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Abstract. Detecting pathological abnormalities in medical images in
an unsupervised manner holds potential for advancing modern medi-
cal diagnostics. However, supervised methods encounter challenges with
exceedingly unbalanced training distributions due to limited clinical inci-
dence rates. Likelihood-based unsupervised Out-of-Distribution (OOD)
detection with generative models, especially Normalizing Flows, in which
pathological abnormalities are considered OOD, could offer a promising
solution. However, research in this direction has shown limited success
as prior work has revealed that the likelihood does not accurately re-
flect the degree of anomaly for OOD samples, where in many instances
higher likelihoods are assigned to anomalous samples compared to train-
ing samples. In this study, we present the first exploration of typicality
(i.e. determining if samples belong to the typical set) for OOD detec-
tion in medical imaging, where test samples are juxtaposed against the
probability mass rather than the density. The obtained findings demon-
strate the superiority of evaluating typicality against likelihood for find-
ing pathological abnormalities. We achieve state-of-the-art performance
on the ISIC, COVID-19, and RSNA Pneumonia datasets, while being
robust against significant data imbalances.
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1 Introduction

The integration of data-driven deep learning algorithms in medical imaging has
revolutionized healthcare at an unprecedented pace. However, a major challenge
in the medical domain remains the strong imbalance between normal data and
data with pathological abnormalities encountered in clinical practice. Although
supervised methods have shown potency [25,34], both the extremely low incident
rate of diseases and the challenges involved in collecting malignant samples lead
to an inherent data imbalance, under which such models inadvertently fail [20].
To address these challenges, unsupervised out-of-distribution (OOD) detection
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emerges as a popular approach, which solely models the abundantly available
data of healthy cases. Thus, pathological abnormal examples can be identified by
their low likelihood on the (implicit) model support. This alleviates the strenuous
requirement of collecting scarcely available data and, therefore, it offers much
greater potential in the upcoming second generation of AI for medical diagnosis.

Many unsupervised approaches implicitly evaluate OOD data through embedding-
level distance metrics or image-level distances [1, 19], as well as explicit likeli-
hood estimation with density modeling [15,37]. Unsupervised approaches assume
that the training objective will exhibit higher cost for OOD data compared to
in-distribution (ID) samples. Nonetheless, when dealing with intricate seman-
tics, this disparity is hardly accurately reflected for distance-based approaches
as shown in [9, 38]. In fact, cases exist where anomalous samples are faithfully
reconstructed, thereby challenging the generalization of such approaches [27].

Density-based models aim to explicitly learn the approximate density of the
available data, where generative models such as Normalizing Flows (NFs) are em-
ployed to directly evaluate the data log-likelihood on the model-inferred distribu-
tion. While this methodology is much more intuitive and theoretically justified,
related literature presents strikingly contrasting findings [4,17,23]. For instance,
studies have demonstrated that deep generative models trained solely on ID data
with Maximum Likelihood Estimation (MLE), can assign higher likelihoods to
OOD data [4, 23]. Furthermore, it is argued that this phenomenon occurs nat-
urally, due to images not being high-likelihood samples, but rather elements of
the typical set of the data distribution, where the empirical entropy of typical
samples closely matches the entropy of the source distribution. Consequently,
methods evaluating the typicality of data instances have been investigated as a
surrogate for likelihood estimation [3, 12,22].

Although OOD detection plays a crucial role in the adoption of Machine
Learning in the medical domain, this phenomenon has unfortunately not been
extensively explored with clinical data. In the context of medical images with-
out pathological abnormalities, we argue that those samples are typical rather
than most likely, and it is imperative that they are evaluated as such. The ob-
tained findings clearly favour typicality as the superior learning objective over
likelihood-based estimation on various medical image datasets, achieving state-
of-the-art (SOTA) in the Area Under Curve (AUC) of the Receiver Operating
Characteristics (ROC). The main contributions of this research are listed below:

• Superior over likelihood evaluation: Demonstration of the superiority of typ-
icality over likelihood for OOD detection in medical imaging with NFs.

• Bias removal : Addressing the unfavourable intrinsic bias of NFs, which as-
signs likelihood based on textural complexity rather than semantic content.

• Outperforms SOTA models: SOTA results across four different medical image
datasets of different modalities.

• Assessment of data imbalance effects: Exploration of data imbalance on the
comparative performance of OOD detection w.r.t. supervised methods, ex-
emplifying the performance of the proposed approach subject to exceedingly
limited data.
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2 Theoretical Background

2.1 Normalizing Flows

Consider image data x ∼ PX taking values in high-dimensional space RD. To
accurately model the data distribution from dataset D = {xi}Ni=1, Normalizing
Flows (NFs) are a family of models with fully tractable marginals. Training such
a model entails optimizing a function that maps data x to the target density
pZ (usually a normal density). With K invertible functions fk :RD → RD (for
k = 1, 2, . . . ,K), intermediate variables zk and the sequential mapping z0 =
fK ◦ fK−1 ◦ ... ◦ f1(x), the exact likelihood can be determined by

log pX(x) = log pZ (z0)−
K∑
i

log

∣∣∣∣det ∂fk(zk−1)

∂zk−1

∣∣∣∣ . (1)

Choosing the right bijection, f that balances expressivity and relatively cheap
evaluation of the Jacobian determinant in Equation (1) is a crucial design choice.
While many have been introduced, affine coupling layers have shown to work
especially well for image data [10,14–16].

Although other generative models have been explored for OOD detection
in medical imaging, GANs [21] lack explicit density estimation, DDPMs re-
quire labeled guidance for competitive performance [32] or rely on less favor-
able reconstruction-based methods [11], and VAEs do not guarantee accurate
inference on the lower bound of the likelihood [7, 36]. Given the advantage of
obtaining exact likelihoods, our research explores NFs for OOD detection within
the clinical setting. In this domain, NFs have been used for likelihood-based
OOD detection of malignant Melanoma [30, 37]. According to the authors, NFs
are mainly limited by the significant influence of textural information on the
likelihood. In a similar way, various studies [2, 4, 23] indicate other severe limi-
tations of NFs for OOD detection, by often assigning higher likelihood to OOD
data rather than training data. Several explanations such as intrinsic biases [17]
or entropic mismatch [2] have been discussed in the literature. Moreover, the
information-theoretic perspective, which redirects attention from likelihood to
typicality, demonstrates the most promising results [3, 12,22].

2.2 Typicality

Given a random variable X ∈ R, we can define X (N) as the set containing

sequences of N i.i.d. datapoints {x1,x2, ..,xN}. The typical set A
(N)
ϵ ∈ X (N) is

said to contain sequences that satisfy

H(X)− ϵ ≤ − 1

N

N∑
n=1

log2 p(xn) ≤ H(X) + ϵ, (2)

for any small value ϵ and where H(X) is the Shannon entropy. In other words,
the empirical entropy is close to the entropy of the source distribution. As a
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consequence of the Asymptotic Equipartition Property, it can be stated that

1

N

N∑
n=1

log2 p(xn) → H(X) s.t. N → ∞, (3)

and thus P ({x1,x2, ...,xN} ∈ A
(N)
ϵ ) ≈ 1. Regardless of the fact that the typical

set is only a small fraction of all possible sequences, any sequence of i.i.d. samples

drawn of sufficient length is almost certainty in A
(N)
ϵ , and thus typical. A com-

mon misconception attributes the most likely sequence as a member of A
(N)
ϵ . A

simple counterexample can be provided through a biased coin toss Ω = {H,T},
with probabilities PH =0.8 and PT =0.2. Indeed, the sequence with all out-
comes being H is most probable, with entropy − 1

N log2 0.8
N ≈ 0.32. However,

this value remains far from the information content of the source H(Ω) ≈ 0.72,
regardless of sequence length N .

An analogous argument can be made on the typicality of a sequence of images
in dataset D. Hence, Nalisnick et al. [22] argue that OOD samples should explic-
itly be evaluated on it. Consider a d-dimensional Gaussian distribution N (0, Id),

where its (ϵ, 1)-typical set A
(1)
ϵ primarily resides at a radius of

√
d [22, 31]. The

atypicality of a sample is consequently measured by its deviation from this radius,

quantified in latent space as
∣∣∣ ||z||2 −√

d
∣∣∣. This score is known as the typicality

test in latent space (TTL) [?, 24]. However, the specific method of calculating
distances as a measure of atypicality has been shown to be unreliable due to its
susceptibility to image complexity [4, 22,35].

Alternatively, an image’s typicality can be quantified by using the model like-
lihood over training data space. Grathwhol et al. [12] argue that typical images
are localized around regions of increased mass in the probability distribution.
The high probability density area at the mode of the Gaussian annulus has a
considerably smaller volume than the typical set region. This density-volume re-
lationship results in the typical set residing at neighborhoods of high probability
mass. Conversely, atypical data points reside in sparsely populated areas with
consequently less uniform distribution of mass. The fully tractable nature of NFs
present an excellent opportunity to estimate the mass distribution by leveraging
the gradients w.r.t. the input. This is also known as the gradient score, denoted
as ∇x log p(x).

3 Methods

Despite criticisms of typicality-based approaches [35], NFs demonstrated success
on benchmark datasets when evaluated with typicality rather than likelihoods,
particularly when using the gradient score [3, 12]. Anomalous samples are ex-
pected to have higher gradients w.r.t. the input image. Thus, we mark samples
as OOD if the gradient score exceeds the gradient score of the ID data. Similar
to Chali et al. [3], we appropriately adjust the minimization objective to penalize
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high gradients for training data by specifying:

L = − log p(x) + α · ||∇x log p(x) ||2 , (4)

with hyperparameter α to further encourage accurate convergence.
The four datasets employed in this study to test the proposed approach

encompass a diverse range of medical imaging modalities and conditions. The
(1) ISIC Melanoma Dataset [6] which is utilized for skin lesion analysis, comprises
2,000 benign and 1,500 malignant RGB images. We use two datasets for detect-
ing pathologies in Chest X-ray (CXR) images: the (2) COVID-19 Dataset [5,26]
with 10,000 healthy and 4,000 COVID-affected images, and the (3) Pneumo-
nia Dataset [28] with 10,000 healthy and 6,000 pneumonia-affected images (the
aforementioned numbers are rounded). Additionally, for neurological examina-
tions the (4) HeadCT dataset [18] is incorporated, consisting of 100 normal and
100 hemorrhage-affected head-computed tomography (CT) images. Each dataset
is uniformly downscaled to contain 128×128-pixel images and are standardized
with statistics of the training set.

The proposed method∗ uses PyTorch to train GLOW [16], utilizing a multi-
scale setup with depth of flow K =32 and the number of levels L=3. To deter-
mine the gradient score, we apply attribute requires grad=True on the input
tensor. The obtained gradients are flattened and the L2 norm is applied to each
batch of images. Finally, the norms are averaged across all batches to obtain
the score approximate. The hyperparameter α=2 is chosen to yield gradients
of comparable magnitudes to those appearing with the log-likelihood. During
testing, the scores are obtained per data instance. Similarly, we have found that
computing the score may exhibit training instability depending on the model
implementation [12]. However, in our experiments it is found that suitable data
standardization already addresses this issue.

In all of our experiments, we train different GLOW models on benign im-
ages from the training set and use the benign validation set to select the best
model. Finally, we test the selected models on the official test set, which con-
tains both benign and malignant cases, if available. The models are evaluated
using the (1) standard log-likelihood (LL) method, the (2) Typicality Test in
Latent space (TTL) [24] and the (3) proposed gradient score-based typicality
test. Implementation (1) and (2) are trained minimizing the standard negative
log-likelihood, while (3) is trained with the proposed penalized loss.

4 Results and Discussion

Quantitative evaluation: The empirical distributions of likelihoods and gra-
dient scores, obtained by the baseline and proposed method respectively, are
visualized in Figure 1. It can be observed that the baselines based on likelihood
are severely limited in their ability to distinguish ID and OOD data, which is
indicated by the substantial overlap of the empirical distributions, where in some

∗Code available at: https://github.com/lemarabd/typicality-MOOD

https://github.com/lemarabd/typicality-MOOD
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Table 1: AUROC results of the proposed method compared to SOTA models.
Separate indication for semi-supervised models (†) and re-implementation (∗).

Model Dataset AUROC ↑

AE-FLOW [37]

ISIC

0.878 ± - - -

GLOW (LL)
∗

0.788 ± 0.041

GLOW (TTL)
∗

0.675 ± 0.039
Proposed method 0.950 ± 0.059

MorphAEus [1]

COVID-19

0.860 ± 0.070

GLOW (LL)
∗

0.654 ± 0.027

GLOW (TTL)
∗

0.648 ± 0.007
Proposed method 0.937 ± 0.080

MorphAEus [1]

Pneumonia

0.836 ± 0.080

GLOW (LL)
∗

0.577 ± 0.025

GLOW (TTL)
∗

0.581 ± 0.032
Proposed method 0.904 ± 0.056

DevNet† [25]

HeadCT

0.982 ± 0.009

GLOW (LL)
∗

0.538 ± 0.052

GLOW (TTL)
∗

0.494 ± 0.055
Proposed method 0.922 ± 0.086

instances, the model erroneously assigns higher likelihood to OOD data. With
high contrast, the proposed approach (right column) is significantly better in dis-
tinguishing the individual histograms across all datasets. We present this quanti-
tative improvement with the AUROC scores, averaged across five random seeds,
in Table 1. With the exception of the HeadCT dataset, the proposed methodol-
ogy significantly improves upon the dataset-specific SOTA methods, LL-based
GLOW evaluation and evaluation using TTL. Nonetheless, the HeadCT SOTA
method is a semi-supervised approach.

Qualitative evaluation: The most likely images are usually not represen-
tative for the majority of the dataset. In theory, typicality should be more ac-
curate in reflecting the diversity of the training distribution. This is verified for
the ISIC datasets in Figure 2a, where the diversity of likely samples are mini-
mal. The most likely samples exhibit consistent characteristics such as smooth
skin texture, uniform pigmentation, and lesion size. In contrast, the typical im-
ages in Figure 2c are much more varied, thereby accurately reflecting the dataset.
While the likely samples are most certainly benign, the visualization exposes the
intrinsic bias of the model towards simple textural content. This is especially em-
phasized in Figure 2b. It is quite clear that the likelihood-based model is biased
towards assigning low likelihoods, due to extreme textures such as hairs, which
is a limitation elucidated in previous work [30]. The proposed methodology does
not suffer from this and correctly classifies malignant samples, regardless of their
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(a) ISIC

(b) COVID-19

(c) Pneumonia

(d) HeadCT

Fig. 1: Negative log-likelihood histograms obtained by the vanilla GLOW model
(left figure of each subfigure) against the gradient score histograms obtained
using the proposed method (right figure of each subfigure). Training ID data is
depicted in blue and the OOD data in red.

(a) Most likely (b) Least likely (c) Most typical (d) Least typical

Fig. 2: Comparison of most typical and most likely samples versus least likely and least
typical samples. Most likely samples seem to visualize standard cases, while typical
samples have a broader variation.
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graphical contents, as seen in Figure 2d. Notably, it can be observed that the
presence of hairs on benign images does not inhibit OOD detection.

Data imbalance: Balanced class data-distributions, usually employed dur-
ing model development, often do not reflect the real clinical incidence rate,
leading to a large number of false positives predictions when deployed [20]. To
demonstrate the impact of severe data imbalance on the performance of su-
pervised models in contrast to the proposed method, we have conducted several
ablation experiments. Each supervised model [13,29,33] is independently trained
on varying ratios, starting with a 1:1 ratio of normal to abnormal data, then with
decreasing abnormal data. Each unsupervised model, trained exclusively on nor-
mal data, uses progressively smaller subsets of normal data. It should be noted
that the HeadCT dataset has been excluded in these experiments because of
the relatively limited number of samples. The supervised models are pre-trained
on ImageNet1K [8], following the same training settings as in [13], with smaller
batch sizes for increasing data ratios. The models are plotted against perfor-
mance for each data ratio, as can be seen in Figure 3. While supervised models
tend to achieve high AUROC scores under balanced conditions, our analysis
reveals a clear decline in performance when subjected to imbalanced data. How-
ever, the proposed method is consistent in performance even with 0.1% of the
dataset. Additionally, unlike the GLOW baseline, the proposed method demon-
strates performance akin to supervised models. The excessive susceptibility of
supervised models underscores the practical value of our contributions in diverse
clinical scenarios. Firstly, data imbalance has no impact on the proposed model
and secondly, the model continues to exhibit SOTA performance, even under
scarcity of training samples.

Fig. 3: Impact of data imbalance on the performance of unsupervised methods,
indicated with (∗), and various supervised methods.
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5 Conclusion

This study has explored the effectiveness of leveraging typicality for OOD de-
tection in medical imaging. The obtained results demonstrate that ID medical
images are more typical rather than more likely. The proposed method shows
competitive performance even against supervised models, while exceeding them
under significant data imbalances. Furthermore, the proposed model achieves
SOTA in unsupervised pathology detection across different medical imaging
modalities. The proposed method improves AUROC scores by 10%, 15%, and
14% for ISIC, COVID-19, and Pneumonia, respectively, compared to the SOTA
models for each dataset. While our focus lies on image-level semantic OOD de-
tection, we advocate for future research to explore the utility of typicality for
other OOD sub-tasks in the medical domain, such as sensory anomaly detection.
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