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Abstract

Thermoacoustic instabilities can be highly detrimental to the operation of aircraft
gas turbine combustors within design conditions, and hence their prediction and
suppression are crucial. This work uses a Bayesian machine learning method to
infer the parameters of a bluff-body stabilised, physics-informed flame model in
real-time. The flame front is modelled using the G-equation, a level-set method
which segments the flow into regions of reactants and products. The flow past
the bluff-body is modelled with a discrete vortex method (DVM) to account for
vortical perturbations on the flame front. Using the physics-informed model with
the learned parameters from both the G-equation and the DVM, a flame transfer
function (FTF) is obtained, from which the growth rates of instability in the system
can be calculated. A heteroscedastic Bayesian neural network ensemble (BayNNE)
is trained on a library of flame front simulations with known target parameters in
both models. The trained BayNNE is a surrogate model for a Bayesian posterior
of the target parameters given the input flame front coordinates. The ensemble
predicts some parameters of the DVM with more certainty than others, showing
which are more influential in affecting the flame front. Using the learned posterior,
the flame fronts are re-simulated, to extrapolate the flame beyond the experimental
window where it was observed. Flame results are also extrapolated in parameter
space. These extrapolated flame shapes are then used to calculate thermoacoustic
frequencies and growth rates of the system. We observe that the growth rates and
frequencies do not show a strong dependency on the amplitude of forcing, which
is one of the inferred parameters of the physics-informed model. This important
result suggests that a FTF derived at high amplitude, when it is observable, is also
valid at low amplitude, when it is not observable.
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1 Introduction

1.1 Thermoacoustics

The prediction and control of thermoacoustic instability is a persistent challenge in jet and rocket
engine design [1]. The drive towards lower NOx emissions in gas turbines has led to the use of ‘lean
premixed pre-vaporised’ (LPP) combustion [2]. Although LPP combustion considerably reduces
NOx, it is particularly susceptible to unfavourable thermoacoustic instabilities [3], which are defined
as follows. In wall-confined ducted environments such as aircraft gas turbine combustors or rocket
motors, acoustic standing waves can be sustained. When the heat release rate perturbations during
combustion (q′) are in phase with the duct acoustic pressure (p′), a positive feedback loop is generated,
driving p′ and q′ to a thermoacoustically unstable state, with high amplitudes [4] that can cause
structural damage and flame blowoff.

In premixed flames, q′ is predominantly due to flame surface area perturbations generated by fluc-
tuations in the velocity field along it [5; 6]. Any physics-based model must therefore contain
the flame’s response to velocity fluctuations. The most accurate flame response can be evaluated
with high-fidelity computational fluid dynamics (CFD) simulations but, these are computationally
expensive. In this paper we use data to tune the parameters of physics-based reduced-order models
for the flame and flow fields in a thermoacoustic system, in order to reduce the computational cost
while retaining as much accuracy as possible in flame response.

The physical system under study is a version of the Volvo burner [7; 8], a schematic of which is
shown in figure 1 (Sec. 2.1). We model the flame as the zero contour (or level-set) of a continuous
function that advects with the flow. This is known as the G-equation model [9] and allows the flame
dynamics to be simulated cheaply (Sec. 2.2). The velocity field is given by the discrete vortex method
(DVM), which is derived directly from the Navier-Stokes equations and includes the effect of vortical
perturbations on the flame front (Sec. 2.3). The flame and flow models are thus physics-based.

In order to render the models quantitatively accurate, their parameters need to be assimilated from
experimental data. The ensemble Kalman filter [10] (EnKF) has been used previously to assimilate
data into the G-equation model [11; 12]. The EnKF performs Bayesian inference to infer the
parameters of the G-equation model by statistically combining model forecasts with experimental
measurements. However, the computational requirements of the EnKF render online Bayesian
inference unfeasible when measurements are taken at high frequency. Furthermore, the method can
fail to infer parameters when these vary quickly in time, and suffers from numerical stability issues
when the measurements are noisy. These are both the case for our experimental data, which come
from high frequency OH planar laser induced fluorescence (OH PLIF) measurements of a lab-scale
version of the Volvo combustor rig [7; 8].

1.2 Bayesian deep learning

Bayesian deep learning refers to the use of deep learning algorithms, such as deep artificial neural
networks (NNs), for Bayesian inference. Bayesian NNs [13] replace the point estimates of each
of the NN’s weights and biases with Gaussian probability distributions, with means and variances
learned during training. The distribution of every weight and bias in the NN can be used to infer
the outputs from the inputs, for example inferring the parameters of a model from experimental
measurements. Unfortunately, Bayesian NNs of practical size are too expensive to train [14].
More recently, ensembles of deep, wide NNs have been used to perform approximate Bayesian
inference [15; 16; 17; 18; 19; 20], with the approximation improving with increasing width of the
NN’s hidden layers. These Bayesian NN ensembles (BayNNEs) learn the mean and variance of
the posterior distribution of the outputs given the inputs. When multiple outputs are to be inferred,
heteroscedastic BayNNEs learn the means and variances of each output, without assuming a common
variance for all outputs. This study uses heteroscedastic BayNNEs to infer the parameters of the
velocity field of the G-equation model given experimental observations.
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2 The Volvo burner

2.1 Experiment

This data is taken from experiments performed on a version of the Volvo burner shown schematically
in figure 1. Premixed air and propane flow into the burner and are burned by a flame stabilized on a
triangular bluff body with side length D = 3.8 cm. The depth of the duct is 4D. Images of the flame
are recorded at fs = 10 kHz using OH PLIF through a window 3D tall and 3.4D wide. A sequence
of 7998 images each with resolution 69 × 58 pixels is recorded. Additionally, the horizontal and
vertical velocities within the observation window at a resolution of 69× 58 pixels are recorded at
each time step. As the air-fuel mixture flows through the burner, vortices are shed periodically from
the bluff body. These vortices cause wrinkling and cusping of the flame front. For full details of the
Volvo experiment, the reader is referred to Caswell et al. [7] and Fugger et al. [8].

Figure 1: Diagram of the Volvo combustor rig and G-equation model of the flame. As the air-fuel
mixture flows through the combustor, vortex shedding causes wrinkling and cusping of the flame
front, represented by the G = 0 contour of a continuous scalar field G(x, y, t). An example OH
intensity image taken through the window is shown, as well as the pre-processing step to find the
flame front.

The Volvo flame images are processed and the flame front is extracted as a radial location y, which
is a singularly-valued function of the axial co-ordinate x: y = f(x). Starting from an OH PLIF
intensity image, the bottom half is discarded because the G-equation model assumes a symmetric
flame front. Furthermore, the rightmost 9 columns of data are discarded from each image due to the
fact that the flame front is occasionally too faint to be detected here. The flame front is found by
thresholding the magnitude of the gradient vector. Next, splines with ten knots are used to smooth
y(x). Each flame image is therefore converted into a 60 × 1 vector of flame front y locations y.
The x coordinates are the same for all flames, so are discarded. Observation vectors z are created
by appending ten consecutive y vectors together. All 7998 images taken from the Volvo burner
experiment are processed in this way.

2.2 The flame front model

The flame front is assumed to be a thin boundary between unburnt and burnt gases (see figure 1). The
flame travels normal to itself into the unburnt gases with laminar flame speed sL which depends on
the gas composition. The velocity in the burnt gases does not affect the flame kinematics. The unburnt
and burnt gases are assumed to travel with velocity u(x, t), where we use the notation x = (x, y).
Under these assumptions, the flame front is modelled by the G(x, t) = 0 contour (or level-set) of a
continuous scalar field G whose motion is governed by the G-equation:

∂G

∂t
+ u · ∇G = sL|∇G| , (1)

where the flame speed sL is a function of the fuel composition and u is calculated using a discrete
vortex method.
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2.3 The velocity field model

The velocity field u(x, t) is calculated using the discrete vortex method (DVM) [21; 22]. This
method aims to model the large-scale vortical structures that are known to significantly contribute to
flame front oscillations during thermoacoustic instability [23; 24; 25; 26; 27]. It uses the vorticity
formulation of the incompressible Euler equations in two dimensions, given as

∂ω

∂t
+ u · ∇ω = ω · ∇u , (2)

∇ · u = 0 , (3)
where ω(x, t) is the vorticity field. This vorticity field is discretised into NV individual fluid elements,
each with position xi(t), core radius rD,0 and circulation Γi, where i = 1, 2 . . . NV :

ω =

NV∑
i

Γifδ(r) , (4)

where the core function fδ(r) characterises the distribution of vorticity within the vortex element.
The vortices are advected by the flow, whose velocity field is the solution to the Poisson equation
∇2u = −∇× ω. A Helmholtz decomposition is applied to u:

u(x, t) = u(x, t)irr + u(x, t)rot . (5)

The irrotational velocity field u(x, t)irr is the solution to a potential flow problem, calculated via a
Schwartz-Christoffel conformal mapping [28]. The acoustic forcing on the flow field is modelled
with a harmonically oscillating inlet flow velocity u(t)/U = 1+α sin(St t) where α is the amplitude
of forcing. The rotational velocity field is obtained with a Green’s function solution of the Poisson
equation above:

u(x, t)rot = ∇G(x, x′) ∗ ωh , (6)
where ∗ is the convolution operator and G(x, x′) is the Green’s function for the Laplacian operator in
two dimensions:

∇2G(x, x′) = δ(x − x′) . (7)
The vortices advect with the flow according to:

dxi

dt
= u(xi, t) i = 1, . . . , NV (8)

Vortices enter the domain at each time step ∆t with an initial circulation Γ0. The individual vortices
roll-up to form large-scale vortical structures. For further details on the method, see appendix B.

3 Parameter inference with Bayesian neural network ensembles

3.1 The training library of simulated flames

LSGEN2D [29] is a level-set solver that iterates the G field of the G-equation model for a known
set of parameters α, rD,0, z0,i,St, β and f/fs, whose description is given in table 1. The velocity
field in LSGEN2D is calculated using the DVM (Eq. 5). In this study, the G field is iterated until
convergence to a set of 200 different periodic solutions. This is repeated for 104 combinations of
parameters sampled from the ranges shown in table 1. The forced cycle states are processed to find a
y = f(x) discretisation of the G = 0 contour, for all x in the range of the experiment observation
window. This is done by interpolating the G field values for every vertical coordinate, and recording
the positions y in vectors y. To create a single observation vector z representing a sequence of 10
flame front positions, 10 position vectors are appended together. This is repeated for every state in
the forced cycle. The result is a library of 2× 106 observation - parameter pairs.

3.2 Architecture and training of the BayNNE

We assume that the posterior probability distribution of the parameters, given the observations, can
be modelled by a neural network, pθ(p|z), with its own parameters θ. We assume that this posterior
distribution has the form:

pθ(p|z) = N (µ(z),Σ(z)) , (9)
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Table 1: Parameters of the discrete vortex method used in the G-equation model that are varied in this
work and the range over which they are varied in order to generate the simulated flame front library.

Parameter ranges Description

0.05 ≤ α ≤ 0.5 Amplitude of base flow forcing
0.01 ≤ rD,0 ≤ 0.2 Vortex radius
0.6 ≤ z0,i ≤ 0.7 Initial velocity coordinate

4 ≤ β ≤ 8 Aspect ratio of the unperturbed flame
0.03 m ≤ D ≤ 0.04 m Bluff-body side length
10 m/s ≤ U ≤ 15 m/s Mean base flow speed
100 Hz ≤ f ≤ 150 Hz Frequency of base flow forcing

Figure 2: Architecture of each neural network in the ensemble of 20. The input and hidden layers
have 900 nodes each, while each output layer has six nodes each. All layers are fully connected (FC).
Rectified Linear Unit (ReLU) activation functions are used for the hidden layers and sigmoid and
exponential (Exp) activation functions are used for the mean and variance output layers respectively.

where Σ(z), the posterior covariance matrix of the parameters given the data, is diagonal with σ2(z)
on its diagonal. This enforces our assumption that the parameters are mutually independent, given
the observations z. We use an ensemble of M = 20 neural networks. The architecture of each neural
network is shown in figure 2. Each neural network comprises an input layer, four hidden layers
with ReLU activations and two output layers: one for the mean vector µ(z) and one for the variance
vector σ2(z). The output layer for the mean uses a sigmoid activation to restrict outputs to the range
(−1, 1). The output layer for the variance uses an exponential activation to ensure positivity. Each
neural network in the ensemble is initialised with unique weights θj,anc sampled from a Gaussian
prior distribution N (0, 1

NH
) and biases bj,anc sampled from a uniform prior distribution in the range

[− 1√
NH

, 1√
NH

] according to [30].

For a single observation z, the j-th neural network in the ensemble produces a mean and variance
estimate of the G-equation parameters:

µj(z),σ
2
j (z). (10)

This is achieved by minimising the loss function Lj :

Lj =
(
µj(z)− p

)T
Σj (z)

−1 (
µj(z)− p

)
+ log (|Σj (z) |)

+ (θj − θanc,j)
T
Σ−1

prior (θj − θanc,j) .
(11)

The first two terms of the loss function are the negative logarithm of the normalised Gaussian
likelihood function up to an additive constant. The third term is a regularising term that penalises
deviation from prior anchor values θanc,j . The NNs produce samples from the posterior distribution.
This is called randomised maximum a-posteriori (MAP) sampling [15].

For a single observation vector z, the prediction from the ensemble of neural networks is therefore
a distribution of M Gaussians, each centred at their respective means µj(z). Following similar
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treatment in [31], this distribution is then approximated by a single multivariate Gaussian posterior
distribution p(p|z) ≈ N (µ(z),Σ(z)) with mean and variance:

µ(z) =
Σjµj(z)

M
, Σ(z) = diag

(
σ2(z)

)
, (12)

σ2(z) =
Σjσ

2
j (z)

M
+

Σjµ
2
j (z)

M
−
(
Σjµj(z)

M

)2

. (13)

This is repeated for every observation vector z. The posterior distribution p(p|zi) with the smallest
total variance σ2

i,tot = ||σ2(zi)||1 is chosen as the best guess to the true posterior. The M parameter
samples from the chosen posterior are used for re-simulation, which allows us to check the predicted
flame shapes and to calculate the normalised area variation over one cycle.

4 Results

Figure 3 shows means and uncertainties of the posterior of parameters (α, rD,0, z0, St, β) given the
input experimental data. The BayNNE is able to infer the parameters reliably through abrupt changes
in the input data. We see that the uncertainties in rD,0, the vortex core radius, are high: the two
standard deviation range covers nearly the whole range from which the parameter was sampled (see
table 1). This suggests that this parameter is difficult to recover: it only has a weak effect on the flame
front over ten consecutive images. Between t ≈ 100 and t ≈ 340 we observe approximately periodic
behaviour in the plots of the inferred values of α and z0 . The period of this behaviour is 80 time
steps, which is equal to the period of the oscillations observed in the experiment. This implies that
there is some model error present: the BayNNE predicts different flame shapes for different moments
in the period because no single shape describes the whole period well. However, unlike the core
radius parameter rD,0, these two parameters are more easily recovered, implying that their effect on
the flame front over ten consecutive images is strong.

Using the parameter predictions at the five time steps, the flame can be re-simulated using LSGEN2D
and the DVM downstream of the observation window, predicting the flame shape in its entirety as
shown in figure 4. This means that the h(x) and τ(x) fields of the distributed n − τ heat release
model can be calculated, which was not possible from the experimental images alone. For details
on how to calculate h and τ from the re-simulated flame shapes, see Supplementary materials E.
Figures8 to 12 show the re-simulated flames as well as the h and τ fields. Additionally, the flame
shapes are re-simulated at 1/4, 1/2 and 3/4 the amplitude inferred by the BayNNE (all other inferred
parameters are kept constant). The h and τ fields calculated from these flame shapes are shown in
figures 13 and 14. These are used in a Helmholtz solver [32; 33] to determine the eigenfrequencies
and growth rates of the thermo-acoustic system.

Table 2: Parameter values and uncertainties inferred by the BayNNEs at five different time steps.

Parameter t = 32 t = 60 t = 304 t = 376 t = 416

α 0.433± 0.105 0.303± 0.142 0.435± 0.092 0.452± 0.089 0.305± 0.137
rD,0 0.099± 0.049 0.096± 0.061 0.100± 0.069 0.092± 0.052 0.078± 0.035
z0,i 0.615± 0.022 0.614± 0.017 0.612± 0.021 0.613± 0.021 0.635± 0.028
St 14.30± 3.458 16.19± 4.413 15.78± 5.411 15.29± 5.860 13.17± 4.156
β 7.974± 0.050 7.931± 0.156 7.918± 0.221 7.913± 0.210 7.957± 0.109
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Figure 3: Graphs of the learned posterior of the parameters of the velocity model, represented as
means and ± 2 standard deviations. The inferred parameter values at five different times (grey
columns, corresponding to t = 32, 60, 304, 376 and 416) are listed in Table 2.

Figure 4: The re-simulated flame shape at t = 416. The top left quadrant from 0 to 3.4D is the
experimentally-determined flame front. The other three quadrants show the flame shape predicted by
re-simulating the flame using LSGEN2D and DVM with their inferred posterior parameter values.

4.1 Helmholtz solver results

In figure 5, the red square plot-markers are the fundamental duct acoustic mode in the absence of
a flame, and the grey plot-markers are the thermoacoustic eigenmodes with flame presence. These
are shown at the four amplitudes and five time steps. The grey symbols deviate from the red square,
showing that the thermoacoustic effect is active. At all time steps, the thermoacoustic eigenmodes
correspond to negative growth rates, meaning the system is thermoacoustically stable. Furthermore,
the modes for cases t = 32, 60, 304 and 376 are clustered around a single point, meaning they are
weakly dependent on velocity forcing amplitude. This shows that the flame transfer function (FTF)
is derived with considerable accuracy, since it nearly evaluates to the same mode regardless of the
amplitude used to derive it. Thus, with this model, an FTF derived at high amplitude, when it is
observable, is also valid at low amplitude, when it is not observable. In the t = 416 case, the scatter
in the values of the growth rate and frequency for amplitude ϵ/4 and ϵ/2 cases could be due to the
larger jumps seen in all regions of the corresponding τ(x) fields (figure 13).
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Figure 5: The eigenvalues for the first mode at five time steps and four amplitudes. The red squares
in each subplot show the eigenfrequecies of the system when no flame is present. Each frame
corresponds to a different time step, while the greyscale within each frame corresponds to a different
velocity forcing amplitude, ϵ. The lightest grey corresponds to ϵ/4 and the darkest to ϵ.

5 Conclusions

This work uses a Bayesian machine learning method to infer the parameters of a physics-based model
of a bluff-body stabilised flame. With this method, parameters can be inferred with known uncertainty
in milliseconds, which is fast enough to be used in real-time. For the velocity field, a discrete vortex
method (DVM) is used that models large-scale vortical perturbations on the flame front which play a
significant role in thermoacoustic instability. Heteroscedastic Bayesian neural network ensembles
(BayNNE), trained on a library of simulated flame fronts, learn to infer five parameters and their
uncertainties from ten consecutive flame front snapshots. Both the flame and velocity field models are
physics-based and so they can extrapolate in physical space (i.e. beyond the experimental observation
window) and also in parameter space (to different perturbation amplitudes) to obtain distributed flame
transfer functions (FTFs). The FTFs are then successfully used in a thermoacoustic model to predict
frequencies and growth rates. Results show that the BayNNE is able to reliably infer the parameters
through changes in the input data. The confidence intervals of each of the inferred parameters of
the DVM are different, showing which ones have a more significant impact on the flame response.
The predicted thermoacoustic frequencies and growth rates do not show a strong dependency on the
amplitude of forcing. This suggests that, with this model, an FTF derived at high amplitude, when it
is observable, is also valid at low amplitude, when it is not observable.

Broader impact

This work will lead to cost savings in high-energy density combustor design by enabling engineers to
quickly and reliably tune their models to match experiments.
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A Supplementary material: Non-dimensionalisation

The characteristic scales of the problem are the side length D of the bluff body, the length of the
unstretched unforced flame, L, the spatial frequency U/L where U is mean base flow speed and the
excitation angular frequency 2πf . The Strouhal number is the ratio of the spatial time scale to the
excitation time scale (where the time scales are the reciprocal of the frequencies) St = 2πfL/U . By
defining the aspect ratio of the unstretched, unforced flame β = L/D, the Strouhal number may be
written equivalently as St = 2πfβD/U .

B Supplementary material: The discrete vortex method

We begin with the incompressible 2D Euler equations in vorticity form:

∂ω

∂t
+ u · ∇ω = ω · ∇u, ∇ · u = 0, (14)

where the term on the right hand side is the stretching of vorticity due to velocity gradients and
the terms on the left form the material derivative Dω/Dt, or the Lagrangian transport term. The
vorticity in the domain is discretised into a number of vortex elements at locations xi, each carrying
an elementary amount of vorticity within a core of radius δ. The distribution of vorticity within the
vortex element is given by a core function fδ , which ensures a finite velocity at the core centre. The
discrete vorticity field ωh is then

ωh =

NV∑
i=1

Γifδ(r), (15)

where Γi are the vortex circulations and the summation is over the total number of vortices in the
domain. The advection of the vortices are given by the solution of the NV ODEs

dxi

dt
= u(xi, t). (16)

The local flow velocities u(xi, t) are obtained from the solution of the Poisson equation ∇2u =
−∇× ω:

u = ∇G(x,x′) ⋆ ωh + up, (17)
where G(x,x′) is the Green’s function for the Laplacian operator in 2D, i.e., ∇2G(x,x′) = δ(x−x′);
and ⋆ is the convolution operator. In the absence of any boundaries, G(x− x′) = ln(|x− x′|)/2π.
The first term is the rotational component of the flow and the velocity up is the irrotational part of
the flow field, which is uniquely chosen such that the wall-normal boundary condition u · n̂ = 0 is
satisfied.

The solution of the potential flow problem can be found via a Schwartz-Christoffel transformation
(SCT). Here, the physical domain is modelled in a complex plane z = x+yj (figure 6(a)). Symmetry
about the x-axis is assumed, since the experimental flame shapes are similarly symmetric. The
z-plane is mapped onto the upper-half of a transformed s-plane (figure 6(c)). If sV, i i = 1, . . . , NV

represents the vortex locations, an image system of vortices at their conjugates s∗V, i is then defined in
the lower-half of the s-plane, such that the resulting wall-normal velocity cancels to 0. The mapping
is performed in two steps via an intermediate mapping to an infinite-strip in the ξ-plane (figure 6(b)),
which simplifies the mathematical expression for the SCT [34]. The mapping from z to ξ is obtained
by integrating the expression

dz

dξ
= 1.5

[
sinh

π

2
ξ
]−1/4 [

sinh
π

2
(ξ − ξE)

]3/4 [
sinh

π

4
(ξ − ξF )

]−1/2

, (18)

and the mapping from ξ to s is simply s = eπξ . The values ξE , ξF and ξB in figure 6(b) are obtained
numerically using the SCT toolbox developed by [34]. These are 0.95, 0.63 and 0.58+ j respectively.

The potential flow velocity field is then given by a spatially-uniform inlet flow U(t) in the ξ-plane
and induced velocities from vortex elements and their images in s-plane. Both are transformed to the
physical z-plane using the chain rule.The chain rule is applied to transform these velocities into the
physical domain. The inlet flow is given as

σinlet = U(t)
dξ

dz
, (19)
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Figure 6: Illustration of the Schwartz-Christoffel mappings from (a) the physical z plane to (b) the
transformed ξ plane, which is an infinite strip, and then to (c) the upper half of the s plane. The dotted
line in (a) is a line of symmetry. The subscripts in the labels in the ξ and s planes correspond to the
respective vertices in the z-plane. Marked dimensions in the z plane in (a) are scaled by the size D of
the bluff body.

where σ represents complex velocities. The flow due to the vortices and their images is then given as:

σvort =

NV∑
i=1

j
Γi

2π

[
− 1

s− sV, i
+

1

s− s∗V, i

]
ds

dξ

dξ

dz
. (20)

In Eq. 20, the sum is over all the vortex elements each with circulation Γi and location sV, i. The x
and y components of the physical velocity field u are then Re(σinlet+σvort) and −Im(σinlet+σvort)
respectively. The vortices advect with the flow as

dxi

dt
= u(xi, t) i = 1, . . . , NV (21)

A generalised Kutta condition is used to model the vortex generation process. According to this, the
vorticity is discretised by introducing a single vortex element into the domain at each time step ∆t
with a circulation Γ0 = −u0(t)

2∆t/2. The velocity u0 is computed at a location z0 = z0,r + z0,ij
directly above the bluff body edge E as in figure 6(a) (z0,r = 0). The vortex elements are then
advected as per Eq. 21.

The above gives a point vortex description of the potential flow field. The singularity at the center
of the vortex elements is removed using a refined Lamb-Oseen model. According to this model, a
vortex ‘core’ of size rD is defined, along with an azimuthal velocity uθ that varies smoothly with
distance r from the center as

uθ =
Γ0

2πr
(1− e−r2/r2D ) (22)

In the model in Eq. 22 the velocity field tends to that of a rotational vortex as r → 0, and it tends to
that of the potential flow solution as r → ∞. We implement a linear temporal growth of the core
radius as rD(t) = rD,0 + 2

√
νt, where ν is the kinematic viscosity and rD,0 is the initial core radius

of the vortex elements at the instant of being introduced into the domain. The linear temporal growth
model thus accounts for the viscous diffusion of vorticity [35].

To incorporate the effect of the boundary layer on the vorticity, we model the decay of vorticity at the
walls as dΓ/dt = −Γ, when the distance between the vortex center of any vortex element and the
wall is less than rD. All lengths in the DVM are non-dimensionalised with the bluff body side length
D, velocities with the mean inlet Ū and time with Ū/D.
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Figure 7: Flame fronts (red) one period apart simulated using the G-equation and the discrete vortex
method. The blue dots are the centres of the vortices, advected by the velocity field shown in grey.

The acoustic forcing on the flow field is modelled with a harmonically oscillating inlet flow velocity
U(t)/Ū = 1 + α sin(St t) in Eq. 19, where St = 2πfβD/Ū is the forcing Strouhal number
expressed in terms of the forcing frequency f and the nominal aspect ratio β. This adds a time-
dependent potential to the existing potential flow, while still fulfilling the boundary conditions. The
oscillatory flow u0(t) at z0 produces vortices of varying Γ0 and so the strengths of the vortex elements
are also affected by the forcing. The effect of the forcing is thereby incorporated into the vortex
shedding process. In order to ensure that NV does not increase without bound, vortices are deleted
when they cross a streamwise location xmax = 25.

The time integration in Eq. 21 is solved using a 4th-order Runge-Kutta method, and the numerical
integration of the SCT in Eq. 18 is performed using Simpson’s rule.

The accuracy of the DVM in predicting the velocity field depends especially on its discretisation
parameters - the core size, the core function and the number of vortex elements shed per time step
[36]. In many studies [37; 38; 35], these parameters are hand-tuned and pre-set before the model is
used for predictions. In order to render the flame-vortex model more quantitatively accurate in its
predictions, the parameters rD,0, z0,i, St, α and β are inferred from a machine learning model in this
work.

The evolution of the flame front along with the velocity field from the DVM is shown in figure 7. The
generation of wrinkles on the flame front due to the vortical perturbations is evident, and is one of the
major mechanisms of flame area perturbations, to cause heat release rate fluctuations q′, that drive
thermoacoustic instability.
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C Hyperparameters

Table 3: Hyperparameter settings used for neural network training.

Hyperparameter Value

Training
Train-test split 80:20
Batch size 256
Epochs 100
Optimiser Adam
Learning rate 10−4

Architecture
Input units 600
Hidden layers 4
Units per hidden layer 600
Output layers 2
Units per output layer 5
Ensemble size 20
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D Supplementary material: Results

D.1 Re-simulated flame results

Figure 8: (a): Re-simulated flame shape at t = 32. (b) and (c): n and τ fields calculated from the
re-simulated flame shape at t = 32. The centre (x0, y0) of the measurement region w(x, y) is also
shown. Part of the flame is upstream of the measurement point, which leads to a negative time delay.
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Figure 9: (a): Re-simulated flame shape at t = 60. (b) and (c): n and τ fields calculated from the
re-simulated flame shape at t = 60. The centre (x0, y0) of the measurement region w(x, y) is also
shown. Part of the flame is upstream of the measurement point, which leads to a negative time delay.
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Figure 10: (a): Re-simulated flame shape at t = 304. (b) and (c): n and τ fields calculated from the
re-simulated flame shape at t = 304. The centre (x0, y0) of the measurement region w(x, y) is also
shown. Part of the flame is upstream of the measurement point, which leads to a negative time delay.
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Figure 11: (a): Re-simulated flame shape at t = 376. (b) and (c): n and τ fields calculated from the
re-simulated flame shape at t = 376. The centre (x0, y0) of the measurement region w(x, y) is also
shown. Part of the flame is upstream of the measurement point, which leads to a negative time delay.
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Figure 12: (a): Re-simulated flame shape at t = 376. (b) and (c): n and τ fields calculated from the
re-simulated flame shape at t = 376. The centre (x0, y0) of the measurement region w(x, y) is also
shown. Part of the flame is upstream of the measurement point, which leads to a negative time delay.
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D.2 Parameter-space extrapolation

Figure 13: Plots of h(x) at five different time steps t and at four amplitudes: ε/4, ε/2, 3ε/4 and ε,
the amplitude inferred by the BayNNE. The values of η are also displayed for each time step and
amplitude.
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Figure 14: Plots of τ(x) at five different time steps t and at four amplitudes: ε/4, ε/2, 3ε/4 and ε,
the amplitude inferred by the BayNNE.
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E Supplementary material: The flame behaviour expressed as a distributed
n− τ model

The above analysis gives the local heat release rate field, q(x, t), and the local velocity field, u(x, t),
over one cycle at a known frequency, ω, where x = (x, y). At each pixel, we take the Fourier
transform of q and u at ω, for example q̂(x, ω) =

∫
q(x, t) exp(iωt)dt, and convert this to the heat

release rate per unit volume by dividing by the volume corresponding to each pixel. The n and τ
fields are calculated as follows:

n(x) =

∣∣∣∣ q̂(x, ω)I

∣∣∣∣ , ϕ(x) = ∠

(
q̂(x, ω)

I

)
, (23)

where I =
∫
Ω
w(x)|û(x, ω)|dx and w(x) is the measurement zone:

w(x, y) = exp
(
−ar(x− x0)

2 − ar(|y| − y0)
2)
)
, (24)

where ar = 6200, and (x0, y0) = (D/2, D) where D is the bluff-body side length. This is somewhat
arbitrary so long as the measurement region is the same in the thermoacoustic model as it is in the heat
release model. The phase, ϕ(x), of q is wrapped between ±π and is unwrapped with the algorithm in
Ref. [39]. The phase is then divided by ω to give the spatially-distributed time delay τ(x). Finally
the n field is scaled to a field that integrates to 1 multiplied by a scalar, η in units of J/m, in order to
be consistent with equation [4] of [40].
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