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ABSTRACT

Graph neural networks (GNNs) work well when the graph structure is provided.
However, this structure may not always be available in real-world applications.
One solution to this problem is to infer the latent structure and then apply a GNN
to the inferred graph. Unfortunately, the space of possible graph structures grows
super-exponentially with the number of nodes and so the available node labels
may be insufficient for learning both the structure and the GNN parameters. In this
work, we propose the Simultaneous Learning of Adjacency and GNN Parameters
with Self-supervision, or SLAPS, a method that provides more supervision for
inferring a graph structure. This approach consists of training a denoising autoen-
coder GNN in parallel with the task-specific GNN. The autoencoder is trained to
reconstruct the initial node features given noisy node features as well as a structure
provided by a learnable graph generator. We explore the design space of SLAPS
by comparing different graph generation and symmetrization approaches. A com-
prehensive experimental study demonstrates that SLAPS scales to large graphs
with hundreds of thousands of nodes and outperforms several models that have
been proposed to learn a task-specific graph structure on established benchmarks.

1 INTRODUCTION

Graph representation learning has grown rapidly and found applications in domains where data
points define a graph (Chami et al., 2020; Kazemi et al., 2020). Graph neural networks (GNNs)
(Scarselli et al., 2008) have been a key component to the success of the research in this area. Follow-
ing the success of graph convolutional networks (GCNs) (Kipf & Welling, 2017) on semi-supervised
node classification, several other GNN variants have been proposed for different prediction tasks on
graphs (Hamilton et al., 2017; Veličković et al., 2018; Gilmer et al., 2017; Battaglia et al., 2018) and
the power of these models has been studied theoretically (Xu et al., 2019; Sato, 2020).

GNNs take as input a set of node features and an adjacency matrix corresponding to the graph
structure, and, for each node, output an embedding that captures not only the initial features of
the node but also the features and embeddings of its neighbors. The performance of GNNs highly
depends on the quality of the input graph structure and deteriorates substantially when the graph
structure is noisy (see Zügner et al., 2018; Dai et al., 2018; Fox & Rajamanickam, 2019). The need
for both node features and a clean graph structure impedes the applicability of GNNs to domains
where one has access to a set of nodes and their features but not to their underlying graph structure,
or only has access to a noisy structure. Examples of such domains include brain signal classification
(Jang et al., 2019), computer-aided diagnosis (Cosmo et al., 2020), analysis of computer programs
(Johnson et al., 2020), and particle reconstruction (Qasim et al., 2019).

In this paper, we address this limitation by developing a model that learns both the GNN parameters
as well as an adjacency matrix simultaneously. Since the number of possible graph structures grows
super-exponentially with the number of nodes (Stanley, 1973) and obtaining node labels is typically
costly, the number of available labels may not be enough for learning both the GNN parameters
and an adjacency matrix–especially for semi-supervised node classification. Our main contribution
is to supplement the classification task with a self-supervised task that helps learn a high-quality
adjacency matrix. Our self-supervision approach masks some input features (or adds noise to them)
and trains a separate GNN aiming at updating the adjacency matrix in such a way that it can recover
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the masked (or noisy) features. Introducing this self-supervision adds the inductive bias that a graph
structure suitable for predicting the node features is also suitable for predicting the node labels.

We experiment with several classification datasets. For datasets with a graph structure, we only feed
the node features to our model. The model operates on the node features and an adjacency that is
learned simultaneously from data. We compare our model with different classes of methods: some
which do not use the graph structure for predicting labels, some which use a fixed k-Nearest Neigh-
bors (kNN) graph built based on a chosen similarity metric, and some which initialize the graph with
kNN but then revise it throughout the training. We show that our model consistently outperforms
these methods. We also show that the self-supervised task is key to the high performance of our
model. As an additional contribution, we provide an implementation for simultaneous structure and
parameter learning that scales to graphs with hundreds of thousands of nodes.

2 RELATED WORK

Existing methods that relate to this work can be grouped into the following categories.

Similarity Graph: One approach for inferring a graph structure is to select a similarity metric and
set the edge weight between two nodes to be their similarity (Roweis & Saul, 2000; Tenenbaum
et al., 2000). To obtain a sparse structure, one may create a kNN similarity graph, only connect pairs
of nodes whose similarity surpasses some predefined threshold, or do sampling. As an example,
Gidaris & Komodakis (2019) create a (fixed) kNN graph using the cosine similarity of the node
features. Wang et al. (2019b) extend this idea by creating a fresh graph in each layer of the GNN
based on the node embedding similarities in that layer as opposed to fixing a graph solely based
on the initial features. Instead of choosing a single similarity metric, Halcrow et al. (2020) fuse
several (potentially weak) measures of similarity. The quality of the predictions of these methods
depends heavily on the choice of the similarity metric(s) and the value of k for the kNN graph,
or the threshold on similarity. Furthermore, designing an appropriate similarity metric may not be
straightforward in some applications.

Fully-connected Graph: Another approach is to assume a fully-connected graph and employ GNN
variants such as graph attention networks (Veličković et al., 2018; Zhang et al., 2018) or the trans-
former (Vaswani et al., 2017) which infer the graph structure via an attention mechanism, or infer
the graph structure using additional information. This approach has been used in computer vision
(e.g., Suhail & Sigal, 2019), natural language processing (e.g., Zhu et al., 2019), and few-shot learn-
ing (e.g., Garcia & Bruna, 2017), where there are not many nodes. The complexity of this approach,
however, grows rapidly making it applicable only to small-sized graphs with a few thousand nodes
and not scalable to the datasets we use in our experiments.

Learnable Graph: Instead of computing a similarity graph on the initial features, one may use a
graph generator with learnable parameters. Li et al. (2018b) create a fully-connected graph based on
a biliear similarity function with learnable parameters. A common approach is to learn to project the
nodes to a latent space where node similarities correspond to edge weights. Wu et al. (2018) project
the nodes to a latent space by learning weights for each of the input features. Cosmo et al. (2020)
and Qasim et al. (2019) use a multi-layer perceptron for projection. Yu et al. (2020) use a GNN
that projects the nodes into a latent space using the initial node features as well as an initial graph
structure, aiming at providing a revised graph structure to the task-specific GNN. Franceschi et al.
(2019) propose a model named LDS with a bi-level optimization setup for simultaneously learning
the GNN parameters and a full adjacency matrix. Yang et al. (2019) update the input adjacency
matrix based on the inductive bias that nodes belonging to the same class should be connected
to each other and nodes belonging to different classes should be disconnected. Chen et al. (2020)
propose an iterative approach that iterates over projecting the nodes to a latent space and constructing
an adjacency matrix from the latent representations multiple times. In our experiments, we compare
with several approaches from this category.

Leveraging Domain Knowledge: In applications where specific domain knowledge is available,
one may leverage this to guide the model toward learning specific structures. For example, Johnson
et al. (2020) leverage abstract syntax trees and regular languages in learning graph structures of
Python programs that aid reasoning for downstream tasks. Jin et al. (2020b) train GNNs that are
robust to adversarial attack by learning a cleaned version of the input poisoned adjacency matrix
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using the domain knowledge that clean adjacency matrices are often sparse and low-rank and exhibit
feature smoothness along connected nodes.

Proposed Method: Our model falls within the learnable graph category in which we use graph
generators with learnable parameters to infer the adjacency matrix. We supplement the training
with a self-supervised objective to increase the amount of supervision in learning a graph structure.
The self-supervised objective is generic and can be combined with many of the models described
above. It is in the same vein as the auxiliary tasks in the context of multi-task learning used in
computer vision, natural language processing, and reinforcement learning (see, e.g., Jaderberg et al.,
2016; Liebel & Körner, 2018; Alonso & Plank, 2016). The self-supervised task is inspired by the
successful training procedures of several recent language models such as BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019b). Similar self-supervision techniques have also been employed
for GNNs (Hu et al., 2020b;c) (Jin et al., 2020a; You et al., 2020; Zhu et al., 2020). While we
employ similar self-supervision techniques, our work differs from this line of work as we use self-
supervision for learning a graph structure whereas the above methods use it to learn better (and, in
some cases, transferable) GNN parameters. Specifically, we adopt the multi-task learning framework
of You et al. (2020) with two differences: 1- we do not used shared parameters for the task-specific
and self-supervised GNNs, and 2- instead of using a fixed adjacency matrix provided as input,
we allow both GNNs to provide gradients for a generator that learns to generate a graph structure
suitable for the downstream task.

3 BACKGROUND AND NOTATION

We use lowercase letters to denote scalars, bold lowercase letters to denote vectors and bold upper-
case letters to denote matrices. I represents an identity matrix. For a vector v, we represent its ith
element as vi. For a matrixM , we represent the ith row asMi and the element at the ith row and jth

column asMij . For an attributed graph, we use n,m and f to represent the number of nodes, edges,
and features respectively, and denote the graph as G = {V,A,X} where V = {v1, . . . , vn} is a set
of nodes,A ∈ Rn×n is a (sparse) adjacency matrix withAij indicating the weight of the edge from
vi to vj (Aij = 0 implies no edge), and X ∈ Rn×f is a matrix whose rows correspond to node
features or attributes. A degree matrixD for a graph G is a diagonal matrix whereDii =

∑
jAij .

Graph convolutional networks (GCNs) are a powerful variant of GNNs. For a graph G = {V,A,X}
with a degree matrixD, layer l of the GCN architecture can be defined asH(l) = σ(ÂH(l−1)W (l))

where Â represents a normalized adjacency matrix, H(l−1) ∈ Rn×dl−1 represents the node repre-
sentations in layer l-1 with H(0) = X , W (l) ∈ Rdl−1×dl is a weight matrix, σ is an activation
function such as ReLU, and H(l) ∈ Rn×dl is the updated node embeddings. For undirected graphs
where the adjacency is symmetric, Â =D−

1
2 (A+ I)D−

1
2 corresponds to a row-and-column nor-

malized adjacency with self-loops, and for directed graphs where the adjacency is not necessarily
symmetric, Â =D−1(A+ I) corresponds to a row normalized adjacency matrix with self-loops.

4 SLAPS: SIMULTANEOUS LEARNING OF ADJACENCY MATRIX AND GNN
PARAMETERS WITH SELF-SUPERVISION

We break our model into four components: 1) generator, 2) adjacency processor, 3) classifier, and
4) self-supervision. The generator takes the node features as input and generates a (perhaps sparse,
non-normalized, and non-symmetric) matrix Ã ∈ Rn×n. Ã is then fed into the adjacency processor
which outputs A ∈ Rn×n corresponding to a normalized, and in some cases symmetric version of
Ã. The classifier is a GNN that receives A as well as the node features as input and classifies the
nodes into a set of predefined classes. The self-supervision component is a GNN that receives noisy
features and the generated adjacency as input and aims at denoising the features. Figure 1 illustrates
the different components and in what follows, we describe each component in more detail.
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Figure 1: Overview of SLAPS. At the top, a generator receives the node features and produces
a non-symmetric, non-normalized adjacency having (potentially) both positive and negative values
(Section 4.1). The adjacency processor makes the values positive, symmetrizes and normalizes
the adjacency (Section 4.2). The resulting adjacency and the node features go into GNNC which
predicts the node classes (Section 4.3). At the bottom, some noise is added to the node features.
The resulting noisy features and the generated adjacency go into GNNDAE which then denoises the
features (Section 4.4).

4.1 GENERATOR

The generator is a function G : Rn×f → Rn×n with parameters θG which takes the node features
X as input and produces Ã ∈ Rn×n as output. We consider the following two generators.

Full Parameterization (FP): In this case, θG is a single matrix in Rn×n and the generator function
is defined as Ã = GFP (X; θG) = θG. That is, the generator ignores the input node features and
directly optimizes the adjacency matrix. The disadvantages of this generator include adding n2

parameters to the model, which limits scalability and makes the model susceptible to overfitting,
and not being applicable to inductive settings where during test time predictions are to be made for
nodes unseen during training. This generator is similar to the one proposed by Franceschi et al.
(2019) except that they treat each element of Ã as the parameter of a Bernoulli distribution and
sample graph structures from these Bernoulli distributions.

MLP-kNN: In this case, θG corresponds to the weights of a multi-layer perceptron (MLP) and
Ã = GMLP(X; θG) = kNN(MLP(X)), where MLP : Rn×f → Rn×f ′ is an MLP that produces
a matrix with updated node representations X ′; kNN : Rn×f ′ → Rn×n produces a sparse matrix.
Let M ∈ Rn×n with Mij = 1 if vj is among the top k similar nodes to vi and 0 otherwise, and let
S ∈ Rn×n such that Sij = Sim(X ′i,X

′
j) for some differentiable similarity function Sim (we used

cosine in our experiments). Then Ã = kNN(X ′) = M � S where � represents the Hadamard
(element-wise) product. Since S is computed based onX ′, the gradients flow to the elements inX ′
(and consequently to the weights of the MLP) through S. In the backward phase of our model, we
compute the gradients only with respect to those elements in S whose corresponding value in M
is 1 (i.e. those elements Sij such that Mij = 1); the gradient with respect to the other elements is
0. With this formulation, in the forward phase of the network, one can first compute the matrix M
using an off-the-shelf k-nearest neighbors algorithm and then compute the similarities in S only for
pairs of nodes whereMij = 1. Unlike FP, this generator can be used for the inductive setting.

Smart initialization: In our experiments, we found the initialization of the generator parameters
(i.e. θG) to be important. Let AkNN represent an adjacency matrix created by applying a kNN
function on the initial node features. One smart initialization for θG is to initialize them in a way that
the generator generates AkNN before training starts (i.e. Ã = AkNN before training starts). Such
an initialization can be trivially done for the FP generator by initializing θG to AkNN , but may not
be straightforward for the MLP-kNN generator. To enable initializing the parameters of the MLP-
kNN generator in a way that it generates AkNN before training starts, we consider two variants of
this generator. In one, hereafter referred to simply as MLP, we keep the input dimension the same
throughout the layers. In the other, hereafter referred to as MLP-D, we consider MLPs with diagonal
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weight matrices (i.e., except the main diagonal, all other parameters in the weight matrices are zero).
For both variants, we initialize the weight matrices in θG with the identity matrix to ensure that the
output of the MLP is initially the same as its input and the kNN graph created on these outputs is
equivalent to AkNN . MLP-D can be thought of as assigning different weights to different features
and then computing node similarities. Note that, alternatively, one may use other MLP variants but
pre-train the weights to outputAkNN before the main training starts.

4.2 ADJACENCY PROCESSOR

The output Ã of the generator may have both positive and negative values, may be non-symmetric
and non-normalized. To ensure all values of the adjacency are positive and make the adjacency
symmetric and normalized, we apply the following function to Ã:

A =D−
1
2

(P(Ã) + P(Ã)T

2

)
D−

1
2 (1)

Here P is a function with a non-negative range. In our experiments, when using an MLP generator,
we apply the ReLU function to the elements of Ã. When using the fully-parameterized (FP) gener-
ator, applying ReLU results in a gradient flow problem as any edge whose corresponding value in Ã
becomes less than or equal to zero stops receiving gradient updates. For this reason, for FP we apply
the ELU function to the elements of Ã and then add a value of 1. The sub-expression P(Ã)+P(Ã)T

2

makes the resulting matrix P(Ã) symmetric. To understand the reason for taking the mean of P(Ã)

and P(Ã)T , assume Ã is generated by GMLP. If vj is among the k most similar nodes to vi and
vice versa, then the strength of the connection between vi and vj will remain the same. However,
if, say, vj is among the k most similar nodes to vi but vi is not among the top k for vj , then taking
the average of the similarities reduces the strength of the connection between vi and vj . Finally,
once we have a symmetric adjacency with non-negative values, we compute the degree matrix D
for P(Ã)+P(Ã)T

2 and normalize P(Ã)+P(Ã)T

2 by multiplying it left and right withD−
1
2 .

4.3 CLASSIFIER

The classifier is a function GNNC : Rn×f × Rn×n → Rn×|C| with parameters θGNNC
. It takes the

node features X and the generated adjacency A as input and provides for each node the logits for
each class. C corresponds to the classes and |C| corresponds to the number of classes. We use a two-
layer GCN for which θGNNC

= {W (1),W (2)} and define our classifier as GNNC(A,X; θGNNC
) =

AReLU(AXW (1))W (2) but other GNN variants can be used as well (recall thatA is normalized).
The training loss LC for the classification task is computed by taking the softmax of the logits to
produce a probability distribution for each node and then computing the cross-entropy loss.

4.4 ADDING SELF-SUPERVISION

As explained in Section 1, in many domains, the number of labeled nodes may be insufficient for
learning both the structure and the GNN parameters from data. To increase the amount of supervi-
sion for learning the structure, we propose a self-supervised approach based on denoising autoen-
coders (Vincent et al., 2008). Let GNNDAE : Rn×f × Rn×n → Rn×f be a GNN that takes node
features as well as a normalized adjacency produced by a generator as input and provides updated
node features with the same dimension as input. We train GNNDAE such that it receives a noisy ver-
sion X̃ of the featuresX as input and produces the denoised featuresX as output. Let idx represent
the indices corresponding to the elements of X to which we have added noise, and Xidx represent
the values at these indices. The aim of the training procedure is to minimize:

LDAE = L(Xidx,GNNDAE(X̃,A; θGNNDAE
)idx) (2)

whereA is the generated adjacency matrix and L is a loss function. To add noise to the input features
for datasets where features consist of binary vectors, in each iteration, idx consists of r percent of
the indices of X whose values are ones and rη percent of the indices whose values are zeros, both
selected uniformly at random in each epoch. Both r and η (corresponding to the negative ratio) are
hyperparameters. In this case, we add noise by setting the ones in the selected mask to zeros and L
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is the binary cross-entropy loss. For datasets where the input features are continuous numbers, idx
consists of r percent of the indices ofX selected uniformly at random in each epoch. We add noise
by either replacing the values at idx with zeros or by adding independent Gaussian noises to each
of the features. In this case, L is the mean-squared error loss.

To understand the cruciality of the proposed self-supervision, let us consider a scenario
for training the model in Figure 1 (or a model with a similar architecture) but with-
out the self-supervised task. As training proceeds, assume that two unlabeled nodes vi
and vj are not directly connected to any labeled nodes. Then, since a two-layer GCN
makes predictions for the nodes based on their two-hop neighbors, the edge between vi
and vj receives no supervision1. Figure 2 provides an example of such a scenario.
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Figure 2: The dashed edge receives no su-
pervision when training a two-layer GCN as
it is not in the two-hop neighborhood of any
labeled node.

As a quantitative example, in the original structures
and train/validation/test splits of Cora and Citeseer,
80.4% and 89.9% of the nodes, and consequently
64.6% and 80.8% of pairs of nodes, are not con-
nected to any labeled/train nodes. If no supervision
is provided for some edges in the graph, after train-
ing the existence and weights of these edges may
end up being set randomly (or the same as their ini-
tialization value), which may be problematic during
testing. With the self-supervised task, however, al-
though these edges may not receive supervision from
the main task (i.e. from GCNC), the supervision pro-
vided by the self-supervised task (i.e. from GCNDAE)
helps learn an appropriate weight for them.

4.5 SLAPS

Our final model, dubbed SLAPS, is trained to minimize L = LC + λLDAE where LC is the classi-
fication loss, LDAE is the denoising autoencoder loss (see Equation 2), and λ is a hyperparameter
controlling the relative importance of the two losses.

To verify the merit of the GNNDAE for learning an adjacency matrix in isolation, we also consider a
variant of SLAPS named SLAPS2s that is trained in two stages. We first train the GNNDAE model
by minimizing the loss function described in Equation 2. Note that the loss function in Equation 2
depends on the parameters θG of the generator and the parameters θGNNDAE

of the denoising autoen-
coder. After every t epochs of training, we fix the adjacency matrix, train a classifier with the fixed
adjacency matrix, and measure classification accuracy on the validation set. We select the epoch
that produces the adjacency providing the best validation accuracy for the classifier. Note that in
SLAPS2s, the adjacency matrix is trained only based on GNNDAE.

5 EXPERIMENTS

Baselines: We compare our proposal to several baselines with different properties. The first baseline
is a multi-layer perceptron (MLP) which does not take the graph structure into account. We also
compare against MLP-GAM* (Stretcu et al., 2019) which learns a fully-connected graph structure
and uses this structure to supplement the loss function of the MLP toward predicting similar labels
for neighboring nodes. Similar to Franceschi et al. (2019), we also consider a baseline named kNN-
GCN where we create a kNN graph based on the node features and feed this graph to a GCN. The
graph structure remains fixed in this approach. We also compare with baselines that learn the graph
structure from data including LDS (Franceschi et al., 2019), GRCN (Yu et al., 2020), DGCNN
(Wang et al., 2019b), and IDGL (Chen et al., 2020). We feed a kNN graph to the models requiring
an initial graph structure.

Datasets: We use three established benchmarks in the GNN literature namely Cora, Citeseer, and
Pubmed (Sen et al., 2008) as well as a newly released dataset for node classification named ogbn-

1While this problem may be alleviated to some extent by increasing the number of layers of the GCN,
deeper GCNs typically provide inferior results due to issues such as oversmoothing (see, e.g., Li et al., 2018a;
Oono & Suzuki, 2020).
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Table 1: Results of SLAPS and the baselines on established node classification benchmarks. † indi-
cates results have been taken from Franceschi et al. (2019). ‡ indicates results have been taken from
Stretcu et al. (2019). Bold and underlined values indicate best and second-best mean performances
respectively. OOM indicates out of memory.

Model Generator Cora Citeseer Cora390 Citeseer370 Pubmed ogbn-arxiv
MLP 56.1± 1.6† 56.7± 1.7† 65.8± 0.4 67.1± 0.5 71.4± 0.0 54.7± 0.1

MLP-GAM* 70.7‡ 70.3‡ − − 71.9‡ −
kNN-GCN 66.5± 0.4† 68.3± 1.3† 72.5± 0.5 71.8± 0.8 70.4± 0.4 49.1± 0.3
LDS − − 71.5± 0.8† 71.5± 1.1† OOM OOM
GRCN 67.4± 0.3 67.3± 0.8 71.3± 0.9 70.9± 0.7 67.3± 0.3 OOM
DGCNN 56.5± 1.2 55.1± 1.4 67.3± 0.7 66.6± 0.8 70.1± 1.3 OOM
IDGL 70.9± 0.6 68.2± 0.6 73.4± 0.5 72.7± 0.4 72.3± 0.4 OOM
SLAPS FP 72.4± 0.4 70.7± 0.4 76.6± 0.4 73.1± 0.6 OOM OOM
SLAPS MLP 72.8± 0.8 70.5± 1.1 75.3± 1.0 73.0± 0.9 74.4± 0.6 56.6± 0.1
SLAPS MLP-D 73.4± 0.3 72.6± 0.6 75.1± 0.5 73.9± 0.4 73.1± 0.7 52.9± 0.1

arxiv (Hu et al., 2020a) that is orders of magnitude larger than the other three datasets and is more
challenging due to the more realistic split of the data into train, validation, and test sets. For all
the datasets, we only feed the node features to the models and not the graph structure. Following
Franceschi et al. (2019), we also experiment with several classification (non-graph) datasets avail-
able in scikit-learn (Pedregosa et al., 2011) including Wine, Cancer, Digits, and 20News. Dataset
statistics can be found in the Appendix. For Cora and Citeseer, the LDS model uses the train data for
learning the parameters of their classification GCN, half of the validation for learning the parameters
of the adjacency matrix (in their bi-level optimization setup, these are considered as hyperparame-
ters), and the other half of the validation set for early stopping and tuning the other hyperparameters.
Besides experimenting with the original setups of these two datasets, we also consider a setup that
is closer (although not identical) to that of LDS: we use the train set and half of the validation set for
training and the other half of validation for early stopping and hyperparameter tuning. We name the
modified versions Cora390 and Citeseer370 respectively where the number proceeding the dataset
name corresponds to the number of labels used for training. We also follow a similar procedure for
the scikit-learn datasets.

5.1 COMPARATIVE RESULTS

The results of SLAPS and the baselines on the node classification benchmarks are reported in Ta-
ble 1. Considering only the baselines first, we see that kNN-GCN significantly outperforms MLP
on Cora and Citeseer but underperforms on Pubmed and ogbn-arxiv. This shows the importance
of the similarity metric and the graph structure that is fed into GCN as a low-quality structure can
harm model performance. LDS outperforms MLP but the fully parameterized adjacency matrix of
LDS results in memory issues for Pubmed and ogbn-arxiv. As for GRCN, it was shown in the orig-
inal paper that GRCN can revise a good initial adjacency matrix and provide a substantial boost in
performance. However, as evidenced by the results, if the initial graph structure is somewhat poor,
GRCN’s performance becomes on-par with kNN-GCN. IDGL is the best performing baseline but
the iterative nature of it makes it slow to train and test.

SLAPS consistently outperforms the baselines on all datasets, in some cases by large margins.
Among the generators, the winner is dataset-dependent with MLP-D mostly outperforming MLP
on datasets with many features and MLP outperforming on datasets with small numbers of features.
Using the software that was publicly released by the authors, all baselines that learn a graph structure
fail on ogbn-arxiv and our implementation is the first that generalizes to such large graphs.

Table 2 reports the results for the scikit-learn datasets and compares with LDS and IDGL. On three
out of four datasets, SLAPS outperforms the other two baselines. Among the datasets on which we
can train SLAPS with the FP generator, 20news has the largest number of nodes. On this dataset,
we observed that an FP generator suffers from overfitting and produces weaker results compared to
other generators due to its large number of parameters.
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Table 2: Results on classification datasets. † indicates results have been taken from Franceschi et al.
(2019). Bold and underlined values indicate best and second-best mean performances respectively.

Model Generator Wine Cancer Digits 20news
LDS 97.3± 0.4† 94.4± 1.9† 92.5± 0.7† 46.4± 1.6†

IDGL 97.0± 0.7 94.2± 2.3 92.5± 1.3 48.5± 0.6
SLAPS FP 96.6± 0.4 94.6± 0.3 94.4± 0.7 44.4± 0.8
SLAPS MLP 96.3± 1.0 96.0± 0.8 92.4± 0.6 50.4± 0.7
SLAPS MLP-D 96.5± 0.8 96.6± 0.2 93.2± 0.6 49.8± 0.9

5.2 FURTHER ANALYSIS

SLAPS2s: To provide more insight into the value provided by the self-supervision task on the
learned adjacency, we conduct experiments with SLAPS2s. Recall from Section 4.5 that in
SLAPS2s, the adjacency is learned only based on the self-supervision task and the node labels are
only used for early stopping, hyperparameter tuning, and training GCNC. Figure 3(a) shows the per-
formance of SLAPS and SLAPS2s on Cora and compares them with kNN-GCN. Although SLAPS2s

does not use the node labels in learning an adjacency matrix, it outperforms kNN-GCN (8.4% im-
provement when using an FP generator). With an FP generator, SLAPS2s even achieves competitive
performance with SLAPS; this is mainly because FP does not leverage the supervision provided
by GCNC toward learning generalizable patterns that can be used for nodes other than those in the
training set. These results corroborate the effectiveness of the self-supervision task for learning an
adjacency matrix. Besides, the results show that learning the adjacency using both self-supervision
and the task-specific node labels results in higher predictive accuracy.

The value of λ: Figure 3(b) shows the performance of SLAPS2 on Cora and Citeseer with different
values of λ. When λ = 0, corresponding to removing self-supervision, the model performance is
somewhat poor. As soon as λ becomes positive, both models see a large boost in performance show-
ing that self-supervision is crucial to the high performance of SLAPS. Increasing λ further provides
larger boosts until it becomes so large that the self-supervision loss dominates the classification loss
and the performance deteriorates. Note that with λ = 0, SLAPS with the MLP generator becomes a
variant of the model proposed by Cosmo et al. (2020), but with a different similarity function.

Importance of k in kNN: Figure 3(c) shows the performance of SLAPS on Cora for three graph
generators as a function of k in kNN. For all three cases, the value of k plays a major role in model
performance. The FP generator is the least sensitive because in FP, k only affects the initialization
of the adjacency matrix but then the model can change the number of neighbors of each node. For
MLP and MLP-D, however, the number of neighbors of each node remains close to k (but not
necessarily equal as the adjacency processor can add or remove some edges) and the two generators
become more sensitive to k. For larger values of k, the extra flexibility of the MLP generator
enables removing some of the unwanted edges through the function P or reducing the weights of the
unwanted edges resulting in MLP being less sensitive to large values of k compared to MLP-D.

Symmetrization: To symmetrize the adjacency, in Equation 1 we took the average of P(Ã) and
P(Ã)T . Here we also consider two other choices: 1) max(P(Ã), P(Ã)T ), and 2) not symmetrizing
the adjacency (i.e. using P(Ã)). Figure 3(d) compares these three choices on Cora and Citeseer with
an MLP generator (other generators produced similar results). On both datasets, symmetrizing the
adjacency provides a performance boost. Compared to mean symmetrization, max symmetrization
performs slightly worse. This may be because max symmetrization does not distinguish between
the case where both vi and vj are among the k most similar nodes of each other and the case where
only one of them is among the k most similar nodes of the other.

Analysing the learned adjacency: Many graph-based semi-supervised classification models are
based on the cluster assumption according to which nearby nodes are more likely to share the same
label (Chapelle & Zien, 2005). To verify the quality of the adjacency matrix learned using SLAPS,
for every pair of nodes in the test set, we compute the odds of the two nodes sharing the same label
as a function of the normalized weight of the edge connecting them. Figure 3(e) represents the odds

2The generator used in this experiment is MLP; other generators produced similar results.
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Figure 3: The performance of SLAPS (a) compared to SLAPS2s on Cora with different generators,
(b) with MLP graph generator on Cora and Citeseer as a function of λ, (c) with different graph
generators on Cora as a function of k in kNN, and (d) on Cora and Citeseer with different adjacency
symmetrizations. (e) The odds of two nodes in the test set sharing the same label as a function of
the edge weights learned by SLAPS.

for different weight intervals. For both Cora and Citeseer, nodes connected with higher edge weights
are more likely to share the same label compared to nodes with lower or zero edge weights. As a
specific example, when Aij ≥ 0.1, vi and vj are almost 2.5 times more likely to share the same
label on Cora and almost 2.0 times more likely on Citeseer. Note that SLAPS may connect nodes
based on a different criterion than the one used in the original datasets and so the learned adjacencies
do not necessarily resemble the original structures.

6 CONCLUSION

In this paper, we proposed a model for learning the parameters of a graph neural network and the
graph structure of the nodes simultaneously. We showed the effectiveness of our model using a
comprehensive set of experiments and analyses. In the future, we would like to try more sophisti-
cated graph generation models (e.g., GraphRNN (You et al., 2018) and GNF (Liu et al., 2019a)) and
extend our approach to applications with a temporal aspect where node features are observed over
time but their connections are not provided as input.
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A APPENDIX

Implementation Detail: We implemented our model in PyTorch (Paszke et al., 2017), used deep
graph library (DGL) (Wang et al., 2019a) for the sparse operations, and used Adam (Kingma &
Ba, 2014) as the optimizer. We performed early stopping and hyperparameter tuning based on the
accuracy on the validation set for all datasets except Wine and Cancer. For these two datasets, vali-
dation accuracy reached 100 percent with many hyperparameter settings, making it difficult to select
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the best set of hyperparameters so instead, we used the validation cross-entropy loss. We fixed the
maximum number of epochs to 2000. We use two-layer GCNs for both GNNC and GNNDAE as well
as for baselines and two-layer MLPs throughout the paper (for experiments on ogbn-arxiv, although
the original paper uses models with three layers and with batch normalization after each layer, to be
consistent with our other experiments we used two layers and removed the normalization). We used
two learning rates, one for GCNC and one for the other parameters of the models. We tuned the two
learning rates from the set {0.01, 0.001}. We added dropout layers with dropout probabilities of
0.5 after the first layer of the GNNs. We also added dropout to the adjacency matrix and tuned the
values from the set {0.25, 0.5}. We set the hidden dimension of GNNC to 32 for all datasets except
for ogbn-arxiv for which we set it to 256. We used cosine similarity for building the kNN graphs
and tuned the value of k from the set {15, 20, 30}. We tuned λ (λ controls the relative importance
of the two losses) from the set {0.1, 1, 10, 100}. The code of our experiments will be available upon
acceptance of the paper.

For GRCN (Yu et al., 2020), DGCNN (Wang et al., 2019b), and IDGL (Chen et al., 2020), we used
the code released by the authors and tuned the hyperparameters as suggested in the original papers.
The results of LDS (Franceschi et al., 2019) are directly taken from the original paper. All the
results for our model and the baselines are averaged over 10 runs. We report the mean and standard
deviation.

Dataset statistics: The statistics of the datasets used in the experiments can be found in Table 3.

Table 3: Dataset statistics.

Dataset Nodes Edges Classes Features Label rate
Cora 2,708 5,429 7 1,433 0.052

Citeseer 3,327 4,732 6 3,703 0.036
Wine 178 0 3 13 0.112

Cancer 569 0 2 30 0.035
Digits 1,797 0 10 64 0.056

20news 9,607 0 10 236 0.021
Pubmed 19,717 44,338 3 500 0.003

ogbn-arxiv 169,343 1,166,243 40 128 0.537
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