The Federated Agent Secure Transport (FAST): A
Secure Fabric for the Orchestration of Multi-Agent
Collaboration

Dheepak Gobinath 1 [0009-0003-9378-4341]

‘ Department of Electrical and Systems Engineering
University of Pennsylvania, Philadelphia, PA, USA
dheepakg@seas.upenn.edu

Abstract. To progress from isolated multi-agent simulations to a truly
interconnected artificial intelligence, a paradigm shift from centralized control to
decentralized communication is necessary. This paper introduces the Federated
Agent Secure Transport (FAST), a novel, decentralized framework for Agent-to-
Agent (A2A) communication that enables this shift. This architecture stands in
contrast to prevailing multi-agent systems like Auto-GPT and CrewAl, which are
confined to centralized, monolithic environments. Their reliance on inter-process
calls within a single runtime inherently limits scalability, security, and
interoperability, precluding the formation of a truly open agent ecosystem. The
FAST framework synthesizes two core components: (1) a peer-to-peer protocol
for secure, end-to-end encrypted message transport, and (2) a standardized Model
Context Protocol (MCP) that serves as a semantic language for task delegation
and data exchange. This paradigm, however, also introduces new attack surfaces
at the semantic layer, where malicious agents can craft MCP payloads to perform
sophisticated prompt-injection attacks on their counterparts. By decoupling the
communication layer from the agent's core logic, this architecture allows agents
from different entities to interact in a trustless manner. This fosters the conditions
for an open market of specialized Al services and enables a new generation of
scalable, resilient, and secure collaborative Al, laying the groundwork for a true
Internet of Agents.

Keywords: Multi-Agent Systems, Decentralized Al, Federated Agent Secure
Transport (FAST), Secure Communication, Peer-to-Peer Networks, Agent Com-
position, Collective Intelligence, End-to-End Encryption.

1 Introduction

To evolve from fragmented multi-agent simulations toward a genuinely interconnected
form of artificial intelligence, it is essential to transition from centralized oversight to a
model rooted in decentralized communication. The growing influence of Large Lan-
guage Models (LLMs) has accelerated the development of Multi-Agent Systems
(MAS), where specialized agents collaborate to solve complex tasks, signaling a shift
toward Collective Intelligence. However, current implementations—such as Auto-
GPT, which struggles with brittle task chaining [1], and CrewAl, which relies on rigid

role definitions—expose architectural limitations that hinder scalability and adaptabil-
ity. Moreover, the absence of robust trustless communication protocols [2] raises sig-
nificant security concerns, including susceptibility to data leakage [3], impersonation
[4], and centralized failure points, underscoring the need for decentralized, verifiable
agent interactions. Most current agent architectures operate within monolithic applica-
tions, treating agents as simple objects confined to a single runtime environment and
interacting via direct function calls. This centralized approach lacks the resilience and
modularity needed for a scalable, global ecosystem. It inhibits true Agent Composition
[15,16] and introduces structural bottlenecks [17] that obstruct growth at web-scale.

The core limitations of this paradigm stem from its reliance on a trusted, central
orchestrator. This design is antithetical to the principles of Federated Systems, where
independent entities must collaborate without a single point of control. It cannot guar-
antee Secure Communication between agents [5] operated by different, potentially un-
trusting parties, nor can it leverage the resilience and scalability of Peer-to-Peer Net-
works [6]. To unlock the next phase of Al collaboration, we require a new foundational
layer—a communication protocol [7] that is inherently secure, decentralized, and open.

This paper introduces the Federated Agent Secure Transport (FAST), a novel, de-
centralized framework for Agent-to-Agent (A2A) communication. By establishing a
common protocol, FAST enables true interoperability and agent composability, allow-
ing agents to be treated as modular, swappable services in an open market. This open
ecosystem is built upon a robust foundation that ensures scalability by removing the
central server bottleneck and guarantees censorship resistance. The security of these
interactions is anchored in a trustless system, where cryptographic proof replaces third-
party mediators, and in decentralized identity (DID), which allows agents to manage
their own identities via cryptographic key pairs. This two-layer approach ensures that
while the network provides resilient and censorship-resistant message delivery, the se-
mantic content of the collaboration remains completely confidential, enabling sophisti-
cated and privacy-preserving agent interactions.

To comprehensively present our work, this paper is structured as follows. Section 2
reviews the existing landscape of multi-agent systems and related work. Section 3 pro-
vides a detailed overview of the Federated Agent Secure Transport (FAST), outlining
its core architectural principles. Section 4 delves into the protocol specification, defin-
ing the message formats and orchestration patterns. Section 5 analyzes the framework's
security and presents ablation studies. Section 6 compares the centralized and distrib-
uted architectures. Section 7 presents a unified discussion of the framework's implica-
tions and outlines future research directions. Finally, Section 8 concludes the paper.

2 Background and Related Work

The Federated Agent Secure Transport (FAST) is situated at the intersection of two
rapidly advancing fields: LLM-powered Multi-Agent Systems (MAS) and decentral-
ized communication protocols. This section first reviews the prevailing centralized par-
adigm in MAS, then analyzes its inherent architectural limitations. Subsequently, we

survey a few decentralized communication and identity systems, identifying the foun-
dational principles that inform the design of FAST.

2.1 The Rise of Centralized Multi-Agent Systems

The ability of LLMs to reason and plan has catalyzed a new wave of autonomous agent
research. A foundational concept in this area is the "Reason and Act" paradigm, which
demonstrates how LLMs can interleave reasoning with tool use to accomplish complex
tasks [8]. Landmark research, such as the "Generative Agents" simulation from Stan-
ford, demonstrated how dozens of LLM-powered agents could exhibit complex, emer-
gent social behaviors within a simulated environment [9]. Concurrently, popular open-
source frameworks like Auto-GPT, BabyAGI, and CrewAl have emerged, providing
practical tools for building agentic workflows. These systems typically employ a hier-
archical architecture: a primary "controller” or "orchestrator" agent breaks down a high-
level goal into sub-tasks, which are then delegated to specialized "worker" or "expert"
agents. Communication between these agents occurs through internal function calls or
method invocations within a single, monolithic application. While powerful, this first
generation of MAS represents a centralized, top-down approach to agent collaboration.

2.2 Limitations of Monolithic Architectures

The prevailing monolithic architecture, while effective for contained simulations and
single-user applications, presents significant barriers to creating a global, open, and re-
silient agent ecosystem. First, interoperability is lacking [18-21], as agents are often
tightly bound to their native frameworks, resulting in isolated ecosystems that inhibit
true composability—where users could flexibly choose the most suitable expert agent
from a broader, open marketplace. An agent built with LangChain cannot natively com-
municate with one built using CrewAl, a modern manifestation of a long-standing chal-
lenge in MAS where the lack of a standardized agent communication language has his-
torically led to fragmented ecosystems [9]. Second, scalability becomes a challenge due
to reliance on a central orchestrator, which not only introduces a single point of failure
but also becomes a performance bottleneck. Third, privacy and security risks emerge
in centralized models, where the orchestrator has access to all unencrypted agent com-
munications [3]. This exposes sensitive task data to platform operators and creates a
lucrative target for potential breaches.

2.3 Decentralized Communication Architectures

The principles underpinning FAST draw from decades of research in peer-to-peer (P2P)
networking and secure messaging. Unlike client-server models, P2P networks distrib-
ute workload and data among peers, offering greater resilience and censorship re-
sistance [10]. Modern applications like Nostr (Notes and Other Stuff Transmitted by
Relays) provides a simple design based on cryptographic key-pair identities, signed
messages, and a network of relays which are simple message stores and do not manage
user identities [11]. This decoupling of data, identity, and application logic provides a

blueprint for a censorship-resistant and interoperable communication layer. Other pro-
tocols like Secure Scuttlebutt (SSB) offer an alternative model based on append-only
logs and gossip protocols, further demonstrating the viability of decentralized social
interaction [12]. The cryptographic foundation for secure communication in these sys-
tems relies on principles perfected by protocols like Signal, which pioneered end-to-
end encryption (E2EE) for messaging.

2.4 Identity and Trust in Distributed Systems

Traditional systems rely on a central authority to manage usernames and authenticate
users. In contrast, decentralized environments adopt Self-Sovereign Identity (SSI)—a
paradigm in which entities control their own identities without dependence on third
parties. The technical foundation for this approach is the Decentralized Identifier
(DID), a W3C standard that enables verifiable, decentralized digital identity [13]. This
model empowers agents to generate their own identities and securely sign messages
without requiring external permission. However, it introduces a fundamental challenge:
trust. Without a central authority to validate an agent’s reliability or authenticity, alter-
native mechanisms are needed. This has led to research into decentralized reputation
systems and Web of Trust models, where trust is built through networks of attestations
[14]. While a full reputation system lies beyond the scope of FAST’s core protocol, our
architecture is designed to remain compatible with such higher-level trust frameworks.

3 The Federated Agent Secure Transport (FAST) Architecture

The limitations of centralized Multi-Agent Systems, as outlined in the previous section,
necessitate this fundamental architectural shift. The Federated Agent Secure Transport
(FAST) provides a secure, resilient, and open foundation for a global ecosystem of au-
tonomous agents.

3.1 Core Principles: Decentralization, Security, and Composability

FAST is built upon three foundational principles that directly address the shortcomings
of monolithic agentic systems. By removing central points of control, FAST provides
a network that is inherently resilient to outages and resistant to censorship or unilateral
control by a single entity. This principle is the cornerstone for enabling a truly federated
system where agents from different organizations and individuals can interact as peers.
Security and privacy are not add-ons but are integral to the protocol. The architecture
mandates end-to-end encryption for all substantive communication, ensuring that the
network infrastructure itself cannot access or decipher the content of agent interactions.
FAST enables agents to be treated as modular, interchangeable components. This com-
posability is essential for creating an open market where developers can build special-
ized agents that can be dynamically discovered and integrated into more complex work-
flows, regardless of their underlying implementation.

3.2 The Two-Layer Stack: Transport and Semantics

FAST employs a decoupled, two-layer architectural stack. This separation of concerns
is critical for the protocol's flexibility and extensibility. First, the Transport Layer is
responsible for the secure and reliable delivery of arbitrary data packets from one
agent's cryptographic identity to another. The transport layer handles addressing (who
it's from, who it's to) and secure transport of the "envelope" (the encrypted data packet).

Federated Agent Transport Layer - Event

Encrypted

content:

. pubkey
‘b64...5/R9aA==" . ¢ created_at: a key_type: 1 tags: [[p, 2
R a98... : 4 -
(AES-256-GCM i a1ds. (ﬂ;::jm) 1698487200 Kind: 100 (Ed25519) 7Had...1] sig: ela0

Encrypted)

Decrypted
by Agent B

Decrypted MCP Payload - Semantic Layer

message_id:
f47a...

protocel_version:
content: { MCP_v1.0

recipient_id:
7id...

timestamp:
2023-10-28.

system_prompt,
data,
required_tools }

Fig. 1. The layered structure of a FAST message. The outer Event provides a secure transport
envelope with public metadata, while the inner MCP Payload contains the end-to-end encrypted
semantic instructions for the recipient agent.

Second, the Semantic Layer defines the meaning of the data inside the envelope. The
Model Context Protocol (MCP) is employed as the shared language—or lingua
franca—among agents. It structures the information exchanged, enabling agents to in-
terpret, respond, and collaborate effectively without relying on centralized orchestra-
tion. The MCP provides a structured format for defining tasks, querying for data, re-
porting results, and orchestrating complex interactions.

This is a key architectural paradigm shift as it allows the agent communication lan-
guage (MCP) to evolve independently of the underlying transport mechanism (FAST),
ensuring long-term adaptability.

3.3 Network Topology: Relays, Clients, and Agents

The FAST network consists of three distinct types of actors, each with a specific role.

— Agents: These are the primary actors within the ecosystem. An agent is an autono-
mous entity, often powered by an LLM, designed to perform specific tasks.

— Clients: A client is the software application that an agent uses to connect and interact
with the FAST network. It is responsible for managing the agent's private keys, sign-
ing messages, encrypting and decrypting data, and communicating with relays.

—Nodes (Relays): Nodes form the dynamic and resilient backbone of the FAST net-
work. They are servers that act as peers in a gossip protocol. A FAST node has two
primary jobs: firstly, to accept packets; It receives messages from connected clients.

Second, propagate (Gossip Network): It actively shares the messages it receives with
other peer nodes to which it is connected.
This continuous propagation ensures that a message injected into the network at any
single point is rapidly disseminated throughout the entire network graph. This model is
inherently decentralized and censorship-resistant, as there is no central server, and the
failure of any single node does not impact the network's ability to transmit messages.

3.4 Agent Identity: Cryptographic Key Pairs as DID

FAST, in favor of a self-sovereign model based on asymmetric cryptography, serves as
a practical implementation of the Decentralized Identifier (DID) standard. The Public
Key serves as the agent's unique, permanent, and publicly visible identifier. It is used
by other agents as the address for sending encrypted messages and for verifying the
authenticity of messages signed by the agent. The Private Key is kept secret by the
agent's client. It is used to sign all outgoing messages, creating a non-repudiable cryp-
tographic proof that the message originated from that specific agent. The FAST archi-
tecture is designed to be algorithm-agile. The protocol is compatible with schemes,
such as Elliptic Curve Digital Signature Algorithm and Schnorr signatures, which could
enable future capabilities like signature aggregation for complex transactions.

Encrypted Event Flow

e Receiver
1. Send ’ 4
B D Node ¥ 3. Deliver] 4. Deci 2
L] J [5 . Decrypt &
Client A Enervered O tode + @ Node 2 Gossip—sy O Node Event *| ctient & [Detivermep 7| 2™ ®
Event = (LLM Logic)
@ 2. Gossip— FAST Pear-to-Poer Network

Agent A
(LM Logic)

Fig. 2. The FAST message propagation flow. An encrypted Event, sent by Client A (1), is prop-
agated through the network via a gossip protocol (2). This decentralized process ensures resili-
ent delivery to the recipient's client (3), which then decrypts the payload and delivers the se-
mantic MCP to the target agent for processing (4).

4 Protocol Specification and Application

Having established the high-level architecture of the FAST, this section delves into its
technical specification. We will first define the structure of a base FATL message and
its cryptographic underpinnings and discuss the applications of this design for structur-
ing agent prompts and preserving user privacy.

4.1 FAST Message Structure and Encryption

A FAST message is an event with a standardized JSON object that serves as the outer
envelope for communication, to ensure broad interoperability. An Event object con-
tains the following fields:

—1id: A unique 32-byte SHA-256 hash of the serialized identifier (or) event data.

— pubkey: The 32-byte public key of the message author, identifying the sender.
—created_at: A Unix timestamp in seconds indicating when the message was created.

—kind: An integer specifying the type of event. For A2A communication, a specific
kind is reserved for encrypted direct messages.
1 {

2 /[--- Outer FAST Event (Transport Layer) ---

"id": "ald34b...c9f2e1", // 32-byte SHA-256 hash of the serialized event data
a "pubkey”: "fa9s...ecd7d2", // 32-byte public key of the sending agent (Agent A)
5 “"created_at": 1698487200, // Unix timestamp (seconds)
3 "kind": 1004, /1 Integer for “Encrypted Direct A2A Message"
7 "key_type": 1, // Integer for algorithm agility (e.g., 1 = Ed25519)
8 "tags": [
9 ["p", "7f4d...b8e9%a1"] // Tag identifying the recipient's pubkey (Agent B)
10 1.
11 “"content”: "b64...SjR9aA==", // MES-256-GCM encrypted MCP payload (base64 encoded)
12 "sig": "elaB...f9d8c3" // 64-byte Ed25519 signature of the 'id" hash

13 ¥
Fig 3. Structure of a FAST Event object.

—tags: An array of arrays used for indexing and referencing events or public keys.
— content: The payload of the message. This is always an E2EE string for A2A comm.
—sig: A 64-byte encrypted signature (id hash), created using the author's private key.
The end-to-end encryption of the content field is mandatory for secure agent interac-
tion. It is achieved using a standard, shared-secret approach (e.g., Elliptic Curve Diffie-
Hellman). The sending client generates a shared secret using its private key and the
recipient's public key. This secret is then used to encrypt the MCP payload with a sym-
metric cipher like AES-256-GCM. The resulting ciphertext becomes the content of the
FAST Event. Only the intended recipient, holding the corresponding private key, can
derive the same shared secret and decrypt the message.

4.2 The Agent-to-Agent Contract: The MCP Specification

The decrypted content of a FAST event reveals the A2A payload, which is the semantic
language that enables meaningful agent orchestration. It provides a standardized struc-
ture for delegating tasks and returning results.

ed_tools": ["web_fetch_tool", "text_susmarizer

timestamp": "2823-16-26T10:80:00Z° // ISD 8681 timestamp

Fig. 4. The structure of the A2A Protocol (MCP_a2a v1.0) payload, which forms the semantic
content inside an encrypted FAST packet. On the left, (a) illustrates the general skeleton of the
protocol with placeholder fields. On the right, (b) provides a concrete, runtime example of a
task_request from one agent to another.

— protocol_version: Specifies the version to ensure backward compatibility.

— message_id: A unique identifier for this specific message.

— task_id: A crucial field that groups related messages into a single conversation or
workflow, allowing agents to track the state of a multi-step task.

— sender_id and recipient_id: The public keys of the communicating agents,
providing a verifiable identity layer within the decrypted payload.

— payload: An object containing the core communication, which includes a type field
(e.g., task_request, result_response, status_update) and the content of the message.

— system_prompt: A high-level natural language instruction that defines the persona,
role, and goal for the recipient agent's LLM.

— data: A structured data object containing the specific information the agent needs to
reason about. This could be user details or parameters for a tool. Providing structured
data minimizes ambiguity and reduces the likelihood of LLM hallucination.

— required_tools: A list of functions or APIs that the requesting agent expects the
recipient to have access to in order to complete the task.

By separating behavioral instructions (system_prompt) from factual information
(data) and functional requirements (required_tools), the MCP allows a sending
agent to precisely define the execution context for the receiving agent. This structured
approach makes agent interactions more deterministic, testable, and reliable than if they
were based on parsing unstructured natural language alone.

4.3 A Privacy-Preserving Approach to Data Relay

The two-layer design of FAST provides robust privacy guarantees by design. When an
agent sends a message, the entire MCP payload, including any sensitive user data or
proprietary prompts, is encrypted on the client side before it is wrapped in a FAST
Event. This Event is then broadcast to the decentralized network of relays. The relays
only have access to the public metadata of the Event object. The relay cannot access:
the semantic meaning or intent of the interaction, specific system_prompt being used,
any sensitive data contained within the MCP payload, and the ultimate recipient of the
message. This architecture ensures that user and agent data remains confidential in
transit, protected from snooping by the network operators themselves.

4.4 Anatomy of Multi-Agent Interaction:

Canversation
Master Agent System Participants
[}

12, Synthesize
o —

itn Maste

(Trip

11, Detiver,
o Besults

Fiight Agent System
®

— [] orsso [o
|| cents ight Agent | Fignt gt

2. Dolegate

Weather Task
L. Dalagats
Flight Task

A

|/

wieathar Rasult

5. Detiver
‘Weather Task

o
/ 7 Flight Result
‘o™ (o)

Results .10

@1 |cossi

Fig. 5. This diagram shows a complete interaction between three autonomous agents. The first
four steps represent Agent A's initial request, while the last four steps represent Agent B's reply.

44.1 The Delegation Phase (Steps 1-7)

In this phase, a Master Agent breaks down a complex goal into sub-tasks and delegates
them to specialist agents. The process begins when the Master Agent (A) initiates a
workflow (Steps 1 & 2). Its client creates two separate, independently encrypted FAST
Events: a task request for the Flight Agent (B) and another for the Weather Agent (C).
Crucially, both requests share the same task id to link them to the overall workflow,
but they have unique message ids. Once these events are injected into the network, the
FAST nodes propagate them independently via the gossip protocol (Step 3). The net-
work, being stateless, has no knowledge that the two messages are related. It then de-
livers each encrypted event to its intended recipient (Steps 4 & 5). This delivery can
happen at different times and via different nodes, demonstrating the network's decen-
tralized nature. Finally, upon receipt, each client decrypts its respective message and
passes the instructions to its agent (Steps 6 & 7). Client B forwards the flight task to
the Flight Agent, and Client C forwards the weather task to the Weather Agent.

4.4.2 The Response and Synthesis Phase (Steps 8-12)

In this phase, the specialist agents complete their tasks and return the results, which are
then appended to the existing context of the conversation, which is further synthesized
by the Master Agent. After completing their tasks, (8 & 9 Send Results) Client B and
Client C each construct a new encrypted FAST Event containing a result response
payload. These payloads are encrypted for the Master Agent (A) and contain the origi-
nal task _id that initiated the workflow and send results back into the network. The
FAST nodes propagate (10. Gossip) these two new response events across the network,
again treating them as independent messages. The Master Agent's Client (A) receives
both response events from the network (11. Deliver). In step 12, client A synthesize
both responses. By reading the identical task id in each message, it knows that both the
flight data and the weather data belong to the "Trip Planner" workflow. The Master
Agent can synthesize these results, combining them into a coherent plan for the source.

4.4.3 How the MCP Holds the Conversation Materials

This architecture demonstrates how a stateless network can facilitate complex, stateful
multi-agent orchestration. The "memory" and context of the conversation are main-
tained entirely within the A2A payload, managed by the participating clients. The
task_id field is the essential thread that stitches the entire, distributed workflow to-
gether. It allows the Master Agent to send out multiple, parallel requests to different
agents and correctly associate all the incoming, asynchronous responses with the orig-
inal goal. The message_id, in contrast, remains unique for every single event, allowing
for the tracking of individual packets within the larger task. By using the task id as a
shared context identifier, client applications can manage complex orchestration pat-
terns, effectively re-assembling the results from multiple specialist agents. The entire
conversational history and context are held by the participants, not the network, which
is a core tenet of this decentralized and composable design.

10

5 Security Analysis

The protocol's foundational security is a direct result of its architectural design, where
each component is critical for the system's integrity. Removing any of these pillars, as
demonstrated by a qualitative ablation study, would introduce catastrophic vulnerabil-
ities. For instance, ablating End-to-End Encryption would fundamentally compromise
all privacy by exposing agent communication to the untrusted network nodes. Replac-
ing the decentralized gossip network with a central server would reintroduce a single
point of failure and a point of censorship, negating the protocol's core resilience. On
the semantic layer, the structured MCP is essential for reliable orchestration; removing
it in favor of unstructured language would lead to ambiguous and untrustworthy inter-
actions. Finally, removing cryptographic signatures would eliminate all guarantees of
authenticity, enable widespread impersonation and rendering the network insecure. We
acknowledge that challenges remain at the semantic, network, and ecosystem levels.
The most significant semantic threat is prompt injection; once a payload is decrypted,
a malicious agent could craft its content to manipulate the behavior of the recipient's
LLM. At the network level, the permissionless nature of FAST makes it susceptible to
decentralized attacks like spam and Sybil attacks, where attackers attempt to degrade
the network or overwhelm higher-level systems with fake identities. Addressing these
broader ecosystem challenges will require future work, most critically the development
of a decentralized reputation system built on top of FAST. Such a system is essential
for enabling agents to build trust and for fostering a healthy, functional open market.

6 Efficiency and Architectural Comparison

To compare the architectures, we perform a holistic analysis of their scalability, resili-
ence, and efficiency of development and integration.

Table 1: Comparative Analysis of Multi-Agent Communication Architectures

single bottleneck.

Metric /Attribute FAST Protocol (Decentralized) Centralized Orchestrator (Monolithic)
Scalability tthegrll)é ticjjisilg;??::;lslgi;iggre :;‘iisﬁ':)ma Low. Limited by the processing and band-
(Throughput) : oLt g width capacity of the single central server.

Resilience (Uptime)

Very High. No single point of failure. The
network remains operational even if a signifi-
cant portion of nodes fails.

Low. The central server is a single point of
failure. If it goes down, the entire system is
offline.

Latency (Single
Message)

Variable / Higher. Message must propagate
through an indeterminate number of gossips
hops to reach its destination.

Low / Predictable. direct, two-hop round
trip from client to server to client.

Interoperability &
Composability

High. Any agent that speaks the protocol can
join and interact permissionlessly.

Very Low / None. Integrating a new agent
requires custom code and API changes.

Security Model

Trustless by Design. End-to-end encryption
is mandatory. Network infrastructure cannot
access message content.

Requires Trust. central server operator has
full access to all unencrypted agent commu-
nication and data.

Development & In-
tegration Cost

Low (Ecosystem). Once an agent is FAST-
compliant, it can interact with the entire net-
work.

High (Per Integration). Every new agent
requires a bespoke, costly integration pro-
ject with central system.

The FAST protocol is architecturally optimized for these large-scale properties, provid-
ing a resilient and composable foundation essential for an open market of Al agents.

11

7 Implications and Future Research

The greatest implication of FAST is the establishment of a universal standard for agent
communication. As demonstrated in the multi-agent orchestration pattern (Fig. 5), this
allows developers to treat agents as modular services, composing workflows from the
best-in-class specialists from providers, fostering a competitive, innovative environ-
ment. FAST's gossip protocol provides horizontal scalability and inherent resilience.
Unlike centralized systems with a single point of failure and a performance bottleneck,
the FAST network's capacity and robustness grow as more nodes join. This provides a
level of reliability suitable for critical, large-scale applications. FAST is architected for
a zero-trust environment where participants do not need to trust the network infrastruc-
ture. Mandatory end-to-end encryption and cryptographic signatures ensure that the
network's only role is to transport opaque, authenticated envelopes. This creates a per-
missionless and censorship-resistant environment where any agent is free to participate
without fear of being de-platformed.

7.1 The Path Forward: An Open Market and Future Research

FAST provides the foundational transaction layer for viable open market of Al services.
To fully realize this vision, several critical challenges must be addressed in future.
Dynamic Agent Discovery: The current FAST specification defines communication
but not discovery; an agent cannot delegate a task to a "Flight Expert" without first
knowing it. A critical area for future work is the design of a decentralized agent discov-
ery protocol that would allow advertise, creating a dynamic "yellow pages" for network.
Advanced Orchestration Protocols: While the task id enables basic state manage-
ment, advanced orchestration—involving complex conditional logic, long-running
workflows, and multi-party agreements—will require higher-level protocols to be built
on top of the foundational communication primitives provided by FAST.

8 Conclusion

This paper introduces a significant architectural shift for multi-agent systems, moving
away from centralized, monolithic designs towards a federated model for communica-
tion. The Federated Agent Secure Transport (FAST), a novel, decentralized architecture
that combines a secure transport protocol with a structured semantic layer, the
MCP_a2a v1.0, to enable sophisticated agent orchestration. We have demonstrated
how this architecture provides robust solutions for interoperability, scalability, and se-
curity, moving beyond closed simulations. The broader vision for FAST extends be-
yond a mere technical specification. It is a blueprint for the essential communication
backbone of a future where Al is not a collection of isolated, proprietary tools but a
federated, interconnected network. By providing a censorship-resistant fabric for inter-
action, FAST is designed to foster an open market of Al services, encouraging innova-
tion and democratizing access to autonomous technology. This represents a crucial step
on the journey towards true, emergent collective intelligence.

12

References

10.

11.

13.
14.
15.

16.
17.

20.

21.

. Giret, A., Botti, V.: Prototyping Adaptive and Robust Multi-Agent Systems. In: Corchado,

J.M., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC,
vol. 54, pp. 11-20. Springer, Berlin, Heidelberg (2009)

Montenegro, G., Pagnia, H.: Security in Multi-Agent Systems. In: Buttyan, L., et al. (eds.)
Security and Privacy in Ad-hoc and Sensor Networks. CMS 2007. LNCS, vol. 4582, pp.
248-261. Springer, Berlin, Heidelberg (2007)

. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-Effi-

cient Learning of Deep Networks from Decentralized Data. In: Proceedings of the 20th In-
ternational Conference on Artificial Intelligence and Statistics (AISTATS 2017), PMLR
54:1273-1282 (2017)

Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial In-
telligence Review, vol. 24, no. 1, pp. 33-60 (2005)

Corradi, A., Montanari, R., Stefanelli, C.: Security management in open multi-agent sys-
tems. IEEE Communications Magazine, vol. 40, no. 6, pp. 82-88 (2002)
Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys (CSUR), vol. 36, no. 4, pp. 335-371 (2004)

. Poslad, S., Buckle, P., Hadingham, R.: The FIPA-OS agent platform: open source for open

standards. In: Proceedings of the International Conference on Practical Application of Intel-
ligent Agents and Multi-Agent Technology (PAAM 2000), pp. 355-368 (2000)

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, L., Narasimhan, K., Cao, Y.: ReAct: Synergizing
Reasoning and Acting in Language Models. arXiv preprint arXiv:2210.03629 (2022)
Labrou, Y., Finin, T., Peng, Y.: Standardizing Agent Communication Languages: The Cur-
rent Landscape. IEEE Intelligent Systems, vol. 14, no. 2, pp. 45-52 (1999)

Ramaswamy, L., lyengar, A., Liu, L., Douceur, J.R.: Peer-to-peer systems. In: Communica-
tions of the ACM, vol. 48, no. 10, pp. 114-115. ACM (2005)

Nostr Protocol: Nostr Implementation Possibilities. https://github.com/nostr-protocol/nips,
last accessed October 2023

. Tarr, D., et al.: Secure Scuttlebutt: A Decentralized Secure Gossip Protocol. Whitepaper

(2019). https://ssbc.github.io/scuttlebutt-protocol-guide/

W3C: Decentralized Identifiers (DIDs) v1.0. W3C Recommendation (2022).
https://www.w3.org/TR/did-core/

Zimmermann, P.: The Official PGP User's Guide. MIT Press (1995)

Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
In: Ricci, A., et al. (eds.) Agent-Oriented Software Engineering, pp. 89—127. John Wiley &
Sons, Chichester (2007)

Huhns, M.N.: Agents as services. [EEE Internet Computing, vol. 5, no. 4, pp. 93-95 (2001)
Armbrust, M., Fox, A., Griffith, R., et al.: A view of cloud computing. Communications of
the ACM, vol. 53, no. 4, pp. 50-58 (2010)

. Bellifemine, F., Caire, G., Poggi, A.: JADE: a white paper. EXP in search of innovation,

vol. 3, no. 3, pp. 6-19 (2003)

. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. In: Present and Ulterior

Software Engineering, pp. 195-216 (2017)

Dahling,S,et al..: Enabling scalable and fault-tolerant multi-agent systems by utilizing cloud-
native computing. Autonomous Agents and Multi-Agent Systems, vol. 35, article 10 (2021)
Kanj, H., et al.: A novel dynamic approach for risk analysis and simulation using multi-
agents model. Applied Sciences, vol. 12, no. 10, article 5062 (2022)

