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Abstract

Construction Grammar hypothesizes that001
knowledge of a language consists chiefly of002
knowledge of form–meaning pairs (“construc-003
tions”) that include vocabulary, general gram-004
mar rules, and even idiosyncratic patterns. Re-005
cent work has shown that transformer language006
models represent at least some constructional007
patterns, including ones where the construction008
is rare overall. In this work, we probe BERT’s009
representation of the form and meaning of a010
minor construction of English, the NPN (noun–011
preposition–noun) construction—exhibited in012
such expressions as face to face and day to013
day—which is known to be polysemous. We014
construct a benchmark dataset of semantically015
annotated corpus instances (including distrac-016
tors that superficially resemble the construc-017
tion). With this dataset, we train and evaluate018
probing classifiers. They achieve decent dis-019
crimination of the construction from distrac-020
tors, as well as sense disambiguation among021
true instances of the construction, revealing022
that BERT embeddings carry indications of the023
construction’s semantics. Moreover, artificially024
permuting the word order of true construction025
instances causes them to be rejected, indicating026
sensitivity to matters of form. We conclude that027
BERT does latently encode at least some knowl-028
edge of the NPN construction going beyond a029
surface syntactic pattern and lexical cues.030

1 Introduction031

The “black box” nature of Language Models (LMs)032

like has spawned a great deal of research inves-033

tigating the extent to which these LMs are able034

to represent and understand a variety of linguis-035

tic phenomena (Linzen and Baroni, 2021; Rogers036

et al., 2021; Chang and Bergen, 2024). There has037

been substantial work focusing on many aspects of038

linguistic knowledge, including hierarchical struc-039

ture (Clark et al., 2019; Hewitt and Manning, 2019;040

Jawahar et al., 2019), lexical semantics (Chang041

and Chen, 2019; Vulić et al., 2020), negation (Et-042

tinger, 2020), agreement phenomena (Linzen et al., 043

2016; Weissweiler et al., 2023), and filler-gap de- 044

pendencies (Wilcox et al., 2018, 2024). Broadly, 045

these results show that even relatively modest sized 046

LSTMs and transformer models are able to demon- 047

strate nontrivial (though far from perfect) linguistic 048

knowledge. However, there is some indication that 049

these models are sometimes reliant on more sur- 050

face level heuristics, and fail in situations which 051

are straightforward to humans (McCoy et al., 2019; 052

Ettinger, 2020). More generally, language models 053

have been generally shown to struggle in out-of- 054

domain situations (McCoy et al., 2024) and have 055

some difficulty applying linguistic paradigms to 056

nonce words (Weissweiler et al., 2023) and rare 057

syntactic constructions (Scivetti et al., 2025). 058

Thus, there is need to evaluate language models 059

on a range of linguistic tasks which go beyond the 060

more studied “core” linguistic phenomena. Indeed, 061

beyond the more mainstream notions of linguistic 062

structure and information, there is also work on 063

investigating LM knowledge of more idiosyncratic 064

constructions, as defined by Construction Gram- 065

mar. Construction Grammar is broadly a family 066

of linguistic theories which consider all parts of 067

language to be made up of constructions, which are 068

pairings of linguistic forms with meaning or func- 069

tion (Goldberg 1995; Croft 2001, inter alia). It re- 070

mains unclear the extent to which LMs may implic- 071

itly view constructions as distinct units. A substan- 072

tial and growing amount of research has recently 073

focused on the intersection of LM knowledge and 074

Construction Grammar (Tayyar Madabushi et al., 075

2020; Tseng et al., 2022; Pannitto and Herbelot, 076

2023; Veenboer and Bloem, 2023, inter alia), with 077

a particular focus on argument structure construc- 078

tions (Li et al., 2022), the English Comparative 079

Correlative (Weissweiler et al., 2022), and the En- 080

glish AANN construction (Chronis et al., 2023; 081

Mahowald, 2023). While these studies have pro- 082

vided valuable insight into LM processing of con- 083
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structions with varying levels of schematicity, there084

remain many constructions which have not been085

addressed at all in previous work. Furthermore,086

while Zhou et al. (2024) do test model understand-087

ing of constructions which are similar in form, no088

past work has focused on individual constructions089

as polysemous units. We argue this is a gap in090

past work, as constructions, like words, can have091

related but distinct meanings that must be prop-092

erly disambiguated in context in order for correct093

interpretation.094

This work is the first to study whether language095

models capture the NPN construction (Jackendoff,096

2008), an infrequent yet productive pattern exhib-097

ited in expressions like face to face and day to098

day. Even for the subset where two instances of099

the same noun are linked by the preposition to, the100

pattern is polysemous, and sequences matching this101

pattern on the surface are not always instances of102

the construction (§2). Guided by CxG theory, we103

separate our inquiry in terms of the construction’s104

form and meaning in context. To summarize our105

contributions, we:106

• Construct and annotate a novel dataset of nat-107

ural NPN examples from COCA (§3).108

• Probe BERT’s ability to distinguish true con-109

structional instances from related construc-110

tions and artificial orders (§4 and §5).111

• Introduce the task of construction sense dis-112

ambiguation and perform experiments using113

our dataset (§6).114

To summarize our findings, we show that probes115

using BERT embeddings are able to both identify116

correct instances of NPN and disambiguate the117

construction within context at respectable accuracy.118

Overall, these findings indicate that BERT latently119

encodes relevant information to the NPN construc-120

tion, leading to strong sensitivity to both the con-121

struction’s form and its meaning.122

2 The NPN Construction123

The NPN construction (Jackendoff, 2008) follows124

the general pattern of Noun + Preposition + Noun.125

Below are 2 examples of the NPN construction.126

These examples, along with all others, are taken127

from the Corpus of Contemporary American En-128

glish (COCA, Davies 2010).129

(1) There is a rebellious quality to your day to day130

responses which have not gone unnoticed.131

(2) I need you to get this word for word.132

Given the general rules of English, the NPN con- 133

struction has several unique properties. Firstly, the 134

nouns almost always lack determiners, which is 135

unusual for count nouns like “day”. Secondly, the 136

construction can occur in a variety of syntactic posi- 137

tions, including as an adverbial modifier (as in (2)) 138

and as a prenominal modifier (as in (1)). Finally, 139

it conveys a meaning which is not entirely pre- 140

dictable from its components, and varies consider- 141

ably depending on the preposition. Common mean- 142

ings of the NPN construction are the SUCCESSION 143

meaning (shown in (1)) and the MATCHING/COM- 144

PARISON meaning (shown in (2)). See Jackendoff 145

(2008) for an overview of the NPN construction 146

and the common meanings associated with various 147

prepositional lemmas. 148

While it is conceptually and intuitively appealing 149

to think of NPN as a single construction, some work 150

has argued in favor of viewing NPN as a group of 151

related constructions, which are linked within the 152

mind but not necessarily dominated by a single 153

overarching abstract NPN construction (Sommerer 154

and Baumann, 2021). Due to the wide variety of 155

meanings and distributions of the different NPN 156

constructions, we choose to limit our focus to a 157

single subtype of NPNs, which all share the lemma 158

“to” as their preposition, which we refer to as the 159

NtoN construction. There is still considerable se- 160

mantic variation even within the NtoN construction, 161

with 2 broad meanings that we highlight: SUCCES- 162

SION (shown in (3)) and JUXTAPOSITION (shown 163

in (4)). 164

(3) I was living moment to moment. 165

(4) You can preserve core warmth by huddling 166

with a buddy, chest to chest. 167

While there are arguably examples of NPNs where 168

the two nouns are not identical, we limit our analy- 169

sis to cases where the two nouns in the construction 170

match exactly. 171

3 Dataset 172

3.1 Corpus Gathering and Cleaning 173

In this work, we endeavor to use natural corpus data 174

to the extent that it was possible. First, we use a 175

simple pattern matching query to extract instances 176

of the sequence Noun + "to" + Noun from COCA. 177

We extract the examples from the corpus in a fixed 178

window of +/- 50 tokens from the construction, 179

and then used Stanza (Qi et al., 2020) to segment 180
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the results into sentences and extract the sentences181

which contained NtoNs. We automatically exclude182

sentences which contained "from" preceding the183

construction, because from N to N does not have184

exactly the same distribution as the more general185

NtoN (Jackendoff, 2008), and is sometimes stud-186

ied as a separate (but closely related) construction187

(Zwarts, 2013).188

After extracting all sentences which contained189

a possible instance of NtoN, we then manually190

clean the data, removing sentences that were either191

too short (<5 tokens) or contained too many ty-192

pos. We annotate all instances of the construction193

for their semantic subtype, and double annotate194

roughly 25% of the dataset, achieving an agree-195

ment of 84% between the two annotators.1 The196

final dataset has 6599 instances of NtoN, of which197

1885 were double annotated.198

3.2 Near Minimal Pairs199

In addition to true instances of the NtoN construc-200

tion, We also find grammatical corpus instances201

of Noun + "to" + Noun patterns, which are not in-202

stances of the construction. These patterns often203

occur when a verb licenses a direct object and a204

"to" prepositional phrase, and the direct object and205

the object of the preposition happen to have the206

same lemma. Three examples are shown below in207

(5), (6), and (7).208

(5) Then there’s the problem of sticking plastic to209

plastic.210

(6) In Rome largesse was doled out by individuals211

to individuals.212

(7) I don’t have time to time travel ...213

These cases are not instances of the NtoN con-214

struction, but they do provide a set of negative ex-215

amples which we can use to probe the model’s abil-216

ity to recognize true NtoN constructions. Through-217

out this paper, we refer to this set of examples as218

instances of the NtoN distractors, since we test of if219

the model is “distracted” by the shallow similarity220

of the examples to the NPN construction. We refer221

to true examples of NtoN as instances of the NtoN222

construction. Since these NtoN examples exhibit223

the same surface form as the NtoN construction,224

we consider them to be near minimal pairs, fol-225

lowing Weissweiler et al. (2022) who extract near226

1Disagreements between the two annotators were resolved
through discussion and a gold label was chosen jointly.

SUCCESSION JUXTAPOSITION Distractors

train 289 287 287
test 731 678 72

Table 1: Number of noun–to–noun sequences: two
meanings of the NPN Construction, as well as distrac-
tors. Train sets are balanced to be equal between the
categories. The remaining examples are left for testing.

minimal pairs from corpus data based on Part-of- 227

Speech patterns. While these sentences inevitably 228

contain more lexical biases than a true minimal 229

pair dataset, they are completely natural, and pro- 230

vide a good comparison point for a construction 231

where creating true minimal pairs is otherwise dif- 232

ficult (similar to the struggles of Weissweiler et al. 233

(2022) regarding the Comparative Correlative con- 234

struction). In total, we collect 456 total instances 235

of NtoN distractors from COCA. 236

3.3 Train/Test Split 237

The resulting dataset contains many instances of 238

very common NtoN constructions, such as “day to 239

day”. We control for the effect of these frequent 240

lemmas in two ways. Firstly, we artificially shrink 241

the dataset by randomly sampling 20 sentences 242

for each noun lemma which occurs more than 20 243

times, and discard the remaining sentences for the 244

purposes of model training and testing. This is to 245

make sure that no overly common lemmas have an 246

overstated impact on the probing classifier perfor- 247

mance. 248

Secondly, we generate random train/test splits 249

based on lemma of the noun in the NtoN, meaning 250

that there are no lemmas that are seen in both the 251

training set and the testing set. In other words, if an 252

example with “day to day” is seen during training, 253

a sentence with “day to day” will never be seen 254

during testing (but a sentence with “week to week” 255

might be). Each sentence in the dataset has one 256

target instance of the NtoN construction. 257

In Table 1, we report the final dataset sizes, split 258

by semantic subtype for the construction examples. 259

NtoN constructions are much more frequent than 260

the NtoN distractor patterns which serve as their 261

near minimal pairs. We choose to balance the sizes 262

of the two types of examples during training. We 263

take 80 percent of the NtoN distractor patterns for 264

training and withhold twenty percent. We take a 265

similar number of NtoN constructions for training 266

and then test on the remainder, ensuring training 267

sets are balanced between constructions and dis- 268

tractors. 269
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Figure 1: Accuracy of NtoN construction across layers
of BERT-base, averaged across 5 random seeds. Max-
imal accuracy in the mid to late layers. Reducing the
number of training examples does not drastically harm
performance. The light grey line represents control
probe (Hewitt and Liang, 2019) accuracy, which hovers
around chance. The dark grey line represents accuracy
of the lexical semantic GloVe baseline. Darker lines
indicate larger amounts of training examples, with pos-
sible values of 10, 25, 100, and 287. Reducing the
amount of training examples for the probes does not
lead to drastically changed performance.

4 Experiment 1: Constructions vs.270

Distractors271

4.1 Methodology272

We probe the ability for BERT to distinguish natu-273

ral instances of the NtoN construction from natural274

examples of the NtoN distractor pattern. To ad-275

dress the issue of lexical overlap, we control for276

the lexical cue of the nouns in NtoN by making277

sure there is no overlap of nouns in the training278

and testing data splits, as described in §3.3. How-279

ever, it is still entirely possible that the classifier280

learns to utilize lexical similarity of the nouns in281

the construction, or even other words beyond the282

construction. We address this by providing two283

baseline systems which give perspective on per-284

formance based on lexical cues: a control classi-285

fier (Hewitt and Liang, 2019) and a non-contextual286

baseline based on GloVe embeddings (Pennington287

et al., 2014).288

Control classifiers involve training new classi-289

fiers based on data where the labels are randomized290

and correspond deterministically to word type, ide-291

ally leading to chance performance. Following292

Hewitt and Liang (2019), who deterministically293

assign each word a POS tag for their probing ex-294

periments, we assign a random positive or negative295

label deterministically based on the first noun word296

type in the construction. The performance of these297

control classifiers should be near chance, in the ab-298

sence of any spurious correlations which allow the299

classifier to solve the task given arbitrary labels.300

We provide an additional, non-contextual base-301

line by training a linear classifier on GloVe embed- 302

dings for the nouns in the construction as input. It 303

is well known that the NPN construction is biased 304

towards certain lexical types of nouns, such as tem- 305

poral phrases and body parts (Jackendoff, 2008). 306

Thus, we expect that a classifier trained on the static 307

embedding of the noun alone will achieve nontriv- 308

ial performance. We argue that if a BERT-based 309

classifier substantially outperforms this baseline, 310

the difference is in performance is an indication 311

of nontrivial contextual understanding of the con- 312

struction as a whole, beyond the lexical semantics 313

of the present nouns. 314

We train a separate probe based on embeddings 315

from each layer of BERT and track performance 316

across layers. We use the BERT-base-cased model, 317

available through the Huggingface transformers li- 318

brary (Wolf et al., 2020), and choose logistic regres- 319

sion as our linear classification architecture.2 For 320

all experiments and data settings, we run probes 321

with 5 random seeds and report the average results. 322

4.2 Results 323

For the probing classifier results, we graph accu- 324

racy on the NtoN construction in Figure 1. As we 325

can see, the classifier is relatively strong at distin- 326

guishing the NtoN construction from distractors 327

even in the early layers, with an accuracy over 328

.90 by layer 5 with full training examples. Addi- 329

tionally, the classifiers are robust to sharp reduc- 330

tions in the number of training examples (shown 331

in lighter shades of green in Figure 1), showing 332

strong performance even with as few as 10 per- 333

class training examples. The control classifier 334

achieves roughly chance performance, meaning 335

that our trained probes have high selectivity (He- 336

witt and Liang, 2019). The lexical semantic base- 337

line using GloVe achieves performance well above 338

chance (≈68%), though it’s performance lags far 339

behind the BERT-based probes, regardless of how 340

many training example those BERT-based probes 341

receive. This shows that overall, the probing clas- 342

sifier seems to be picking up on some sort of in- 343

formation in BERT which can reliably distinguish 344

the NtoN construction from its near minimal pair 345

NtoN distractor counterparts, beyond what is possi- 346

ble through lexical semantic clues alone. However, 347

the distractor examples generally have syntactic 348

structure which is divergent from the construction 349

2We take the embedding of “to” as the input into the clas-
sifier, as some past work has considered it the “head” of the
overall construction (Jackendoff, 2008).
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examples. To provide another comparison point,350

we now test if the existing probes can distinguish351

true instances of the NtoN construction from exam-352

ples with artificially altered word orders.353

5 Experiment 2: Perturbing Word Order354

As we have seen in §4.2, a BERT-based probe can355

generally distinguish the NtoN distractor patterns356

from the NtoN construction. However, we wish to357

further test how robust the model is at distinguish-358

ing the construction from related patterns. While359

we have compared to naturally occuring near mini-360

mal pairs, we now test the classifier on a set of ex-361

amples artificially perturbed word order. If the clas-362

sifier is robust at recognizing the NtoN construc-363

tion, it should be able to correctly distinguish con-364

struction instances from artificial sentences with365

altered non-NPN word orders. To illustrate this366

point, consider the following two sentences:367

(8) I need you to get this word for word.368

(9) I need you to get this for word word.369

Example (8) is a copy of (2) and is a true NPN con-370

struction. On the other hand, (9) is not an instance371

of the construction (because it does not follow the372

NPN word order), and is a generally ungrammat-373

ical sentence. We hypothesize that if the probe374

trained in §4 is not robust to the actual word order375

pattern of NtoN, it will be unable to distinguish376

sentences like (8) from those like (9). If indeed the377

lexical cues are influencing classifier performance378

independent of word order, we expect that the clas-379

sifier will predominantly classify examples like (9)380

as positive instances of the NtoN construction.381

To test this hypothesis, we manipulate the test382

set of the probe by creating 4 perturbed orderings383

of each test example sentence: PNN, PN, NNP,384

NP. A true NtoN example is shown in (10) the385

corresponding 4 different perturbed orderings are386

shown below in (11), (12), (13), and (14).387

(10) Go room to room removing anything you388

don’t need and selling it. (Original NtoN)389

(11) Go to room room removing anything you390

don’t need and selling it. (PNN Perturbed391

Order)392

(12) Go to room removing anything you don’t393

need and selling it. (PN Perturbed Order)394

(13) Go room to removing anything you don’t395

need and selling it. (NP Perturbed Order)396

(14) Go room room to removing anything you 397

don’t need and selling it. (NNP Perturbed 398

Order) 399

Crucially, we do not retrain the linear probe on this 400

perturbed data. This means that during training, 401

the classifier only saw instances with the correct 402

N + to + N ordering, either positive instances of 403

the NtoN construction (like in (1) and (2)), or near 404

minimal pairs of the NtoN distractor patterns (like 405

in (5), (6), and (7)). Thus, this experiment tests the 406

robustness of the original probing classifier when it 407

is confronted with out of domain word orders that 408

contain the same lexical cues as positive instances 409

of the construction. 410

5.1 Results 411

Figure 2 shows the probe’s performance on the per- 412

turbed test sets for the NtoN construction. Looking 413

at Figure 2, we see that in the very early layers (1- 414

3), the probe often predicts the NtoN construction 415

despite the word order shifts, leading to relatively 416

low accuracy. This possibly means that the clas- 417

sifier is biased by the lexical cues in the sentence 418

early on, though performance is unstable between 419

layers. Accuracy tends to peak in the later lay- 420

ers, with reduction in training examples leading to 421

substantial drops in performance. 422

We find that there is some variation in perfor- 423

mance depending on the specific artificial word 424

order employed. Interestingly, performance on PN 425

and PN perturbations is substantially worse in the 426

earlier layers, though they eventually match or over- 427

take the NP and NNP performance by the later lay- 428

ers. For NP and NNP, the models tend to learn the 429

distinction quicker (by layer 4), while performance 430

on PN and PNN does not stabilize to layers 7-8. 431

By the late layers, most setting achieve respectable 432

performance, besides NP/NNP which lag behind 433

substantially when only trained on 10 examples. 434

5.2 Analysis 435

Overall, we find that classifier probes are able 436

to distinguish instances of the NtoN construction 437

from both near minimal pairs (NtoN distractor pat- 438

terns) and artificial examples (perturbed word or- 439

derings). This work provides further evidence for 440

the abilities of LMs to recognize the formal prop- 441

erties of a variety of constructions, as shown in 442

previous work on other constructions (Li et al., 443

2022; Weissweiler et al., 2022; Mahowald, 2023). 444

The peak in performance in the late-middle lay- 445

5



1 2 3 4 5 6 7 8 9 10 11 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Accuracy by Perturbation Type

Layer

Ac
cu

ra
cy

Category
NNP (10 Train Examples)
NNP (100 Train Examples)
NNP (25 Train Examples)
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NP (25 Train Examples)
NP (All 287 Train Examples)
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PN (All 287 Train Examples)
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PNN (25 Train Examples)
PNN (All 287 Train Examples)

Figure 2: Accuracy of perturbed orderings of original NtoN constructions. Since the perturbed word orders are not
true instances of the construction, the true class is negative for all instances. High accuracy indicates that probes are
rejecting the validity of the artificial orderings. Best performance is at layer 9 for all perturbed orders.

ers is consistent with much previous work on lin-446

guistic probing, which show that the middle and447

late-middle layers perform best for a variety of lin-448

guistic tasks (Goldberg, 2019; Hewitt and Manning,449

2019; Lin et al., 2019; Liu et al., 2019).450

The differences in the performance between the451

NP/NNP and the PN/PNN perturbed orderings is452

an unexpected finding. According to Rogers et al.453

(2021), the earlier layers of BERT encode "word454

order", while the middle layers are where synactic455

capabilities emerge. Based on this logic, it is un-456

surprising that the classifier’s ability to distinguish457

PN/PNN emerges in the middle and later layers.458

Why might the NP/NNP instances be distinguished459

so much quicker? Our intuition is that in general,460

preposition tokens probably attend more to their461

immediately following word than their immedi-462

ately preceding word. This is because prepositions463

are often immediately followed by objects, while464

their syntactic governor may or may not be directly465

adjacent to them. Perhaps in the early layers of466

the model (before hierarchy is as explicitly repre-467

sented) prepositions learn to attend to their follow-468

ing token more quickly because this is a surface469

word order pattern that feeds quite well into syntax.470

One alternative explanation is that PN/PNN may471

produce generally more grammatical sounding sen-472

tences than NP/NNP. For instance, (12) sounds473

much closer to a real sentence than (14). It could474

be that the classifier probe takes into account the475

ungrammaticality of NP/NNP, even though it was476

not explicitly trained to do this, since the classi-477

fier probe is only trained on grammatical sentences.478

How exactly the ungrammaticality is represented in 479

these embedding representations is unknown, but 480

provides one possible explanation for the differen- 481

tial performance of the perturbed word ordering 482

patterns. 483

Having established that performance on identi- 484

fying the NtoN construction is strong, we now turn 485

to the task of disambiguating the meaning of the 486

construction within context. 487

6 Experiment 3: Semantic 488

Disambiguation 489

6.1 NtoN Subtypes 490

We have established that classifier performance is 491

strong at identifying instances of the NtoN con- 492

struction relative to similar patterns. However, the 493

construction itself is ambiguous, and can have dif- 494

ferent meanings in context. The two primary mean- 495

ings are SUCCESSION and JUXTAPOSITION, which 496

are shown in (3) and (4) respectively. 497

The two types co-occur with different nouns at 498

different frequencies. The SUCCESSION subtype 499

most often occurs with spatiotemporal nouns (e.g. 500

day to day or coast to coast). On the other hand, the 501

JUXTAPOSITION subtype most often occurs with 502

body parts or humans (e.g. face to face or friend 503

to friend). However, the noun meaning is not de- 504

terminative, and within context some noun lemmas 505

occur with the less common meaning. Furthermore, 506

both constructions occur with rare noun lemmas 507

for which it is not clear what type would be more 508

common. 509
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Figure 3: Within-class accuracy (recall) of different semantic subtypes of NPN in 3-way classification. Classifiers
trained with at least 25 per-class training examples begin to show strong performance across classes. JUXTAPOSI-
TION takes substantially more training examples for classifiers to learn compared with SUCCESSION. Lighter colors
indicate fewer training examples, with possible values of 10, 25, 100, and 287 training examples per class. Each
line represents the average of 5 random seeds. Dotted lines represent baselines: GloVe (black) and control (gray).

6.2 Methodology510

In this section, we train a classifier to distinguish511

semantic subtypes of NtoN. We focus on the two512

main subtypes that are well attested in the data:513

SUCCESSION and JUXTAPOSITION. We also in-514

clude examples of the NtoN distractor patterns515

which are not examples of the construction. Thus,516

the probe is faced with a 3-class classification prob-517

lem: it must distinguish between the SUCCESSION518

subtype, the JUXTAPOSITION subtype, and non-519

examples of the construction (distractors). Fol-520

lowing Hewitt and Liang (2019), we train control521

classifiers with a random label assigned to each522

lemma. If the probes are properly selective, the523

control classifiers should have accuracies of around524

33 percent.525

6.3 Results526

Figure 3 shows the precision and recall scores of527

the semantic probing experiments. Across all se-528

mantic types, performance is generally high for529

the classifiers trained on the full split of data, with530

recall on all 3 classes near 80%, and strong perfor-531

mance even in the early layers. This is in contrast to532

some other semantic tasks, for which probes only533

reach their peaks in the mid to late layers of BERT.534

Across all layers, both SUCCESSION and JUX-535

TAPOSITION perform worse with only 10 training536

examples, but performance stabilizes after only537

25 examples for the probe. The relatively low re-538

call for JUXTAPOSITION and SUCCESSION when539

the classifiers are only trained with 10 examples 540

indicates that the probe has not fully learned to 541

correctly distinguish the two main semantic sub- 542

types. It is somewhat striking that there is not a 543

larger difference between SUCCESSION and JUX- 544

TAPOSITION in performance, given that SUCCES- 545

SION accounts for roughly 68% of all instances 546

of the construction in our dataset. While probes 547

are trained with balanced training sets, the rela- 548

tive frequency of these semantic subtypes within 549

our dataset (and by extension COCA) is a strong 550

indication that SUCCESSION is the more frequent 551

meaning. Nevertheless, performance is roughly 552

comparable between the two semantic subtypes. In 553

all cases, the distractor class is overpredicted, lead- 554

ing to a relatively low precision compared to the 555

subtypes of the construction. As expected, the con- 556

trol classifiers achieve roughly chance performance 557

across layers, indicating that our probes have high 558

selectivity. The GloVe-based baseline achieves an 559

average recall of around .54 across the subtypes, 560

but has widely variable performance depending on 561

the semantic subtype. In general, the GloVe based 562

classifier is much more likely to underpredict SUC- 563

CESSION, leading to very high precision and very 564

low recall for this class.3 565

3We report GloVe and control results using the full training
set. Performance of the GloVe baselines degrades with fewer
examples, while the control classifiers remain near chance.
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7 Related Work566

There has been substantial research on investigat-567

ing the linguistic information that is encoded by568

BERT. Much of this work has focused on syntac-569

tic structure (Hewitt and Manning, 2019; Jawahar570

et al., 2019; Liu et al., 2019; Hu et al., 2020), agree-571

ment phenomena (Lin et al., 2019) and semantics572

(Vulić et al., 2020; Chang and Chen, 2019; Ettinger,573

2020), with the BLiMP (Warstadt et al., 2020) and574

SyntaxGym (Gauthier et al., 2020) providing key575

evaluation datasets. Belinkov (2022) and Elazar576

et al. (2021) provide critiques of the probing clas-577

sifier methodology for its indirectness and suscep-578

tibility to spurious correlations. Various improve-579

ments on the methodology have been suggested,580

with a general focus on providing more controlled581

probing environments (Pimentel et al., 2020; Kim582

et al., 2022) and causal claims through counterfac-583

tuals (Ravfogel et al., 2021; Elazar et al., 2021).584

Of particular relevance to this work is Hewitt and585

Liang (2019), who propose the control classifier586

methodology as one methodology for controlling587

for spurious correlations in classifier performance.588

We believe our use of control classifiers and non-589

contextual baselines provide proper context for our590

probing results.591

Earlier computational linguistic work on English592

trained classifiers for such grammatico-semantic593

phenomena as identifying argument structure con-594

structions (Hwang and Palmer, 2015) and disam-595

biguating functions of tense and definiteness (Re-596

ichart and Rappoport, 2010; Bhatia et al., 2014),597

as well as generally to disambiguate the senses598

of prepositions (Litkowski and Hargraves, 2007;599

Schneider et al., 2018). Tayyar Madabushi et al.600

(2020) were the first to investigate BERT’s per-601

formance on learning constructions, finding that602

BERT is able to identify a large set of hundreds603

of automatically identified constructions. Regard-604

ing well-established argument structure construc-605

tions, Li et al. (2022) find that RoBERTa implic-606

itly contains abstract knowledge of the construc-607

tions beyond specific lexical cues. Weissweiler608

et al. (2022) find that BERT-scale models are609

able to correctly distinguish the COMPARATIVE-610

CORRELATIVE construction from similar looking611

patterns, but find that the models fail on reasoning612

tests related to the construction’s semantics. Ma-613

howald (2023) finds that the larger GPT-3 model614

can provide acceptability judgments for the Arti-615

cle+Adjective+Numeral+Noun (AANN) construc-616

tion which generally align with human judgements, 617

and find that the model is sensitive to constraints on 618

the slots in the construction. Chronis et al. (2023) 619

test BERT’s knowledge of the same AANN con- 620

struction by projecting tokens in the construction 621

into an interpretable embedding space, finding that 622

features aligning with measure-words are evoked 623

by tokens in the construction. Beyond BERT-scale 624

models, Zhou et al. (2024), Bonial and Tayyar Mad- 625

abushi (2024) and Scivetti et al. (2025) all test 626

LLM knowledge of constructions in more complex 627

scenarios, finding that their performance generally 628

lags behind humans regarding construction under- 629

standing, though there is variation depending on 630

the construction. Zhou et al. (2024) test a range 631

of LLMs on understanding the CAUSAL-EXCESS 632

constructions in comparison to constructions with 633

highly similar forms, showing that the model is of- 634

ten misled by form-based cues. Their experiments 635

most closely mirror our inquiries into construction 636

sense disambiguation, though they disambiguate 637

between similar but distinct constructions while we 638

focus on a single polysemous construction. 639

8 Conclusion 640

In this work, we constructed a novel dataset of 641

NtoN construction by extracting all instances of 642

the construction which we found in COCA. Using 643

our dataset, we have probed BERT’s knowledge of 644

the NtoN construction by training a linear probe 645

to distinguish instances of the construction from 646

near minimal pairs from corpus data. We show 647

that a linear probe is largely able to distinguish 648

true instances construction from naturally occur- 649

ring distractor patterns, as well as from artificially 650

perturbed versions of the construction, though the 651

probe is more robust to recognizing the effect of 652

some word order changes than others. Further- 653

more, we show that a BERT-based classifier can 654

disambiguate the sense of the NtoN construction 655

in context, beyond the lexical semantic cues that 656

are present. For both form- and meaning-based 657

experiments, we show that the classifier results are 658

robust even in the face of dramatic reductions in the 659

number of training examples. This indicates that 660

constructional knowledge is likely latently encoded 661

within BERT and not due to spurious correlations 662

learned by the classifiers. Overall, these results con- 663

tribute to the growing body of evidence that LMs 664

have some ability to acquire grammatical proper- 665

ties of rare and idiosyncratic constructions. 666
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