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Abstract

Recently, deep reinforcement learning (DRL) has shown promise in solving combi-
natorial optimization (CO) problems. However, they often require a large number
of evaluations on the objective function, which can be time-consuming in real-
world scenarios. To address this issue, we propose a “free” technique to enhance
the performance of any deep reinforcement learning (DRL) solver by exploiting
symmetry without requiring additional objective function evaluations. Our key
idea is to augment the training of DRL-based combinatorial optimization solvers
by reward-preserving transformations. The proposed algorithm is likely to be
impactful since it is simple, easy to integrate with existing solvers, and applicable
to a wide range of combinatorial optimization tasks. Extensive empirical eval-
uations on NP-hard routing optimization, scheduling optimization, and de novo
molecular optimization confirm that our method effortlessly improves the sample
efficiency of state-of-the-art DRL algorithms. Our source code is available at
https://github.com/kaist-silab/sym-rd.

1 Introduction

Combinatorial optimization (CO) is an important mathematical field that aims to find the optimal com-
bination in discrete space. Applications of CO include optimization of vehicle routes [1], schedules
[2], hardware design[3] and molecular structures [4]. Important CO problems are typically computa-
tionally intractable to solve exactly using domain-agnostic solvers like mathematical programming.
Thus, researchers have resorted to designing problem-specific heuristics for solving such problems.
However, the heuristics are problem-specific, so one has to design a new heuristic with expensive
expert knowledge when encountering a new problem. For example, a plethora of heuristics exist for
solving the vehicle routing problem, e.g., LKH3 [5], but they are inapplicable to the optimization of
molecular structure.

Recently, deep reinforcement learning (DRL) has drawn significant attention as a domain-agnostic
strategy to solve CO problems. The main promise of DRL algorithms is that they do not necessitate
expert-designed labeled data or problem-specific knowledge to design solvers. They have shown
impressive performance even for well-studied problems like vehicle routing (e.g., [6–9]) and job
scheduling (e.g., [10–12]). One can expect such DRL solvers to be most powerful when encountering
a less-studied CO problem where sophisticated heuristics do not exist.

However, many previous works have not accounted for sample efficiency, assuming that calculating
the cost function is cheap. It is important to consider sample efficiency as a crucial metric in real-
world applications, where cost functions cannot be evaluated in a closed form, requiring expensive
simulations to evaluate solutions, e.g., drug discovery [13], and network design [14]. In such
scenarios, the number of evaluations (i.e., reward calls) is restricted, so models need to be trained
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Figure 1: The illustration of SYMRD. The DRL policy are encouraged to visit a novel solution state
in symmetric spaces using solution-preserving transformations.

sample-efficiently. Recent benchmarks for molecular optimization demonstrate that some advanced
DRL methods, e.g., generative flow networks (GFlowNet) [15], often fail to outperform classical
methods when sample efficiency is restricted [16].

Contribution. This paper proposes symmetric reinforcement distillation (SYMRD) which improves
sample efficiency for DRL on a broad range of CO problems. Our key idea is leveraging the symmetric
nature of CO by bootstrapping the policy in the symmetric space, which can help the policy to explore
a new region without additional reward computation. We demonstrate the broad applicability and
performance for various sample-efficient tasks, including Euclidean and non-Euclidean CO problems,
and de novo molecular optimization.

At a high level, our method comprises two stages as illustrated in Fig. 1. In the first step, the agent is
trained with conventional DRL algorithms, e.g., AM [6] for TSP or REINVENT [17] for molecular
optimization. Next, the agent is trained to imitate symmetric solutions generated from itself in the
symmetric self-distillation step. We remark that the symmetric self-distillation step does not require
additional reward evaluation. The sequential steps in our method serve distinct roles in terms of
exploration, as depicted in Fig. 1. The RL update step explores the overall space to discover high-
reward trajectories. On the other hand, the symmetric self-distillation explores symmetric trajectories
giving the same solution, naturally the same reward, as the explored high-rewarded trajectories in the
previous RL update step.

Several DRL approaches have leveraged the symmetric nature of CO. Representatively, the Policy
Optimization with Multiple Optima (POMO) [7] and Symmetric Neural CO (Sym-NCO) [8] force
to roll out multiple samples in different symmetric spaces. However, in these works, explorations
of symmetric spaces are not free, as they require reward evaluation for all symmetric samples. In
addition, equivariant DRL methods reduce the search space by employing neural networks that
give equivariant representation for symmetric state-action pairs. However, they do not consider the
solution symmetries induced by the Markov decision process of CO. Our method is novel in that we
allow for the generation of samples through symmetric transformations while incurring no additional
cost, as these samples are subject to the same reward. Hence, symmetric exploration in combinatorial
optimization is free.

We empirically demonstrate how our method significantly improves the sample efficiency of various
tasks: (asymmetric) TSP, CVRP, flow-shop scheduling and de novo molecular optimization. The
experimental results show that our method is advantageous even when compared to competitive
DRL-based CO solvers, including solvers considering symmetric CO properties.
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2 Related Works

2.1 Symmetric deep reinforcement learning for combinatorial optimization

Building on the success of the attention model (AM) [6], a Transformer-based model for combinatorial
optimization, several works have proposed to improve performances, especially by leveraging the
symmetric nature of CO. This is exemplified by the Policy Optimization for Multiple Optima (POMO)
[7] and Symmetric Neural Combinatorial Optimization (Sym-NCO) [8]. These methods sample
multiple trajectories from a single problem by forcing N heterogeneous starting point based on the
TSP’s cyclic symmetries [7] or giving symmetric input noise to make wide exploration [8]. Then,
they evaluate the REINFORCE baseline using multiple sampled trajectories, which requires reward
evaluation for each sample. POMO and Sym-NCO focus on designing an effective REINFORCE
baseline using symmetries in CO rather than symmetric explorations. Despite the potential benefits
of these methods, they suffer from poor sample efficiency due to the significant computational burden
associated with extensive reward evaluation.

Separately, the generative flow network (GFlowNet) [15], which employs a directed acyclic graph
(DAG) to represent the combinatorial space in CO problems, was proposed. The DAG structure
elegantly models trajectory symmetries, where multiple action trajectories are mapped to identical
states (i.e., nodes in DAG), such as molecular segments. GFlowNet utilizes a TD-like balancing loss,
where the in-flow and out-flow should be the same for any given DAG node. However, GFlowNet
suffers from sample inefficiency due to low-quality exploration in the early stages of training.

2.2 Equivariant deep reinforcement learning

Equivariant DRL has also been extensively studied in recent years [18–22]. This approach reduces
search space by cutting out symmetric space using equivariant representation learning, such as
employing equivariant neural networks [23–25]. Consequently, it leads to better generalization and
sample efficiency. For example, Equivariant representations for RL (EqR) employs equivariant
parameterization of state and action and equivariant latent transition models to exploit symmetries
[18]; its performances are verified on the sample-efficient Atari. However, in CO, permuted order of
actions can lead to the same final state (i.e., solution symmetries). Therefore, it is not straightforward
to design DRL models that are equivariant to the order of decisions. Being different from these
approaches, we focus on handling symmetries in decision space by exploring the symmetric space
without restrictions on network structure. Therefore, employing equivariant DRL methods with our
method is one of the possible options when guaranteeing exact equivariance is crucial.

3 Symmetric Reinforcement Distillation (SYMRD)

Target problem. Our method aims to improve deep reinforcement learning (DRL) for solving
combinatorial optimization where it is expensive to evaluate the objectives. Specifically, we consider
combinatorial optimization as maximization over the black-box function f(x) over a discrete set
X , i.e., maxx∈X f(x). To solve this problem, we formulate the construction and evaluation of the
solution as a Markov decision process (MDP). In the MDP, we let each state s describe the problem
context and an incomplete solution. Then a policy π(a|s) decides a transition between states with an
action a to update the incomplete solution described by the state s. We assume that the transition is
deterministic, i.e., the next state is decided by some transition function t.1 This also implies that a
complete sequence of actions a⃗ = (a1, . . . , aT ) starting from an initial state s1 fully describes an
episode of the MDP. The detailed formulations for each task are provided in Appendix D.

We further impose two conditions on the MDP that exploit the prior knowledge about combinatorial
optimization problems considered in this work. First, we assume the reward is episodic, i.e., given
a terminated action-state trajectory τ = (s1, a1, . . . , aT−1, sT ) associated with a solution x, the
reward R(sT ) = f(x) and R(st) = 0 for t < T . The next condition is about how the action space
At for action at made at each state st only consists of actions that generate a valid solution for the
combinatorial optimization.

1For example, in the context of TSP, a transition can be represented simply by adding the action (i.e., newly
visited cities) to the current state (i.e., a set of previously visited cities), denoted as s′ ← s ∪ {a}.
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Overview of SYMRD. Our approach, coined Symmetric Reinforcement Distillation (SYMRD),
improves the sample efficiency of DRL for combinatorial optimization by exploiting transformed
samples without additional reward computation. The key idea is to exploit the existence of solution-
preserving transformation for generating novel action trajectories. Our approach enhances sample
efficiency in two ways: (1) additionally training for free by imitating self-generated solutions and (2)
encouraging exploration in a symmetric region to escape from low-reward regions.

Our method repeats the following two steps:

Step A. Train the (factorized) policy πθ (⃗a|s1) =
∏T

t=1 πθ(at|st) using a conventional episodic
reinforcement learning algorithm.

Step B. Generate action trajectory a⃗ using greedy rollout. Train the policy to imitate the action
trajectories sampled from random solution-preserving transformation of a⃗.

Intuitively, our Step A is designed to encourage the policy to exploit the high-rewarded space via
reinforcement learning. In contrast, Step B, called symmetric self-distillation, aims to promote
exploration of the symmetric space without evaluating the episodic reward R(⃗a).

Note that the DRL model and training method in Step A are not restricted, allowing the application
of various DRL algorithms for episodic tasks as base DRL methods. For instance, we utilize AM and
REINVENT as base DRL methods for TSP and molecular optimization, respectively; we provide
details for the base methods in Appendix F. Following the RL update, we sample a transformed action
trajectory using the current policy πθ(·|s1) and a solution-preserving transformation policy to get
more samples for free. In the following sub-sections, we describe the details of a solution-preserving
transformation policy and the self-distillation step.

3.1 Solution-preserving transformation policy

Here, we provide an explicit characterization of the solution-preserving transformation policy used
for our algorithm. A solution-preserving transformation gives another action trajectory that induces
the same solution as a given action trajectory. To begin with, we introduce a non-injective function
C that maps an action trajectory a⃗ = (a1, . . . aT ) to its corresponding solution x given initial state.
Such a mapping allows for defining symmetry between action trajectories with respect to the solution.

Definition 1 (Symmetric action trajectories). A pair of action trajectories a⃗1 and a⃗2 given initial state
are symmetric if they induce the same solution x ∈ X , i.e., if C (⃗a1) = C (⃗a2) = x.

We also let A⃗x denote a set of symmetric action trajectories that induce the sample solution x. Next,
we define a solution-preseving transformation policy as a probability distribution which generates an
action trajectory a⃗ given the associated solution x.

Definition 2 (Solution-preserving transformation policy). We define a solution-preserving transfor-
mation policy, denoted by psym(⃗a|x), as the conditional probability of generating an action trajectory
a⃗ given a solution x such that C (⃗a) = x. Note that the probability distribution psym(⃗a|x) is supported
on the action-trajectory space A⃗x.

Symmetries in routing tasks. Within the context of TSP, a solution denotes a cycle (i.e., a route)
without a designated starting point. Conversely, an action trajectory signifies the sequential order
in which cities are visited, with the first and last cities being explicitly defined. Thus, symmetric
trajectories are obtained by cyclically shifting k positions to the left or right as illustrated in Fig. 2a.
Furthermore, in symmetric TSP, the reversed order of visiting sequence also gives a symmetric action
trajectory. On the other hand, CVRP assumes multiple vehicles that start from the depot and return.
Therefore, symmetric trajectories are obtained by flipping each sub-route (i.e., each vehicle’s route).
Note that cyclic permutations do not give symmetric trajectories; instead, permuting vehicle indices
by rearranging the order of sub-routes results in symmetric trajectories like Fig. 2b.

Symmetries in others tasks. In flexible flow-shop scheduling problems (FSSP), idle machines
select the next jobs. Symmetries are induced due to the tie-breaking rules, the pre-defined order
of action selections. Thus, we define symmetric transformations as the permutation of orders of
tie-breaking like Fig. 2c. In de novo molecular optimization, string-based molecular representation
(SELFreferencIng Embedded Strings; SELFIES [26]) is employed. We define symmetric action
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(a) Symmetric transformation in TSP.
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(c) Symmetric transformation in FFSP.
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(d) Symmetric transformation in MolOpt.

Figure 2: Examples of symmetric transformations in various CO problems.

sequences (i.e., the symmetric SELFIES) as the SELFIES representing isomorphic molecular, which
possess the same connectivity of atoms. More details are provided in Appendix E.

3.2 Symmetric self-distillation

The symmetric self-distillation process involves behavior cloning of symmetrically transformed action
trajectories a⃗1, . . . , a⃗L ∼ psym(·|x, s1). Here, x is the corresponding solution of an action trajectory
sampled from the current training policy, i.e., x = C (⃗a), where a⃗ ∼ πθ (⃗a|s1). The symmetric
self-distillation loss function is derived as follows:

LSSD = −
L∑

i=1

log πθ (⃗a
i|s1).

Notably, we employ an iterative update procedure, whereby the model is updated to minimize the
reinforcement learning loss LRL, and the self-distillation loss LSSD in turn.

Our symmetric self-distillation significantly benefits from additionally exploring confidence regions
on the symmetric space for free. Moreover, since the symmetric action trajectory may have a
significant edit distance2 from the original trajectory, we can explore regions that are likely to have
high rewards but are far from the current regions. For instance, the reversed TSP tour (i.e., flipped
action sequence) has a vast edit distance from the original but is mapped to the same solution.
Theorem 1. Consider a distribution πθ (⃗a|s1) over the action trajectory from a state s1, which
describes the problem context. Let Ux(⃗a|x, s1) denote an uniform distribution over A⃗x. Then the
entropy of π(⃗a|s1) is upper-bounded as by that of psym(⃗a|s1):

H(πθ (⃗a|s1)) = H(πθ(x|s1)) + Ex∼πθ(x|s1)H(πθ (⃗a|x, s1))
≤ H(πθ(x|s1)) + Ex∼πθ(x|s1)H(Ux(⃗a|x, s1)) = H(U (⃗a|s1)),

where U (⃗a|s1) =
∑

x∈X Ux(⃗a|x, s1)πθ(x|s1).

Proof. See Appendix B for the entire proof.

According to Theorem 1, the entropy of the training policy πθ depends on the entropy of the distri-
bution that generates action a⃗ given input s1. This distribution represents the backward probability
of multiple trajectories originating from a common solution x. Maximum entropy exploration is
achieved when the distribution is uniform. Therefore, to facilitate maximum entropy exploration in the
symmetric self-distillation process, we can choose a uniform distribution for the solution-preserving
transformation policy psym(⃗a|x, s1) as part of the process: psym(⃗a|x, s1) = Ux(⃗a|x, s1).
Ideal scenario. Our approach is especially effective when a high-rewarded solution is close to a
symmetric action trajectory with a large edit distance. Precisely, d(⃗a1, a⃗2) is sufficiently large and

max
a⃗∈Bϵ(a⃗2)

R(C (⃗a)) ≫ max
a⃗∈Bϵ(a⃗1)

R(C (⃗a)), where Bϵ(⃗a
′) = {a⃗|d(⃗a′, a⃗) ≤ ϵ}.

2Edit distance is a measure of similarity between two sequences of characters or symbols, defined as the
minimum number of operations required to transform one sequence into the other, e.g., Hamming distance.
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Table 1: Experimental results on sample efficient Euclidean CO problems.
N = 50 N = 100

Method K = 200K K = 2M K = 200K K = 2M

T
SP

AM Critic 6.541 ± 0.075 6.129 ± 0.021 9.600 ± 0.090 8.917 ± 0.115
AM Rollout 6.708 ± 0.077 6.199 ± 0.014 11.891 ± 1.008 9.193 ± 0.053
POMO 7.910 ± 0.055 7.074 ± 0.010 12.766 ± 0.358 10.964 ± 0.171
Sym-NCO 7.035 ± 0.209 6.334 ± 0.045 10.776 ± 0.362 9.159 ± 0.056

SYMRD (ours) 6.450 ± 0.053 6.038 ± 0.005 9.521 ± 0.098 8.573 ± 0.019

C
V

R
P

AM Rollout 13.366 ± 0.199 11.921 ± 0.026 23.414 ± 0.238 19.088 ± 0.232
POMO 13.799 ± 0.310 12.661 ± 0.065 22.939 ± 0.245 20.785 ± 0.403
Sym-NCO 13.406 ± 0.204 12.215 ± 0.124 21.860 ± 0.422 18.630 ± 0.106

SYMRD (ours) 12.922 ± 0.071 11.721 ± 0.093 21.582 ± 0.149 18.304 ± 0.109
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Figure 3: Validation cost over computation budget on euclidean CO problems.

In such a scenario (also illustrated in Fig. 1), the exploration guidance offered by the symmetric
self-distillation provides an opportunity to break out from the low-reward region.

4 Experiments

The experiments in this paper cover various sample-efficient tasks in Euclidean and non-Euclidean
combinatorial optimization, as well as de novo molecular optimizations. Note that we assume the
expensive black-box reward function in sample-efficient tasks. In Euclidean CO tasks, the features
of variables, such as their two-dimensional coordinates, satisfy Euclidean conditions (e.g., cost
coefficients are defined as Euclidean distances). On the other hand, non-Euclidean CO problems lack
these constraints, necessitating the encoding of higher-dimensional data, such as a distance matrix.
We conduct experiments on both with different DRL methods. Lastly, we carry out experiments on
the well-known benchmarks in de novo molecular optimization, which aims to find molecules that
maximize a certain property (i.e., score function) on combinatorial chemical space. Note that FFSP
requires 1 - 2 days, and others require a few hours with a single NVIDIA A100 GPU per experiment.

Experimental Setting. In sample-efficient tasks, the reward evaluations are expensive, leading
to their computation time taking most of the training time. Therefore, we evaluate performances
with limited number of reward evaluation following [16]. For base DRL methods, we employ the
best-performing DRL methods and follow reported hyperparameters for the model in their original
paper. More details are provided in Appendix A.

4.1 Euclidean CO

Tasks. Following previous DRL literature in CO, we select two representative routing tasks – TSP
and CVRP – as Euclidean CO tasks. The TSP aims to find the shortest Hamiltonian cycle that visits
every city and returns to the starting city. The CVRP assumes multiple salesmen (i.e., vehicles) with
limited carrying capacity; thus, if the capacity is exceeded, the vehicle must return to the depot.
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Table 2: Experimental results on sample efficient non-Euclidean CO problems.
N = 50 N = 100

Method K = 200K K = 2M K = 200K K = 2M

A
T

SP
MatNet-Fixed 3.139 ± 0.024 2.000 ± 0.002 4.400 ± 0.040 3.227 ± 0.016
MatNet-Sampled 3.235 ± 0.021 2.019 ± 0.005 4.324 ± 0.036 2.915 ± 0.040

SYMRD (ours) 2.845 ± 0.039 1.945 ± 0.003 3.771 ± 0.012 2.513 ± 0.022
FS

SP

MatNet-Fixed 56.350 ± 0.170 55.341 ± 0.118 96.461 ± 0.206 95.107 ± 0.072
MatNet-Sampled 56.347 ± 0.234 55.172 ± 0.032 96.256 ± 0.140 94.978 ± 0.055

SYMRD (ours) 56.104 ± 0.125 55.110 ± 0.061 96.030 ± 0.132 94.934 ± 0.051
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Figure 4: Validation cost over computation budget on non-Euclidean CO problems.

Baselines and metric. We compare our method with four baseline methods, including AM with
critic baseline, AM with greedy rollout baseline [6], POMO [7], and Sym-NCO [8]. We measure the
average cost on the validation dataset over training samples K to evaluate sample efficiency. Note
that the validation dataset consists of 10,000 instances randomly generated following [6]. We report
the average and standard deviation of results with four independent random training seeds.

Results. The results in Table 1 and Fig. 3 indicate that SYMRD consistently outperforms baseline
methods in terms of achieving the lowest cost over the training budget. Note that ours employs the
AM with critic baseline for TSP and Sym-NCO with the reduced number of augmentations for CVRP.
As depicted in Table 1, the most significant improvement over the base DRL models is observed in
TSP100, with a percentage decrease of 3.86%, and CVRP50, with a percentage decrease of 4.04%.
While POMO and Sym-NCO consider the symmetric nature of CO, the required number of samples
cancels out the benefits. In contrast, our method utilizes the symmetric pseudo-labels generated via
the training policy for free, enabling the policy to explore the symmetric space without increasing the
number of required samples. As a result, SYMRD successfully improves sample efficiency.

4.2 Non-Euclidean CO

Tasks. Based on the work of Kwon et al. [12], we have selected two benchmark tasks, namely
the asymmetric TSP (ATSP) and flexible flow-shop scheduling problems (FSSP). The ATSP is
non-Euclidean TSP where the distance matrix could be non-symmetric, i.e., dist(i, j) ̸= dist(j, i),
where i and j indicate cities. The FSSP is an important scheduling problem that assigns jobs to
multiple machines to minimize total completion time.

Baselines and metric. As a baseline, we employ Matrix Encoding Network (MatNet) proposed
to solve non-Euclidean CO. We compare ours with two versions of MatNet: MatNet-Fixed and
MatNet-Sampled. MatNet-Fixed, the original version, explores N heterogeneous starting points
of trajectories, while MatNet-Sampled explores less than N number of multiple trajectories with
sampling strategy. Similar to the Euclidean CO tasks, we compute the average cost on a validation
dataset consisting of 1,000 instances while tracking the cumulative number of training samples. The
experiments are conducted with four independent random seeds.
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Table 3: Experimental results on sample efficient molecular optimization (AUC-10).
Oracle REINVENT MolDQN GFlowNet SYMRD (ours)

albuterol_similarity 0.871 ± 0.023 0.356 ± 0.014 0.523 ± 0.068 0.914 ± 0.019
amlodipine_mpo 0.622 ± 0.015 0.342 ± 0.011 0.458 ± 0.009 0.634 ± 0.021
celecoxib_rediscovery 0.661 ± 0.114 0.110 ± 0.008 0.363 ± 0.023 0.662 ± 0.063
deco_hop 0.639 ± 0.008 0.558 ± 0.003 0.596 ± 0.003 0.644 ± 0.005
drd2 0.978 ± 0.009 0.037 ± 0.008 0.807 ± 0.054 0.978 ± 0.006
fexofenadine_mpo 0.751 ± 0.006 0.506 ± 0.006 0.720 ± 0.013 0.770 ± 0.012
gsk3b 0.843 ± 0.011 0.276 ± 0.012 0.702 ± 0.004 0.862 ± 0.040
isomers_c7h8n2o2 0.923 ± 0.025 0.564 ± 0.080 0.606 ± 0.192 0.938 ± 0.021
isomers_c9h10n2o2pf2cl 0.787 ± 0.038 0.490 ± 0.075 0.269 ± 0.227 0.772 ± 0.079
jnk3 0.644 ± 0.108 0.116 ± 0.008 0.000 ± 0.000 0.666 ± 0.138
median1 0.361 ± 0.010 0.142 ± 0.008 0.230 ± 0.006 0.369 ± 0.008
median2 0.268 ± 0.011 0.096 ± 0.007 0.189 ± 0.004 0.270 ± 0.008
mestranol_similarity 0.670 ± 0.023 0.203 ± 0.025 0.374 ± 0.013 0.647 ± 0.022
osimertinib_mpo 0.832 ± 0.007 0.681 ± 0.012 0.798 ± 0.005 0.835 ± 0.003
perindopril_mpo 0.542 ± 0.019 0.259 ± 0.024 0.460 ± 0.015 0.543 ± 0.010
qed 0.943 ± 0.000 0.781 ± 0.021 0.933 ± 0.002 0.942 ± 0.001
ranolazine_mpo 0.778 ± 0.012 0.061 ± 0.021 0.693 ± 0.013 0.797 ± 0.010
scaffold_hop 0.539 ± 0.019 0.416 ± 0.012 0.477 ± 0.006 0.579 ± 0.037
sitagliptin_mpo 0.423 ± 0.157 0.037 ± 0.029 0.126 ± 0.023 0.546 ± 0.047
thiothixene_rediscovery 0.513 ± 0.019 0.110 ± 0.007 0.333 ± 0.022 0.549 ± 0.043
troglitazone_rediscovery 0.364 ± 0.020 0.138 ± 0.008 0.202 ± 0.006 0.359 ± 0.016
valsartan_smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
zaleplon_mpo 0.535 ± 0.016 0.092 ± 0.054 0.407 ± 0.018 0.534 ± 0.025

Avg. 0.630 0.277 0.446 0.644
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Figure 5: The average TOP-10 values over computation budget.

Results. The superior performance of SYMRD over MatNet-Fixed and MatNet-Sampled is demon-
strated in both Table 2 and Fig. 4. We employ MatNet-Sampled as a base DRL method for both
tasks and use the same number of multi-starting in ours and MatNet-Sampled. Notably, SYMRD
outperforms MatNet-Sampled by a significant margin in the case of ATSP, with a performance gap of
about 12% at N = 100,K = 200K, where SYMRD achieves 3.771 and MatNet-Sampled achieves
4.324. However, the improvement in the case of FFSP is relatively modest compared to ATSP, which
we attribute to the fact that FFSP has fewer symmetries than ATSP, as detailed in Appendix E.

4.3 De novo molecular optimization

Tasks. We employ practical molecular optimization (PMO) [16], which is the official sample
efficiency benchmark for de novo molecular optimization. PMO contains 23 tasks based on different
score functions called Oracles; a task is a CO problem that maximizes the given score function, such
as QED [27], DRD2 [28] and JNK3 [29]. For example, QED measures drug safety, while DRD2
and JNK3 measure bioactivities against their corresponding disease targets. In the PMO benchmark,
reward evaluations are limited up to 10,000.

Baselines and metric. Our approach was compared to several RL-based methods, including REIN-
VENT [17], which is considered state-of-the-art (SOTA) in the PMO benchmark, as well as MolDQN
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Figure 6: Ablation study for the symmetric self-distillation.

Table 4: Experimental results of measuring trajectory symmetries on the TSP.
N = 50 N = 100

Method Trained Size Avg. Cost (↓) L1 Dist. (↓) Avg. Cost (↓) L1 Dist. (↓)

AM Critic 50 6.1153 144.4978 8.8801 315.5329
SYMRD (ours) 50 6.0458 30.4985 8.726 49.8098

AM Critic 100 6.6262 275.9329 9.1065 569.7021
SYMRD (ours) 100 6.1988 32.5435 8.6004 42.7087

[30] and GFlowNet [15]. To ensure compliance with chemical constraints such as the octet rule,
we employed the SELFIES version of REINVENT. The performance of the methods is evaluated
based on the area under curve (AUC) to consider a combination of optimization ability and sample
efficiency. The AUC of the top 10 average performance is mainly reported since it is important to
find distinct molecular candidates to progress to later stages of development in drug discovery.

Results. As shown in Table 3 and Fig. 5, SYMRD outperforms 18 out of 23 tasks, achieving an
average AUC-10 score of 0.644, higher than the SOTA method, REINVENT whose average score is
0.630. In Fig. 5, we also report the results of adjusting the distillation period, denoted as ‘SymRD_x5’,
which distills symmetric trajectories every five RL updates to encourage further exploration in Step
A. It is noteworthy that GFlowNet is also a symmetric exploration method that uses a DAG structure
and flow matching to model symmetric action trajectories terminated at an identical state. While
the primary purpose of SYMRD and GFlowNet is similar, our approach can be straightforwardly
embedded into SOTA models (e.g., REINVENT).

4.4 Ablation Study

Components verification. According to the results presented in Fig. 6, each component of the
model contributes to the improved sample efficiency observed in our approach. The ablation study
showed that self-distillation without symmetries, labeled as ‘Non-symmetric’, improved sample
efficiency but sometimes resulted in unstable performance due to overfitting. However, the inclusion
of symmetric transformations of pseudo labels prevented overfitting and resulted in stable performance
improvements. We also believe that the symmetric transformation provides a structured inductive
bias, enhancing the robustness of self-distillation. Thus, the combination of self-distillation and
symmetric transformations can result in stable and efficient performance enhancements.

Measuring symmetries. To validate the ability of our method to enforce trajectory symmetries, we
measure the difference between the log-likelihoods of an action sequence produced by the policy
and the log-likelihoods of its symmetric trajectories. We utilize the L1 distance metric to quantify
this difference, denoted as ‘L1 Dist.’ in Table 4. The results demonstrate that our approach achieves
significantly lower L1 distances compared to the baseline in TSP, indicating its efficacy in enforcing
trajectory symmetries. Additionally, our method exhibits robust performance when evaluated on
out-of-training distributions.

Maximum entropy exploration. The experimental results show that employing uniform distribution
as a solution-preserving transformation policy improves sample efficiency; see Appendix C.
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5 Conclusion

This study proposes a new approach called SYMRD to enhance the sample efficiency of deep
reinforcement learning (DRL) for combinatorial optimization (CO) problems. Our approach improves
sample efficiency by additionally exploring symmetric decision space for free. The experimental
results demonstrate the superior performance of SYMRD over state-of-the-art methods, such as
REINVENT in the de novo molecular design benchmark.

Limitation. Our randomized solution-preserving transformation policy may struggle to cover
every possible symmetric space when the space complexity is vast. To overcome this limitation,
future research could focus on developing a learnable solution-preserving transformation policy that
selectively emphasizes specific symmetric regions. This adaptive policy would suggest symmetric
trajectories during training, facilitating more efficient exploration.
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A Experimental Setting

In this section, we provide details of the experimental setting for each task. It is noteworthy that we
set the base DRL models following the provided code.3456 We adjust learning rate decay at 1M and
1.5M samples. As shown in Table 5, We use the same distillation scaler value for all tasks except for
FFSP, which has a different scale of reward value. On the other hand, the number of transformations,
L, can be chosen based on the available computation budget; we set L = 1 for all experiments.

Table 5: Hyperparameters
TSP CVRP ATSP FFSP MolOpt

Common Training Parameters

Batch size 100 100 100 100 64
Epoch size 10,000 10,000 10,000 10,000 -

Validation size 10,000 10,000 10,000 10,000 -
Learning rate scheduler MultiStepLR with γ = 0.1 -

Symmetric Self-Distillation

Distillation scaler 0.001 0.001 0.001 0.01 0.001
Transformation width (L) 1 1 1 1 1

Base DRL method AM Critic Sym-NCO MatNet MatNet REINVENT

B Proof for Theorem 1

Consider πθ (⃗a|s1) as the distribution over the action trajectory from a state s1 which describes the
problem context. Let A⃗x denote the space of action-trajectories associated with the solution x.

H(πθ (⃗a|s1)) = −
∑
a⃗∈A⃗

πθ (⃗a|s1) log πθ (⃗a|s1)

= −
∑
x∈X

∑
a⃗∈A⃗x

πθ (⃗a|s1) log πθ (⃗a|s1)

= −
∑
x∈X

∑
a⃗∈A⃗x

πθ (⃗a|x, s1)πθ(x|s1) (log πθ (⃗a|x, s1) + log πθ(x|s1))

= H(πθ(x|s1)) + Ex∼πθ(x|s1)H(πθ (⃗a|x, s1))
≤ H(πθ(x|s1)) + Ex∼πθ(x|s1)H(Ux(⃗a|x, s1)),

where Ux(⃗a|x, s1) is a uniform distribution over action-trajectories associated with the solution x.
The third equality stems from the fact that πθ (⃗a|s1) = πθ (⃗a,x|s1) since x is fixed given a⃗. One can
show that the final upper-bound is the entropy of distribution obtained from replacing πθ(x|s1) by
Ux(⃗a|x, s1), i.e., distribution from sampling psym(⃗a|s1).

3AM: https://github.com/wouterkool/attention-learn-to-route
4Sym-NCO: https://github.com/alstn12088/Sym-NCO
5MatNet: https://github.com/yd-kwon/MatNet
6REINVENT: https://github.com/wenhao-gao/mol_opt
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C Maximum Entropy Exploration on Symmetric Space

We empirically verify Theorem 1 by employing different solution-preserving transformations. We
compare SYMRD with identical transformation and uniform transformation distribution. To make
results clear, we use L = 10, i.e., each trajectory is transformed to 10 other trajectories.
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Figure 7: Validation cost improvement over the computation budget

As a baseline, we implement AM with entropy bonus (denoted in ‘MaxEnt AM’ in the figures). In
MaxEnt AM, we add entropy bonus to the reward to use REINFORCE loss as follows:

∇L = Eπθ

[(
f(x)− b(s1)− α

N∑
i=1

πθ (⃗a|s1) log πθ (⃗a|s1)

)
∇ log πθ (⃗a|s1)

]
,

where b(s1) is the critic baseline [6], and we set α = 0.01. The results show that both identical
SYMRD and uniform SYMRD outperform the baseline, AM with entropy bonus (denoted in ‘MaxEnt
AM’ in the figures). Additionally, maximum entropy exploration (i.e., employing uniform distri-
bution for the solution-preserving transformation policy) achieve better performance than identical
transformation policy.
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D Task Formulations

For each task, we provide brief explanation, integer programming (IP) formulation, and Markov
decision process (MDP) formulation.

D.1 Travelling salesman problems

In travelling salesman problems (TSP), a salesman must visit each of N cities exactly once and then
return to the starting city. Given the travelling distance from city i to j, dij ≥ 0 for each i and j, TSP
finds a minimum length of route. In symmetric TSP, the distance are symmetric, i.e., dij = dji, while
asymmetric TSP is a relaxed version of this assumption.

IP formulation. We let the decision variable xij represent whether the salesman visit j right after
vising i. Given a directed complete graph G = (V,E) where V is the set of cites and E is the set of
fully connected edges between cities, a TSP is formulated as follows:

minimize
∑

(i,j)∈E

dijxij

subject to
∑
j∈V

xij = 1 ∀i ∈ V

∑
i∈V

xij = 1 ∀j ∈ V∑
(i,j)∈δ+(S)

xij ≥ 1 ∀S ⊂ V, S ̸= ∅

xij ∈ {0, 1} ∀i, j ∈ V

where δ+(S) is a set of outgoing edges from S to V \ S. Additionally, we let xij = xji for the
symmetric TSP.

Markov decision process.

• State st is composed with locations of N cities {vi}Ni=1 and previously selected city indices
(a1, ..., at−1): st = {{vi}Ni=1; a1, ..., at−1}

• Action at is selection of unvisited city index: at ∈ {1, ..., N} \ {a1, . . . , at−1}
• Transition st+1 = t(st, at) is simply set union of them: st+1 = t(st, at) = st ∪ {at}
• Reward R(sN ) is defined with negative tour-length of terminal state of sN :
R(sN ) = −

(
d(aN , a1) +

∑N−1
t=1 d(at+1, at)

)
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D.2 Capacitated vehicle routing problems

The capacitated vehicle routing problem (CVRP) [31] aims to find the routes with the minimum cost
for K vehicles where: (i) each customer in VC must be served by one vehicle; (ii) vehicle serve a set
of customers whose total demand does not exceed capacity Q; and (iii) every route starts and ends at
the depot, usually index as 0.

IP formulation. We let the edge variable xij represent the number of travels between vertices i
and j following [32]. Since the edges are undirected, we let xij = xji. Given a subset of customers
S ⊆ VC , we let δ(S) denote a set of crossing edges which connect S and VC \ S. The two-index
formulation of CVRP is:

minimize
∑

(i,j)∈E

dijxij

subject to x(δ({i})) = 2 ∀i ∈ VC

x(δ(S)) ≥ 2b(S) ∀S ⊆ VC

xij ∈ {0, 1} ∀1 ≤ i < j ≤ |VC |+ 1

x0j ∈ {0, 1, 2} ∀j ∈ VC ,

where b(S) is the minimum number of required vehicles to serve the customers in S.

Markov decision process.

• State st is composed with locations of N cities {vi}Ni=1 and one depot v0 and previously
selected city indices (a1, . . . , at−1): st = {{vi}Ni=1; a1, . . . , at−1}

• Action at is selection of unvisited city index (depot a = 0 can be visited multiple times):
at ∈ {0} ∪ {1, . . . , N} \ {a1, . . . , at−1}. Note the start and terminal action is restricted to
select depot city: a1 = aT = 0.

• Transition st+1 = t(st, at) is simply set union of them: st+1 = t(st, at) = st ∪ {at}
• Reward R(sT ) is defined with negative tour-length of terminal state of sT :
R(sT ) = −

∑T−1
t=1 d(at+1, at) = −

(∑T−1
t=1 ||vat+1 − vat ||2

)
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Figure 8: An example of flexible flow shop problems

D.3 Flexible flow shop problems

The flexible flow shop problems (FFSP), also called a hybrid flow shop problems, is a generalization
of two scheduling problems, the flow shop scheduling problem and the parallel machines scheduling
problem. In FFSP, there are jobs with varying processing times, which have to be processed following
pre-defined order of operations (i.e., stage). There are multiple machines for each stage, so they can
process jobs in parallel. The FFSP aims to find scheduling, i.e., assigning jobs into machines with a
specific order, that minimizes completion time.

IP formulation. We follow the formulation in [12]. Decision variable xijm is 1 if job j is assigned
to machine m in stage i, and yilj is 1 if job l is processed earlier than job j in stage i. Let Cij denote
the completion time of job j in state i and pijm denote the processing time of job j with machine m
in stage i. Lastly, N , S, and Mi denote the number of jobs, the number of stages, and the number of
machines in stage i, respectively.

minimize max
j=1,...,N

CSj

subject to
Mi∑
m=1

xijm = 1 i = 1, . . . , S, j = 1, . . . , N

yijl = 0 i = 1, . . . , S, j = 1, . . . , N

N∑
j=1

N∑
l=1

yijl =

Mi∑
m=1

max

 N∑
j=1

xijm − 1, 0

 ∀i = 1, . . . , S

yijl ≤ max
(
max
m

(xijm + xilm)− 1, 0
)

i = 1, . . . , S, j, l = 1, . . . , N

N∑
l=1

yijl ≤ 1 i = 1, . . . , S, j = 1, . . . , N

N∑
l=1

yilj ≤ 1 i = 1, . . . , S, j = 1, . . . , N

C1j ≥
Mi∑
m=1

p1jmx1jm j = 1, . . . , N

Cij ≥ Ci−1j +

Mi∑
m=1

pijmxijm i = 2, . . . , S, j = 1, . . . , N

Cij +M(1− yilj) ≥ Cil +

Mi∑
m=1

pijmxijm, i = 1, . . . , S, j = 1, . . . , N

where M is sufficiently large value.
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Markov decision process. The completion time of job j in state i is denoted as Cij , and the
processing time of job j with machine m in stage i is represented as pijm. Additionally, N , S, and
Mi represent the total number of jobs, stages, and machines in stage i, respectively.

• State st is composed with processing time matrix Di for each stage i and previously assigned
job indices for each machine.

• Action at is assigning a job to the idle machine or choosing skip: at ∈ {1, . . . , N} \
{a1, . . . , at−1} ∪ {∅}

• Transition st+1 = t(st, at) is simply set union of them: st+1 = t(st, at) = st ∪ {at}
• Reward R(sT ) is defined with the maximum completion time (i.e., makespan):
R(sT ) = −maxj CSj

18



D.4 De novo molecular optimization

De novo molecular optimization involves the search for a molecule x that maximizes a pre-defined
black-box scoring function f(x). This scoring function can represent various properties, such as
binding activity with a specific target protein or a measure of toxicity, among others. Unlike classical
combinatorial optimization tasks like the Traveling Salesman Problem (TSP), the formulation of de
novo molecular optimization cannot rely on mathematical programming due to the nature of f(x)
being a black-box function without a closed form. Furthermore, evaluating f(x) is typically computa-
tionally expensive in practice. To overcome this limitation and ensure accessibility, researchers in the
field often employ simplified (approximated) score functions that allow for computational tractability.

To construct a DRL framework for de novo molecular optimization, we employ the MDP (Markov
Decision Process) formulation of REINVENT-SELFIES [16]. This approach utilizes SELFIES [26]
strings as a means to generate valid representations of molecular graphs.

Markov decision process.

• State st is sequence of SEFILES tokens a: st = {a1, ..., at−1}
• Action at is a selection of SEFLIES tokens. Note the start and terminal action is restricted

to select the GO token and EOS token correspondingly.
• Transition st+1 = t(st, at) is simply set union of them: st+1 = t(st, at) = st ∪ {at}.
• Reward R(sT ) is defined with score function of f(x) where x = C (⃗a).
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E Symmetries of Each Task

We denote an unordered set of elements e1, e2, . . . , en as {e1, e2, . . . , en}, then we can define
permutations and cycles as below.
Definition 3 (Permutations [33]). If Ω is a nonempty set, a permutation of Ω is a bijection α : Ω → Ω.
We denote the set of all permutations of Ω by PΩ.

Given a rearrangement, a list e1, e2, . . . , en with no repetitions of all the elements of Ω =
{1, 2, . . . , n}, defines a function α : Ω → Ω by α(ω) = eω for all ω ∈ Ω. Any bijection α
can be denoted as follows:

α =

(
1 2 · · · n

α(1) α(2) · · · α(n)

)
,

where the bottom row is a rearrangement of Ω.
Definition 4 (Cycles [33]). Let e1, e2, . . . , en be distinct integers between 1 and n. If β ∈ P{1,2,...,n}
fixes (i.e., β(ω) = ω) the remaining n− r integers and if

β(e1) = e2, β(e2) = e3, . . . , β(er−1) = er, β(er) = e1,

then β is a r-cycle.
Definition 5 (Flip). Let e1, e2, . . . , en be distinct integers between 1 and n. If γ ∈ P{1,2,...,n} and
γ(ei) = en+1−i, then γ is a flip.

E.1 Symmetries in routing problems

Symmetries in (asymmetric) TSP. Given a⃗ = (a1, . . . , aN ), any N -cycles βN and its k products
(i.e., βk

N = βN ◦ · · · ◦ βN ) give the same route. Especially in symmetric TSP, permuting a⃗ to the
reversed order, i.e., flip, is also gives the symmetric trajectory. Note that products of each symmetric
transformation are also symmetric transformations.

Symmetries in CVRP. Let κj denote the route of vehicle j = 1, . . .K. Any permutation of routes,
i.e., any α ∈ PK, where K = {κ1, . . . , κK}, is mapped to the same solution. Unlike to the TSP
route, each route must start at the depot and return to it, so cycles of each route do not give symmetric
trajectories, but flip of each route does. Note that products of permutations of routes and flip within a
route give symmetric trajectories, as well.

E.2 Symmetries in other tasks

Symmetries in FFSP. In decoding process, the time index t is introduced, and every t, idle machines
(i.e, machines without assigned job at t) select a job or ‘skip’. The job selection order among idle
machines can be arbitrary decided; we denote this order as a tie-breaking rule in the main. From
the perspective of machines, their schedules are independent on others’ schedule when a specific
schedule is given. In other words, the whole machine-jobs schedule can be decomposed into the
schedules of each machine. Consequently, the different tie-breaking rules does not change each
schedule. Precisely, any permutations of machine index, i.e, any α ∈ PM, where M = {1, . . . ,M},
gives symmetric trajectories. For example, in Fig. 2c, the original order of machines is 1 → 3 →
2 → 1 → 3 → 1 → 2 → 1 → 3, but the order of machines in the symmetric trajectory is
3 → 1 → 2 → 3 → 1 → 1 → 2 → 3 → 1.

Symmetries in molecular optimization. In de novo molecular optimization, we employ a string-
based representation, SELFreferencIng Embedded Strings (SELFIES) [26]. SELFIES starts with a
specific atom and searches molecular with depth first search to convert molecular into a string. Thus,
the different starting point can give different SELFIES even for the same molecular. Furthermore,
there can be isomorphic molecular which possess the same connectivity of atoms. We let two
SELFIES representations are symmetric if the corresponding molecular is the same or isomorphic.
Practically, we get symmetric SELFIES by converting the given SELFIES into molecular and re-
converting them to SELFIES, including information about stereochemistry.
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F Details of Base DRL Methods

This section provides an overview of the base DRL method for each task. See each paper for more
technical details.

F.1 Attention Model for TSP

The attention model (AM) [6] is a widely used DRL method for solving routing problems such as
the Traveling Salesman Problem (TSP). The AM employs a transformer-like model that generates
encoder embedding based on the city locations and utilizes auto-regressive decoding to determine the
city index. Training of the AM involves the REINFORCE method along with rollout baselines. For
more technical details, refer to the respective paper.

F.2 Sym-NCO for CVRP

Sym-NCO [8] shares similarities with the AM but focuses on addressing the Capacitated Vehicle
Routing Problem (CVRP) using more sophisticated REINFORCE baseline estimators. It takes
advantage of the symmetrical nature of CVRP by applying augmentation techniques such as rotation
to the input cities, preserving the solution space. It then calculates the average reward from the
policy’s solutions to multiple augmented problems, which becomes the shared baseline for all samples.
This strategy improves the accuracy of the REINFORCE baseline estimation. For further details,
refer to the associated paper.

F.3 MatNet for FFSP and ATSP

MatNet [12] extends the AM by incorporating edge-wise considerations and is specifically designed
for solving graph-based combinatorial optimization problems like the Flexible Flow Shop Problem
(FFSP) and the Asymmetric Traveling Salesman Problem (ATSP). Since these problems involve
edges, MatNet employs an edge-wise attention mechanism. The training mechanism follows a policy
optimization approach for multiple optima, similar to Sym-NCO’s shared baseline strategy. For more
detailed information, consult the paper related to MatNet.

F.4 REINVENT for MolOpt

REINVENT [17] is a notable DRL method for de novo molecular optimization, known for its state-
of-the-art performance and sample efficiency in benchmark settings [16]. Originally, REINVENT
utilized recurrent neural networks (RNN) as policy models for generating SMILES (Simplified
Molecular Input Line Entry System) sequences [34]. The training of the RNN policy employed
the REINFORCE method, without the support of a prior network similar to the baseline strategy or
actor-critic. It is worth noting that [16] proposes variants of REINVENT specifically for generating
SEFILES strings, ensuring the validity of the generated molecules.
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