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ABSTRACT

In this paper, we investigate federated learning for quantile inference under lo-
cal differential privacy (LDP). We propose an estimator based on local stochas-
tic gradient descent (SGD), whose local gradients are perturbed via a randomized
mechanism with global parameters, making the procedure tolerant of communica-
tion and storage constraints without compromising statistical efficiency. Although
the quantile loss and its corresponding gradient do not satisfy standard smooth-
ness conditions typically assumed in existing literature, we establish asymptotic
normality for our estimator as well as a functional central limit theorem. The pro-
posed method accommodates data heterogeneity and allows each server to operate
with an individual privacy budget. Furthermore, we construct confidence intervals
for the target value through a self-normalization approach, thereby circumventing
the need to estimate additional nuisance parameters. Extensive numerical experi-
ments and real data application validate the theoretical guarantees of the proposed
methodology.

1 INTRODUCTION

Quantile estimation and inference are critical tools in various scientific and applied domains. In
healthcare, quantile methods facilitate more informed decisions regarding the optimal distribution
of scarce medical resources, thus promoting equitable and effective patient care (Yadlowsky et al.,
2025)). Similarly, quantile techniques have proven highly valuable in policy evaluation, as they
reveal heterogeneous effects across different subgroups, nuances typically obscured by traditional
average-based analyses (Kallus et al., 2024; |(Chernozhukov & Fernandez-Vall 2011; |Chernozhukov
& Hansen, 2005)). In reliability engineering, quantile-based approaches have significantly improved
the assessment of system robustness, particularly under rare or extreme conditions, demonstrat-
ing their broad applicability and precision (He et al.| 2023; |[Hu et al., [2022). Moreover, finance
widely employs quantile-based metrics such as value-at-risk, essential for managing financial risks
in the face of regulatory pressures and market uncertainties (Barbaglia et al.l 2023} |Chen) 2008;
Wang et al., 2012). In general, quantile methods excel at capturing the characteristics of skewed
or extreme-valued data, delivering richer insights into complex distributions prevalent in practical
scenarios (Angrist et al.,|2006; |Chen et al.| 2023)).

Traditional quantile estimation methods have been extensively studied. However, with the rapid in-
crease in massive datasets (Jordan et al., [2019; [Hector & Song, 2021} [Fan et al., 2023)), traditional
approaches that rely on analyzing all data on a single machine may no longer be computationally fea-
sible. This challenge has motivated the emergence of federated learning methods (McMahan et al.,
2017; [Liu et al) 2020; [Tian et al., |2023)). Federated learning enables multiple distributed clients
to collaboratively train a global model without exchanging raw data, effectively addressing com-
putational efficiency and privacy concerns (Konecny et al., 2016)). In standard federated learning,
a central server coordinates iterative model updates among clients, and under suitable conditions,
this process guarantees convergence (L1 et al., |2020; (Chen et al., |2022). To further enhance com-
munication efficiency, local stochastic gradient descent (SGD) has been proposed, allowing clients
to perform multiple local updates before synchronization. Under i.i.d. scenarios, the theoretical
optimality of local SGD has been established (Stich,[2018)). However, data heterogeneity, which fre-
quently occurs in federated learning, significantly complicates local SGD. A series of studies have
investigated this issue by analyzing convergence in worst-case heterogeneous scenarios (Hu et al.,
2024), proposing regularization techniques to ensure local models remain close to the global model
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(L1 et al., [2020), and introducing momentum-based algorithms to stabilize training under non-i.i.d.
conditions (L1 et al., 2025). Moreover, inference methods have also been developed and analyzed
(Li et al., 2022).

Federated learning aggregates individual information to enable efficient collaborative model train-
ing. These personal data power indispensable services, from facial recognition unlocking our phones
to recommendation systems curating news feeds, but they also carry latent risks. Leaked genetic
markers can jeopardize insurance rates, and cleverly crafted prompts can coax large language mod-
els into regurgitating fragments of their private training corpora Nasr et al.| (2023). Differential
privacy (DP) offers a principled defense: by bounding the statistical influence of any single partici-
pant, DP ensures that outputs remain virtually unchanged whether or not an individual opts in [Dwork
et al.[(2006)). This safeguard, however, dissolves if the data custodian is breached, coerced, or simply
misconfigured access controls—scenarios illustrated by repeated healthcare leaks and high-profile
cloud missteps. Local differential privacy (LDP) fortifies the pipeline by introducing randomness at
the point of collection: users perturb their data locally, send only noisy summaries, and retain the
key to their raw information |Duchi et al.|(2013)). Even a fully compromised server therefore receives
nothing decipherable. Industry adoption is accelerating: Google’s RAPPOR measures Chrome set-
tings, iOS uses LDP to count emoji preferences, and Windows telemetry applies similar techniques
to malware prevalence [Erlingsson et al.|(2014); Ding et al|(2017). Collectively, these systems prove
that granular user analytics and uncompromising privacy need not be mutually exclusive; instead,
LDP sets a practical, legally robust baseline for responsible data-driven innovation.

DP federated learning has attracted considerable attention recently (e.g., (Liu et al.|[2023a;|Agarwal
et al., 2018; [Shi et al.l [2022; Ma et al., [2022)). The additional communication layer between local
clients and the global server gives rise to distinct privacy requirements. As delineated in (Lowy
& Razaviyayn, [2023)), one can categorize DP at the individual record level, inter-silo record level,
shuffled-model, and user-level, in order of increasing trust assumptions. In particular, LDP posits
that each individual does not trust any other party, including their own silo, and therefore must
randomize her report before release. Extensive work has focused on this setting (e.g., (Zhao et al.|
2020; Shen et al.,2023; Jiang et al., [2022)).

Whereas prior studies of LDP in federated learning (e.g., (Zhao et al.,|2020; |Shen et al.} 2023} Jiang
et al., |2022)) primarily address estimation, statistical inference, such as constructing confidence
intervals and conducting hypothesis tests, poses additional challenges. Beyond deriving the limiting
distribution, inference requires a consistent estimator of the asymptotic variance. For SGD-based
methods, this typically involves the Hessian matrix, which exists only for smooth loss functions
(Chen et al., |2020). Moreover, because only privatized gradients are observed, one may need extra
privacy budget or data-splitting to estimate variance reliably. Finally, existing single-machine LDP
quantile algorithms, such as [Huang et al.| (2021) or [Liu et al.| (2023b) cannot derive the inference
result or do not readily extend to federated settings due to client-heterogeneity in local loss functions.

In this paper, we propose a novel federated learning algorithm for quantile inference under LDP. Our
method accommodates client-level heterogeneity in quantile targets, privacy budgets, and data distri-
butions, thereby enhancing the applicability of quantile inference in realistic federated environments.
A key innovation is our theoretical analysis of the local SGD quantile estimator. We first design an
LDP mechanism that effectively reduces the federated quantile estimation problem to an equivalent
non-private setting. Exploiting this reduction, we establish the estimator’s asymptotic normality and
derive a functional central limit theorem without average-smoothness condition on the loss function.
To the best of our knowledge, this constitutes the first weak-convergence result for local SGD when
the loss does not satisfy the usual average-smoothness condition (Li et al.l [2022} |Xie et al., 2024;
Zhu et al., 2024). Building on these non-private asymptotic results, we develop an LDP-compliant
inference procedure for federated quantile estimation. By employing a self-normalization technique,
we avoid direct estimation of the asymptotic variance, instead constructing confidence intervals that
automatically eliminate the unknown variance term. To the best of our knowledge, we provide the
first inference framework for federated quantile estimation, even without privacy constraints.

The remainder of the paper is organized as follows. Section [2] reviews background and notation.
Section [3] presents the asymptotic analysis of the proposed estimator. Section [ reports extensive
numerical experiments and real data application. All technical proofs and additional simulation
results are deferred to the Appendix.
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2 METHODOLOGIES

First, we recall the definitions of central and local differential privacy. We then describe our problem
setting and algorithmic details.

Definition 1 (Central Differential Privacy, CDP (Dwork et al [2006)). A randomized algorithm A
operating on a dataset S is (e, §)-differentially private if, for any pair of datasets S and S’ differing
in a single record and for any measurable set E,

Pr[A(S) € E] < e Pr[A(S") € E] + 6.
When 6 = 0, A is called e-DP.

Definition 2 (Local Differential Privacy, LDP (Joseph et al., 2019)). A family of randomized map-
pings R : X — Y is (¢, 0)-locally differentially private if, for every pair of inputs x,x’ € X and
every measurable subset E C Y,

Pr[R(z) € E| < e Pr[R(z') € E] +6.

Under CDP, a trusted curator collects the raw data and adds noise before release; this model simpli-
fies algorithm design and typically incurs only an O(1/n) loss in accuracy (Cai et al.,[2021), where
n denotes the sample size. In contrast, LDP dispenses with any trust assumption: each user ¢ holds a
private value X;, applies a predetermined randomized mechanism R; satisfying (¢, d)-DP, and sub-
mits only the perturbed output. We adopt the non-adaptive LDP model, in which all randomizers
{R;} are fixed in advance (Cheu et al.,[2019, Definitions 2.3 and 2.6). Consequently, inference must
proceed solely from locally privatized data.

In the CDP setting, the privatized estimator Ocpp typically satisfies dcpp — 6 = O, (n‘l), thus
after y/n-scaling, it shares the same asymptotic distribution as the non-private estimator, and one
can recover its asymptotic variance with modest additional privacy cost. Under LDP, however, the
error rate degrades to fy,pp — 0 = Op(n_l/ 2), which both alters the limiting law and inflates the
asymptotic variance. Moreover, because only privatized data are available, consistently estimating
this variance from data collected solely for point estimation is generally infeasible.

We consider a federated learning framework involving K clients, each independently holding a local
dataset i.i.d. drawn from an unknown distribution P}, with cumulative distribution function (CDF)
Fy and density function fi (Li et al) [2022). The goal is to collaboratively estimate the global
quantile via weighted loss, i.e., the objective is to solve the following optimization problem:

K

K
. def . def .
argmin £(Q) = argmanpk[,Tk(Q) = argmanpkEwkNPk{KTk(mk,Q)}, 2.1)
Qco Qeo 1 Qeo 1

where py denotes the weight assigned to client k, 7, € (0, 1) is local quantile level, zy, is the sample
generated from Py, and ¢, (z, Q) represents the check loss function defined as:

lr (2, Q) = (= Q) (1 — I(z < Q)), 2.2

where I(-) is the indicator function. Let 7 := Zle pr7i € (0,1). For the global minimizer Q* of

l) it corresponds to the global quantile at level 7 of a weighted CDF, i.e., Zszl pFR(Q*) = 7.
In the following, we denote Fj(Q*) = Qp, and considers the parameter space O is bounded; see
Gu & Chen| (2023)).

As noted in introduction, to improve the communication efficiency, we consider a local SGD based
estimator, for communication iteration sets Z = {tg, %1, ...,tr}, the global server will receive the
local iterations and broadcast the update to K clients, otherwise, the iterations are only conducted
in each local clients, i.e., fork =1,... K,

qk _ Qf_nt{]l(xf<Qf)—Tk}7 t¢Iv
NS o [ - {1 < f) — )], tel

Here 1; is the pre-determined learning rate, and 2/ represents an independent realization of Py, The
final estimator is Polyak-Ruppert type, which averages the historical iterations,

B 1 ILXK .
Qr = ir Z Zpkq,sm~

m=1 k=1
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The communication and statistical efficiency are determined by the interval length E,,, := t,, —t,—1
form € N*. If E,, = 1, the local clients must communicate with the global server at every
iteration. In this scenario, the approach reduces to parallel SGD, which, as noted by |Li et al.[(2022),
may achieve the Cramér-Rao lower bound and thus serve as an efficient estimator for certain smooth
loss functions. Conversely, if F,,, = n, implying only one communication at the last iteration, the
estimator degenerates to a divide-and-conquer estimator. Such an estimator is consistent only when
7, = 7forallk =1,..., K and some common 7 € (0, 1). In this case, minimizing the loss function
becomes a distributed learning problem. However, as pointed out by |Gu & Chen| (2023)),
the divide-and-conquer estimator may still be statistically inefficient for certain weight choices.
Therefore, a careful balance must be struck between communication and statistical efficiency. For a
general positive interval F,,, > 0, the local SGD method allows us to find an appropriate choice of
E,,, that can ensure an optimal trade-off between these efficiencies.

On the other hand, the data collected from each client may be subject to privacy protection policies,
particularly in surveys involving sensitive information such as income or health status. For the local
quantile loss function equation [2.2] we observe that the structure of its gradient resembles a binary
response. This motivates us to incorporate an LDP mechanism based on randomized response and
permutation, following the framework of [Liu et al. (2023b), with a truthful response rate r, € (0, 1].
Specifically, the mechanism allows each local client to either return a true gradient with probability
71 or a synthetic Bernoulli random variable with probability 1—r. This iterative mechanism ensures
€,-LDP, where the privacy parameter is given by €, = log(1 + ) — log(1 — ), as established in
Liu et al.| (2023Db)).

It is worth noting that the method of |Liu et al.[(2023b)) was originally developed in a single-machine
setting. Extending it directly to federated learning raises new challenges, since federated systems
inherently involve the issue of heterogeneity. We illustrate with a simple example. Consider col-
laboratively estimating the national median annual income using state-level data from the United
States, where each state is treated as a client. First, income distributions typically vary across states
(see Figure [I[i)). Second, privacy preferences can differ across states due to cultural norms and
development levels (Milberg et al., [2000; Bellman et al.,2004). Figure ii) shows how the released
information can vary under different privacy budgets. Due to such heterogeneity, a naive combina-
tion of local LDP estimators from Liu et al.|(2023b)) may result in severely biased results. To address
this problem, we propose a novel federated quantile estimation algorithm under LDP, equipped with
a carefully designed local SGD updating rule. This method accommodates heterogeneous data dis-
tributions, quantile targets, and privacy budgets across clients while maintaining a common global
target. The complete procedure is summarized in Algorithm[T} and we denote the resulting estimator

as Qr.

Algorithm 1: Federated quantile estimation with local SGD under LDP

Input: step sizes {1, }%,_,, target quantile 7 € (0, 1), truthful response rates {ry }1

communication set Z = {to, t1,...,tr}.

Initialization: set ¢ = gy ~ N'(0,1) forall 1 < k < K, let Qy < 0.

form =1toT do
for k = 1 to K (distributedly) do
fort=1t,,_1+1tot,, do > Local updates

ug ~ Bernoulli(r), vF ~ Bernoulli(0.5)
sy = (et > q/_)I(uf = 1) + v/ I(uf = 0)

1—1rp 4+ 2711
@ @iy + ——————mall(sf = 1) —

end for
end for
Gt,, ZkK:1 PRar s af < @, foralll <k < K. > Aggregation and synchronization.
Qm — ((m = 1)Qm-1 + ) /m.
end for
Return: @T.

1+7r, — 27171
————Nm-1l(sf = 0)

27 2ry,
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In our proposed Algorithm [I] each iteration integrates global information (the global quantile 7)
with client-specific privacy budget (7)), thereby correcting bias arising from the aggregation of
heterogeneous local LDP mechanisms and loss functions. The following theorem shows that this
procedure effectively reduces the LDP inference problem to its non-private analogue.

\voam

[ 85k-96k

(i) Data heterogeneity (ii) Privacy heterogeneity

Figure 1: Illustration of client heterogeneity. Income data source: U.S. Census Bureau (https:
//data.census.gov/table/ACSST5Y2023.51901?2g=010XX00US0400000). Panel
(i) shows median annual income by state. Panel (ii) shows three income disclosure schemes un-
der different privacy budgets: (a) each individual release true income; (b) each individual release an
income interval; and (c) withholding release.

Theorem 2.1. Denote 7, = 1,7+ (1 — 1) /2. For a privacy budget e, = log(1+rj) —log(1—ryg),
there exists a dataset consisting of i.i.d. samples drawn from some distribution Py, 1 < k < K, such

that solving the federated loss equation2.1|with e,-LDP using data drawn from Py, is equivalent to
solving the following non-private problem:

K

argmin £(Q)) = arg min Z(Q) := arg min ZpkEwkNﬁk {r;lf;k (zk, Q)} . (2.3)
Q Q Q i

Therefore, by Theorem [2.1] the LDP federated quantile estimation problem can be reformulated
as a non-DP federated quantile estimation task under modified distributions and shifted quantile
levels. The main challenge then becomes analyzing the statistical properties of the resulting non-DP
estimator, particularly in the presence of the non-smooth quantile loss function.

3 ASYMPTOTIC ANALYSIS

In this section, we focus on the asymptotic analysis of the proposed LDP estimator and the practical
construction of confidence intervals. Before presenting the main results, we first introduce several
necessary assumptions.

Assumption 1. For some constant Cy > 0, fi(-), 1 < k < K, is uniformly bounded by C'.

Assumption 2. Define the effective step ~,, = Ny Ep,, which is non-increasing in m and satisfies
that 3701 Yo, < 00 o001 Ym = 00, and (Yo — Ym+1)/Ym = O(Ym)-
Assumption 3. The sequence {E,, },>1 satisfies that

(a) {Ep,}m>1 is either uniformly bounded or non-decreasing.
(b) There exist some § > 0 and v > 1 such that

1 T-1 T-1 1 T-1 T-1
limsupﬁ <Z E},f‘S) (Z Em15> < oo,Tlim T2 (Z Em> (Z Em1> = .
— 00
el m=0 m=0

T— =0

(c) Denote tp = ZTfl E,,, satisfying

m=0

T
Vit Vitr 1
lim YL E Ym =0, lim YT _— -9
T—oo T = T—oo T /1


https://data.census.gov/table/ACSST5Y2023.S1901?g=010XX00US0400000
https://data.census.gov/table/ACSST5Y2023.S1901?g=010XX00US0400000
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Assumption 1 is a mild and regular condition concerning the uniform boundedness of density func-
tions. Assumptions 2 and 3 require that the effective step sizes decay slowly and the communication
intervals increase slowly; see also|L1 et al.|(2022).

Theorem 3.1. Under Assumptions 1-3, as'T' — oo, the proposed LDP federated estimator enjoys

Zk 1pk {Tk (2Qk — 1)? }

Vir(Qr — Q") L N [ o,v ;
4 (Ekzl pkfk(Q*))

Theorem establishes the asymptotic normality of the estimator @T, which theoretically allows
for the theoretical construction of a confidence interval for (Q*. However, the construction involves
unknown quantities, such as the individual quantiles @} and the density values f(Q*). Even in
cases where (), = 7, is known, the estimation of fi(Q*) remains challenging. In particular, it is dif-
ficult to recover these density values using only the perturbed gradients available from Algorithm
Moreover, in SGD-based methods, consistent variance estimation typically relies on the Hessian
matrix, which is well-defined only for smooth loss functions, as previously discussed. Therefore,
although Theorem [3.1] provides a theoretically valid basis for confidence interval construction, it is
not practically implementable due to these limitations.

Inspired by the quantile inference framework for single clients in [Liu et al.[(2023b), it is necessary
to strengthen the pointwise result of Theorem [3.1]to a functional version.
Theorem 3.2. Under Assumptions 1-3, as T — oo, we have

Or(s) == h(iT) \/ v i pf {r” — 20k —1)? }3(5)7

m=1 QZk; 1pkfk'(Q*)

where tp = Z:ﬁb__t E.., G, = ZkK_l prriay. . B(:) is a standard Brownian motion on [0, 1], and

T n

22§

Theorem [3.2]establishes a functional central limit theorem (FCLT) for Qr(s) over s € (0, 1], show-
ing that it converges weakly in the £°°[0, 1] (the space of bounded real-valued functions) to a Brow-
nian motion, which is our another major theoretical contribution. Note that the sample quantile loss
doesn’t satisfy the common L-average smooth conditions for weakly convergence result, such in
(Li et al., 2022; Xie et al.,|2024; Zhu et al., [2024)), leading to extra challenge in deriving the almost
sure and £ convergence rates of ¢;, , which are essential for handling the asymptotically negligible
terms. Theorem [3.1] arises as a special case of Theorem [3.2 when s = 1. Building on Theorem [3.2}
we proceed to construct a self-normalized test statistic and derive its asymptotic pivotal distribution
via the continuous mapping theorem.

h(s,T) = max {n €Zso|s

}, fors e (0,1].

H’L
m=1

~1
Define ro = 0 and, form > 1,7, = (31", 1/E;) (ZZ;I I/El) , which ensures that

Or(rm) = g Z (@, — @), andin particular, Qp(1 \/E Z
i=1

Following the arguments in (Shao) |2015)), once a functional central limit theorem such as Theo-
rem is established, one can construct a self-normalized statistic that asymptotically enjoys a
pivotal distribution. Specifically, define
T m 5
Vr= 3 (=) (Qr(rm) - Zror() . (3.1)
Corollary 3.1. Suppose Assumptions 1-3 hold and g(r.,) < m/T for some continuous function g
on [0,1]. Then, as T — oo,

Qr(1) EN B(1) _
Vi I B) - g(r)BO) dr
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Corollary 3.1] presents the asymptotic distribution of the self-normalized statistic Q7(1)/Vr, which
is distribution-free. As a result, there is no need to allocate additional DP budget to estimate nuisance
parameters when constructing confidence intervals.

The selection of the self-normalizer is not unique, and an appropriate norm of the Gaussian pro-
cess B(r) — g(r)B(1) can yield similar results to those in Corollary For example, using the
supremum norm and the £, norm, one can define alternative self-normalizers as follows:

T

Vo= swp |Qr(rm) = 2Qr(M|, VA= (rm—m-1)|Qr(rm) = (1),

1<m<T

m=1

which are related to the processes supy«,.<; |B(r)—g(r)B(1)| and fl |B(r)—g(r)B(1)| dr, respec-
tively. However, the self-normalizer defined in equation equation enjoys greater computational
efficiency, as the £o norm can be computed in an online manner, as described in Algorithm 2] Let

Vr denote the estimator of the self-normalizer in equation and let v, /5 4 be the (1 — /2)
1/2

quantile of the random variable B(1)/ ( fo g(r)By(1))? dr) . The following corollary

ensures the asymptotic validity of the constructed LDP confidence interval.

The following Corollary [3.2] ensures the asymptotic validity of the constructed LDP confidence
interval.

Corollary 3.2. Suppose the same conditions in Theorem[3.2| hold, as T — oo, one has that

P(@T—Wg,g Vr < Q* <@T+vg,g\/17T> —1-a

Algorithm 2: Online Inference

Input: step sizes {1, }%,_,, target quantile 7 € (0, 1), truthful response rates {ry }1
communication set Z = {to, t1,...,tr}.
Initialization: set ¢ ~ N(0, 1) for all k, let V§ « 0, Vg « 0, V5 + 0, V5 < 0, and Qg < 0.
form =1to T do
Obtain Qm from Algorithm m
Va — Va -1 =+ m2Qm/Em’ > Em =tm —tm—1
V7bn A VS’L—I + TTZQQm/Em’
Vi Vs _1+1/E,,
VP VP 4+ m?/Ey,.
Vi ﬁ (Vﬁl —2V2 Qpn + anan) . > Online inference.
end for

Return: Confidence interval [@T Ve g VT, QT +va g1/ ﬁT]

4 EXPERIMENTS

4.1 SIMULATION SETUP

We first evaluate our proposed method through extensive simulation studies using synthetic data. In
all experiments, we fixed p, = 1/K for 1 < k < K, the number of clients is fixed at X = 10. The
quantile levels examined range from 0.3 to 0.8, and the truthful response rates vary between 0.25
and 0.9. We focus on the following four scenarios of heterogeneity:

* heterogeneous quantile levels: We investigate two distinct scenarios: (1) Case 7oy lower quan-
tile levels, where each client is assigned a unique quantile level 7 ranging uniformly from 0.3 to
0.5; and (2) Case Thign: higher quantile levels, where 7, ranges uniformly from 0.5 to 0.8.

* heterogeneous response rates. Each client has a unique truthful response rate r, ranging uni-
formly from 0.25 to 0.9.
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* heterogeneous locations (Hete L). Data for each client £ are independently generated from
N (g, 1), where pg, ~ N(0,1).

* heterogeneous distribution families (Hete D). Data are generated independently across ten
clients, with three drawing from N (0, 1), three from the uniform distribution /(—1, 1), and four
from a standard Cauchy distribution C(0, 1).

We set the step size 7y, as: v, = 207/(m°5 4 100), with v,,, = Epny, and 7 = K1 Zle Tl
Following |L1 et al| (2022), we implement a warm-up phase, setting the communication interval
E,, = 1 for the first 5% of iterations. After the warm-up period, we redefine the interval sequence
{E,,} based on a new sequence {F;, }, specifically: E,, = E;, _ ;s.p- We examine three different
interval strategies for E/ : (1) C1: E!, = 1 (equivalent to parallel SGD), (2) C5: E/, = 5, and (3)
Log: E!, = [logy(m + 1)]. The initial parameter estimates are set to g5 = go ~ N(0,1) for all
clients k. All experimental settings are replicated R = 1,000 times. The simulations are conducted
on computational resources comprising 36 Intel Xeon Gold 6271 CPUs, with a total of 128GB RAM
and 500GB storage.

4.2 SIMULATION RESULTS

We first illustrate the performance of our proposed method by presenting sample iteration trajec-
tories for estimation and inference. Specifically, we randomly select one simulation run and plot
the resulting estimates and corresponding confidence intervals against ¢ (Figure [S.T)). The results
demonstrate that our approach accurately captures the true quantile value and provides reliable in-
ference. Subsequently, we fix the total sample size ¢z at 10,000 and 50, 000 and evaluate the finite

sample performance under different settings. Let @(Tr ) denote the quantile estimator and cr™ rep-
resent the corresponding 95% confidence interval obtained from Algorithm[2]in the 7-th simulation.

We consider two metrics: the mean absolute error (MAE), defined as R~* Zle |@§f ) _ Q*|, and

the empirical coverage probability (ECP), defined as R~! Zil 1(Q* e CI™). For comparison,
we also consider two alternative methods: (1) the SGD with DP updates (Song et al.| [2013)) (DP-
SGD), which adds noise directly to the gradients instead of introducing DP through randomized
response. To align with the original paper’s setup, we focus on the case with C' = 1. In this regime,
the gradient-descent update in Algorithm[I]becomes

af  afy +mo{nd@l > gy - (- Ik <) + 2E,

where ZF is drawn from a Laplace distribution. A simple calculation shows that ZF has mean zero
and scale parameter 1/log {(1+ 7)/(1 — rr)}. (2) the divide-and-conquer (DC) method, which
corresponds to the special case E,, = n. Here we use step size n; = 27/(t°-51 4 100) (Goyal et al.,
2017). The numerical results for all of the methods are reported in Tables E] and@

From Tables [S.T|and[S.2] we observe that our method consistently achieves ECP close to or exceed-
ing the nominal 95% level across all scenarios. As either the total sample size ¢ or the truthful
response rate increases, the MAE decreases, which aligns with our theoretical results. Comparing
the three interval strategies, we find that the C1 strategy (parallel SGD) yields the smallest MAE, as
it has the highest communication frequency. Comparing with the two competing methods, we find
that the DC approach results in the largest errors. Notably, in certain heterogeneous cases, such as
Hete L with 7 = 0.8, the DC estimator exhibits significant bias and an ECP far below the nominal
95% level. In contrast, our proposed estimators successfully achieve approximately 95% empirical
coverage in these cases. Moreover, while DP-SGD attains empirical coverage probabilities close to
or even exceeding 95% in most settings, its MAE remain uniformly larger than those of our method.
To further illustrate the communication efficiency of our method, we also consider scenarios with
a fixed number of communication rounds 7. The results are summarized in Tables and
We observe that our proposed method continues to provide valid inference. Additionally, under
fixed communication rounds, the Log strategy generally achieves the best performance, yielding the
smallest MAE.

4.3 REAL DATA

In this subsection, we empirically evaluate the effectiveness of our proposed method using a rep-
resentative real-world dataset widely employed in privacy research: Government Salary Dataset
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(Plecko et al., 2024). This dataset is sourced from the 2018 American Community Survey con-
ducted by the U.S. Census Bureau and contains over 200,000 records, with annual salary (in USD)
as the response variable. Since annual salary represents sensitive financial information (Gillenwater,
et al.| [2021), we treat it as requiring privacy protection. To incorporate the dataset’s inherent ge-
ographic structure, we partition the sample according to the feature “economic region.” The three
smallest regions are merged into a single “Others” category, yielding seven regions in total, each
regarded as one client. Because region-level sample sizes vary, we apply oversampling to balance
the data, resulting in ¢ = 53,960 observations per client. All other hyperparameters follow the
settings in Section 4.1. For analysis, we apply a log transformation to the response variable and
subsequently back-transform it.

We target quantile levels 7, = 7 € {0.3,0.5,0.8} and consider response rate ranges from 0.6 to
0.9. For reference, we also compute the full-sample quantiles without LDP. The resulting estimators
and confidence-interval lengths are summarized in Table [, As shown, higher response rates
and more communication rounds generally produce shorter confidence intervals, consistent with
our simulation findings. In most cases, the empirical quantiles fall within our reported intervals,
highlighting the practical utility of our method for real data.

Quantile (7) Rate (r) Cl C5 Log Empirical
0.3 0.6 33367 (1742) 33184 (6697) 33030 (12093)
0.3 hetero 33418 (1424) 33229 (5291) 33140 (9788) 34000
0.3 0.9 33547 (1548) 33403 (4443) 33239 (7828)
0.5 0.6 48454 (2255) 48212 (6315) 47951 (11361)
0.5 hetero 48462 (1435) 48290 (4973) 48091 (9025) 50000
0.5 0.9 48610 (1454) 48494 (3851) 48311 (6863)
0.8 0.6 78586 (2066) 78168 (6646) 77995 (13144)
0.8 hetero 78390 (1291) 78054 (5862) 77722 (11101) 80000
0.8 0.9 78657 (1138) 78300 (4677) 78084 (8928)

Table 1: Estimation results (interval lengths) on the real dataset across varying quantile levels and
response rates. “Empirical” denotes the full-sample quantile estimator without LDP. “hetero” indi-
cates client-specific truthful response rates rj, range from 0.6 to 0.9.

5 CONCLUDING REMARK

We propose a federated-learning algorithm for quantile inference under LDP that flexibly accom-
modates client-level heterogeneity in quantile targets, privacy budgets, and data distributions. In
addition, one innovation that should be emphasized is that our developed theoretical results of local
SGD quantile estimator. We first design an LDP mechanism that can transform the LDP federated
quantile estimation into the non-DP case, and then derive the asymptotic normality and functional
central limit theorem of the proposed estimator under non-DP cases. It is first weak-convergence re-
sult for local SGD without the usual average-smoothness assumption in existing literature. Building
on these non-private asymptotic results, we develop a self-normalized inference procedure that con-
structs valid confidence intervals under LDP without requiring direct estimation of the asymptotic
variance.

Despite these advances, our method has several limitations. First, it relies on additional regularity
assumptions to handle arbitrary client-level data heterogeneity. Second, as noted in (Shaol |2015)),
self-normalization yields heavier-tailed limit distributions than the Gaussian, which can produce
conservative confidence intervals or reduced power in hypothesis testing. Finally, our framework
depends on a central server for aggregation and synchronization, which may not be available in fully
decentralized environments. Addressing these challenges and extending the algorithm to decentral-
ized settings remain important directions for future research.
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REPRODUCIBILITY STATEMENT

All numerical experiments and real-data analyses are fully reproducible via the code included in the
submitted anonymized supplementary materials.
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Quantile (1) Rate (7) Cl Cs Log DP-SGD (C1) DC
tr = 10000
0.5 025  0.949(0.0133) 0.967(0.0244) 0.992(0.0360) 0.949(0.0191)  0.939(0.2503)
0.5 hetero  0.963(0.0071)  0.989(0.0112)  0.997(0.0161)  0.955(0.0100)  1.000(0.0497)
0.5 09  0.995(0.0023) 1.000(0.0054) 1.000(0.0082) 0.980(0.0036) 1.000(0.0158)
Tiow 025  0.947(0.0136) 0.982(0.0253) 0.990(0.0369) 0.940(0.0200) 0.969(0.2616)
Tlow hetero  0.962(0.0072) 0.993(0.0113)  0.997(0.0162)  0.949(0.0105)  0.999(0.0530)
Tlow 0.9  0.999(0.0020) 1.000(0.0055) 1.000(0.0083) 0.985(0.0036) 1.000(0.0162)
Thigh 025  0.939(0.0145) 0.987(0.0268) 0.986(0.0399) 0.952(0.0210) 0.984(0.2771)
Thigh hetero  0.968(0.0076) 0.987(0.0126)  0.999(0.0182)  0.956(0.0111)  1.000(0.0516)
Thigh 09  0.996(0.0023) 1.000(0.0067) 1.000(0.0102) 0.980(0.0038) 1.000(0.0172)
7 = 50000
0.5 025  0.956(0.0056) 0.982(0.0081) 0.996(0.0122) 0.949(0.0081)  0.988(0.0571)
0.5 hetero  0.960(0.0032)  0.979(0.0044)  0.992(0.0064)  0.950(0.0046)  1.000(0.0115)
0.5 0.9  1.000(0.0018) 0.988(0.0027) 0.990(0.0036) 0.983(0.0021)  1.000(0.0038)
Tow 025  0.957(0.0061) 0.981(0.0083) 0.994(0.0125) 0.944(0.0091) 0.993(0.0594)
Tlow hetero  0.953(0.0036) 0.981(0.0046)  0.990(0.0066) 0.934(0.0054) 0.999(0.0121)
Tlow 0.9  1.000(0.0019) 1.000(0.0026) 0.989(0.0038) 0.988(0.0024)  1.000(0.0057)
Thigh 025 0.968(0.0059) 0.986(0.0086) 0.997(0.0133) 0.946(0.0089) 0.999(0.0620)
Thigh hetero  0.953(0.0032)  0.990(0.0045)  0.998(0.0065) 0.952(0.0047)  0.993(0.0154)
Thigh 0.9  0.998(0.0010) 0.999(0.0023) 1.000(0.0034) 0.977(0.0016) 0.938(0.0132)

Table S.1: Empirical coverage probabilities (mean absolute errors) under varying quantile levels and
response rates, with different ¢7 and fixed K = 10 clients and data generated from A/ (0, 1). In Case
Tiow, €ach client uses a unique quantile level 7, ranging uniformly from [0.3,0.5]; in Case Thigh,
), is ranging from [0.5, 0.8]. “hetero” indicates client-specific truthful response rates ry, range from
[0.25,0.9].

Quantile (1) Rate (r) Cl C5 Log DP-SGD (C1) DC
Hete L — ¢ = 10000
0.3 0.25 0.958(0.0184)  0.981(0.0311) 0.990(0.0452)  0.942(0.0260)  0.985(0.3066)
0.3 hetero  0.949(0.0096)  0.982(0.0150) 0.993(0.0205) 0.947(0.0142)  0.898(0.1302)
0.3 0.9 1.000(0.0029)  1.000(0.0066)  1.000(0.0100) 0.981(0.0049) 0.215(0.1273)
0.5 0.25 0.950(0.0165)  0.984(0.0315) 0.988(0.0465) 0.953(0.0224) 1.000(0.2822)
0.5 hetero  0.952(0.0085) 0.991(0.0155)  0.998(0.0221)  0.955(0.0119)  1.000(0.0525)
0.5 0.9 0.996(0.0025)  0.999(0.0078)  1.000(0.0120)  0.984(0.0041) 1.000(0.0186)
0.8 0.25 0.966(0.0237)  0.995(0.0512) 0.992(0.0791) 0.957(0.0328) 0.892(0.6152)
0.8 hetero  0.962(0.0122) 0.995(0.0227) 0.996(0.0347) 0.943(0.0186)  0.709(0.2684)
0.8 0.9 0.990(0.0042)  1.000(0.0116)  1.000(0.0185)  0.968(0.0065)  0.049(0.2098)
Hete L — ¢ = 50000
0.3 0.25 0.937(0.0089)  0.981(0.0111) 0.990(0.0165) 0.916(0.0135)  0.949(0.1328)
0.3 hetero  0.911(0.0056) 0.981(0.0056) 0.997(0.0080) 0.885(0.0083) 0.093(0.1282)
0.3 0.9 0.977(0.0034)  1.000(0.0019)  1.000(0.0030) 0.908(0.0041)  0.000(0.1290)
0.5 0.25 0.958(0.0069) 0.988(0.0098) 0.995(0.0147) 0.949(0.0099) 1.000(0.0609)
0.5 hetero  0.964(0.0035)  0.994(0.0048) 0.996(0.0069) 0.957(0.0052) 0.997(0.0145)
0.5 0.9 1.000(0.0010)  1.000(0.0016)  1.000(0.0026) 0.993(0.0018)  0.979(0.0143)
0.8 0.25 0.956(0.0102) 0.991(0.0144) 0.998(0.0226) 0.931(0.0160) 0.799(0.2829)
0.8 hetero  0.950(0.0055) 0.992(0.0072) 0.997(0.0112) 0.923(0.0092) 0.014(0.2034)
0.8 0.9 1.000(0.0013)  1.000(0.0053)  0.999(0.0082) 0.985(0.0026)  0.000(0.1929)
Hete D — ¢t = 10000
0.5 0.25 0.949(0.0132)  0.985(0.0243) 0.986(0.0354)  0.953(0.0183)  0.904(0.2496)
0.5 hetero  0.966(0.0069) 0.990(0.0117)  0.989(0.0172)  0.955(0.0098)  0.999(0.0488)
0.5 0.9 1.000(0.0023)  1.000(0.0074)  1.000(0.0117)  0.991(0.0035)  1.000(0.0163)
Hete D — {7 = 50000
0.5 0.25 0.958(0.0057)  0.980(0.0082) 0.993(0.0127)  0.943(0.0081)  0.981(0.0589)
0.5 hetero  0.966(0.0030) 0.988(0.0046) 0.998(0.0073) 0.950(0.0041)  1.000(0.0111)
0.5 0.9 0.999(0.0008)  1.000(0.0029)  1.000(0.0052)  0.990(0.0014)  1.000(0.0037)

Table S.2: Empirical coverage probabilities (mean absolute errors) under heterogeneous distribu-
tions for different ¢7. The number of clients K is fixed at 10. In Hete L, data for each client k are
independently generated from A (uy, 1), where py, ~ N(0,1). In Hete D, data are generated from
N(0,1), U(—1,1), and C(0, 1) across different clients. “hetero” indicates client-specific truthful
response rates 7 range from [0.25,0.9].
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Quantile () Rate (r) Cl C5 Log
T = 5000
0.5 0.25 0.954(0.0189) 0.974(0.0129) 0.986(0.0112)
0.5 hetero  0.959(0.0103) 0.976(0.0065) 0.995(0.0052)
0.5 0.9 0.999(0.0033)  1.000(0.0040) 1.000(0.0026)
Tlow 0.25 0.957(0.0200)  0.974(0.0137) 0.991(0.0116)
Tlow hetero  0.957(0.0108) 0.977(0.0067) 0.993(0.0053)
Tlow 0.9 1.000(0.0033)  1.000(0.0040)  1.000(0.0029)
Thigh 0.25 0.956(0.0212)  0.975(0.0128) 0.993(0.0123)
Thigh hetero  0.961(0.0112) 0.984(0.0062) 0.996(0.0056)
Thigh 0.9 0.998(0.0037)  0.997(0.0028) 1.000(0.0031)
T = 10000
0.5 0.25 0.949(0.0133) 0.968(0.0078) 0.987(0.0061)
0.5 hetero  0.963(0.0071) 0.978(0.0037)  0.991(0.0030)
0.5 0.9 0.995(0.0023)  0.999(0.0020) 0.999(0.0014)
Tlow 0.25 0.947(0.0136)  0.972(0.0078)  0.984(0.0064)
Tlow hetero  0.962(0.0072) 0.985(0.0038) 0.983(0.0033)
Tlow 0.9 0.999(0.0020)  1.000(0.0016)  0.967(0.0018)
Thigh 0.25 0.939(0.0145)  0.974(0.0086)  0.985(0.0066)
Thigh hetero  0.968(0.0076) 0.988(0.0043) 0.985(0.0032)
Thigh 0.9 0.996(0.0023)  0.999(0.0031) 0.996(0.0014)

Table S.3: ECP (MAE) under varying quantile levels and response rates, with different 7" and fixed
K = 10 clients and data generated from A/(0,1). In Case Tjow, €ach client uses a unique quantile
level 75, ranging uniformly from [0.3,0.5]; in Case Thign, T is ranging from [0.5,0.8]. “hetero”
indicates client-specific truthful response rates r, range from [0.25,0.9)].

Quantile (1) Rate (1) Cl C5 Log
Hete L — 7' = 5000
0.3 0.25 0.942(0.0271)  0.960(0.0168)  0.975(0.0151)
0.3 hetero  0.962(0.0131)  0.966(0.0086) 0.987(0.0067)
0.3 0.9 0.998(0.0043)  0.959(0.0063) 1.000(0.0033)
0.5 0.25 0.954(0.0254)  0.973(0.0154)  0.990(0.0153)
0.5 hetero  0.963(0.0120) 0.981(0.0072) 0.991(0.0071)
0.5 0.9 0.992(0.0042)  0.998(0.0032) 1.000(0.0034)
0.8 0.25 0.954(0.0375)  0.982(0.0242)  0.998(0.0248)
0.8 hetero  0.968(0.0181) 0.988(0.0109) 0.998(0.0116)
0.8 0.9 0.985(0.0108)  0.999(0.0070)  0.982(0.0094)
Hete L — 7" = 10000
0.3 0.25 0.958(0.0184)  0.966(0.0102)  0.981(0.0083)
0.3 hetero  0.949(0.0096)  0.965(0.0050) 0.979(0.0040)
0.3 0.9 1.000(0.0029)  0.979(0.0022)  0.867(0.0036)
0.5 0.25 0.950(0.0165)  0.974(0.0094)  0.985(0.0085)
0.5 hetero  0.952(0.0085) 0.976(0.0045) 0.991(0.0039)
0.5 0.9 0.996(0.0025)  0.985(0.0018)  1.000(0.0016)
0.8 0.25 0.966(0.0237) 0.983(0.0163) 0.990(0.0149)
0.8 hetero  0.962(0.0122) 0.988(0.0088)  0.974(0.0090)
0.8 0.9 0.990(0.0042)  0.997(0.0087)  0.645(0.0095)
Hete D — 7" = 5000
0.5 0.25 0.954(0.0195)  0.974(0.0129) 0.987(0.0109)
0.5 hetero  0.965(0.0098) 0.974(0.0075)  0.993(0.0049)
0.5 0.9 1.000(0.0037)  0.989(0.0060) 1.000(0.0026)
Hete D — 7" = 10000
0.5 0.25 0.949(0.0132)  0.968(0.0078)  0.982(0.0064)
0.5 hetero  0.966(0.0069) 0.973(0.0039)  0.972(0.0034)
0.5 0.9 1.000(0.0023)  0.999(0.0014)  0.966(0.0023)

Table S.4: ECP (MAE) under heterogeneous distributions for different 7. The number of clients K is fixed
at 10. In Hete L, data for each client k are independently generated from N (u, 1), where ur, ~ N(0,1).
In Hete D, data are generated from A/(0, 1), U(—1, 1), and C(0, 1) across different clients. “hetero” indicates
client-specific truthful response rates 7 range from [0.25, 0.9].
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B TECHNIQUE PROOFS

Proof of Theorem 2.1} Note that the following recursive equation

1—r,+ 271 1+7r,— 2711
R L L (7 D AL L )
TEk 2rk
is asymptotically equivalent to
1 (1—=rp 42774 -
df =yt (I k<ot )

where
]P’(EiC = xf) =g, }P’(ff =00) = }P’(ff =—00)=(1-1g)/2.
Therefore, the minimizer of L satisfies

K K K
Do PERGE < Q1) = 3 (e (1= ) (2ri)) = D ope
This yields ZkK:l PeQr = Zszl prT = 7. The proof is complete.
Proof of Theorem 3.1k
Theorem [3.1]is a direct consequence of Theorem|[3.2]
Proof of Theorem 3.2k

We follows the perturbed iterate framework that is derived by Mania et al.| (2017) and also used in
Li et al.|(2022)). Define the sequence §; in the following way:

K
@ =Y praf.
k=1

Define ¢¥ = (2%, U*, V¥)T, with
PU*=1)=r, PU*=0=1-r,, PV*=1)=PV*=0)=1/2.
For k = 1,...,K, let UF and V¥ be i.i.d. copies of U* and V¥, respectively. Denote ¢} =
(xk UF, VF)T. Define
e = 2r7

Gilgf-1.¢) = =5 (el <ol JUF + (1 -UH - V)]

1— 71y, +2
- % {1{55 >qr  JUF + (1 Ut’f)Vt’f]
k

Elementary calculations show that

gk(q) ==EG(q,(f) = Fr(q) — .

Define
K
9(q) = ngk(Q)-
k=1
Denote
ex(q) = Gr(a,¢F) — gr(a).
Besides,

1—ri{2F(gf ) — 1}°

E (gi(Qf—lﬂ]:t—l) = 470]%

16
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By definition, for ¢,, <t < t,,+1 — 1, we have

Qt+1 — NIm Z Gi( qm

i=tm
Define s,, = q:,, — Q*, and recall that E,,, = t,,4+1 — &, and vy, = 9y B, Elementary Iteration
fromt = t,, to t,;,41 — 1 yields

tnL+1_1 K

Sm+1 = Sm — Tlm Z Zkak(qffh Cf) = Sm = TmVm,

t=tm k=1
in which

tmy1—1 K

=g 3 S mGrlala ).

t=tm, k=1

We define
t7n+1 1 K

Z ZPka @i CF) s

mttmkl

and further decompose that

Um = G8m + (g (q_tm) - Gsm) + (hm -9 (‘jtm)) + (Vm - hm)
=GSm + T +Em + Om,

where G = Zszl prTk [1(Q*) is the Hessian at Q*. It then follows that
Sm+1 = (1 - ’YmG) Sm — TYm (Tm +éem+ 5m) = Bmsm - '-YmUmy (Bl)
where By, :== 1 — v,,,G and Uy, := 1y, + €5, + 9y, for short. Recurring (B.T) gives

m

smer= | [IBi ) so=>_| I Bi) U
§=0

§=0 \i=j+1

Here, we use the convention that H B; =1 for any m > 0. Recall the definition that

DI

n=1

1=m-+1

h(r,T) = max {n €Zy

Hence,

h(r,T)

\/tT \/tT
Z Sm+1 =

7=0
tr
T H Bz ’YjUj'

With the notation of A;?, we can rewrite that

h(r,T)

t r t
\/? Z N \ﬁAh( ™ Byso Vir Z ABCTI
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Since U,,, = ry, + €m + Om, then

h(r,T) h(r,T)

(r,T)
Vir " Vir VT i) NG N
T 2 st G = AN s = 7 3 AT (4 )
(r,T)
Vir " .
_ TT Z (Af@—G 1)6m
m=0
\/5 Z ( h(r,T")
A ™ >5m
D

To complete the proof, we first investigate the partial-sum asymptotic behavior of
(r,T)

\/E Z G E’Hl?

and then show that the four separate terms: sup,.co.1) [ 7ol , sup,.cpo,1) | 71l sup,fo,17 1172/, and
sup,.¢(o,1) | 74l are op(1), respectively.

We aim to follow the proof of Theorem 4.2 in [Li et al.| (2022). However, we find that the average
smoothness condition in their Assumption 3.1 is not satisfied, because here we only have
2
VE{Gule,¢H) — Guly. )} S o — g2, (B2

Upon close examination of their proof, we find that this condition is crucial in the proof of their key
Lemma B.2.

In the following, we re-establish the proof of
Elg,, — QT < m: G, — Q"
under the condition given in (B:2). Consider that
|7 t)

S

< nm Z |Gk Qz? )||‘7:t7n)

Zquw G

1=t

E (‘Qfﬂ

< Z (1 +laf = @l + l@r,, — Q71)

i=tm
where the last inequality holds by the following fact
E (G3(aF,¢)IF) = E (|Gr(ak,¢F) = gul@)[*1F:) + gi(ab)
< E (|Gula, ¢F) = 9u(@)17) + 2lgwlal) — g0(Q) + 202(Q")
SAL+262(Q0)} + laf — Q@
S1+lg — @, + 1@, — Q%

Define
K

Vi=> mE (lgf — a1 F2,.) -
k=1

Hence,

t
Vie1 S 0m Z (1+ g, — Q"I+ Vi),

i=tm

18
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which further implies that (since V;,, = 0)

| tmais 1 —2 . tmp1—2 ¢ ) )
. t;n Vi = Z Vigr S B, ; 7; (I + g, — Q"+ Vi)
b1 —2
=5 2 o == ) (i~ Q1+
g1 —2

St Y, (+|@, — Q1+ V)

t=tm

tm4+1—1
< B (qutm Q*\+— Z vz)

Denote by vy, = 1y En, . It follows that

tmi1—1
1
= 2 Vism (@, - Q. (B.3)
M t=tm,

Let Gi(+) denote an antiderivative of g (-), and G(-) = Zle prGr () Let Ay, = G(G,, ) — G(Q).
The equation (17) in[Li et al.|(2022) shows that for some constant L > 0,

E{G(Gr, 1) Fe.} <G (Gr,.) — Ym/2 VG (@) |> + 2 LE(h2,| F..)

where
1 tmy1—1 K tmy1—1 K
hm = > D peVGHE, .G o = > > VG, )
En En,
t=t, k=1 t=tm k=1
Lemma B.9 of [Li et al.| (2022]) obtains that
C
2 < ~ 1 —O*2.
BUZIF,) < V6(@, )P + 5o + 121, - '

Notice that

E{(Grlatr ¢F) = Ciln, ) 1Fu b SE (|0 = | 170) -
Thus,

tmy1—1 K

> pE{(Gulal 1. ¢E) = Gal@r,, ¢) 17, |
k=1

tm —

1
E (67, |F,) S o

t

Z E (Jaf ~ @, |
t=tm k

~ 'Ym (1 + |q1‘ - Q |)
where the last inequality holds by (B.3). Therefore, we obtain that

24N
tq‘H
=

Fr)

C
E(Ami1]Fr,) < A —vm/2IVG (G, )| + 2L {|vg(qtm)|2 + L4 —lqt Q*IQ}

E, E,
+ ('7m/2 + ’YrQnL) Tm (Cl + C2‘th - Q*D
< (1= c1Vm + 272)Am + (03 + C4A},{2) Voo

Since we assume that the parameter space is uniformly bounded, it entails that A, is also uniformly
bounded. Thus, we have

E(Am1]F,.) < (1= c1vm + c27m) A + (c3 + ¢5) Vi
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Apply Robbins-Siegmund theorem in [Robbins & Siegmund| (1971)) to obtain g;,, — @* almost
surely. Lemma A.10 in|Su & Zhu! (2018)) states that for any positive constants ¢y, ca, if v, = 0(1),
Ym—1/Ym = 1 + 0(7vm ), and B, is a positive sequence, satisfying

Bm S ’mel(]- - Cl’Ym)B
Ym

then sup,,, B, < oo. Using this lemma, we immediately obtain that for some positive constant
C >0,

m—1 1 C2¥Ym,

EA,,
sup

m>1 Tm—1

<C,

which entails that
E|qt'm - Q*‘Z SEAL SYm-1 Sm {1 + O('Ym)} S Yme
To demonstrate that our setting satisfies Assumption 3.2 of |Li et al.| (2022), we define

1 BRRQ) -1 101

Sk = Eei(Q*) 1 1

Hence,

|E (ex(ar-1)IFe-1) — Eep(QY)| S lary — Q71

satisfying Assumption 3.2 in [Li et al.| (2022). Assumptions 3.3 and 3.4 of [Li et al.| (2022)) are the
same as our Assumptions 3-4. By carefully examining their proof, we find that Assumption 1 in
[29] is only used to establish the key result that E|g;,, — Q*|*> < ~,,. While in our setting, we
have already rigorously established this result under equation (B.Z). Therefore, their Assumption
1 is not required for our theoretical development beyond this step. Therefore, we could follow the
arguments in the proof of Theorem 4.2 in|L1 et al.| (2022) to derive the functional CLT established
in our Theorem[3.21
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