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ABSTRACT

Multi-view data usually suffer from partially missing views in open scenarios,
which inevitably degrades clustering performance. The incomplete multi-view
clustering (IMVC) has attracted increasing attention and achieved significant suc-
cess. Although existing imputation-based IMVC methods perform well, they still
face one crucial limitation, i.e., view recovery and subspace representation lack
explicit alignment and collaborative interaction in exploring complementarity and
consistency across multiple views. To this end, this study proposes a novel IMVC
method to Align collaborative view Recovery and tensorial Subspace Learning
via latent representation (ARSL-IMVC). Specifically, the ARSL-IMVC infers the
complete view from view-shared latent representation and view-specific estimator
with Hilbert-Schmidt Independence Criterion regularizer, reshaping the consistent
and diverse information intrinsically embedded in original multi-view data. Then,
the ARSL-IMVC learns the view-shared and view-specific subspace representa-
tions from latent feature and recovered views, and models high-order correlations
at the global and local levels in the unified low-rank tensor space. Thus, leverag-
ing the latent representation as a bridge in a unified framework, the ARSL-IMVC
seamlessly aligns the complementarity and consistency exploration across view
recovery and subspace representation learning, negotiating with each other to pro-
mote clustering. Extensive experimental results on seven datasets demonstrate the
powerful capacity of ARSL-IMVC in complex incomplete multi-view clustering
tasks under various view missing scenarios.

1 INTRODUCTION

Recently, the rapid development of information technology promotes the complexity of data forms,
including text, audio, images, etc. Extracting available information from multi-view data collected
from different sources is challenging, especially in unsupervised scenarios (Xu et al., 2013). As a
key unsupervised learning technology, clustering is also expanded to multi-view clustering to better
accommodate complex multi-view data (Chao et al., 2021; Chen et al., 2022). Multi-view clustering
(MVC) aims to divide unlabeled multi-view data into disjoint clusters by leveraging the consistency
and complementarity across multi-view data. Among various MVC approaches, multi-view sub-
space clustering (Gao et al., 2015; Cao et al., 2015; Shi et al., 2024) receives considerable attention
due to its significant performance advantage and robustness. It aims to learn optimal subspace repre-
sentations in which the samples can be more clearly separated into distinct clusters, simultaneously
preserving the complementary information and mitigating redundancy and noise across multiple
views. When both inter-view consistency and view-specific diversity are fully explored and well
balanced, the clustering performance can be significantly enhanced (Guo et al., 2023).

However, in open scenarios, due to sensor failure, missing annotations, or data corruption, etc, it
is usually difficult to obtain complete data for all views. Reducing the negative impact of incom-
pleteness of multiple views on clustering performance becomes a major challenge currently faced in
the MVC filed (Wen et al., 2023b). And thus, the incomplete multi-view clustering (IMVC) meth-
ods are widely proposed and divided into two categories, i.e., imputation-based and imputation-free
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methods. The imputation-based IMVC methods adhere to the mechanism of first view recovery
and then clustering structure exploration (Liu et al., 2024a; Wang et al., 2021). The imputation-free
IMVC methods only focus on partial observable views to explore clustering information, avoiding
computational costs of missing view completion (Wen et al., 2024; Qin et al., 2025). Despite strong
simplicity of imputation-free IMVC methods, their discriminability to extract clustering information
is restricted by limited available views, especially when the missing rate is high.

The imputation-based IMVC methods utilize heuristic or learnable strategies to impute the missing
views, providing strong data foundation for clustering information exploration and enhancing the
interpretability. Surprisingly, several methods jointly recover the missing views and learn clustering
representations (subspace coefficient, graph similarity, cluster indicator, etc) in a unified framework,
significantly improving clustering quality. Despite the success, two critical challenges remain in
most existing imputation-based IMVC methods. First, the recovered or completed views often suf-
fer from limited structural fidelity and insufficient diversity and consistency reshaping, which are
both essential for effective multi-view clustering. More important, there is no explicit alignment
and collaborative interaction in view recovery and subspace representation learning in exploring
complementarity and consistency.

To this end, this study unifies collaborative view completion and tensorial subspace learning, and
breaks the gap between them in complementarity and consistency modeling by shared latent rep-
resentation. Notably, the latent representation not only serves as fictitious transitional factor for
view reconstruction but also directly contributes to the subspace learning with structural awareness.
Along with view-specific diversity term, the proposed method provides more freedom in enriching
feature description across views. Consequently, the shared and specific subspace representations
derived from the latent space and imputed views are integrated into low-rank tensor, enabling inter-
actions across different levels of structural information. In summary, the primary contributions of
this study are as follows:

• The proposed novel IMVC method facilitates the unified and explicit alignment of complemen-
tarity and consistency exploration across both missing feature reconstruction and subspace repre-
sentation learning, fostering a coherent cross-view correlation modeling.

• The complex high-order correlation among local specific and global shared subspace representa-
tions is collaboratively explored. And the structural semantics embedded in subspace representa-
tions are fed back to latent representation and recovered views, improving the imputation fidelity
and clustering discriminability.

• An effective iterative method is designed to solve the optimization problem. Extensive experi-
ments verify the superiority of proposed method.

2 RELATED WORK

Recently, numerous IMVC methods have been widely proposed (Wen et al., 2020a; Shen et al., 2025;
Jiang et al., 2025; Li et al., 2024), which could be roughly grouped into two categories according to
the way of handling missing samples. The first category crudely ignores missing samples and focus
on learning clustering representation from available views, i.e., imputation-free. Li et al. divided
samples into view-complete parts and view-specific missing parts and learned low-dimensional rep-
resentation by non-negative matrix factorization (Li et al., 2014). Hu et al. proposed doubly aligned
incomplete multi-view clustering (DAIMC), aligning the available views to learn a compact repre-
sentation shared by all views and trying to weaken the influence of missing samples (Hu & Chen,
2018). Due to the powerful relationship representation ability of graph, the incompleteness of data
is transferred to the similarity domain (Wen et al., 2020b; 2023a). Wen et al. designed a graph-based
IMVC method, Incomplete Multi-view Spectral Clustering with Adaptive Graph Learning (IMSC-
AGC), where partial graph for each view is adaptively constructed by only leveraging observable
samples and expanded to complete graph, and then a shared spectral embedding is learned (Wen
et al., 2020a). To weaken the impact of noisy view, Wen et al further designed a highly confident
local structure induced consensus graph learning (HCLS-CGL) for IMVC (Wen et al., 2023a). Some
methods also tried to maximize the utilization of available information by simultaneously consider-
ing feature and graph structure and establishing a connection between them (Bai et al., 2024; Liu
et al., 2024b).
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Figure 1: The overall framework of proposed ARSL-IMVC method, which mainly consists of CVR
and TSL modules and aligns them in cross-view consistency and complementarity exploration by a
latent representation.

Although achieving good progress, the imputation-free methods ignore the underlying connections
between samples or views, which instinctively undermine the structural integrity and compromis-
ing the clustering performance. To address this issue, imputation-based IMVC methods recover
missing data and learn clustering representation on the filling data. Wen et al. proposed a unified
embedding alignment framework (UEAF) to infer missing samples, fully leveraging the cross-view
correlations by common representation (Wen et al., 2019). Wang et al. leveraged both local view-
specific and global view-shared similarity structures to guide the recovery (Wang et al., 2024). To
utilize high-order relationships between samples, Chen et al. developed hypergraph induced missing
reconstruction strategy for IMVC (IMVC-HG) and further explored the complementarity embedded
in inter-view label representations (Chen et al., 2025). Guo et al. proposed robust mixed-order
graph learning (RMoGL), utilizing the mixed-order structural information of recovered data from
low-order to high-order (Guo et al., 2025). In addition, several methods focus on modeling both
complex cross-view correlation and similarity relationships between samples by low-rank tensor
learning (Li et al., 2022; Yao et al., 2025; Chen et al., 2024). Li et al. explored the high-order
correlation of views and that of samples, utilizing hyper-Laplacian regularizer in view recovery and
low-rank tensor learning in subspace structure recovery (Li et al., 2022). Yao et al. focused on re-
covering the multi-view similarity graphs and utilized dual tensor constraint to explore complex cor-
relations, which proposes the between/within view information completing for tensorial incomplete
multi-view clustering (BWIC-TIMC) (Yao et al., 2025). In addition, to improve data separability,
some kernel-based IMVC methods reconstruct the missing data in kernel Hilbert space (Liu et al.,
2020; Wu et al., 2024; Liu et al., 2021; Wu et al., 2025). Although most existing IMVC methods uni-
fying missing view recovery and clustering representation learning have achieved notable progress,
they are only treated as weakly coupled strategies. Specifically, they fail to simultaneously ex-
ploit the inherent consistency and complementarity among multiple views during the view recovery
and representation learning and achieve the semantic correlation exploration alignment through ex-
plicit bridge, resulting in shallow collaborative interaction between them and sub-optimal clustering
structure. Thus, this study explicitly aligns the collaborative view recovery and tensorial subspace
learning by a shared latent representation for IMVC (ARSL-IMVC), bridging the tight interaction
between them.

3 METHODOLOGY

In this section, the proposed ARSL-IMVC model is illustrated in detail from two main modules:
Collaborative View Recovery (CVR) and Tensorial Subspace Learning (TSL), where the framework
is presented in Figure 1. Then, the iterative optimization procedure is provided. The basic notations
are conveniently summarized in the Table 1.
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Table 1: Main notations and descriptions in this study.

Notations Descriptions Notations Descriptions
Xv ∈ Rdv×n Data matrix of the v-th view Ev

1 View recovery estimator
W v ∈ {0, 1}n×n Missing indicator matrix Ev

2 ,EH Noise matrices
P v ∈ Rdv×k Projection matrix of the v-th view Zv,Z ∈ Rn×n Specific and shared representations
H ∈ Rk×n Latent representation matrix Z ∈ Rn×(V +1)×n Subspace representation tensor

3.1 COLLABORATIVE VIEW RECOVERY

Consider an incomplete multi-view dataset consisting of n samples from V views, i.e.,
{{xv

i }ni=1}Vv=1, where xv
i ∈ Rdv is the i-th sample in v-th view. The incomplete pattern is symbol-

ized with a diagonal indicator matrix W v ∈ {0, 1}n×n such that W v
ii = 1 if i-th sample exists in

v-th view and 0 otherwise. The MVC adheres to a convincing assumption that multi-view data is
usually embedded in the shared latent space. With this inverse assumption, the ARSL-IMVC tries
to linearly infer missing views from a “virtua” latent representation H ∈ Rk×n via reconstruction
operator P v ∈ Rdv×k, which is beneficial for reshaping the consistency among multiple views. To
improve the freedom of view recovery, view-specific feature estimator Ev

1 is introduced and thus the
view reconstruction is formulated, i.e.,

P vH +Ev
1 (1)

Further, to ensure that the various recovered views retain sufficient complementary information, the
Hilbert-Schmidt Independence Criterion (HSIC) is introduced as diversity regularizer between any
estimator pair Ev

1 and Ew
1 , where the empirical HSIC term is defined (Gretton et al., 2007):

HSIC(Ev
1 ,E

w
1 ) = Tr(KvH̃KwH̃)/(n− 1)2 (2)

where Kv and Kw are inner product kernel matrices of Ev
1 and Ew

1 respectively, H̃ = In− 1
n11

T is
the centralized matrix. The HSIC term penalize the dependence between the various reconstruction
views, thereby encouraging diversity and informativeness among them in the feature level. To ex-
plore the consistency-diversity and ensure the reconstruction quality, the CVR module is formulated
as follows:

min
H,P v,Ev

1

V∑
w=1;w ̸=v

HSIC(Ev
1 ,E

w
1 )

s.t. XvW v = (P vH +Ev
1 )W

v, (P v)TP v = I

(3)

where Xv = [xv
1,x

v
2, · · · ,xv

n], X
vW v denotes the non-missing data, and the equality constraint

is enforced to ensure reconstruction fidelity of observable samples.

3.2 TENSORIAL SUBSPACE LEARNING

Subspace representation learning is an effective method for exploring clustering semantics in low-
dimensional embedding space, especially for self-representation based methods. Leveraging the
shared latent representation and recovered view-specific features, the global semantics and local
clustering structures could be effectively characterized, i.e.,

H = HZ +EH ,P vH +Ev
1 = (P vH +Ev

1 )Z
v +Ev

2 (4)

where Z, Zv are view-shared and view-specific subspace representations, respectively, encoding
the comprehensive structural semantics; and EH and Ev

2 are noise terms.

To explore the consistency and complementarity across views in subspace representation level, both
shared and specific subspace representations into a unified low-rank tensor. Thus, the TSL module
is formulated as follows:

min
Z,Zv,EH ,Ev

2

∥Z∥⊛ + λ1(∥EH∥2,1 +
V∑

v=1

∥Ev
2∥2,1)

s.t. H = HZ +EH ,P vH +Ev
1 = (P vH +Ev

1 )Z
v +Ev

2 ,

Z = Φ(Z1,Z2, · · · ,ZV ,Z)

(5)
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where Φ(·) is a tensor construction function, which stacks the representations ({Zv}Vv=1,Z) and
rotates to form a subspace representation tensor Z ∈ Rn×(V+1)×n. In the low-rank tensor space,
the high-order cross-view correlations at different levels be effectively captured, facilitating semantic
alignment across diverse views and achieving collaborative interaction between local and global
structural information.

3.3 FORMULATION OF THE PROPOSED ARSL-IMVC

By incorporating the CVR and TSL into a unified framework, the final objective of ARSL-IMVC is
formulated as:

min
Υ

∥Z∥⊛ + λ1(∥EH∥2,1 +
V∑

v=1

∥Ev
2∥2,1) + λ2

V∑
w=1;w ̸=v

HSIC(Ev
1 ,E

w
1 )

s.t. XvW v = (P vH +Ev
1 )W

v,P vH +Ev
1 = (P vH +Ev

1 )Z
v +Ev

2 ,

H = HZ +EH , (P v)TP v = I,Z = Φ(Z1,Z2, · · · ,ZV ,Z)

(6)

where Υ = {H,P v,Ev
1 ,Z,EH ,Zv,Ev

2} is unknown variable set, λ1 and λ2 are hyperparameters
that control the contribution of different regularization terms in the objective function. In Eq.(6),
the shared latent representation H not only facilitates the joint optimization and collaborative in-
teraction between view recovery and subspace learning but also serves as a semantic anchor that
aligns the reconstructed views with corresponding subspace representations in capturing cross-view
complementarity and consistency. The information flow propagation enables coherent cross-view
semantic correlation exploration, promoting the clustering quality for complex IMVC task.

3.4 OPTIMIZATION

The objective function in Eq.(6) with multiple variables is difficult to solve directly, the Alternating
Direction Method of Multipliers (ADMM) (Lin et al., 2011) is utilized to iteratively optimize each
variable. To make the objective function separable, auxiliary variables J and Xv

c are introduced,
and then the augmented Lagrange function is defined:

L
(
Υ,Xv

c ,J ;Y v
1 ,Y v

2 ,Y v
3 ,Y4,Y, µ

)
= ∥J ∥⊛ + λ1(∥EH∥2,1 +

V∑
v=1

∥Ev
2∥2,1)

+ λ2

V∑
w=1;v ̸=w

HSIC(Ev
1 ,E

w
1 ) +

V∑
v=1

ϕ
(
Y v
1 ,Xv

c − P vH −Ev
1

)
+

V∑
v=1

ϕ
(
Y v
2 ,XvW v −Xv

cW
v
)
+

V∑
v=1

ϕ
(
Y v
3 ,Xv

c −Xv
cZ

v −Ev
2

)
+ ϕ (Y4,H −HZ −EH) + ϕ (Y,Z − J )

(7)

where {Y v
1 ,Y v

2 ,Y v
3 ,Y4,Y} are Lagrangian multipliers, µ is a penalty factor, ϕ(A,B) =

µ
2 ∥B∥2F + ⟨A,B⟩. Then, each variable is alternately updated as follows:

Update P v: Fixing other variables except P v , the subproblem in Eq.(7) w.r.t. P v is as follows:

min
(P v)TP v=I

ϕ(Y v
1 ,Xv

c − P vH −Ev
1 ) ⇐⇒ min

(P v)TP v=I
Tr((P v)T (Xv

c −Ev
1 + Y v

1 /µ)HT )

(8)
The optimal closed-form solution could be obtained (Wang et al., 2019), i.e., P v = UV T , where
U and V are the left and right singular vector of (Xv

c −Ev
1 + Y v

1 /µ)HT .

Update Xv
c : Fixing other variables except Xv

c , the subproblem in Eq.(7) w.r.t. variable Xv
c is as

follows:
min
Xv

c

ϕ(Y v
1 ,Xv

c − P vH −Ev
1 ) + ϕ(Y v

2 ,XvW v −Xv
cW

v) + ϕ(Y v
3 ,Xv

c −Xv
cZ

v −Ev
2 ) (9)

Taking the derivative w.r.t. Xv
c and setting it to zero, the optimal solution for variable Xv

c is as
follows:

Xv
c =

(
A1 +A2(W

v)T +A3(I −Zv)T
)(
I +W v(W v)T + (I −Zv)(I −Zv)T

)−1 (10)

5
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where A1 = P vH +Ev
1 − Y v

1 /µ, A2 = XvW v + Y v
2 /µ, and A3 = Ev

2 − Y v
3 /µ.

Update H: Fixing other variables except H , the subproblem in Eq.(7) w.r.t. variable H is as
follows:

min
H

V∑
v=1

ϕ(Y v
1 ,Xv

c − P vH −Ev
1 ) + ϕ(Y4,H −HZ −EH) (11)

Taking the derivative w.r.t. variable H and setting it to zero, the optimal solution could be obtained:

AH + µHB = C (12)

where A =
∑V

v=1 µ(P
v)TP v , B = µ(I −Z −ZT +ZZT ), C = µ (EH − Y4/µ) (I −ZT ) +∑V

v=1 µ(P
v)T (Xv

c −Ev
1 + Y v

1 /µ). It is a Sylvester equation in Eq.(12) (Bartels & Stewart, 1972).
The matrix A is relaxed into Â = A+ ϵI with strictly positive definiteness for the solution stability
(ϵ is a small positive scalar).

Update Zv: Fixing other variables except Zv , the subproblem in Eq.(7) w.r.t variable Zv is as
follows:

min
Zv

ϕ(Y v
3 ,Xv

c −Xv
cZ

v −Ev
2 ) + ϕ(Y v,Zv − Jv) (13)

where Y v = Φ−1
v (Y), Zv = Φ−1

v (Z) and Jv = Φ−1
v (J ). Taking the derivative w.r.t. Zv and

setting it to zero, the optimal solution for variable Zv could be obtained:

Zv = ((Xv
c )

TXv
c + I)−1

(
(Xv

c )
TX(v)

c − (Xv
c )

TEv
2 + (Xv

c )
TY v

3 /µ+ Jv − Y v/µ
)

(14)

Update Z: Fixing other variables except Z, the subproblem in Eq.(7) w.r.t. variable Z is as follows:

min
Z

ϕ(Y4,H −HZ −EH) + ϕ(Y ,Z − J) (15)

where Y = Φ−1
V+1(Y), Z = Φ−1

V+1(Z) and J = Φ−1
V+1(J ). Taking the derivative w.r.t. Z and

setting it to zero, the optimal solution for variable Z could be obtained:

Z = (HTH + I)−1
(
HT (H −EH + Y4/µ) + J − Y /µ

)
(16)

Update Ev
1 : Fixing other variables except Ev

1 , the subproblem in Eq.(7) w.r.t. variable Ev
1 is as

follows:

min
Ev

1

ϕ(Y v
1 ,Xv

c − P vH −Ev
1 ) + λ2

V∑
w=1;w ̸=v

HSIC(Ev
1 ,E

w
1 ) (17)

Here, the inner product kernel (i.e., K = (Ev
1 )

TEv
1 ) is utilized for HSIC term. Taking the derivative

w.r.t. Ev
1 and setting it to zero, the optimal solution for varaible Ev

1 could be obtained:

Ev
1 =

(
Xv

c − P vH + Y v
1 /µ

)(
I +

2λ2

µ(n− 1)2

V∑
w=1;w ̸=v

H̃KwH̃
)−1

(18)

Update Ev
2 : Fixing other variables except Ev

2 , the subproblem in Eq.(7) w.r.t. variable Ev
2 is as

follows:

min
Ev

2

λ1∥Ev
2∥2,1 + ϕ(Y v

3 ,Xv
c −Xv

cZ
v −Ev

2 ) ⇐⇒ min
Ev

2

λ1/µ∥Ev
2∥2,1 + 1/2∥Ev

2 −Lv∥2F (19)

where Lv = Xv
c −Xv

cZ
v + Y v

3 /µ. Its solution can be obtained by l2,1 minimization thresholding
operator column by column (Liu et al., 2010), i.e.,

Ev
2 (:, j) =

(
1− λ1

µ ∥Lv(:, j)∥2

)+

Lv(:, j) (20)

where (x)+ = max(x, 0).

Update EH : Fixing other variables except EH , the subproblem in Eq.(7) w.r.t. variable EH is as
follows:

min
EH

λ1∥EH∥2,1 + ϕ(Y4,H −HZ + Y4/µ) (21)

6
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Similar to Ev
2 , the solution of EH could be solved by l2,1 minimization thresholding operator col-

umn by column, i.e.,

EH(:, j) =

(
1− λ1

µ ∥M(:, j))∥2

)+

M(:, j) (22)

where M = H −HZ + Y4/µ.

Update J : Fixing other variables except J , the subproblem in Eq.(7) w.r.t. variable J is as follows:

min
J

∥J ∥⊛ + ϕ(Y,Z − J ) ⇐⇒ min
J

1/µ∥J ∥⊛ + 1/2∥Z + Y/µ− J∥2F (23)

It is a classical tensor nuclear norm minimization problem, where the closed-form solution could be
obtained via tensor singular value thresholding (t-SVT) (Zhang et al., 2014).

Update multipliers and penalty parameter: The {Y v
1 ,Y v

2 ,Y v
3 }Vv=1, Y4, Y , µ are updated as

follows: 

Y v
1 := Y v

1 + µ(Xv
c − P vH −Ev

1 ),

Y v
2 := Y v

2 + µ(XvW v −Xv
cW

v),

Y v
3 := Y v

3 + µ(Xv
c −Xv

cZ
v −Ev

2 ),

Y4 := Y4 + µ(H −HZ −EH),

Y := Y + µ(Z − J ),

µ := min(ρµ, µmax)

(24)

where ρ > 1 is set to accelerate the convergence. With all initial variables, each variable is iteratively
updated until stop conditions are satisfied. After obtaining comprehensive subspace representations
(Z, {Zv}Vv=1), a powerful affinity S is constructed for spectral clustering, i.e., S = (|Z|+ |ZT |+∑V

v=1 |Zv|+
∑V

v=1 |(Zv)T |)/(V + 1).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets: To verify the effectiveness of ARSL-IMVC method, seven benchmark datasets are uti-
lized, including BBCSport (Zhang et al., 2024), HW (Asuncion et al., 2007), BDGP (Cai et al.,
2012), Yale (Guo et al., 2025), NGs (Hussain et al., 2010), 100leaves (Mallah et al., 2013), and
Scene-15 (Li & Perona, 2005). Competitors: Several representative methods are selected as com-
petitors, including BSV (Ng et al., 2001), Concat (Wen et al., 2023b), IMSC-AGL (Wen et al.,
2020a), DAIMC (Hu & Chen, 2018), UEAF (Wen et al., 2019), HCP-IMSC (Li et al., 2022),
HCLS-CGL (Wen et al., 2023a), BWIC-TIMC (Yao et al., 2025), RMoGL (Guo et al., 2025).
Incomplete Data Construction: The incomplete multi-view data is constructed by randomly re-
moving samples from each view, with missing rates p ∈ {0.1, 0.3, 0.5} on the BBCSport, HW,
BDGP datasets, missing rates p ∈ {0.1 : 0.1 : 0.8} on the Yale, NGs, 100leaves, and Scene-15
datasets. Following the experimental setting in (Liu et al., 2024b), each sample appears in at least
one view. Parameters Settings: All compared methods are implemented with their public source
codes and recommended parameter settings. For ARSL-IMVC, both λ1 and λ2 are searched within
the range of {1, 10, 20, 30, 40, 50}, and k is selected between 10 and 20. Clustering Metrics: To
make comprehensive comparison, all methods are repeated ten times and the average values of Ac-
curacy (ACC), Normalized Mutual Information (NMI), and Purity metrics are reported.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table 2 presents quantitative clustering results on the BBCSport, HW, and BDGP datasets, where the
best and sub-optimal results are marked in bold and underline. Figure 2 illustrates the experimental
results with broader missing rates on the Yale, NGs, 100leaves and Scene-15 datasets. The the
following conclusions can be concluded:

• The proposed ARSL-IMVC method consistently outperforms other IMVC existing methods on
most cases. And, the ARSL-IMVC achieves significant performance improvements. For exapmle,
in terms of ACC, it improves around 4.60%, 8.31%, and 5.41% over sub-optimal methods respec-
tively on BBCSport, HW, and BDGP datasets, when missing ratio is 0.1.
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Table 2: Clustering results of all methods on the BBCSport, HW, and BDGP datasets.

Dataset p Metrics BSV Concat DAIMC UEAF IMSC-AGL HCLS-CGL HCP-IMSC BWIC-TIMC RMoGL Ours

B
B

C
Sp

or
t

0.1
ACC 35.85 58.07 75.39 71.32 84.30 72.00 91.91 90.75 89.19 96.51
NMI 1.98 34.96 60.76 63.27 72.63 68.90 79.84 82.10 83.18 89.77

Purity 36.21 59.52 78.18 80.70 85.75 75.55 91.91 90.34 88.79 96.51

0.3
ACC 33.82 46.27 75.31 77.39 88.27 79.96 89.15 78.94 78.49 94.85
NMI 1.82 17.69 58.29 58.19 74.34 71.33 75.47 70.12 68.86 84.95

Purity 36.21 47.81 77.46 79.78 88.62 83.45 89.15 81.25 81.80 94.85

0.5
ACC 30.51 45.44 57.74 67.22 81.99 78.49 86.05 77.53 76.47 88.97
NMI 2.32 15.81 41.25 52.05 66.79 67.13 72.37 65.84 61.76 71.32

Purity 36.21 46.69 66.62 73.29 82.52 82.17 86.05 79.48 79.60 88.97

H
W

0.1
ACC 44.10 65.08 76.65 53.79 88.59 79.81 79.80 81.85 76.73 96.90
NMI 52.11 63.83 71.59 50.04 87.21 81.79 75.73 82.87 74.61 92.77

Purity 44.20 68.99 78.99 54.01 90.67 81.97 80.05 81.85 76.73 96.90

0.3
ACC 38.50 57.05 59.18 44.48 84.28 81.45 75.35 74.75 64.19 92.46
NMI 43.11 52.25 51.45 40.66 78.31 81.04 69.11 72.63 62.25 84.16

Purity 38.90 58.97 60.16 45.35 85.64 84.00 76.50 74.75 65.03 92.46

0.5
ACC 31.75 44.86 62.59 37.07 79.43 81.75 70.80 60.13 59.20 89.03
NMI 33.78 39.15 51.01 30.85 73.36 81.39 60.47 59.70 54.74 77.97

Purity 32.00 47.15 63.28 37.27 81.34 84.00 71.30 62.64 59.35 89.03

B
D

G
P

0.1
ACC 40.28 45.02 45.72 50.66 41.67 23.68 21.08 29.88 45.94 56.07
NMI 25.22 22.13 22.91 28.03 19.90 3.37 25.26 7.23 23.48 35.22

Purity 46.08 46.58 47.75 52.42 44.57 23.68 19.52 31.04 46.66 56.07

0.3
ACC 39.22 39.20 41.85 46.82 38.97 23.84 23.93 20.32 42.66 50.58
NMI 23.31 16.55 17.03 22.58 16.93 3.36 29.06 1.30 20.30 31.59

Purity 43.52 40.71 42.98 49.86 41.55 23.84 22.21 20.36 43.60 52.07

0.5
ACC 37.68 34.90 39.74 45.92 37.59 24.28 20.46 25.52 31.68 49.21
NMI 20.99 11.78 20.22 24.14 15.81 3.57 24.84 2.43 6.77 32.16

Purity 40.60 35.43 41.87 47.78 39.42 24.32 19.00 25.61 32.68 50.21

Figure 2: Clustering results of all methods on Yale, NGs, 100leaves and Scene-15 with different
missing rates.

• Compared to imputation-free IMVC methods (DAIMC, IMSC-AGL, HCLS-CGL), the proposed
ARSL-IMVC usually achieves superior clustering performance, illustrating the effectiveness of
proposed collaborative view recovery strategy. And, it highlights that the reshaping cross-view
consistency and diversity in feature-level indeed facilitates credible and strong view recovery.

• The proposed ARSL-IMVC method also outperforms the imputation-based methods (i.e., UEAF,
HCP-IMSC, BWIC-TIMC, and RMoGL), owing to its learned latent representation that simulta-
neously serves as a semantic foundation for both view recovery and subspace learning, thereby
enabling their alignment in capturing cross-view consistency and complementarity. This explicit
information flow transmission promotes deep interaction between CVR and TSL modules, im-
proving the ability to accurately recover missing view and clustering semantic discriminability.

• As illustrated in Figure 2, most IMVC methods exhibit significant performance degradation as the
missing rate increases, while ARSL-IMVC maintains higher stability. It fully demonstrates the
superiority of proposed ARSL-IMVC in complex IMVC tasks.
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Table 3: The experimental results of ARSL-IMVC and its ablation variant with the 0.1 missing ratio.

Datasets BBCSport HW Yale NGs 100leaves
Metrics ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

ARSL-IMVC-1 84.03 71.52 70.15 61.77 76.55 78.88 89.96 76.65 78.61 91.09
ARSL-IMVC 96.51 89.77 96.90 92.77 86.06 87.96 96.20 89.27 89.24 96.65

(a) Yale (b) 100leaves (c) BBCSport (d) HW

Figure 3: Parameter sensitivity analysis of the λ1 and λ2 on Yale and 100leaves datasets with the
missing rate of 0.1 in Figures (3a) and (3b). The t-SNE visualization of clustering representation on
BBCSport and HW with the missing rate of 0.1 in Figures (3c) and (3d).

4.3 ABLATION STUDY

To verify effectiveness of aligning the view recovery and subspace learning by latent representation
H , one ablation variant ARSL-IMVC-1 is designed by removing the subspace learning on H .

As shown in the Table 3, ARSL-IMVC consistently outperforms ablation variant ARSL-IMVC-1,
achieving a performance improvement of 12.48%, 26.75%, 9.51%, 6.24%, and 10.63% on BBC-
Sport, HW, Yale, NGs, and 100leaves datasets regarding ACC metric. The result indicates that align-
ing view recovery and subspace learning in complex correlation exploration promotes the semantic
coherence between them, facilitating the fine-grained and clear clustering structure modeling.

4.4 PARAMETER SENSITIVITY AND VISUALIZATION ANALYSIS

To evaluate the sensitivity of ARSL-IMVC to parameter, with a missing rate of 0.1, the ACC metric
with different λ1 and λ2 is shown in Figures (3a) and (3b). It can be observed that the performance
of ARSL-IMVC is not significantly influenced by λ2 when λ1 is fixed, while it is slightly affected
by λ1 when λ2 is fixed. Although, the ARSL-IMVC is relatively robust to parameter varying within
a reasonable range.

To intuitively illustrate the clustering performance of ARSL-IMVC, the spectral embeddings on
BBCSport and HW datasets are visualized by t-SNE (Maaten & Hinton, 2008) with a missing rate
of 0.1. As shown in Figures (3c) and (3d), the spectral embedding obtained by ARSL-IMVC ex-
hibits relatively clear clustering structure and samples from diverse clusters are obviously separated,
verifying its discriminability in clustering semantics exploration.

4.5 SCALABILITY ON LARGE-SCALE DATASET

To further validate the effectiveness and scalability of the proposed ARSL-IMVC on large-scale
multi-view data, the Handwritten Digits (HDigit) dataset with 10000 samples is utilized, where two
views are collected from various resources: MNIST and USPS. The experimental results of partial
representative methods in 0.1 missing ratio are shown in Table 4. Compared with the suboptimal
HCLS-IMSC, improvements of approximately 0.7% in both ACC and Purity and approximately
1.7% in NMI are achieved by the proposed method. Compared to other baselines such as UEAF
and IMSC-AGL, the performance gains reach 10% ∼ 25%. These results clearly demonstrate that
ARSL-IMVC can effectively handle the representation learning challenges arising from substantial
increases in sample size and feature dimensionality.

4.6 RUNNING TIME COMPARISON AND CONVERGENCE ANALYSIS
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Table 4: Clustering results of some methods on HDigit datasets with the missing rate of 0.1.

Methods DAIMC UEAF IMSC-AGL HCLS-IMSC HCP-IMSC Ours
ACC 67.58 85.38 76.32 98.29 89.56 99.00
NMI 64.25 73.56 77.40 95.30 89.52 96.97

Purity 69.61 85.38 77.89 98.29 88.40 99.00

Figure 4: The running time comparisons of all methods on the BBCSport, BDGP, NGs and
100leaves datasets with 0.1 missing rate.

Figure 4 reports the running time of all compared methods on the four benchmark datasets. As shown
in Figure 4, the proposed ARSL-IMVC method generally requires comparable computational costs
to other IMVC methods on the four datasets. Considering the superior clustering performance of
proposed method, ARSL-IMVC demonstrates good balance between computational efficiency and
clustering performance.

To empirically shown the stability of the proposed algorithm, the convergence analysis results are
verified on the Yale, BBCSport, and NGs datasets with the missing rate of 0.1, where the iterative
residual errors are visualized. As shown in Figures (5a), (5b) and (5c), the residual curves of variable
updating show that proposed optimization algorithm can reach a local minimum within a finite
number of iterations, verifying the fast convergence and numerical stability of ARSL-IMVC.

5 CONCLUSION

In this study, a novel ARSL-IMVC method was proposed for incomplete multi-view clustering,
which centers on a latent representation to achieve unified alignment between view recovery and
tensor subspace learning in complex cross-view correlation exploration. The latent representation
served as both view reconstruction basis and global semantics carrier, maintaining and aligning the
cross-view consistency. And, global view-shared and local view-specific subspace representations
were organized into a low-rank tensor, exploring the cross-view complementarity and multi-level
structural correlations. Experimental results demonstrated that ARSL-IMVC consistently achieves
superior clustering performance under various missing rates.

(a) Yale (b) BBCSport (c) NGs

Figure 5: The convergence curves on Yale, BBCSport and NGs datsets with the missing rate of 0.1.
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ETHICS STATEMENT

Our research adheres strictly to ICLR ethical guidelines, emphasizing responsible AI development
to maximize societal benefits while mitigating potential harms. The proposed ARSL-IMVC method
enhances incomplete multi-view clustering, offering advancements in data analysis that could ben-
efit fields such as healthcare, environmental monitoring, and education by improving resilience to
missing data. Our research is dedicated to the benefit of society and human well-being, and since
it does not involve human subjects, no ethical approval is required. All datasets used in our experi-
ments are publicly available and comply with their respective licenses. The methodology and results
are presented with full transparency to support reproducibility, including source code provided in the
supplementary materials, which will be open-sourced following the review process.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, the complete source code of the ARSL-IMVC will be
provided in the supplementary materials. The public datasets used in the experiments are all cited
in the paper and the construction of incomplete datasets can be carried out according to the specific
methods mentioned in Section 4.1 of the main text.
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A APPENDIX

The Use of Large Language Models (LLMs): In this research, large language models (LLMs)
were employed exclusively to improve the clarity and grammatical accuracy of the manuscript.
Their use was limited to refining sentence structure and correcting syntax to enhance readability and
professionalism. At no stage did these tools influence the scientific content, methodology, or results.
All core ideas and analyses presented are the original work of the authors, with no LLM-generated
content contributing to the intellectual substance of the paper.
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