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ABSTRACT

In this paper, we investigate federated learning for quantile inference under lo-
cal differential privacy (LDP). We propose an estimator based on local stochas-
tic gradient descent (SGD), whose local gradients are perturbed via a randomized
mechanism with global parameters, making the procedure tolerant of communica-
tion and storage constraints without compromising statistical efficiency. Although
the quantile loss and its corresponding gradient do not satisfy standard smooth-
ness conditions typically assumed in existing literature, we establish asymptotic
normality for our estimator as well as a functional central limit theorem. The pro-
posed method accommodates data heterogeneity and allows each server to operate
with an individual privacy budget. Furthermore, we construct confidence intervals
for the target value through a self-normalization approach, thereby circumventing
the need to estimate additional nuisance parameters. Extensive numerical experi-
ments and real data application validate the theoretical guarantees of the proposed
methodology.

1 INTRODUCTION

Modern data ecosystems increasingly require distributional guarantees rather than simple aver-
ages. For instance, a national hospital network may track the 0.9 quantile of emergency waiting
times across sites to ensure that “nine out of ten patients are seen within T minutes” (Yadlowsky
et al., 2025), while financial institutions assess tail risk via value-at-risk or expected shortfall un-
der strict confidentiality constraints (Barbaglia et al., 2023; Chen, 2008; Wang et al., 2012). In
both settings, the target is a quantile of a heterogeneous, possibly heavy-tailed distribution, and the
scientific goals—comparing tail performance, checking compliance, or detecting post-intervention
shifts—require full inferential tools, not just point estimates.

Quantile methods naturally support these tasks, revealing heterogeneity and tail behavior often in-
visible to means (Angrist et al., 2006; Kallus et al., 2024; Chernozhukov & Fernández-Val, 2011;
Chernozhukov & Hansen, 2005; He et al., 2023; Hu et al., 2022; Chen et al., 2023). Yet the data
required for such inference are increasingly distributed: hospitals, banks, and user-facing services
each hold their own records, and centralizing raw data is often infeasible due to communication,
storage, privacy, and regulatory barriers.
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These challenges motivate federated learning (McMahan et al., 2017; Konečnỳ et al., 2016; Liu et al.,
2020; Tian et al., 2023), where a server coordinates updates from many clients without collecting
their raw data. Local SGD can be optimal under i.i.d. data (Stich, 2018; Li et al., 2020; Chen et al.,
2022), but realistic federated environments are heterogeneous in distributions, sample sizes, and
even target quantiles, complicating optimization and inference and prompting methods based on
regularization, momentum, and worst-case analysis (Hu et al., 2024; Li et al., 2020; 2025; 2022).

At the same time, protections limited to servers or silos are no longer considered sufficient. Breaches
of medical and financial records show that server-side DP alone (Dwork et al., 2006) cannot prevent
disclosure when the custodian is compromised. Local differential privacy (LDP) mitigates this risk
by randomizing each individual record before transmission (Duchi et al., 2013); deployed systems
such as Google’s RAPPOR, Apple’s telemetry, and Windows diagnostics demonstrate its practicality
(Erlingsson et al., 2014; Ding et al., 2017).

Differentially private federated learning merges these ideas and has gained substantial interest (Agar-
wal et al., 2018; Shi et al., 2022; Ma et al., 2022; Liu et al., 2023a). As emphasized by Lowy &
Razaviyayn (2023), privacy guarantees vary by trust assumptions; LDP corresponds to the most
conservative regime in which individuals trust neither server nor silo. Recent work studies LDP in
distributed settings for generalized linear models, mean estimation, and related tasks (Zhao et al.,
2020; Shen et al., 2023; Jiang et al., 2022), but primarily from an estimation perspective. For quan-
tiles, existing LDP methods are either single-machine procedures that ignore client heterogeneity
(Huang et al., 2021; Liu et al., 2023b) or provide point estimators without general inferential guar-
antees.

In contrast, our focus is on quantile inference under LDP in a federated, heterogeneous environment.
Concretely, we consider a setting in which many clients, each holding local data drawn from poten-
tially different distributions and targeting possibly different quantile levels, collaborate to estimate
and infer a global quantile while ensuring that every message they send is locally private.

We illustrate with a simple example. Consider collaboratively estimating the national median annual
income using state-level data from the United States, where each state is treated as a client. First,
income distributions typically vary across states (see Figure 1(i)). Second, privacy preferences can
differ across states due to cultural norms and development levels (Milberg et al., 2000; Bellman et al.,
2004). Figure 1(ii) shows how the released information can vary under different privacy budgets.
Due to such heterogeneity, a direct application of the divide-and-conquer method, which combines
local LDP estimators from Liu et al. (2023b) designed for a single client, can yield estimation with
significant bias and invalid inference.
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Figure 1: Illustration of client heterogeneity. Income data source: U.S. Census Bureau (https:
//data.census.gov/table/ACSST5Y2023.S1901?g=010XX00US0400000). Panel
(i) shows median annual income by state. Panel (ii) shows three income disclosure schemes un-
der different privacy budgets: (a) each individual release true income; (b) each individual release an
income interval; and (c) withholding release.

The key question is: Can we design a federated procedure for quantile estimation under
LDP that admits valid confidence intervals and hypothesis tests, while accommodating client
heterogeneity and non-smooth loss functions?
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Answering this question is challenging for at least three reasons. First, inference requires not only
a limiting distribution for the estimator, but also a consistent estimator of its asymptotic variance.
For SGD-based procedures, such variance estimators typically involve the Hessian of a smooth loss
(Chen et al., 2020); yet quantile losses are non-smooth and heterogeneous across clients. Second,
in the LDP regime, only privatized gradients are observed, so naive variance estimation may con-
sume additional privacy budget or demand data-splitting. Third, federated quantile algorithms must
remain robust to heterogeneous loss functions and client-level privacy parameters, which further
complicates both optimization and asymptotic analysis.

In this paper, our contributions can be summarized as follows:

1. We propose a novel federated learning algorithm for quantile inference under LDP. Our
method accommodates client-level heterogeneity in quantile targets, privacy budgets, and
data distributions, thereby enhancing the applicability of quantile inference in realistic fed-
erated environments.

2. We first design an LDP mechanism that effectively reduces the federated quantile estima-
tion problem to an equivalent non-private setting. Exploiting this reduction, we establish
the estimator’s asymptotic normality and derive a functional central limit theorem without
average-smoothness condition on the loss function. To the best of our knowledge, this con-
stitutes the first weak-convergence result for local SGD when the loss does not satisfy the
usual average-smoothness condition (Li et al., 2022; Xie et al., 2024; Zhu et al., 2024).

3. Building on these non-private asymptotic results, we develop an LDP inference procedure
for federated quantile estimation. By employing a self-normalization technique, we avoid
direct estimation of the asymptotic variance, instead constructing confidence intervals that
automatically eliminate the unknown variance term. These procedures can be also con-
ducted in non-DP case.

The remainder of the paper is organized as follows. Section 2 introduces the formal problem setup,
background, and notation, and presents our LDP mechanism and federated quantile estimator. Sec-
tion 3 develops the asymptotic theory, including weak convergence and self-normalized inference.
Section 4 reports numerical experiments and a real-data application illustrating the practical per-
formance and robustness of our method. Notations can refer to Table S.1 in Appendix A.1. All
technical proofs and additional simulation results are deferred to the Appendices B and C.

2 METHODOLOGIES

First, we recall the definitions of central and local differential privacy. We then describe our problem
setting and algorithmic details.

Definition 1 (Central Differential Privacy, CDP (Dwork et al., 2006)). A randomized algorithm A
operating on a dataset S is (ϵ, δ)-differentially private if, for any pair of datasets S and S′ differing
in a single record and for any measurable set E,

Pr
(
A(S) ∈ E

)
≤ eϵ Pr

(
A(S′) ∈ E

)
+ δ.

When δ = 0, A is called ϵ-DP.

Definition 2 (Local Differential Privacy, LDP (Joseph et al., 2019)). A family of randomized map-
pings R : X → Y is (ϵ, δ)-locally differentially private if, for every pair of inputs x, x′ ∈ X and
every measurable subset E ⊆ Y ,

Pr
(
R(x) ∈ E

)
≤ eϵ Pr

(
R(x′) ∈ E

)
+ δ.

Under CDP, a trusted curator collects raw data and adds noise before release, simplifying algorithm
design and typically incurring only an O(1/n) loss in accuracy (Cai et al., 2021), so the privatized
estimator θ̂CDP often satisfies θ̂CDP − θ̂nonDP = Op(n

−1), shares the same
√
n-scaled asymptotic

law as the non-private estimator, and permits recovery of its asymptotic variance at modest additional
privacy cost. In contrast, under the non-adaptive LDP model (Cheu et al., 2019, Definitions 2.3
and 2.6), each user i with private value Xi applies a fixed randomized mechanism Ri satisfying
(ϵ, δ)-DP and reports only the perturbed output, so inference must rely solely on locally privatized
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data; the typical error rate deteriorates to θ̂LDP − θ̂nonDP = Op(n
−1/2), which alters the limiting

distribution, inflates the asymptotic variance, and generally makes consistent variance estimation
from data collected solely for point estimation infeasible.

We consider a federated learning framework involving K clients, each independently holding a local
dataset i.i.d. drawn from an unknown distribution Pk with cumulative distribution function (CDF)
Fk and density function fk (Li et al., 2022). For pk weight assigned to client k, global quantile
level τ ∈ (0, 1), the goal is to collaboratively estimate the global quantile Q⋆, which satisfies that∑K

k=1 pkFk(Q
⋆) = τ . Our objective Q⋆ can be obtained by solving the following optimization

problem associated with the global loss, which is defined as a weighted sum of the local losses:

Q⋆ = argmin
Q∈Θ

L(Q)
def
= argmin

Q∈Θ

K∑
k=1

pkLτk(Q)
def
= argmin

Q∈Θ

K∑
k=1

pkExk∼Pk
{ℓτk(xk, Q)}. (2.1)

Here, the function ℓτk(x,Q) represents the check loss function defined as:

ℓτk(x,Q) = (x−Q) {τk − I(x < Q)} , (2.2)

where I(·) is the indicator function. Besides, xk is the sample generated from Pk, and τk ∈ (0, 1) is
the local quantile level satisfying

∑K
k=1 pkτk = τ . Therefore, our framework also covers federated

quantile loss optimization problems in which each local loss corresponds to a level τk, and the global
objective level τ aggregates these local target levels through

∑K
k=1 pkτk. Note that we require only

the knowledge of τ , rather than each individual τk. In the following, we denote Fk(Q
⋆) = Qk, and

considers the parameter space Θ is bounded; see Gu & Chen (2023).

As noted in the introduction, to improve communication efficiency we consider a local-SGD–based
estimator. Let I = {t0, t1, . . . , tT } for t0 < t1 < · · · < tT denote the ordered set of communication
iterations. At each t ∈ I, the global server receives the local updates and broadcasts the aggregated
value to all K clients; otherwise, the updates are performed locally on each client. Specifically, for
k = 1, . . . ,K,

qkt+1 =

{
qkt − ηt

{
I(xk

t < qkt )− τk
}
, t /∈ I,∑K

m=1 pm [qmt − ηt {I(xm
t < qmt )− τm}] , t ∈ I.

Here ηt is the predetermined learning rate, and xk
t is an observation from the local dataset held by

client k at iteration t. The final estimator is of Polyak–Ruppert type, obtained by averaging the
aggregated historical iterates:

Q̃T =
1

T

T∑
m=1

K∑
k=1

pkq
k
tm .

The communication and statistical efficiency are determined by the interval length Em := tm−tm−1

for m ∈ N+. If Em = 1, the local clients must communicate with the global server at every iteration.
In this scenario, the approach reduces to parallel SGD, which, as noted by Li et al. (2022), may
achieve the Cramér-Rao lower bound and thus serve as an efficient estimator for certain smooth loss
functions. Conversely, if communication is performed only once at the final iteration (i.e., |I| = 1),
then the estimator degenerates to a divide-and-conquer (DC) estimator. In this case, minimizing
the loss function (2.1) becomes a distributed learning problem. However, as pointed out by Gu
& Chen (2023), the divide-and-conquer estimator may still be statistically inefficient for certain
weight choices. Therefore, a careful balance must be struck between communication and statistical
efficiency. For a general positive interval Em > 0, the local SGD method allows us to find an
appropriate choice of Em that can ensure an optimal trade-off between these efficiencies.

On the other hand, the data collected from each client may be subject to privacy protection policies,
particularly in surveys involving sensitive information such as income or health status. For the
local quantile loss function (2.2), we observe that the structure of its gradient resembles a binary
response. This motivates us to incorporate an LDP mechanism based on randomized response and
permutation, following the framework of Liu et al. (2023b), with a truthful response rate rk ∈ (0, 1].
Specifically, the mechanism allows each local client to either return a true gradient with probability
rk or a synthetic Bernoulli random variable with probability 1−rk. This iterative mechanism ensures
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ϵk-LDP, where the privacy parameter is given by ϵk = log(1+rk)−log(1−rk), as established in Liu
et al. (2023b). Combined with local SGD, the complete procedure is summarized in Algorithm 1,
and we denote the resulting estimator as Q̂T . By direct composition properties, Algorithm enjoys
(max1≤k≤K ϵk, 0)-LDP guarantees.

Algorithm 1: Federated quantile estimation with local SGD under LDP
Input: step sizes {ηm}Tm=0, target quantile τ ∈ (0, 1), truthful response rates {rk}Kk=1,
communication set I = {t0, t1, . . . , tT }.
Initialization: set qk0 = q0 ∼ N (0, 1) for all 1 ≤ k ≤ K, let Q̂0 ← 0.

for m = 1 to T do
for k = 1 to K (distributedly) do

for t = tm−1 + 1 to tm do ▷ Local updates
uk
t ∼ Bernoulli(rk), vkt ∼ Bernoulli(0.5)

skt = I(xk
t > qkt−1)I(uk

t = 1) + vkt I(uk
t = 0)

qkt ← qkt−1 +
1− rk + 2τrk

2rk
ηm−1I(skt = 1)− 1 + rk − 2τrk

2rk
ηm−1I(skt = 0)

end for
end for
q̄tm ←

∑K
k=1 pkq

k
tm ; qktm ← q̄tm for all 1 ≤ k ≤ K. ▷ Aggregation and synchronization.

Q̂m ← {(m− 1)Q̂m−1 + q̄tm}/m.
end for

Return: Q̂T .

In Algorithm 1, each iteration integrates global information (the global quantile τ ) with client-
specific data xk

t and correpsonding privacy budget (rk), thereby correcting bias arising from the
aggregation of heterogeneous local LDP mechanisms and loss functions.
Theorem 2.1. Denote τ̃k = rkτ+(1−rk)/2. For a privacy budget ϵk = log(1+rk)− log(1−rk),
there exists a dataset consisting of i.i.d. samples drawn from some distribution P̃k, 1 ≤ k ≤ K,
such that solving the federated loss (2.1) with ϵk-LDP using data drawn from Pk for client k, is
equivalent to solving the following non-private problem:

Q⋆ = argmin
Q

L(Q) = argmin
Q

L̃(Q)
def
= argmin

Q

K∑
k=1

pk
rk

Exk∼P̃k
{ℓτ̃k(xk, Q)} . (2.3)

By Theorem 2.1, federated quantile estimation via (2.1) with LDP data drawn from {Pk}Kk=1 can be
reformulated as federated quantile estimation with non-DP data drawn from modified distributions
{P̃k}Kk=1 and shifted quantile levels, as in (2.3). Consequently, the target value Q⋆ can be treated
as the minimizer of L̃(Q), a non-DP objective. The main challenge reduces to analyzing the statis-
tical properties of the resulting non-DP estimator (under the ideal data from {P̃k}Kk=1), particularly
in the presence of the non-smooth quantile loss function. Once such properties are established,
the LDP inference theory can be translated directly from the relation between ({Pk}Kk=1, τ) and
({P̃k}Kk=1, {τ̃k}Kk=1).

3 ASYMPTOTIC ANALYSIS

In this section, we focus on the asymptotic analysis of the proposed LDP estimator and the prac-
tical construction of confidence intervals. Due to the space limit, the complete assumptions and
corresponding comments are provided in Appendix A.2.
Theorem 3.1. Under Assumptions S.1-S.3, as T → ∞, the proposed LDP federated estimator
enjoys

√
tT (Q̂T −Q⋆)

d−→ N

0, ν

∑K
k=1 p

2
k

{
r−2
k − (2Qk − 1)2

}
4
{∑K

k=1 pkfk(Q
⋆)
}2

 .
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Theorem 3.1 establishes the asymptotic normality of the estimator Q̂T . It follows that the conver-
gence rate of Q̂T is of order (min1≤k≤K rk tT )

−1/2. Recall that the proposed algorithm satisfies
(max1≤k≤K log{(1+rk)/(1−rk)}, 0)-LDP. which implies that the overall rate is determined by the
client with the largest privacy budget. Smaller values of rk correspond to stronger privacy protection
but inevitably yield poorer estimation accuracy. If there exists any rk = 0, the variance diverges
and the estimator becomes inconsistent. In contrast, if all rk = 1, the result recovers the classical
non-DP asymptotic normality. This highlights the fundamental privacy–accuracy trade-off inherent
in the proposed estimator.

Theorem 3.1 allows for the theoretical construction of a confidence interval for Q⋆. However, the
construction involves unknown quantities, such as the individual quantiles Qk and the density val-
ues fk(Q⋆). Even in cases where Qk is known, the estimation of fk(Q⋆) remains challenging. In
particular, it is difficult to recover these density values using only the perturbed gradients available
from Algorithm 1. Moreover, in SGD-based methods, consistent variance estimation typically relies
on the Hessian matrix, which is well-defined only for smooth loss functions, as previously dis-
cussed. Therefore, although Theorem 3.1 provides a theoretically valid basis for confidence interval
construction, it is not practically implementable due to these limitations.

To address this issue, we establish a functional central limit theorem (FCLT) in Theorem 3.2, which
serves as the foundation for constructing pivotal statistics via self-normalization (Liu et al., 2023b).
This allows us to conduct inference without estimating nuisance parameters, thereby providing a
direct motivation for strengthening the asymptotic result.
Theorem 3.2. Under Assumptions S.1–S.3, as T →∞, we have

QT (s) :=

√
tT
T

h(s,T )∑
m=1

(q̄tm −Q⋆)
d−→

√
ν
∑K

k=1 p
2
k

{
r−2
k − (2Qk − 1)2

}
2
∑K

k=1 pkfk(Q
⋆)

B(s),

where tT =
∑T−1

m=0 Em, q̄tm =
∑K

k=1 pkq
k
tm , B(·) is a standard Brownian motion on [0, 1], and

h(s, T ) = max

{
n ∈ Z>0

∣∣∣∣∣ s
T∑

m=1

1

Em
≥

n∑
m=1

1

Em

}
, for s ∈ (0, 1].

Theorem 3.2 establishes a FCLT for QT (s) over s ∈ (0, 1], showing that it converges weakly in the
ℓ∞[0, 1] (the space of bounded real-valued functions) to a Brownian motion, which is our another
major theoretical contribution. Note that the sample quantile loss doesn’t satisfy the common L-
average smooth conditions for weakly convergence result, such in (Li et al., 2022; Xie et al., 2024;
Zhu et al., 2024), leading to extra challenge in deriving the almost sure and L2 convergence rates of
q̄tm , which are essential for handling the asymptotically negligible terms. Theorem 3.1 arises as a
special case of Theorem 3.2 when s = 1. Building on Theorem 3.2, we proceed to construct a self-
normalized test statistic and derive its asymptotic pivotal distribution via the continuous mapping
theorem.

Define r0 = 0 and, for m ≥ 1, rm = (
∑m

i=1 1/Ei)
(∑T

i=1 1/Ei

)−1

, which ensures that

QT (rm) =

√
tT
T

m∑
i=1

(q̄ti −Q⋆) , and in particular, QT (1) =

√
tT
T

T∑
i=1

(q̄ti −Q⋆) .

Following the arguments in (Shao, 2015), once a functional central limit theorem such as Theo-
rem 3.2 is established, one can construct a self-normalized statistic that asymptotically enjoys a
pivotal distribution. Specifically, define

VT =

T∑
m=1

(rm − rm−1)
{
QT (rm)− m

T
QT (1)

}2

. (3.1)

Corollary 3.1. Suppose Assumptions S.1-S.3 hold and g(rm) ≍ m/T for some continuous function
g on [0, 1]. Then, as T →∞,

QT (1)√
VT

d−→ B(1)√∫ 1

0
{B(r)− g(r)B(1)}2 dr

.
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Corollary 3.1 presents the asymptotic distribution of the self-normalized statistic QT (1)/VT , which
is distribution-free. As a result, there is no need to allocate additional DP budget to estimate nuisance
parameters when constructing confidence intervals.

The selection of the self-normalizer is not unique, and an appropriate norm of the Gaussian pro-
cess B(r) − g(r)B(1) can yield similar results to those in Corollary 3.1. For example, using the
supremum norm and the L1 norm, one can define alternative self-normalizers as follows:

V ′
T = sup

1≤m≤T

∣∣∣QT (rm)− m

T
QT (1)

∣∣∣ , V ′′
T =

T∑
m=1

(rm − rm−1)
∣∣∣QT (rm)− m

T
QT (1)

∣∣∣ ,
which are related to the processes sup0≤r≤1 |B(r) − g(r)B(1)| and

∫ 1

0
|B(r) − g(r)B(1)| dr, re-

spectively. However, the self-normalizer defined in equation (3.1) enjoys greater computational
efficiency, as the L2 norm can be computed in an online manner, as described in Algorithm 2. Let
V̂T denote the estimator of the self-normalizer in (3.1), and let vα/2,g be the (1 − α/2) quantile of

the random variable B(1)/
[∫ 1

0
{B(r)− g(r)B1(1)}2 dr

]1/2
. The following corollary ensures the

asymptotic validity of the constructed LDP confidence interval.

The following corollary ensures the asymptotic validity of the constructed LDP confidence interval.

Corollary 3.2. Suppose the same conditions in Theorem 3.2 hold, as T →∞, one has that

P
(
Q̂T − vα

2 ,g

√
V̂T ≤ Q⋆ ≤ Q̂T + vα

2 ,g

√
V̂T
)
→ 1− α

Algorithm 2: Online Inference
Input: step sizes {ηm}Tm=1, target quantile τ ∈ (0, 1), truthful response rates {rk}Kk=1,
communication set I = {t0, t1, . . . , tT }.
Initialization: set qk0 ∼ N (0, 1) for all k, let Va

0 ← 0, Vb
0 ← 0, Vs

0 ← 0,Vp
0 ← 0, and Q0 ← 0.

for m = 1 to T do
Obtain Q̂m from Algorithm 1.
Va
m ← Va

m−1 +m2Q2
m/Em, Vb

m ← Vb
m−1 +m2Qm/Em, ▷ Em = tm − tm−1

Vs
m ← Vs

m−1 + 1/Em Vp
m ← V

p
m−1 +m2/Em.

V̂m ← 1
m2Vs

m

(
Va
m − 2Vb

mQm + Vp
mQ2

m

)
. ▷ Online inference.

end for

Return: Confidence interval
[
Q̂T − vα

2 ,g

√
V̂T , Q̂T + vα

2 ,g

√
V̂T
]

.

4 EXPERIMENTS

4.1 SIMULATION SETUP

We first evaluate our proposed method through extensive simulation studies using synthetic data. In
all experiments, we fixed pk = 1/K for 1 ≤ k ≤ K, the number of clients is fixed at K = 10. The
quantile levels examined range from 0.3 to 0.8, and the truthful response rates vary between 0.25
and 0.9. We focus on the following four scenarios of heterogeneity:

• heterogeneous quantile levels: We investigate two distinct scenarios: (1) Case τlow: lower quan-
tile levels, where each client is assigned a unique quantile level τk ranging uniformly from 0.3 to
0.5; and (2) Case τhigh: higher quantile levels, where τk ranges uniformly from 0.5 to 0.8.

• heterogeneous response rates. Each client has a unique truthful response rate rk, ranging uni-
formly from 0.25 to 0.9.

• heterogeneous locations (Hete L). Data for each client k are independently generated from
N (µk, 1) or C(µk, 1), where µk ∼ N (0, 1).
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• heterogeneous distribution families (Hete D). Data are generated independently across ten
clients, with three drawing from N (0, 1), three from the uniform distribution U(−1, 1), and four
from a standard Cauchy distribution C(0, 1).

We set the step size γm as: γm = 20r̄/(m0.51 + 100), with γm = Emηm and r̄ = K−1
∑K

k=1 rk.
Following Li et al. (2022), we implement a warm-up phase, setting the communication interval
Em = 1 for the first 5% of iterations. After the warm-up period, we redefine the interval sequence
{Em} based on a new sequence {E′

m}, specifically: Em = E′
m−0.05·T . We examine three different

interval strategies for E′
m: (1) C1: E′

m ≡ 1 (equivalent to parallel SGD), (2) C5: E′
m ≡ 5, and (3)

Log: E′
m = ⌈log2(m + 1)⌉. The initial parameter estimates are set to qk0 = q0 ∼ N (0, 1) for all

clients k. All experimental settings are replicated R = 1, 000 times. The simulations are conducted
on computational resources comprising 36 Intel Xeon Gold 6271 CPUs, with a total of 128GB RAM
and 500GB storage.

4.2 SIMULATION RESULTS

We first illustrate the performance of our proposed method by presenting sample iteration trajec-
tories for estimation and inference. Specifically, we randomly select one simulation run and plot
the resulting estimates and corresponding confidence intervals against tT (Figure S.1). The results
demonstrate that our approach accurately captures the true quantile value and provides reliable in-
ference. Subsequently, we fix tT at 10, 000 and 50, 000 and evaluate the finite sample performance
under different settings. Let Q̂(r)

T denote the quantile estimator and CI(r) represent the correspond-
ing 95% confidence interval obtained from Algorithm 2 in the r-th simulation. We consider two
metrics: the mean absolute error (MAE), defined as R−1

∑R
r=1 |Q̂

(r)
T −Q∗|, and the empirical cov-

erage probability (ECP), defined as R−1
∑R

r=1 I(Q∗ ∈ CI(r)). For comparison, we also consider
two alternative methods: (1) the SGD with DP updates (Song et al., 2013) (DP-SGD), which adds
noise directly to the gradients instead of introducing DP through randomized response. To align with
the original paper’s setup, we focus on the case with C = 1. In this regime, the gradient-descent
update in Algorithm 1 becomes

qkt ← qkt−1 + ηt−1

{
τkI(xk

t > qkt−1)− (1− τk)I(xk
t < qkt−1) + Zk

t

}
,

where Zk
t is drawn from a Laplace distribution. A simple calculation shows that Zk

t has mean zero
and scale parameter 1/ log {(1 + rk)/(1− rk)}. (2) the divide-and-conquer (DC) method, which
corresponds to the special case Em = tT . Here we use step size ηt = 2r̄/(t0.51+100) (Goyal et al.,
2017). (3) the single-machine LDP quantile inference method (Single) (Liu et al., 2023b), where
all data hold on a single device and LDP-SGD is performed without any federated communication.
The numerical results for all methods under the normal distribution setting are reported in Tables
1 and 2, while the corresponding results under the Cauchy distribution setting are summarized in
Tables S.2 and S.3.

From the results, we observe that our method consistently achieves ECP close to or exceeding the
nominal 95% level across all scenarios, and that the C1 strategy (parallel SGD) performs essen-
tially comparably to the Single baseline. As either the total sample size tT or the truthful response
rate increases, the MAE decreases, which aligns with our theoretical results. Comparing the three
interval strategies, we find that the C1 strategy yields the smallest MAE, as it has the highest com-
munication frequency. Comparing with the two competing methods, we find that the DC approach
results in the largest errors. Notably, in certain heterogeneous cases, such as Hete L with τ = 0.8,
the DC estimator exhibits significant bias and an ECP far below the nominal 95% level. In contrast,
our proposed estimators successfully achieve approximately 95% empirical coverage in these cases.
Moreover, while DP-SGD attains empirical coverage probabilities close to or even exceeding 95%
in most settings, its MAE remain uniformly larger than those of our method.

To further illustrate the efficiency–accuracy trade-off of our method, we conduct a quantitative anal-
ysis in which we record the wall-clock time; the results are shown in Figure S.2 in Appendix C.1.
We also consider scenarios with a fixed number of communication rounds T, with the corresponding
results summarized in Tables S.4 and S.5 in Appendix C.1. We observe that our proposed method
continues to provide valid inference. Additionally, under fixed communication rounds, the Log
strategy generally achieves the best performance, yielding the smallest MAE.
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Quantile (τ ) Rate (r) C1 C5 Log DP-SGD (C1) DC Single

Hete L — tT = 10000
0.3 0.25 0.958(0.0184) 0.981(0.0311) 0.990(0.0452) 0.942(0.0260) 0.985(0.3066) 0.950(0.0222)
0.3 hetero 0.949(0.0096) 0.982(0.0150) 0.993(0.0205) 0.947(0.0142) 0.898(0.1302) 0.954(0.0095)
0.3 0.9 1.000(0.0029) 1.000(0.0066) 1.000(0.0100) 0.981(0.0049) 0.215(0.1273) 0.962(0.0055)
0.5 0.25 0.950(0.0165) 0.984(0.0315) 0.988(0.0465) 0.953(0.0224) 1.000(0.2822) 0.930(0.0192)
0.5 hetero 0.952(0.0085) 0.991(0.0155) 0.998(0.0221) 0.955(0.0119) 1.000(0.0525) 0.952(0.0083)
0.5 0.9 0.996(0.0025) 0.999(0.0078) 1.000(0.0120) 0.984(0.0041) 1.000(0.0186) 0.952(0.0051)
0.8 0.25 0.966(0.0237) 0.995(0.0512) 0.992(0.0791) 0.957(0.0328) 0.892(0.6152) 0.942(0.0277)
0.8 hetero 0.962(0.0122) 0.995(0.0227) 0.996(0.0347) 0.943(0.0186) 0.709(0.2684) 0.958(0.0114)
0.8 0.9 0.990(0.0042) 1.000(0.0116) 1.000(0.0185) 0.968(0.0065) 0.049(0.2098) 0.966(0.0067)

Hete L — tT = 50000
0.3 0.25 0.937(0.0089) 0.981(0.0111) 0.990(0.0165) 0.916(0.0135) 0.949(0.1328) 0.948(0.0095)
0.3 hetero 0.911(0.0056) 0.981(0.0056) 0.997(0.0080) 0.885(0.0083) 0.093(0.1282) 0.958(0.0038)
0.3 0.9 0.977(0.0034) 1.000(0.0019) 1.000(0.0030) 0.908(0.0041) 0.000(0.1290) 0.938(0.0024)
0.5 0.25 0.958(0.0069) 0.988(0.0098) 0.995(0.0147) 0.949(0.0099) 1.000(0.0609) 0.940(0.0082)
0.5 hetero 0.964(0.0035) 0.994(0.0048) 0.996(0.0069) 0.957(0.0052) 0.997(0.0145) 0.938(0.0034)
0.5 0.9 1.000(0.0010) 1.000(0.0016) 1.000(0.0026) 0.993(0.0018) 0.979(0.0143) 0.950(0.0022)
0.8 0.25 0.956(0.0102) 0.991(0.0144) 0.998(0.0226) 0.931(0.0160) 0.799(0.2829) 0.954(0.0114)
0.8 hetero 0.950(0.0055) 0.992(0.0072) 0.997(0.0112) 0.923(0.0092) 0.014(0.2034) 0.952(0.0046)
0.8 0.9 1.000(0.0013) 1.000(0.0053) 0.999(0.0082) 0.985(0.0026) 0.000(0.1929) 0.950(0.0027)

Hete D — tT = 10000
0.5 0.25 0.949(0.0132) 0.985(0.0243) 0.986(0.0354) 0.953(0.0183) 0.904(0.2496) 0.936(0.0139)
0.5 hetero 0.966(0.0069) 0.990(0.0117) 0.989(0.0172) 0.955(0.0098) 0.999(0.0488) 0.958(0.0057)
0.5 0.9 1.000(0.0023) 1.000(0.0074) 1.000(0.0117) 0.991(0.0035) 1.000(0.0163) 0.946(0.0037)

Hete D — tT = 50000
0.5 0.25 0.958(0.0057) 0.980(0.0082) 0.993(0.0127) 0.943(0.0081) 0.981(0.0589) 0.940(0.0058)
0.5 hetero 0.966(0.0030) 0.988(0.0046) 0.998(0.0073) 0.950(0.0041) 1.000(0.0111) 0.958(0.0025)
0.5 0.9 0.999(0.0008) 1.000(0.0029) 1.000(0.0052) 0.990(0.0014) 1.000(0.0037) 0.950(0.0016)

Table 1: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
heterogeneous distributions for different tT . The number of clients K is fixed at 10. In Hete L,
data for each client k are independently generated from N (µk, 1), where µk ∼ N (0, 1). In Hete D,
data are generated from N (0, 1), U(−1, 1), and C(0, 1) across different clients. “hetero” indicates
client-specific truthful response rates rk range uniformly from [0.25, 0.9].

Quantile (τ ) Rate (r) C1 C5 Log DP-SGD (C1) DC Single

tT = 10000
0.5 0.25 0.949(0.0133) 0.967(0.0244) 0.992(0.0360) 0.949(0.0191) 0.939(0.2503) 0.934(0.0141)
0.5 hetero 0.963(0.0071) 0.989(0.0112) 0.997(0.0161) 0.955(0.0100) 1.000(0.0497) 0.956(0.0059)
0.5 0.9 0.995(0.0023) 1.000(0.0054) 1.000(0.0082) 0.980(0.0036) 1.000(0.0158) 0.950(0.0039)
τlow 0.25 0.947(0.0136) 0.982(0.0253) 0.990(0.0369) 0.940(0.0200) 0.969(0.2616) 0.950(0.0141)
τlow hetero 0.962(0.0072) 0.993(0.0113) 0.997(0.0162) 0.949(0.0105) 0.999(0.0530) 0.946(0.0063)
τlow 0.9 0.999(0.0020) 1.000(0.0055) 1.000(0.0083) 0.985(0.0036) 1.000(0.0162) 0.942(0.0040)
τhigh 0.25 0.939(0.0145) 0.987(0.0268) 0.986(0.0399) 0.952(0.0210) 0.984(0.2771) 0.930(0.0152)
τhigh hetero 0.968(0.0076) 0.987(0.0126) 0.999(0.0182) 0.956(0.0111) 1.000(0.0516) 0.972(0.0061)
τhigh 0.9 0.996(0.0023) 1.000(0.0067) 1.000(0.0102) 0.980(0.0038) 1.000(0.0172) 0.962(0.0039)

tT = 50000
0.5 0.25 0.956(0.0056) 0.982(0.0081) 0.996(0.0122) 0.949(0.0081) 0.988(0.0571) 0.952(0.0058)
0.5 hetero 0.960(0.0032) 0.979(0.0044) 0.992(0.0064) 0.950(0.0046) 1.000(0.0115) 0.960(0.0025)
0.5 0.9 1.000(0.0018) 0.988(0.0027) 0.990(0.0036) 0.983(0.0021) 1.000(0.0038) 0.950(0.0016)
τlow 0.25 0.957(0.0061) 0.981(0.0083) 0.994(0.0125) 0.944(0.0091) 0.993(0.0594) 0.944(0.0059)
τlow hetero 0.953(0.0036) 0.981(0.0046) 0.990(0.0066) 0.934(0.0054) 0.999(0.0121) 0.962(0.0026)
τlow 0.9 1.000(0.0019) 1.000(0.0026) 0.989(0.0038) 0.988(0.0024) 1.000(0.0057) 0.958(0.0017)
τhigh 0.25 0.968(0.0059) 0.986(0.0086) 0.997(0.0133) 0.946(0.0089) 0.999(0.0620) 0.944(0.0061)
τhigh hetero 0.953(0.0032) 0.990(0.0045) 0.998(0.0065) 0.952(0.0047) 0.993(0.0154) 0.948(0.0028)
τhigh 0.9 0.998(0.0010) 0.999(0.0023) 1.000(0.0034) 0.977(0.0016) 0.938(0.0132) 0.958(0.0017)

Table 2: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
varying quantile levels and response rates, with different tT and fixed K = 10 clients and data
generated fromN (0, 1). In Case τlow, each client uses a unique quantile level τk ranging uniformly
from [0.3, 0.5]; in Case τhigh, τk is ranging from [0.5, 0.8]. “hetero” indicates client-specific truthful
response rates rk range uniformly from [0.25, 0.9].

Finally, to further strengthen our simulation study, we conducted a set of additional experiments,
including: (1) consider partial client participation to mimic more realistic federated environments;
(2) sensitivity analyses on the truthful response rate and step-size schedule to assess the robustness
of the method; (3) a comparison between the resulting confidence intervals and oracle normal-based
intervals to illustrate the conservativeness of the self-normalized inference procedure; and (4) an
initial exploration of extending our method to a fully decentralized federated learning setting; see
Appendix C for details.
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4.3 REAL DATA

In this subsection, we empirically evaluate the effectiveness of our proposed method using a rep-
resentative real-world dataset widely employed in privacy research: Government Salary Dataset
(Plečko et al., 2024). This dataset is sourced from the 2018 American Community Survey con-
ducted by the U.S. Census Bureau and contains over 200,000 records, with annual salary (in USD)
as the response variable. Since annual salary represents sensitive financial information (Gillenwater
et al., 2021), we treat it as requiring privacy protection. To incorporate the dataset’s inherent ge-
ographic structure, we partition the sample according to the feature “economic region.” The three
smallest regions are merged into a single “Others” category, yielding seven regions in total, each
regarded as one client. Because region-level sample sizes vary, we apply oversampling to balance
the data, resulting in tT = 53, 960 observations per client. All other hyperparameters follow the
settings in Section 4.1. For analysis, we apply a log transformation to the response variable and
subsequently back-transform it.

We target quantile levels τk ≡ τ ∈ {0.3, 0.5, 0.8} and consider response rates rk ∈
{0.6, hetero, 0.9}, where “hetero” indicates client-specific truthful response rates rk range uniformly
from 0.6 to 0.9. For reference, we also compute the full-sample quantiles without LDP. The resulting
estimators and confidence-interval lengths are summarized in Table 3. As shown, higher response
rates r and more communication rounds generally produce shorter confidence intervals, consistent
with our simulation findings. In most cases, the empirical quantiles fall within our reported intervals,
highlighting the practical utility of our method for real data.

Quantile (τ ) Rate (r) C1 C5 Log Empirical

0.3 0.6 33367 (1742) 33184 (6697) 33030 (12093)
0.3 hetero 33418 (1424) 33229 (5291) 33140 (9788) 34000
0.3 0.9 33547 (1548) 33403 (4443) 33239 (7828)

0.5 0.6 48454 (2255) 48212 (6315) 47951 (11361)
0.5 hetero 48462 (1435) 48290 (4973) 48091 (9025) 50000
0.5 0.9 48610 (1454) 48494 (3851) 48311 (6863)

0.8 0.6 78586 (2066) 78168 (6646) 77995 (13144)
0.8 hetero 78390 (1291) 78054 (5862) 77722 (11101) 80000
0.8 0.9 78657 (1138) 78300 (4677) 78084 (8928)

Table 3: Estimation results (interval lengths) on the real dataset across varying quantile levels and
response rates. “Empirical” denotes the full-sample quantile estimator without LDP. “hetero” indi-
cates client-specific truthful response rates rk range uniformly from 0.6 to 0.9.

5 CONCLUDING REMARK

We propose a federated-learning algorithm for quantile inference under LDP that flexibly accom-
modates client-level heterogeneity in quantile targets, privacy budgets, and data distributions. In
addition, one innovation that should be emphasized is that our developed theoretical results of local
SGD quantile estimator. We first design an LDP mechanism that can transform the LDP federated
quantile estimation into the non-DP case, and then derive the asymptotic normality and functional
central limit theorem of the proposed estimator under non-DP cases. It is first weak-convergence
result for local SGD without the usual average-smoothness assumption in existing literature. Build-
ing on these non-private asymptotic results, we develop a self-normalized inference procedure that
constructs valid confidence intervals under LDP without requiring direct estimation of variance.

Despite these advances, our method has several limitations. First, it relies on additional regularity
assumptions to handle arbitrary client-level data heterogeneity. Second, as noted in (Shao, 2015),
self-normalization yields heavier-tailed limit distributions than the Gaussian, which can produce
conservative confidence intervals or reduced power in hypothesis testing. In addition, theoretically
understanding how asynchronous or partial client participation affects estimation and inference is
also an important direction for future work. Finally, our framework depends on a central server for
aggregation and synchronization, which may not be available in fully decentralized environments.
Addressing these challenges and extending the algorithm to decentralized settings remain important
directions for future research.
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A NOTATIONS AND COMPLETE ASSUMPTIONS

A.1 NOTATIONS

Notations Meanings

L Global Loss function
τ Global quantile
Lτk Local loss function for client k with local quantile τk
pk the weight assigned to client k
Pk Distribution for client k
Fk CDF for client k
fk Density function for client k
I Communication iteration sets
tm Communication iteration time
Em Interval length
Q Variable in loss function
Q⋆ True or target value
Qk Value at Fk(Q

∗)
qkt+1 Iterations at step t for client k
rk Response rate for for client k
ϵk Privacy budget for client k
Q̂T LDP federated quantile estimator
V̂T LDP federated quantile self-normalizer
B(s) Brownian motion
vα/2,g (1− α/2) quantile of self-normalization distribution

Table S.1: Notations table.

A.2 COMPLETE ASSUMPTIONS

We introduce the following necessary assumptions.

Assumption S.1. For some constant Cf > 0, fk(·), 1 ≤ k ≤ K, the density function for client k, is
uniformly bounded by Cf , and min1≤k≤K fk(Q

⋆) > 0.

Assumption S.2. Define the effective step γm = ηmEm, which is non-increasing in m and satisfies
that

∑∞
m=1 γ

2
m <∞,

∑∞
m=1 γm =∞, and (γm − γm+1)/γm = O(γm).

Assumption S.3. The sequence {Em}m≥1 satisfies that

(a) {Em}m≥1 is either uniformly bounded or non-decreasing.
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(b) There exist some δ > 0 and ν ≥ 1 such that

lim sup
T→∞

1

T 2

(
T−1∑
m=0

E1+δ
m

)(
T−1∑
m=0

E−1−δ
m

)
<∞, lim

T→∞

1

T 2

(
T−1∑
m=0

Em

)(
T−1∑
m=0

E−1
m

)
= ν.

(c) Denote tT =
∑T−1

m=0 Em, satisfying

lim
T→∞

√
tT
T

T∑
m=0

γm = 0, lim
T→∞

√
tT
T

1
√
γT

= 0

Assumption S.1 is a mild and regular condition concerning the uniform boundedness of density
functions. Assumptions S.2 and S.3 require that the effective step sizes decay slowly and the com-
munication intervals increase slowly; see also Li et al. (2022).

B TECHNIQUE PROOFS

Proof of Theorem 2.1: Note that the following recursive equation

qkt = qkt−1 +
1− rk + 2τrk

2rk
ηm−1I(skt = 1)− 1 + rk − 2τrk

2rk
ηm−1I(skt = 0),

is asymptotically equivalent to

qkt = qkt−1 + ηm−1
1

rk

{
1− rk + 2τrk

2
− I(x̃k

t ≤ qkt−1)

}
,

where

P(x̃k
t = xk

t ) = rk, P(x̃k
t =∞) = P(x̃k

t = −∞) = (1− rk)/2.

Observe that the above SGD update is designed to solve the following non-DP loss function

argmin
Qk

Exk∼P̃k

{
r−1
k ℓτ̃k(xk, Qk)

}
.

Inspired by this, we denote

Q♠ := argmin
Q

K∑
k=1

pkExk∼P̃k

{
r−1
k ℓτ̃k(xk, Q)

}
= argmin

Q

K∑
k=1

pk
rk

Exk∼P̃k
[(xk −Q) {τ̃k − I(xk ≤ Q)}] .

In the following, we desire to verify that Q♠ = Q⋆. By the definition of the minimizer of the
objective function,

K∑
k=1

pk
rk

{
P(x̃k

t ≤ Q♠)− τ̃k
}
= 0.

Since τ̃k = rkτ + (1− rk)/2, and

P(x̃k
t ≤ Q♠) = rkFk(Q

♠) + (1− rk)/2,

one has
K∑

k=1

{
pkFk(Q

♠) + pk(1− rk)/(2rk)
}
=

K∑
k=1

{pk(1− rk)/(2rk) + pkτ} .

Subtracting
∑K

k=1 {pk(1− rk)/(2rk)} from both sides of the equation, we obtain

K∑
k=1

pkFk(Q
♠) =

K∑
k=1

pkτ = τ.
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Recall that the definition of τ =
∑K

k=1 pkFk(Q
⋆), we show that

K∑
k=1

pkFk(Q
♠) =

K∑
k=1

pkFk(Q
⋆),

which implies Q♠ = Q⋆. The proof is now completed.

Proof of Theorem 3.1:

Theorem 3.1 is a direct consequence of Theorem 3.2.

Proof of Theorem 3.2:

We follows the perturbed iterate framework that is derived by Mania et al. (2017) and also used in
Li et al. (2022). Define the sequence q̄t in the following way:

q̄t =

K∑
k=1

pkq
k
t .

Define ζk = (xk, Uk, V k)⊤, with

P(Uk = 1) = rk, P(Uk = 0) = 1− rk, P(V k = 1) = P(V k = 0) = 1/2.

For k = 1, . . . ,K, let Uk
t and V k

t be i.i.d. copies of Uk and V k, respectively. Denote ζkt =
(xk

t , U
k
t , V

k
t )⊤. Define

Gk(q
k
t−1, ζ

k
t ) =

1 + rk − 2rkτ

2rk

[
1{xk

t ≤ qkt−1}Uk
t + (1− Uk

t )(1− V k
t )
]

− 1− rk + 2rkτ

2rk

[
1{xk

t > qkt−1}Uk
t + (1− Uk

t )V
k
t

]
.

(B.1)

Elementary calculations show that

gk(q) := EGk(q, ζ
k
t ) = Fk(q)− τ.

Define

g(q) =

K∑
k=1

pkgk(q).

Denote

εk(q) = Gk(q, ζ
k
t )− gk(q).

Besides,

E
(
ε2k(q

k
t−1)|Ft−1

)
=

1− r2k{2Fk(q
k
t−1)− 1}2

4r2k
.

By definition, for tm ≤ t < tm+1 − 1, we have

qkt+1 = q̄tm − ηm

t∑
i=tm

Gk(q
k
i , ζ

k
i ).

Define sm = q̄tm −Q⋆, and recall that Em = tm+1 − tm and γm = ηmEm. Elementary Iteration
from t = tm to tm+1 − 1 yields

sm+1 = sm − ηm

tm+1−1∑
t=tm

K∑
k=1

pkGk(q
k
t−1, ζ

k
t ) = sm − γmνm,

in which

νm =
1

Em

tm+1−1∑
t=tm

K∑
k=1

pkGk(q
k
t−1, ζ

k
t ).
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We define

hm :=
1

Em

tm+1−1∑
t=tm

K∑
k=1

pkGk

(
q̄tm ; ζkt

)
,

and further decompose that

νm = Gsm + (g (q̄tm)−Gsm) + (hm − g (q̄tm)) + (νm − hm)

:= Gsm + rm + εm + δm,

where G =
∑K

k=1 pkfk(Q
⋆) is the Hessian at Q⋆. It then follows that

sm+1 = (1− γmG) sm − γm (rm + εm + δm) := Bmsm − γmUm, (B.2)

where Bm := 1− γmG and Um := rm + εm + δm for short. Recurring (B.2) gives

sm+1 =

 m∏
j=0

Bj

 s0 −
m∑
j=0

 m∏
i=j+1

Bi

 γjUj .

Here, we use the convention that
∏m

i=m+1 Bi = 1 for any m ≥ 0. Recall the definition that

h(r, T ) = max

{
n ∈ Z+

∣∣∣∣∣ r
T∑

m=1

1

Em
≥

n∑
m=1

1

Em

}
.

Hence,
√
tT
T

h(r,T )∑
m=0

sm+1 =

√
tT
T

h(r,T )∑
m=0

 m∏
j=0

Bj

 s0 −
m∑
j=0

 m∏
i=j+1

Bi

 γjUj


=

√
tT
T

h(r,T )∑
m=0

 m∏
j=0

Bj

 s0 −
√
tT
T

h(r,T )∑
j=0

h(r,T )∑
m=j

 m∏
i=j+1

Bi

 γjUj .

For any n ≥ j, define An
j as

An
j =

n∑
l=j

 l∏
i=j+1

Bi

 γj .

With the notation of An
j , we can rewrite that

√
tT
T

h(r,T )∑
m=0

sm+1 =

√
tT

Tγ0
A

h(r,T )
0 B0s0 −

√
tT
T

h(r,T )∑
m=0

Ah(r,T )
m Um.

Since Um = rm + εm + δm, then
√
tT
T

h(r,T )∑
m=0

sm+1 +

√
tT
T

h(r,T )∑
m=0

G−1εm =

√
tT

Tγ0
A

h(r,T )
0 B0s0 −

√
tT
T

h(r,T )∑
m=0

Ah(r,T )
m (rm + δm)

−
√
tT
T

h(r,T )∑
m=0

(
AT

m −G−1
)
εm

−
√
tT
T

h(r,T )∑
m=0

(
Ah(r,T )

m −AT
m

)
εm

=:T0 − T1 − T2 − T3.
To complete the proof, we first investigate the partial-sum asymptotic behavior of

√
tT
T

h(r,T )∑
m=0

G−1εm,
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and then show that the four separate terms: supr∈[0,1] ∥T0∥ , supr∈[0,1] ∥T1∥, supr∈[0,1] ∥T2∥, and
supr∈[0,1] ∥T4∥ are oP(1), respectively.

We aim to follow the proof of Theorem 4.2 in Li et al. (2022). However, we find that the average
smoothness condition in their Assumption 3.1 is not satisfied. Due to the presence of the indicator
function in (B.1), we only have√

E
{
Gk(x, ζkt )−Gk(y, ζkt )

}2
≲ |x− y|1/2. (B.3)

Upon close examination of their proof, we find that this condition is crucial in the proof of their key
Lemma B.2.

In the following, we re-establish the proof of

E|q̄tm −Q⋆|2 ≲ γm, q̄tm
a.s.−−→ Q∗.

under the condition given in (B.3). Consider that

E
(∣∣qkt+1 − q̄tm

∣∣ |Ftm

)
= ηmE

(∣∣∣∣∣
t∑

i=tm

Gk(q
k
i , ζ

k
i )

∣∣∣∣∣ |Ftm

)

≤ ηm

t∑
i=tm

E
(
|Gk(q

k
i , ζ

k
i )||Ftm

)
≲ ηm

t∑
i=tm

(
1 + |qki − q̄tm |+ |q̄tm −Q⋆|

)
,

where the last inequality holds by the following fact

E
(
G2

k(q
k
i , ζ

k
i )|Fi

)
= E

(∣∣Gk(q
k
i , ζ

k
i )− gk(q

k
i )
∣∣2 |Fi

)
+ g2k(q

k
i )

≤ E
(∣∣Gk(q

k
i , ζ

k
i )− gk(q

k
i )
∣∣2 |Fi

)
+ 2|gk(qki )− gk(Q

⋆)|2 + 2g2k(Q
⋆)

≲ {1 + 2g2k(Q
⋆)}+ |qki −Q⋆|2

≲ 1 + |qki − q̄tm |2 + |q̄tm −Q⋆|2.

Define

Vt =

K∑
k=1

pkE
(
|qkt − q̄tm ||Ftm

)
.

Hence,

Vt+1 ≲ ηm

t∑
i=tm

(1 + |q̄tm −Q⋆|+ Vi) ,

which further implies that (since Vtm = 0)

1

Em

tm+1−1∑
t=tm

Vt =
1

Em

tm+1−2∑
t=tm

Vt+1 ≲
ηm
Em

tm+1−2∑
t=tm

t∑
i=tm

(1 + |q̄tm −Q⋆|+ Vi)

=
ηm
Em

tm+1−2∑
t=tm

(tm+1 − t− 1) (1 + |q̄tm −Q⋆|+ Vt)

≲ ηm

tm+1−2∑
t=tm

(1 + |q̄tm −Q⋆|+ Vt)

≲ ηmEm

(
1 + |q̄tm −Q⋆|+ 1

Em

tm+1−1∑
t=tm

Vt

)
.
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Denote by γm = ηmEm. It follows that

1

Em

tm+1−1∑
t=tm

Vt ≲ γm (1 + |q̄tm −Q⋆|) . (B.4)

Let Gk(·) denote an antiderivative of gk(·), and G(·) =
∑K

k=1 pkGk(·). Let ∆m = G(q̄tm)−G(Q⋆).
The equation (17) in Li et al. (2022) shows that for some constant L > 0,

E {G(q̄tm+1)|Ftm} ≤ G(q̄tm)− γm/2 |∇G(q̄tm)|2 + γ2
mLE(h2

m|Ftm)

+
(
γm/2 + γ2

mL
)
E(δ2m|Ftm),

where

hm =
1

Em

tm+1−1∑
t=tm

K∑
k=1

pk∇Gk(q̄
k
tm , ζkt ), δm =

1

Em

tm+1−1∑
t=tm

K∑
k=1

pk∇Gk(q̄
k
t , ζ

k
t ).

Lemma B.9 of Li et al. (2022) obtains that

E(h2
m|Ftm) ≤ |∇G(q̄tm)|2 + C1

Em
+

C2

Em
|q̄tm −Q⋆|2.

Notice that

E
{(

Gk(q
k
t−1, ζ

k
t )−Gk(q̄tm , ζkt )

)2 |Ftm

}
≲ E

(∣∣qkt − q̄tm
∣∣ |Ftm

)
.

Thus,

E(δ2m|Ftm) ≲
1

Em

tm+1−1∑
t=tm

K∑
k=1

pkE
{(

Gk(q
k
t−1, ζ

k
t )−Gk(q̄tm , ζkt )

)2 |Ftm

}

≲
1

Em

tm+1−1∑
t=tm

K∑
k=1

pkE
(∣∣qkt − q̄tm

∣∣ |Ftm

)
≲ γm (1 + |q̄tm −Q⋆|) ,

where the last inequality holds by (B.4). Therefore, we obtain that

E(∆m+1|Ftm) ≤ ∆m − γm/2|∇G(q̄tm)|2 + γ2
mL

{
|∇G(q̄tm)|2 + C1

Em
+

C2

Em
|q̄tm −Q⋆|2

}
+
(
γm/2 + γ2

mL
)
γm (C1 + C2|q̄tm −Q∗|)

≤ (1− c1γm + c2γ
2
m)∆m +

(
c3 + c4∆

1/2
m

)
γ2
m.

Since we assume that the parameter space is uniformly bounded, it entails that ∆m is also uniformly
bounded. Thus, we have

E(∆m+1|Ftm) ≤ (1− c1γm + c2γ
2
m)∆m + (c3 + c5) γ

2
m.

Apply Robbins-Siegmund theorem in Robbins & Siegmund (1971) to obtain q̄tm → Q⋆ almost
surely. Lemma A.10 in Su & Zhu (2018) states that for any positive constants c1, c2, if γm = O(1),
γm−1/γm = 1 + O(γm), and Bm is a positive sequence, satisfying

Bm ≤
γm−1(1− c1γm)

γm
Bm−1 + c2γm,

then supm Bm < ∞. Using this lemma, we immediately obtain that for some positive constant
C > 0,

sup
m≥1

E∆m

γm−1
< C,

which entails that

E|q̄tm −Q⋆|2 ≲ E∆m ≲ γm−1 ≲ γm {1 + O(γm)} ≲ γm.
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To demonstrate that our setting satisfies Assumption 3.2 of Li et al. (2022), we define

Sk := Eε2k(Q⋆) =
1− r2k{2Fk(Q

⋆)− 1}2

4r2k
=

1− r2k{2Qk − 1}2

4r2k
.

Hence, ∣∣E (ε2k(qkt−1)|Ft−1

)
− Eε2k(Q⋆)

∣∣ ≲ |qkt−1 −Q⋆|,
satisfying Assumption 3.2 in Li et al. (2022). Assumptions 3.3 and 3.4 of Li et al. (2022) are the
same as our Assumptions 3-4.

By closely examining the proof of Li et al. (2022), we find that their Assumption 3.1 is used
exclusively to establish the L2 convergence rate and the almost sure convergence result in their
Lemma B.2. The appearance of Assumption 1 in the conditions of their Lemma B.3, which derivs
the functional weak convergence, is solely for enabling the application of Lemma B.2.

In our analysis, however, the key bound E|q̄tm−Q⋆|2 ≲ γm is proved directly under equation (B.3).
This bound fully replaces the role played by Lemma B.2 in Li et al. (2022). Consequently, Assump-
tion 3.1 of Li et al. (2022) is not needed in our theoretical development beyond this step, and the
functional central limit theorem follows without invoking that assumption.

Recall that

εm =
1

Em

tm+1−1∑
t=tm

K∑
k=1

pk
{
Gk(q̄tm , ζkt )− g(q̄tm)

}
.

Define U2
T =

∑T
m=1 E(ε2m|Ftm) and

ΞT (r) := U−1
T

{
i∑

m=1

εm +
(rU2

T − U2
i )εi+1

U2
i+1 − U2

i

}
U2
i ≤ rU2

T < U2
i+1.

Then,
√
tT
T

h(r,T )∑
m=1

εm =

√
tT
T

UTΞT

(
U2
h(r,T )

U2
T

)
.

Following Lemma B.16 in Li et al. (2022), one obtains that

sup
r∈[0,1]

∣∣∣∣∣
√
tT
T

UTΞT

(
U2
h(r,T )

U2
T

)
−
√
tT
T

UTΞT (r)

∣∣∣∣∣ P−→ 0. (B.5)

By evaluating the conditions in Lemma B.13 of Li et al. (2022), the invariance principles in the
martingale CLT yileds that ΞT (r)

d−→ B(r) in C[0, 1], which is followed by

√
tT
T

UTΞT (r)
d−→

√
ν
∑K

k=1 p
2
k

{
r−2
k − (2Qk − 1)2

}
2
∑K

k=1 pkfk(Q
⋆)

B(r).

Hus, Theorem A.2 of Hall & Heyde (2014) implies that
{√

tTUTΞT (·)/T
}
T≥1

is tight in C[0, 1].
Using the tightness of

{√
tTUTΞT (·)/T

}
T≥1

and (B.5), we could obtain the tightness of{√
tT
T

UTΞT

(
U2
h(r,T )

U2
T

)}
T≥1

following the arguments in the proof of Lemma B.16 of Li et al. (2022). Therefore, we could follow
the arguments in the proof of Theorem 4.2 in Li et al. (2022) to complete the proof the functional
CLT.

C ADDITIONAL EXPERIMENTS AND DISCUSSIONS

In this section, we report additional simulation results that complement the main experiments in
Section 4. Unless otherwise specified, all settings are identical to those in Section 4.1.
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Figure S.1: Sample trajectories of the iterative estimator and corresponding confidence intervals
under heterogeneous distributions (Hete L, with rk = 0.9 and τ = 0.5, upper panel) and heteroge-
neous quantile levels (τlow, with heterogeneous response rates, lower panel). The horizontal dotted
line indicates the true quantile value Q∗.

Quantile (τ ) Rate (r) C1 C5 Log DP-SGD (C1) DC Single

tT = 10000
0.5 0.25 0.950(0.0160) 0.979(0.0250) 0.978(0.0324) 0.952(0.0242) 0.802(0.3197) 0.926(0.0179)
0.5 hetero 0.953(0.0086) 0.994(0.0124) 0.993(0.0168) 0.956(0.0125) 0.999(0.0678) 0.942(0.0075)
0.5 0.9 1.000(0.0027) 1.000(0.0057) 1.000(0.0097) 0.987(0.0044) 1.000(0.0216) 0.954(0.0047)
τlow 0.25 0.929(0.0196) 0.976(0.0270) 0.978(0.0349) 0.911(0.0309) 0.740(0.3403) 0.930(0.0194)
τlow hetero 0.923(0.0118) 0.983(0.0131) 0.983(0.0174) 0.896(0.0181) 0.999(0.0735) 0.960(0.0083)
τlow 0.9 0.969(0.0055) 0.999(0.0047) 1.000(0.0081) 0.922(0.0074) 1.000(0.0231) 0.954(0.0054)
τhigh 0.25 0.956(0.0205) 0.972(0.0310) 0.971(0.0399) 0.944(0.0313) 0.729(0.3768) 0.944(0.0213)
τhigh hetero 0.956(0.0109) 0.986(0.0145) 0.988(0.0198) 0.959(0.0160) 0.997(0.0839) 0.954(0.0089)
τhigh 0.9 0.999(0.0049) 0.997(0.0046) 1.000(0.0068) 0.989(0.0059) 1.000(0.0259) 0.974(0.0059)

tT = 50000
0.5 0.25 0.960(0.0070) 0.987(0.0101) 0.991(0.0144) 0.955(0.0104) 0.977(0.0787) 0.958(0.0071)
0.5 hetero 0.975(0.0037) 0.986(0.0052) 0.994(0.0077) 0.975(0.0055) 1.000(0.0156) 0.970(0.0030)
0.5 0.9 1.000(0.0010) 1.000(0.0016) 1.000(0.0029) 0.995(0.0019) 1.000(0.0051) 0.950(0.0020)
τlow 0.25 0.913(0.0104) 0.973(0.0119) 0.988(0.0154) 0.878(0.0171) 0.973(0.0863) 0.946(0.0079)
τlow hetero 0.819(0.0076) 0.942(0.0070) 0.977(0.0084) 0.786(0.0116) 0.999(0.0166) 0.952(0.0034)
τlow 0.9 0.987(0.0042) 0.988(0.0018) 0.999(0.0022) 0.854(0.0054) 1.000(0.0054) 0.962(0.0021)
τhigh 0.25 0.951(0.0107) 0.986(0.0163) 0.980(0.0250) 0.910(0.0183) 0.976(0.0983) 0.950(0.0089)
τhigh hetero 0.967(0.0057) 0.995(0.0103) 0.988(0.0164) 0.924(0.0110) 1.000(0.0189) 0.946(0.0039)
τhigh 0.9 1.000(0.0012) 1.000(0.0043) 1.000(0.0083) 0.995(0.0027) 1.000(0.0059) 0.946(0.0024)

Table S.2: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
varying quantile levels and response rates, with different tT and fixed K = 10 clients and data
generated from C(0, 1). In Case τlow, each client uses a unique quantile level τk ranging uniformly
from [0.3, 0.5]; in Case τhigh, τk is ranging from [0.5, 0.8]. “hetero” indicates client-specific truthful
response rates rk range uniformly from [0.25, 0.9].
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Quantile (τ ) Rate (r) C1 C5 Log DP-SGD (C1) DC Single

tT = 10000
0.3 0.25 0.947(0.0271) 0.981(0.0400) 0.967(0.0545) 0.925(0.0423) 0.546(0.6111) 0.946(0.0339)
0.3 hetero 0.957(0.0138) 0.994(0.0231) 0.992(0.0311) 0.942(0.0223) 0.682(0.3476) 0.948(0.0137)
0.3 0.9 1.000(0.0039) 1.000(0.0170) 1.000(0.0254) 0.994(0.0066) 0.070(0.3084) 0.972(0.0083)
0.5 0.25 0.942(0.0225) 0.983(0.0298) 0.977(0.0389) 0.935(0.0314) 0.968(0.3335) 0.936(0.0264)
0.5 hetero 0.946(0.0132) 0.970(0.0155) 0.981(0.0196) 0.951(0.0170) 1.000(0.0757) 0.942(0.0109)
0.5 0.9 0.976(0.0095) 0.994(0.0053) 0.998(0.0064) 0.953(0.0100) 0.968(0.0519) 0.968(0.0071)
0.8 0.25 0.935(0.0450) 0.958(0.0729) 0.960(0.0963) 0.938(0.0677) 0.087(1.0105) 0.950(0.0552)
0.8 hetero 0.956(0.0232) 0.963(0.0370) 0.971(0.0457) 0.963(0.0343) 0.557(0.5459) 0.968(0.0210)
0.8 0.9 0.985(0.0171) 0.836(0.0269) 0.933(0.0267) 0.971(0.0165) 0.161(0.4245) 0.982(0.0122)

tT = 50000
0.3 0.25 0.902(0.0151) 0.979(0.0165) 0.988(0.0225) 0.863(0.0253) 0.798(0.3556) 0.958(0.0137)
0.3 hetero 0.835(0.0102) 0.975(0.0081) 0.994(0.0108) 0.831(0.0164) 0.023(0.3026) 0.948(0.0059)
0.3 0.9 0.984(0.0056) 1.000(0.0034) 1.000(0.0079) 0.869(0.0072) 0.000(0.2951) 0.938(0.0037)
0.5 0.25 0.935(0.0100) 0.983(0.0127) 0.986(0.0180) 0.926(0.0144) 1.000(0.0910) 0.958(0.0108)
0.5 hetero 0.942(0.0063) 0.981(0.0064) 0.995(0.0093) 0.947(0.0081) 0.853(0.0496) 0.954(0.0045)
0.5 0.9 0.998(0.0049) 0.999(0.0017) 1.000(0.0039) 0.959(0.0052) 0.477(0.0481) 0.948(0.0029)
0.8 0.25 0.926(0.0247) 0.991(0.0344) 0.986(0.0514) 0.887(0.0437) 0.522(0.5824) 0.952(0.0202)
0.8 hetero 0.925(0.0149) 0.990(0.0231) 0.990(0.0371) 0.890(0.0278) 0.079(0.4077) 0.950(0.0086)
0.8 0.9 1.000(0.0038) 1.000(0.0107) 1.000(0.0197) 0.979(0.0077) 0.001(0.3822) 0.968(0.0049)

Table S.3: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
heterogeneous distributions for different tT . The number of clients K is fixed at 10. Data for each
client k are independently generated from C(µk, 1), where µk ∼ N (0, 1). “hetero” indicates client-
specific truthful response rates rk range uniformly from [0.25, 0.9].

Quantile (τ ) Rate (r) C1 C5 Log

T = 5000
0.5 0.25 0.954(0.0189) 0.974(0.0129) 0.986(0.0112)
0.5 hetero 0.959(0.0103) 0.976(0.0065) 0.995(0.0052)
0.5 0.9 0.999(0.0033) 1.000(0.0040) 1.000(0.0026)
τlow 0.25 0.957(0.0200) 0.974(0.0137) 0.991(0.0116)
τlow hetero 0.957(0.0108) 0.977(0.0067) 0.993(0.0053)
τlow 0.9 1.000(0.0033) 1.000(0.0040) 1.000(0.0029)
τhigh 0.25 0.956(0.0212) 0.975(0.0128) 0.993(0.0123)
τhigh hetero 0.961(0.0112) 0.984(0.0062) 0.996(0.0056)
τhigh 0.9 0.998(0.0037) 0.997(0.0028) 1.000(0.0031)

T = 10000
0.5 0.25 0.949(0.0133) 0.968(0.0078) 0.987(0.0061)
0.5 hetero 0.963(0.0071) 0.978(0.0037) 0.991(0.0030)
0.5 0.9 0.995(0.0023) 0.999(0.0020) 0.999(0.0014)
τlow 0.25 0.947(0.0136) 0.972(0.0078) 0.984(0.0064)
τlow hetero 0.962(0.0072) 0.985(0.0038) 0.983(0.0033)
τlow 0.9 0.999(0.0020) 1.000(0.0016) 0.967(0.0018)
τhigh 0.25 0.939(0.0145) 0.974(0.0086) 0.985(0.0066)
τhigh hetero 0.968(0.0076) 0.988(0.0043) 0.985(0.0032)
τhigh 0.9 0.996(0.0023) 0.999(0.0031) 0.996(0.0014)

Table S.4: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
varying quantile levels and response rates, with different T and fixed K = 10 clients and data
generated fromN (0, 1). In Case τlow, each client uses a unique quantile level τk ranging uniformly
from [0.3, 0.5]; in Case τhigh, τk is ranging from [0.5, 0.8]. “hetero” indicates client-specific truthful
response rates rk range uniformly from [0.25, 0.9].
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Quantile (τ ) Rate (r) C1 C5 Log

Hete L — T = 5000
0.3 0.25 0.942(0.0271) 0.960(0.0168) 0.975(0.0151)
0.3 hetero 0.962(0.0131) 0.966(0.0086) 0.987(0.0067)
0.3 0.9 0.998(0.0043) 0.959(0.0063) 1.000(0.0033)
0.5 0.25 0.954(0.0254) 0.973(0.0154) 0.990(0.0153)
0.5 hetero 0.963(0.0120) 0.981(0.0072) 0.991(0.0071)
0.5 0.9 0.992(0.0042) 0.998(0.0032) 1.000(0.0034)
0.8 0.25 0.954(0.0375) 0.982(0.0242) 0.998(0.0248)
0.8 hetero 0.968(0.0181) 0.988(0.0109) 0.998(0.0116)
0.8 0.9 0.985(0.0108) 0.999(0.0070) 0.982(0.0094)

Hete L — T = 10000
0.3 0.25 0.958(0.0184) 0.966(0.0102) 0.981(0.0083)
0.3 hetero 0.949(0.0096) 0.965(0.0050) 0.979(0.0040)
0.3 0.9 1.000(0.0029) 0.979(0.0022) 0.867(0.0036)
0.5 0.25 0.950(0.0165) 0.974(0.0094) 0.985(0.0085)
0.5 hetero 0.952(0.0085) 0.976(0.0045) 0.991(0.0039)
0.5 0.9 0.996(0.0025) 0.985(0.0018) 1.000(0.0016)
0.8 0.25 0.966(0.0237) 0.983(0.0163) 0.990(0.0149)
0.8 hetero 0.962(0.0122) 0.988(0.0088) 0.974(0.0090)
0.8 0.9 0.990(0.0042) 0.997(0.0087) 0.645(0.0095)

Hete D — T = 5000
0.5 0.25 0.954(0.0195) 0.974(0.0129) 0.987(0.0109)
0.5 hetero 0.965(0.0098) 0.974(0.0075) 0.993(0.0049)
0.5 0.9 1.000(0.0037) 0.989(0.0060) 1.000(0.0026)

Hete D — T = 10000
0.5 0.25 0.949(0.0132) 0.968(0.0078) 0.982(0.0064)
0.5 hetero 0.966(0.0069) 0.973(0.0039) 0.972(0.0034)
0.5 0.9 1.000(0.0023) 0.999(0.0014) 0.966(0.0023)

Table S.5: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓)
under heterogeneous distributions for different T . The number of clients K is fixed at 10. In Hete L,
data for each client k are independently generated from N (µk, 1), where µk ∼ N (0, 1). In Hete D,
data are generated from N (0, 1), U(−1, 1), and C(0, 1) across different clients. “hetero” indicates
client-specific truthful response rates rk range uniformly from [0.25, 0.9].

C.1 OTHER RESULTS IN SECTION 4

Efficiency–Accuracy Trade-off. We first quantitatively study the computation and communica-
tion time of the proposed method. Specifically, for each simulation run, we record the wall-clock
time, including both computation and communication components, and then average the results
over 1,000 repetitions. We consider different communication strategies for the proposed estimators
as well as the competing baselines. Figure S.2 reports the results for a representative setting with
quantile level τk ≡ τ = 0.5, truthful response rate rk ≡ r = 0.5, data generated from a standard
normal distribution, and total sample size tT = 10,000. We obtain the following interesting findings.
First, for the proposed methods, as the communication frequency increases, the MAE decreases, but
both computation time and communication cost naturally grow, demonstrating a clear efficiency–
accuracy trade-off. In addition, comparing across different methods, the proposed method attains
a communication cost comparable to DP-SGD while requiring noticeably less computation time.
The DC method incurs the lowest overall cost because it performs only a single aggregation step;
however, it also exhibits the largest MAE and substantial under-coverage in several heterogeneous
settings, as reported in Section 4.

Partial Participation. We further examine partial client participation to evaluate the proposed
method in more realistic federated environments. In this setting, at each communication round, only
5 out of the 10 clients are randomly selected to participate, while all other configurations remain
identical to those in Section 4.1. The results are reported in Tables S.6 and S.7. We observe that
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Figure S.2: Computation time and communication time for different methods. We fix K = 10 and
tT = 10,000.

the empirical coverage probabilities remain close to the nominal 95% level, and the MAE increases
only mildly compared with the full-participation case. These findings indicate that the proposed
estimator is robust to partial and asynchronous client participation.

C.2 SENSITIVITY ANALYSIS

We begin by examining how the proposed method responds to different truthful response rates r and
step-size schedules. Throughout this subsection, we adopt the normal design with X ∼ N (0, 1) and
target quantile level τk ≡ τ = 0.5, and we consider E′

m = 5 and tT ∈ {10,000, 50,000}. All other
settings follow Section 4.1.

First, we conduct a sensitivity analysis on the truthful response rate. The results are reported in
Figure S.3. We observe that both the MAE and the average interval length steadily decrease as r
increases, while the ECP remains close to or above the nominal 95% level across a wide range of
response rates.

Second, we investigate the effect of the step-size schedule. We adopt

γm =
20 r̄

ma + 100
,

where r̄ denotes the average truthful response rate and a > 0 controls the decay speed. Figure S.4
summarizes the results. Under the same experimental setting, the MAE, ECP, and Avg Len (average
confidence-interval lengths) remain comparable across different values of a. This indicates that the
proposed estimator is stable with respect to the choice of the step-size schedule.

C.3 CONSERVATIVENESS OF THE SELF-NORMALIZED INFERENCE PROCEDURE

To assess the efficiency and conservativeness of the resulting confidence intervals, we compare the
resulting confidence intervals with oracle normal-based intervals that use the true asymptotic vari-
ance derived in Theorem 3.1. Tables S.8–S.9 report the empirical coverage probabilities (ECP)
and average interval lengths (Avg Len) for both types of intervals under normal and Cauchy data-
generating distributions. We observe that compared with the oracle intervals, the self-normalized
intervals are slightly conservative: they achieve coverage at or above the nominal 95% level but
produce moderately wider intervals. This mild conservativeness arises because self-normalization
induces heavier-tailed limiting distributions compared with the standard normal approximation. It
is important to note, however, that estimating the oracle variance in practice typically requires
additional procedures that may consume further privacy budget under LDP. In contrast, the self-
normalized construction avoids any variance estimation and remains fully privacy-preserving.
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C.4 EXTENSION TO DECENTRALIZED FEDERATED LEARNING

In this subsection, we provide an initial exploration of extending our method to a fully decentralized
federated learning setting, where no central server is available and each client communicates only
with its neighbors. Let the K clients be connected through an undirected communication graph
represented by an adjacency matrix A = (ak1k2

) ∈ RK×K , where ak1k2
= 1 if client k1 can

exchange messages with client k2 and ak1k2
= 0 otherwise. Here we assume that every client is

connected to itself, i.e., akk = 1, k = 1, . . . ,K. Define the degree dk1
=
∑

k2
ak1k2

and
construct the row-stochastic weight matrix W = (wk1k2

) as

wk1k2
=

ak1k2

dk1

,

which encodes the network topology and performs neighbor averaging.

During communication iterations t ∈ I, the aggregation step in Algorithm 1 is replaced by the
following weighted decentralized averaging:

qktm ←
K∑
j=1

wkj pj q
j
tm , k = 1, . . . ,K.

The local SGD update for t /∈ I remains unchanged, yielding a fully decentralized variant of our
estimator.

As a preliminary empirical study of this extension, we evaluate its finite-sample performance under
a ring network topology, where each client communicates only with itself and its two immediate
neighbors. All other experimental settings follow Section 4.1. The results in Table S.10 show
that the decentralized estimator exhibits qualitatively similar behavior to its federated counterpart,
suggesting that our method can naturally extend to decentralized learning. A complete theoretical
analysis of this decentralized variant is left for future work.
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Figure S.3: Mean absolute errors (MAE ↓), empirical coverage probabilities at the 95% nominal
level (ECP), and averaged confidence interval lengths (Avg Len ↓) under varying response rates. We
fix τk ≡ τ = 0.5 and K = 10, and report results for different values of tT with data generated from
N (0, 1).
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Scenario Quantile (τ ) Rate (r) C1 C5 Log

tT = 10 000

Homo

0.5 0.25 0.950(0.0186) 0.971(0.0292) 0.979(0.0417)
0.5 hetero 0.942(0.0102) 0.976(0.0140) 0.993(0.0194)
0.5 0.9 0.955(0.0047) 0.988(0.0062) 0.998(0.0087)
τlow 0.25 0.949(0.0190) 0.975(0.0305) 0.984(0.0433)
τlow hetero 0.953(0.0097) 0.981(0.0146) 0.994(0.0203)
τlow 0.9 0.985(0.0032) 0.999(0.0064) 1.000(0.0091)
τhigh 0.25 0.947(0.0208) 0.971(0.0316) 0.982(0.0461)
τhigh hetero 0.928(0.0126) 0.984(0.0155) 0.993(0.0219)
τhigh 0.9 0.973(0.0058) 0.997(0.0062) 1.000(0.0100)

Hete L

0.3 0.25 0.942(0.0255) 0.971(0.0401) 0.972(0.0565)
0.3 hetero 0.951(0.0127) 0.968(0.0198) 0.983(0.0258)
0.3 0.9 0.946(0.0054) 0.961(0.0091) 0.990(0.0119)
0.5 0.25 0.955(0.0225) 0.970(0.0375) 0.984(0.0531)
0.5 hetero 0.946(0.0116) 0.981(0.0180) 0.997(0.0247)
0.5 0.9 0.978(0.0044) 0.993(0.0078) 0.995(0.0119)
0.8 0.25 0.955(0.0339) 0.975(0.0614) 0.986(0.0890)
0.8 hetero 0.964(0.0171) 0.987(0.0279) 0.992(0.0387)
0.8 0.9 0.998(0.0050) 0.988(0.0147) 0.993(0.0197)

tT = 50 000

Homo

0.5 0.25 0.962(0.0081) 0.984(0.0106) 0.998(0.0158)
0.5 hetero 0.962(0.0040) 0.988(0.0055) 0.996(0.0080)
0.5 0.9 1.000(0.0012) 1.000(0.0017) 1.000(0.0028)
τlow 0.25 0.945(0.0090) 0.986(0.0110) 0.994(0.0163)
τlow hetero 0.970(0.0047) 0.989(0.0058) 0.995(0.0086)
τlow 0.9 1.000(0.0020) 1.000(0.0020) 1.000(0.0030)
τhigh 0.25 0.950(0.0088) 0.978(0.0118) 0.998(0.0176)
τhigh hetero 0.942(0.0044) 0.983(0.0062) 0.997(0.0090)
τhigh 0.9 0.984(0.0017) 0.998(0.0036) 0.999(0.0056)

Hete L

0.3 0.25 0.943(0.0123) 0.974(0.0155) 0.990(0.0228)
0.3 hetero 0.937(0.0067) 0.982(0.0071) 0.994(0.0106)
0.3 0.9 0.992(0.0022) 0.991(0.0029) 0.997(0.0045)
0.5 0.25 0.952(0.0099) 0.981(0.0136) 0.994(0.0202)
0.5 hetero 0.966(0.0051) 0.974(0.0065) 0.992(0.0093)
0.5 0.9 0.978(0.0021) 0.974(0.0028) 0.993(0.0040)
0.8 0.25 0.948(0.0152) 0.984(0.0207) 0.990(0.0300)
0.8 hetero 0.949(0.0074) 0.962(0.0102) 0.995(0.0139)
0.8 0.9 0.902(0.0035) 0.954(0.0084) 0.991(0.0097)

Table S.6: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
varying quantile levels and truthful response rates, with different values of tT and a fixed number of
K = 10 clients. Only 5 out of the 10 clients are randomly selected to participate in each commu-
nication round. In Homo, data for each client k are independently drawn from N (0, 1). In Hete L,
client-specific data are independently drawn from N (µk, 1) with µk ∼ N (0, 1). The label “hetero”
indicates heterogeneous truthful response rates with rk ranging uniformly from 0.25 to 0.9.
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Scenario Quantile (τ ) Rate (r) C1 C5 Log

tT = 10 000

Homo

0.5 0.25 0.950(0.0232) 0.973(0.0353) 0.968(0.0473)
0.5 hetero 0.966(0.0114) 0.991(0.0169) 0.991(0.0229)
0.5 0.9 1.000(0.0034) 1.000(0.0062) 0.999(0.0100)
τlow 0.25 0.936(0.0279) 0.974(0.0393) 0.967(0.0509)
τlow hetero 0.928(0.0150) 0.989(0.0187) 0.988(0.0241)
τlow 0.9 0.997(0.0048) 1.000(0.0068) 1.000(0.0105)
τhigh 0.25 0.940(0.0333) 0.965(0.0466) 0.961(0.0621)
τhigh hetero 0.951(0.0184) 0.985(0.0246) 0.980(0.0338)
τhigh 0.9 1.000(0.0045) 1.000(0.0088) 0.999(0.0132)

Hete L

0.3 0.25 0.947(0.0396) 0.968(0.0588) 0.952(0.0763)
0.3 hetero 0.956(0.0199) 0.984(0.0306) 0.993(0.0397)
0.3 0.9 0.999(0.0069) 0.999(0.0257) 1.000(0.0356)
0.5 0.25 0.940(0.0309) 0.963(0.0432) 0.968(0.0561)
0.5 hetero 0.965(0.0148) 0.989(0.0220) 0.980(0.0284)
0.5 0.9 0.999(0.0046) 0.998(0.0076) 0.998(0.0112)
0.8 0.25 0.935(0.0743) 0.956(0.1039) 0.956(0.1376)
0.8 hetero 0.947(0.0423) 0.975(0.0539) 0.972(0.0687)
0.8 0.9 0.993(0.0114) 0.996(0.0145) 0.990(0.0192)

tT = 50 000

Homo

0.5 0.25 0.943(0.0106) 0.985(0.0148) 0.984(0.0211)
0.5 hetero 0.970(0.0053) 0.986(0.0087) 0.989(0.0121)
0.5 0.9 1.000(0.0023) 1.000(0.0050) 0.997(0.0072)
τlow 0.25 0.896(0.0147) 0.988(0.0178) 0.986(0.0248)
τlow hetero 0.902(0.0087) 0.980(0.0092) 0.991(0.0124)
τlow 0.9 1.000(0.0028) 1.000(0.0027) 0.999(0.0044)
τhigh 0.25 0.893(0.0205) 0.982(0.0293) 0.971(0.0431)
τhigh hetero 0.930(0.0130) 0.990(0.0212) 0.985(0.0316)
τhigh 0.9 1.000(0.0046) 1.000(0.0104) 1.000(0.0161)

Hete L

0.3 0.25 0.895(0.0232) 0.970(0.0272) 0.989(0.0377)
0.3 hetero 0.875(0.0138) 0.983(0.0140) 0.987(0.0188)
0.3 0.9 1.000(0.0046) 1.000(0.0047) 0.990(0.0089)
0.5 0.25 0.957(0.0136) 0.984(0.0193) 0.985(0.0274)
0.5 hetero 0.988(0.0068) 0.991(0.0100) 0.991(0.0154)
0.5 0.9 1.000(0.0031) 1.000(0.0045) 0.990(0.0090)
0.8 0.25 0.923(0.0442) 0.972(0.0659) 0.943(0.0969)
0.8 hetero 0.932(0.0284) 0.987(0.0444) 0.966(0.0678)
0.8 0.9 1.000(0.0089) 1.000(0.0182) 0.999(0.0299)

Table S.7: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) under
varying quantile levels and truthful response rates, with different values of tT and a fixed number of
K = 10 clients. Only 5 out of the 10 clients are randomly selected to participate in each commu-
nication round. In Homo, data for each client k are independently drawn from C(0, 1). In Hete L,
client-specific data are independently drawn from C(µk, 1) with µk ∼ N (0, 1). The label “hetero”
indicates heterogeneous truthful response rates with rk ranging uniformly from 0.25 to 0.9.
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Figure S.4: Mean absolute errors (MAE ↓), empirical coverage probabilities at the 95% nominal
level (ECP), and averaged confidence interval lengths (Avg Len ↓) under varying step-size parameter
a. We fix τk ≡ τ = 0.5 and K = 10, with data generated from N (0, 1). Three response-rate
scenarios are considered, where “hetero” indicates heterogeneous client-specific truthful response
rates rk ranging uniformly from 0.25 to 0.9. The upper panels correspond to tT = 10,000, and the
lower panels to tT = 50,000.

Scenario Quantile (τ ) Rate (r)
Normal SN

ECP Avg Len ECP Avg Len
(10−2) (10−2)

Homo

0.5 0.25 0.930 6.215 0.949 8.792
0.5 hetero 0.946 3.452 0.963 4.566
0.5 0.9 0.996 1.726 0.995 1.909
τlow 0.25 0.928 6.411 0.947 9.135
τlow hetero 0.947 3.550 0.962 4.709
τlow 0.9 0.999 1.753 0.999 2.093
τhigh 0.25 0.944 6.681 0.939 9.535
τhigh hetero 0.942 3.686 0.968 4.914
τhigh 0.9 0.996 1.791 0.996 2.232

Hete L

0.3 0.25 0.930 8.504 0.958 12.090
0.3 hetero 0.951 4.613 0.949 6.404
0.3 0.9 0.996 2.053 1.000 3.228
0.5 0.25 0.972 9.439 0.950 10.891
0.5 hetero 0.987 5.099 0.952 5.604
0.5 0.9 1.000 2.200 0.996 2.429
0.8 0.25 0.997 19.021 0.966 17.014
0.8 hetero 1.000 10.029 0.962 8.792
0.8 0.9 0.999 3.488 0.990 4.759

Hete D
0.5 0.25 0.938 6.246 0.949 8.848
0.5 hetero 0.958 3.469 0.966 4.788
0.5 0.9 0.998 1.735 1.000 2.524

Table S.8: Empirical coverage probabilities at the 95% nominal level (ECP) and average confidence-
interval lengths (Avg Len ↓) for the self-normalized and oracle normal-based confidence intervals.
We fix K = 10, E′

m = 1, and tT = 10,000. Three heterogeneity scenarios are considered. In Homo,
data for each client k are independently generated fromN (0, 1). In Hete L, data for each client k are
independently generated from N (µk, 1), where µk ∼ N (0, 1). In Hete D, data are generated from
N (0, 1), U(−1, 1), and C(0, 1) across different clients. “hetero” indicates client-specific truthful
response rates rk range uniformly from [0.25, 0.9].
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Scenario Quantile (τ ) Rate (r)
Normal SN

ECP Avg Len ECP Avg Len
(10−2) (10−2)

Homo

0.5 0.25 0.940 7.792 0.950 10.398
0.5 hetero 0.953 4.326 0.953 5.906
0.5 0.9 0.999 2.164 1.000 3.290
τlow 0.25 0.921 8.657 0.929 11.436
τlow hetero 0.897 4.788 0.923 6.215
τlow 0.9 0.983 2.360 0.969 3.222
τhigh 0.25 0.946 9.811 0.956 13.120
τhigh hetero 0.955 5.400 0.956 7.578
τhigh 0.9 0.995 2.614 0.999 4.119

Hete L

0.3 0.25 0.923 12.044 0.947 17.008
0.3 hetero 0.947 6.600 0.957 9.670
0.3 0.9 0.999 3.105 1.000 5.241
0.5 0.25 0.975 12.495 0.942 13.759
0.5 hetero 0.971 6.835 0.946 8.276
0.5 0.9 0.952 3.179 0.976 5.085
0.8 0.25 0.999 38.893 0.935 28.048
0.8 hetero 1.000 20.716 0.956 17.456
0.8 0.9 0.998 8.240 0.985 10.558

Table S.9: Empirical coverage probabilities at the 95% (ECP) and average confidence-interval
lengths (Avg Len ↓) for the self-normalized and oracle normal-based confidence intervals. We fix
K = 10, E′

m = 1, and tT = 10,000. In Homo, data for each client k are independently generated
from C(0, 1). In Hete L, data for each client k are independently generated from C(µk, 1), where
µk ∼ N (0, 1). “hetero” indicates client-specific truthful response rates rk range uniformly from
[0.25, 0.9].

Scenario Quantile (τ ) Rate (r) C1 C5 Log

tT = 10000
0.3 hetero 0.937(0.0178) 0.969(0.0271) 0.970(0.0352)

Hete L 0.5 hetero 0.920(0.0142) 0.964(0.0206) 0.974(0.0260)
0.8 hetero 0.943(0.0261) 0.975(0.0395) 0.975(0.0515)
0.5 0.25 0.941(0.0141) 0.977(0.0246) 0.988(0.0362)

Hete D 0.5 hetero 0.956(0.0073) 0.981(0.0124) 0.992(0.0172)
0.5 0.90 0.942(0.0039) 0.994(0.0067) 0.999(0.0097)

tT = 50000
0.3 hetero 0.918(0.0093) 0.950(0.0131) 0.962(0.0178)

Hete L 0.5 hetero 0.901(0.0073) 0.959(0.0101) 0.972(0.0136)
0.8 hetero 0.908(0.0142) 0.968(0.0191) 0.978(0.0270)
0.5 0.25 0.941(0.0061) 0.977(0.0082) 0.997(0.0127)

Hete D 0.5 hetero 0.940(0.0034) 0.977(0.0043) 0.997(0.0063)
0.5 0.90 0.958(0.0016) 0.978(0.0023) 0.998(0.0035)

Table S.10: Empirical coverage probabilities at the 95% nominal level (mean absolute errors ↓) un-
der varying quantile levels and truthful response rates, evaluated under a decentralized ring topology
with different values of tT and a fixed number of K = 10 clients. In Hete L, client-specific data
are independently drawn from C(µk, 1) with µk ∼ N (0, 1). In Hete D, data are generated from
N (0, 1), U(−1, 1), and C(0, 1) across different clients. The label “hetero” indicates heterogeneous
truthful response rates with rk ranging uniformly from 0.25 to 0.9.
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