540±0.069	0.834±0.034	0.643±0.053	0.805±0.024	0.817±0.027
		PcompReLU	0.845±0.040	0.808±0.010	0.814±0.019	0.806±0.005	0.808±0.020	0.834±0.008
		PcompABS	0.871±0.006	0.801±0.001	0.844±0.015	0.835±0.003	0.803±0.029	0.823±0.012
		PcompTeacher	0.869 ± 0.068	0.711±0.062	0.922±0.011	0.787±0.033	0.482±0.211	0.681±0.096
	100	ConfDiffUnbiased	0.772±0.056	0.693±0.028	0.748±0.101	0.810±0.007	0.796±0.028	0.831±0.017
	100	ConfDiffReLU	0.800 ± 0.000	0.800 ± 0.000	0.800 ± 0.000	0.800 ± 0.001	0.796 ± 0.028	0.831±0.016
		ConfDiffABS	0.814 ± 0.006	0.801 ± 0.002	0.870 ± 0.043	0.801 ± 0.001	0.796 ± 0.028	0.831±0.016
		CRCR_Unbiased	0.790±0.036	0.639±0.059	0.838±0.056	0.780±0.014	0.797±0.018	0.837±0.026
		CRCR_ReLU	0.905 ± 0.059	0.808 ± 0.007	0.903±0.039	0.800 ± 0.001	0.800 ± 0.014	0.838±0.020
		CRCR_ABS	0.926±0.010	0.828±0.025	0.958±0.009	0.841±0.005	0.810±0.006	0.839±0.019

432

464

467

one instance in a pair is incorrectly predicted to be more likely positive than the other, contrary to 465 the actual scenario. This contradiction becomes significantly more pronounced as class imbalance 466 and noise ratio increase. For other baselines, we observe advantages in both accuracy mean and variance. From the dataset perspective, CRCR_ABS significantly outperforms other methods on the 468 MNIST, K-MNIST, F-MNIST, and CIFAR-10 datasets in the presence of noise, while maintaining 469 strong competitiveness on the Pendigits and Optdigits datasets. CRCR_Unbiased shows promising 470 results without noise; however, the experiments clearly demonstrate that its training challenges on 471 complex and noisy datasets often lead to a notable decline in performance. This further underscores the effectiveness of CRCR ABS in maintaining robust performance when dealing with complex 472 datasets. 473

474 475

4.4 PARAMETER SENSITIVITY

476 477

479

In this subsection, we conduct experiments with different thresholds θ for partitioning subsets and the parameter α for the consistency term, and the results are shown in Figure 2. 478

480 **About different threshold** θ To evaluate the sensitivity of the threshold θ , we vary its value within 481 the range $\{0.1, 0.2, ..., 1\}$ and examine its influence on four distinct benchmark datasets (*i.e.*, MNIST, 482 K-MNIST, F-MNIST and CIFAR-10). The results reveal that the accuracy score peaks for the four benchmark datasets when $\theta = 0.4$ with $\pi = 0.5$, and when $\theta = 0.2$ or 0.3 with $\pi = 0.2$. This 483 observation may be attributed to the distribution of confidence differences resembling a waveform 484 akin to a normal distribution. A low threshold results in numerous inaccurate predictions within the 485 subset D^S utilized for risk consistency, while a high threshold leads to a scarcity of samples within

Figure 2: Sensitivity analysis of parameters α (top) and θ (bottom) on four benchmark datasets when $\pi = 0.5$ (left) and $\pi = 0.2$ (right).

 D^S , thus diminishing the available supervisory information. Therefore, we empirically recommend setting the threshold at $\theta = 0.4$ when $\pi = 0.5$, and $\theta = 0.2$ or 0.3 when $\pi = 0.2$.

About different parameter α To assess the sensitivity of the parameter α , we vary its values across the range $\{10^i | i = -3, ..., +3\}$ and observe its effects on four benchmark datasets. Our analysis reveals that α shows increased sensitivity on the larger-scale CIFAR-10 dataset when $\pi = 0.5$, while maintaining relatively stable performance on the smaller-scale datasets. Moreover, α leads to a consistent trend in accuracy variation across the four datasets when $\pi = 0.2$. Notably, it achieves relatively optimal results when $\alpha = 1$ with $\pi = 0.5$, and $\alpha = 10^1$ with $\pi = 0.2$. Thus, we recommend setting $\alpha = 1$ or 10^1 in experimental setups.

517 518

504

505 506 507

509

4.5 ABLATION STUDY

In this subsection, we conduct ablation studies on various strategies by setting corresponding parameters to zero. Specifically, setting { $\alpha = 0, \theta = 0$ } represent versions without consistency strategy and without subset segmentation strategy, respectively. The experimental results, presented in Figure 1, demonstrate that our proposed subset segmentation strategy and consistency term contribute to performance improvement to some extent in the context of noisy confidence difference classification.

5 CONCLUSION

526 527 528

529

530

531

532

533

534

524

In this paper, we propose a novel ConfDiff classification method based on consistency risk and consistency regularization to address the challenge of noisy supervised signals in ConfDiff classification. We conduct a theoretical analysis of various supervised signals associated with different confidence differences. Based on this analysis, the ConfDiff dataset is partitioned into two subsets according to the reliability of the supervised information. For the subset with more reliable supervision, we employ a consistency risk to preserve precise supervised information. Conversely, for the subset with less reliable supervision, we leverage consistency regularization to mitigate the impact of erroneous predictions. Extensive experimental results demonstrate that the proposed CRCR method outperforms state-of-the-art baselines and exhibits strong robustness, even under artificially induced noise.

535 536

537 REFERENCES

[1] Han Bao, Gang Niu, and Masashi Sugiyama. Classification from pairwise similarity and unlabeled data. In *International Conference on Machine Learning*, pp. 452–461. PMLR, 2018.

543

544

546

547

548

549

550

551 552

553

554

555

556

558

559

560

561 562

563

564

565

566

567

568 569

570

571

572

573 574

575

576 577

578

579

580

581

582

583 584

585

586

588

589

590

592

- 540 [2] Catherine L Blake. Uci repository of machine learning databases. http://www.ics. uci. edu/~ mlearn/MLRepository. html, 1998. 542
 - [3] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.
 - [4] Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu, Bo An, and Masashi Sugiyama. Pointwise binary classification with pairwise confidence comparisons. In International Conference on Machine Learning, pp. 3252-3262. PMLR, 2021.
 - [5] Zayd Hammoudeh and Daniel Lowd. Learning from positive and unlabeled data with arbitrary positive shift. In Neural Information Processing Systems, 2020.
 - [6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.
 - [7] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781, 2019.
 - [8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In International conference on machine learning, pp. 448–456. pmlr, 2015.
 - [9] Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local statistics for optimal mixup. In International Conference on Machine Learning, pp. 5275–5285. PMLR, 2020.
 - [10] Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis, and Masashi Sugiyama. Positiveunlabeled learning with non-negative risk estimator. In *Neural Information Processing Systems*, pp. 1675–1685, 2017.
 - [11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009. URL https://api.semanticscholar.org/CorpusID:18268744.
 - [12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
 - [13] Changchun Li, Ximing Li, Lei Feng, and Jihong Ouyang. Who is your right mixup partner in positive and unlabeled learning. In International Conference on Learning Representations, 2021.
 - [14] Nan Lu, Gang Niu, Aditya Krishna Menon, and Masashi Sugiyama. On the minimal supervision for training any binary classifier from only unlabeled data. arXiv preprint arXiv:1808.10585, 2018.
 - [15] Nan Lu, Tianyi Zhang, Gang Niu, and Masashi Sugiyama. Mitigating overfitting in supervised classification from two unlabeled datasets: A consistent risk correction approach. In International Conference on Artificial Intelligence and Statistics, pp. 1115–1125. PMLR, 2020.
 - [16] Chuan Luo, Pu Zhao, Chen Chen, Bo Qiao, Chao Du, Hongyu Zhang, Wei Wu, Shaowei Cai, Bing He, Saravanakumar Rajmohan, and Qingwei Lin. PULNS: positive-unlabeled learning with effective negative sample selector. In AAAI Conference on Artificial Intelligence, pp. 8784-8792, 2021.
 - [17] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807– 814, 2010.
 - [18] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. Learning classification models with soft-label information. Journal of the American Medical Informatics Association, 21(3): 501-508, 2014.

- [19] Xiaoshuang Shi, Fuyong Xing, Yuanpu Xie, Zizhao Zhang, Lei Cui, and Lin Yang. Loss-based attention for deep multiple instance learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 5742–5749, 2020.
 - [20] Takuya Shimada, Han Bao, Issei Sato, and Masashi Sugiyama. Classification from pairwise similarities/dissimilarities and unlabeled data via empirical risk minimization. *Neural Computation*, 33(5):1234–1268, 2021.
 - [21] Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating hidden states. In *International conference on machine learning*, pp. 6438–6447. PMLR, 2019.
 - [22] Wei Wang, Lei Feng, Yuchen Jiang, Gang Niu, Min-Ling Zhang, and Masashi Sugiyama. Binary classification with confidence difference. *Advances in Neural Information Processing Systems*, 36, 2024.
 - [23] Xinrui Wang, Wenhai Wan, Chuanxing Geng, Shaoyuan Li, and Songcan Chen. Beyond myopia: Learning from positive and unlabeled data through holistic predictive trends. In *Neural Information Processing Systems*, 2023.
- [24] Jia Wu, Shirui Pan, Xingquan Zhu, Chengqi Zhang, and Xindong Wu. Multi-instance learning with discriminative bag mapping. *IEEE Transactions on Knowledge and Data Engineering*, 30 (6):1065–1080, 2018.
 - [25] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*, 2017.
 - [26] Yanbing Xue and Milos Hauskrecht. Learning of classification models from noisy soft-labels. In Proceedings of the Twenty-second European Conference on Artificial Intelligence, pp. 1618– 1619, 2016.
 - [27] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.
 - [28] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.
 - [29] Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup help with robustness and generalization? In *International Conference on Learning Representations*, 2021.
 - [30] Min-Ling Zhang and Zhi-Hua Zhou. Multi-instance clustering with applications to multiinstance prediction. *Applied intelligence*, 31:47–68, 2009.
 - [31] Yunrui Zhao, Qianqian Xu, Yangbangyan Jiang, Peisong Wen, and Qingming Huang. Dist-pu: Positive-unlabeled learning from a label distribution perspective. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14441–14450, 2022.
 - [32] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance learning by treating instances as non-iid samples. In *Proceedings of the 26th annual international conference on machine learning*, pp. 1249–1256, 2009.

A PROOF OF THEOREM 1

In this appendix, we provide the proof of the Theorem 1 and the corresponding technical lemmas. **Lemma 1.** The Rademacher complexity $\overline{\Re}_n(\mathcal{L}_{CRCR} \circ \mathcal{G})$ on \mathcal{D} for ConfDiff data with noise of size n can be defined as follows:

$$\bar{\Re}_{n}(\mathcal{L}_{\mathrm{CRCR}} \circ \mathcal{G}) \leq 2L_{\ell} \Re_{n_{1}}(\mathcal{G}) + \frac{\alpha}{\log\left(\varepsilon\right)} \Re_{n_{2}}(\mathcal{G})$$
(15)

The proof of Lemma 1:

$$\begin{split} \bar{\Re}_{n}(\mathcal{L}_{\mathrm{CRCR}} \circ \mathcal{G}) = \mathbb{E}_{\mathcal{D}_{n_{1}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \sigma_{i} \mathcal{L}_{\mathrm{CRCR}}^{S}(g; \mathbf{x}_{i}, \mathbf{x}_{i}')] \\ &+ \mathbb{E}_{\mathcal{D}_{n_{2}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \sigma_{i} \mathcal{L}_{\mathrm{CRCR}}^{C}(g; \mathbf{x}_{i}, \mathbf{x}_{i}')] \\ = \mathbb{E}_{\mathcal{D}_{n_{1}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \frac{1}{2} \sigma_{i}((\pi - c_{i})\ell(g(\mathbf{x}_{i}), +1) + (1 - \pi - c_{i})\ell(g(\mathbf{x}_{i}'), -1)) \\ &+ (\pi + c_{i})\ell(g(\mathbf{x}_{i}'), +1) + (1 - \pi + c_{i})\ell(g(\mathbf{x}_{i}), -1))] \\ &+ \mathbb{E}_{\mathcal{D}_{n_{2}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \alpha \sigma_{i} \frac{1}{\log\left(|\tilde{c}_{i}| + \varepsilon\right)} \cdot \|(g(\mathbf{x}_{i}) - g(\mathbf{x}_{i}')\|_{2}] \\ &= \mathbb{E}_{\mathcal{D}_{n_{1}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \sigma_{i} \| \nabla \mathcal{L}_{\mathrm{CD}}^{S}(g; \mathbf{x}_{i}, \mathbf{x}_{i}')\|_{2} g(\mathbf{x}_{i})] \\ &+ \mathbb{E}_{\mathcal{D}_{n_{2}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \sigma_{i} \| \nabla \mathcal{L}_{\mathrm{CD}}^{C}(g; \mathbf{x}_{i}, \mathbf{x}_{i}')\|_{2} g(\mathbf{x}_{i})] \end{split}$$
(16)

676 where

$$\begin{aligned} \left\| \nabla \mathcal{L}_{CRCR}^{S}(g; \mathbf{x}_{i}, \mathbf{x}_{i}') \right\|_{2} \\ &= \frac{1}{2} \left\| \nabla \left((\pi - c_{i})\ell(g(\mathbf{x}_{i}), +1) + (1 - \pi - c_{i})\ell(g(\mathbf{x}_{i}'), -1) \right) + (\pi + c_{i})\ell(g(\mathbf{x}_{i}), +1) + (1 - \pi + c_{i})\ell(g(\mathbf{x}_{i}), -1)) \right\|_{2} \\ &\leq \frac{1}{2} \left(\left\| \nabla \left((\pi - c_{i})\ell(g(\mathbf{x}_{i}), +1) \right) \right\|_{2} + \left\| \nabla \left((1 - \pi - c_{i})\ell(g(\mathbf{x}_{i}'), -1) \right) \right\|_{2} \right) \\ &+ \left\| \nabla \left((\pi + c_{i})\ell(g(\mathbf{x}_{i}'), +1) \right) \right\|_{2} + \left\| \nabla \left((1 - \pi + c_{i})\ell(g(\mathbf{x}_{i}), -1) \right) \right\|_{2} \right) \\ &\leq \frac{1}{2} \left| \pi - c_{i} \right| L_{\ell} + \frac{1}{2} \left| 1 - \pi - c_{i} \right| L_{\ell} + \frac{1}{2} \left| \pi + c_{i} \right| L_{\ell} + \frac{1}{2} \left| 1 - \pi + c_{i} \right| L_{\ell} \\ &\leq 2L_{\ell} \end{aligned}$$
(18)

and,

$$\begin{aligned} \left\| \nabla \mathcal{L}_{CRCR}^{S}(g; \mathbf{x}_{i}, \mathbf{x}_{i}') \right\|_{2} &= \alpha \left\| \nabla \frac{1}{\log\left(\left|\tilde{c}_{i}\right| + \varepsilon\right)} \cdot \left\| (g(\mathbf{x}_{i}) - g(\mathbf{x}_{i}') \right\|_{2} \right\|_{2} \\ &\leq \alpha \frac{1}{\log\left(\left|\tilde{c}_{i}\right| + \varepsilon\right)} \cdot \frac{g(\mathbf{x}_{i}) - g(\mathbf{x}_{i}')}{\left\|g(\mathbf{x}_{i}) - g(\mathbf{x}_{i}')\right\|_{2}} \\ &\leq \frac{\alpha}{\log\left(\varepsilon\right)} \end{aligned}$$
(19)

$$\bar{\Re}_{n}(\mathcal{L}_{\mathrm{CRCR}} \circ \mathcal{G}) \leq 2L_{\ell} \mathbb{E}_{\mathcal{D}_{n_{1}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{1}} \sum_{i=1}^{n_{1}} \sigma_{i}g(\mathbf{x}_{i})] + \frac{\alpha}{\log\left(\varepsilon\right)} \mathbb{E}_{\mathcal{D}_{n_{2}}} \mathbb{E}_{\sigma}[\sup_{g \in \mathcal{G}} \frac{1}{n_{2}} \sum_{i=1}^{n_{2}} \sigma_{i}g(\mathbf{x}_{i})] \\ \leq 2L_{\ell} \Re_{n_{1}}(\mathcal{G}) + \frac{\alpha}{\log\left(\varepsilon\right)} \Re_{n_{2}}(\mathcal{G})$$

$$(20)$$

Replacing the corresponding term in Eq.16 with Eq.18 and Eq.19, we can prove the Lemma 1:

Lemma 2. $\sup_{g \in \mathcal{G}} \left| R(g) - \hat{R}_{CRCR}(g) \right| \leq 4L_{\ell} \mathfrak{R}_{n_{1}}(\mathcal{G}) + \frac{2\alpha}{\log(\varepsilon)} \mathfrak{R}_{n_{2}}(\mathcal{G}) \\
+ \left(\frac{C_{\ell}}{n_{1}} + \left| \frac{1}{\log(\varepsilon)} - \frac{1}{\log(\theta + \varepsilon)} \right| \frac{4\alpha C_{g}^{2}}{n_{2}} \right) \sqrt{2n \ln(2/\delta)} \quad (21)$

The proof of Lemma 2: Let $\hat{R}_{CRCR}(g)$ and $\hat{\bar{R}}_{CRCR}(g)$ represent the empirical risks of two sets of training samples, each differing by exactly one point, denoted as $\{(\mathbf{x}_i, \mathbf{x}'_i), c(\mathbf{x}_i, \mathbf{x}'_i)\}$ and $\{(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}'_i), c(\bar{\mathbf{x}}_i, \bar{\mathbf{x}}'_i)\}$ respectively.

$$\sup_{g \in \mathcal{G}} \left| \left(R(g) - \hat{R}_{CRCR}(g) \right) - \left(R(g) - \hat{R}_{CRCR}(g) \right) \right| \\
\leq \sup_{g \in \mathcal{G}} \left| \hat{R}_{CRCR}(g) - \hat{R}_{CRCR}(g) \right| \\
\leq \sup_{g \in \mathcal{G}} \left| \frac{1}{2n_1} (\pi - \tilde{c}_i) \left(\ell(g(\mathbf{x}_i), +1) - \ell(g(\bar{\mathbf{x}}_i), +1) \right) \right| \tag{22}$$

$$+(1 - \pi - \tilde{c}_{i})\Big(\ell\big(g(\mathbf{x}'_{i}, -1) - \ell\big(g(\bar{\mathbf{x}}'_{i}, -1)\big)\Big)$$
(23)

$$+(\pi + \tilde{c}_i)\Big(\ell\big(g(\mathbf{x}'_i), +1\big) - \ell\big(g(\bar{\mathbf{x}}'_i), +1\big)\Big)$$

$$(24)$$

$$+(1-\pi+\tilde{c}_i)\Big(\ell\big(g(\mathbf{x}_i),-1\big)-\ell\big(g(\bar{\mathbf{x}}_i),-1\big)\Big)$$
(25)

$$+\frac{\alpha}{n_2} \left(\frac{1}{\log\left(|\tilde{c}_i|+\varepsilon\right)} \cdot \|(g(\mathbf{x}_i) - g(\mathbf{x}'_i)\|_2 - \frac{1}{\log\left(|\tilde{c}_i|+\varepsilon\right)} \cdot \|(g(\bar{\mathbf{x}}_i) - g(\bar{\mathbf{x}}'_i)\|_2) \right) \\ \leq \frac{2C_\ell}{n_1} + \left| \frac{1}{\log\left(\varepsilon\right)} - \frac{1}{\log\left(\theta+\varepsilon\right)} \right| \frac{2\alpha C_g}{n_2}$$
(26)

Then according McDiarmid's inequality:

$$\begin{split} \sup_{g \in \mathcal{G}} \left| R(g) - \hat{R}_{\mathrm{CRCR}}(g) \right| &\leq \mathbb{E}_{\mathcal{D}_n} [\sup_{g \in \mathcal{G}} \left(R(g) - \hat{R}_{\mathrm{CRCR}}(g) \right)] \\ &+ \left(\frac{2C_\ell}{n_1} + \left| \frac{1}{\log\left(\varepsilon\right)} - \frac{1}{\log\left(\theta + \varepsilon\right)} \right| \frac{2\alpha C_g}{n_2} \right) \sqrt{2n \mathrm{In}(2/\delta)} \\ &\leq 2\bar{\Re}_n (\mathcal{L}_{\mathrm{CRCR}} \circ \mathcal{G}) \\ &+ \left(\frac{2C_\ell}{n_1} + \left| \frac{1}{\log\left(\varepsilon\right)} - \frac{1}{\log\left(\theta + \varepsilon\right)} \right| \frac{2\alpha C_g}{n_2} \right) \sqrt{2n \mathrm{In}(2/\delta)} \\ &\leq 4L_\ell \Re_{n_1}(\mathcal{G}) + \frac{2\alpha}{\log\left(\varepsilon\right)} \Re_{n_2}(\mathcal{G}) \\ &+ \left(\frac{2C_\ell}{n_1} + \left| \frac{1}{\log\left(\varepsilon\right)} - \frac{1}{\log\left(\theta + \varepsilon\right)} \right| \frac{2\alpha C_g}{n_2} \right) \sqrt{2n \mathrm{In}(2/\delta)} \end{split}$$
(27)

The proof of Theorem 1:

$$R(\hat{g}_{\text{CRCR}}) - R(g^*) = \left(R(\hat{g}_{\text{CRCR}}) - \hat{R}_{\text{CRCR}}(\hat{g}_{\text{CRCR}}) \right) + \left(\hat{R}_{\text{CRCR}}(\hat{g}_{\text{CRCR}}) - \hat{R}_{\text{CRCR}}(g^*) \right) \\ + \left(\hat{R}_{\text{CRCR}}(g^*) - R(g^*) \right) \\ \leq \left(R(\hat{g}_{\text{CRCR}}) - \hat{R}_{\text{CRCR}}(\hat{g}_{\text{CRCR}}) \right) + \left(\hat{R}_{\text{CRCR}}(g^*) - R(g^*) \right) \\ \leq 2 \sup_{g \in \mathcal{G}} \left| R(g) - \hat{R}_{\text{CRCR}}(g) \right| \\ \leq 8 L_{\ell} \Re_{n_1}(\mathcal{G}) + \frac{4\alpha}{1 - \epsilon + \epsilon} \Re_{n_2}(\mathcal{G})$$

$$\leq \delta L_{\ell} \mathcal{I}_{n_1}(g) + \frac{1}{\log(\varepsilon)} \mathcal{I}_n$$

$$+ \left(\frac{4C_{\ell}}{n_1} + \left|\frac{1}{\log\left(\varepsilon\right)} - \frac{1}{\log\left(\theta + \varepsilon\right)}\right| \frac{4\alpha C_g}{n_2}\right) \sqrt{2n \ln(2/\delta)}$$
(28)

⁷⁵⁶ B PROOF OF EQ. 6

758 759

760

761

In this appendix, we provide the proof of the Eq. 6.

Substituting the form of the loss function from Eq.5 into Eq.3, then we can obtain:

$$\begin{aligned} R_{\rm CD}(g) &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(\pi - c(\mathbf{x},\mathbf{x}')) \ell(g(\mathbf{x}), +1) + (1 - \pi - c(\mathbf{x},\mathbf{x}')) \ell(g(\mathbf{x}'), -1) \\ &+ (\pi + c(\mathbf{x},\mathbf{x}')) \ell(g(\mathbf{x}'), +1) + (1 - \pi - c(\mathbf{x},\mathbf{x}')) \ell(g(\mathbf{x}'), -1) \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(\pi - c(\mathbf{x},\mathbf{x}')) (h(g(\mathbf{x})) - g(\mathbf{x})) + (1 - \pi - c(\mathbf{x},\mathbf{x}')) (h(g(\mathbf{x}')) + g(\mathbf{x}')) \\ &+ (\pi + c(\mathbf{x},\mathbf{x}')) (h(g(\mathbf{x}')) - g(\mathbf{x}')) + (1 - \pi - c(\mathbf{x},\mathbf{x}')) (h(g(\mathbf{x})) + g(\mathbf{x})) \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[h(g(\mathbf{x})) + (1 - 2\pi + 2c(\mathbf{x},\mathbf{x}'))g(\mathbf{x}) \\ &+ h(g(\mathbf{x}')) + (1 - 2\pi - 2c(\mathbf{x},\mathbf{x}'))g(\mathbf{x}) \\ &+ h(g(\mathbf{x}')) + (1 - 2\pi - 2c(\mathbf{x},\mathbf{x}'))g(\mathbf{x}') \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[h(g(\mathbf{x})) + 2c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) + h(g(\mathbf{x}')) - 2c(\mathbf{x},\mathbf{x}')g(\mathbf{x}') \Big] \\ &+ \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(1 - 2\pi) (g(\mathbf{x}) + g(\mathbf{x}')) \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(1 - 2\pi) (g(\mathbf{x}) + g(\mathbf{x}')) \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(1 - 2\pi) (g(\mathbf{x}) + g(\mathbf{x}')) + \frac{1}{2}g(\mathbf{x}) - \frac{1}{2}g(\mathbf{x}) \\ &+ c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x}')) + \frac{1}{2}g(\mathbf{x}') - \frac{1}{2}g(\mathbf{x}') \Big] \\ &+ c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x}')) + \frac{1}{2}g(\mathbf{x}') - \frac{1}{2}g(\mathbf{x}') \Big] \\ &+ \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(1 - 2\pi) (g(\mathbf{x}) + g(\mathbf{x}')) \Big] \\ &= \frac{1}{2} \mathbb{E}_{p(\mathbf{x},\mathbf{x}')} \Big[(1 - 2\pi) (g(\mathbf{x}) + g(\mathbf{x}')) \Big] \\ &+ \frac{1}{2} h(g(\mathbf{x}')) + c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x}')) - \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) + c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) - \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) + c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) - \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) - \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) + \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) + \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) + \frac{1}{2}g(\mathbf{x}') - c(\mathbf{x},\mathbf{x}')g(\mathbf{x}) \\ &+ \frac{1}{2} h(g(\mathbf{x}')) - c(\mathbf{x},\mathbf{x}')h(g(\mathbf{x})) + \frac{1}{2}g(\mathbf{x}) - c(\mathbf{x},\mathbf{x}')$$

808 809

Then Eq. 6 is proven.

⁸¹⁰ C LIMITATIONS

The noise generation method we proposed primarily utilizes a Gaussian distribution to perturb confidence difference distributions originally concentrated around specific values, aiming to approximate the confidence difference distributions that may manifest in the real world. Consequently, artificial datasets are utilized. In the future, we may consider annotating pairwise confidence difference datasets derived from real-world scenarios. It would allow for experiments using authentic datasets rather than artificially constructed ones, offering substantial practical significance.

Additionally, the datasets used are actually multi-label datasets although we focus on binary classification problems in weakly supervised learning. Then the labels of these multi-label datasets are partitioned into two disjoint subsets, each serving as positive and negative classes, respectively, thereby converting them into binary classification datasets. In the future, we will consider expanding the problem scenario to multi-label classification.

D BROADER IMPACTS

The noise confidence difference classification proposed in this paper stands to notably improve
 decision accuracy in real-world settings. It addresses potential noise impacts present in real-world data
 and holds substantial practical significance as a plausible scenario in weakly supervised domains. Its
 applicability can be extended to various fields including medical diagnosis, rehabilitation assessment,
 and financial risk management.

However, it's important to acknowledge that the confidence difference utilized in our method within
weakly supervised settings might be influenced by potential data biases inherent in the real world.
Furthermore, we demonstrate the effectiveness of our approach in weakly supervised scenarios,
there's a risk of excessive dependence on algorithms for decision-making, potentially overlooking the
cultivation of individual decision-making capabilities and autonomy.