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ABSTRACT

Logical specifications have been shown to help reinforcement learning algorithms in
achieving complex tasks. However, when a task is under-specified, agents might fail
to learn useful policies. In this work, we explore the possibility of improving coarse-
grained logical specifications via an exploration-guided strategy. We propose
AUTOSPEC, a framework that searches for a logical specification refinement whose
satisfaction implies satisfaction of the original specification, but which provides
additional guidance therefore making it easier for reinforcement learning algorithms
to learn useful policies. AUTOSPEC is applicable to reinforcement learning tasks
specified via the SpectRL specification logic. We exploit the compositional nature
of specifications written in SpectRL, and design four refinement procedures that
modify the abstract graph of the specification by either refining its existing edge
specifications or by introducing new edge specifications. We prove that all four
procedures maintain specification soundness, i.e. any trajectory satisfying the
refined specification also satisfies the original. We then show how AUTOSPEC can
be integrated with existing reinforcement learning algorithms for learning policies
from logical specifications. Our experiments demonstrate that AUTOSPEC yields
promising improvements in terms of the complexity of control tasks that can be
solved, when refined logical specifications produced by AUTOSPEC are utilized.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms have made tremendous strides in recent years Sutton &
Barto (2018); Silver et al. (2016); Mnih et al. (2015); Levine et al. (2016). However, most algorithms
assume access to a scalar reward function that must be carefully engineered to make environments
amenable to RL—a practice known as reward engineering Ibrahim et al. (2024). This creates
challenges in applying RL to new environments where useful reward functions are hard to construct.
Furthermore, scalar Markovian rewards cannot provide sufficient feedback for certain tasks Abel et al.
(2021); Bowling et al. (2023), leading to growing interest in non-Markovian reward functions Li et al.
(2017a); Jothimurugan et al. (2021); Alur et al. (2023).

To make non-Markovian rewards tractable, it is standard to represent them via logical specifica-
tion formulas that capture the intended task. These approaches, known as specification-guided
reinforcement learning Aksaray et al. (2016); Li et al. (2017b); Icarte et al. (2018); Jothimurugan
et al. (2019; 2021), derive reward functions from logical specifications. However, this creates two
challenges: (i) providing specifications granular enough to guide RL algorithms, and (ii) defining
accurate labeling functions mapping environment states to specification predicates. Users often create
coarse specifications or labeling functions that, while logically correct, provide insufficient guidance
for learning.

We present AUTOSPEC, a framework for automatically refining coarse specifications without user
intervention. AUTOSPEC starts with an initial logical specification, translates it to a reward function,
and attempts to learn a policy. If the learned policy’s performance is unsatisfactory, AUTOSPEC
identifies which specification components cause learning failures and automatically refines both
the specification formula and labeling function. The refined specification’s satisfaction implies the
original’s satisfaction while providing additional structure for learning. This process repeats until a
satisfactory policy is learned.
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Figure 1: Example of refinement by AUTOSPEC in a 9-rooms environment. The original MID-node
region includes a trap state from which recovery is impossible. The refined specification excludes
this trap, enabling the agent to learn a policy with higher satisfaction probability.

AUTOSPEC works with SpectRL specifications; boolean and sequential combinations of reach-avoid
tasks Jothimurugan et al. (2019). Any SpectRL specification decomposes into an abstract graph where
edges specify reach-avoid tasks Jothimurugan et al. (2021). AUTOSPEC identifies problematic edges
and applies targeted refinements: either modifying the labeling function for regions (Figure 1) or
restructuring the graph to add alternative paths. We prove all refinements maintain soundness, where
satisfaction of the refined specification implies satisfaction of the original. AUTOSPEC integrates
with existing SpectRL-compatible algorithms as demonstrated with DIRL Jothimurugan et al. (2021)
and LSTS Shukla et al. (2024).

Our contributions:

1. A framework for automated refinement of logical RL specifications with four refinement
procedures, all with formal soundness guarantees (Section 3).

2. Integration with existing specification-guided RL algorithms, enabling them to solve tasks
with coarse specifications (Section 3).

3. Empirical demonstration that AUTOSPEC enables learning from specifications that existing
methods cannot handle (Section 4).

Related work. Recent years have seen substantial progress in solving RL tasks specified via logical
specifications Aksaray et al. (2016); Li et al. (2017b); Icarte et al. (2018); Camacho et al. (2019);
Giacomo et al. (2019); Hasanbeig et al. (2022; 2019); Hahn et al. (2019); Jothimurugan et al. (2019;
2021); Xu & Topcu (2019). Many works consider different fragments of Linear Temporal Logic (LTL)
or their variants for specifying RL tasks. Icarte et al. (2018); Camacho et al. (2019) consider tasks that
can be specified using deterministic finite automata (DFA) and solve them by reward machines, which
decompose these tasks and translate them into a reward function. The reward function can then be used
to train existing RL algorithms. Li et al. (2017b) considers a variant of LTL called TLTL for specifying
tasks and propose a method for translating these specifications into continuous reward functions.
Hasanbeig et al. (2022; 2019); Hahn et al. (2019) study the translation of tasks specified in LTL into
reward functions. Alur et al. (2022) examines the theoretical questions related to the translation of
logical specifications into reward functions. Jothimurugan et al. (2019) defines the the specification
language SpectRL, a finitary fragment of LTL and provides justification for using this language to
define specifications for RL tasks. A compositional method that decomposes SpectRL specifications
into an abstract graph and constructs a reward function for each abstract graph edge was proposed
in Jothimurugan et al. (2021). The approach by Toro Icarte et al. (2019) focuses on discovering
optimal reward structures through environmental exploration and reward analysis. Compositional
methods are further explored by Neary et al. (2022), who propose removing unfulfillable subtasks,
and Neary et al. (2023), who introduce verification techniques to certify learned policies. Zikelic
et al. (2023b) propose CLAPS, a compositional method for learning neural network policies with
formal guarantees on the satisfaction of SpectRL specifications, thus advancing the applicability to
safety-critical RL applications by utilizing prior methods for learning reach-avoid policies with formal
guaranteesLechner et al. (2022); Zikelic et al. (2023a); Chatterjee et al. (2023). Recent advancements
also include LTL2Action Vaezipoor et al. (2021), which translates LTL specifications into sequences
of tasks for RL agents, facilitating the decomposition of complex temporal logic constraints into
manageable sub-tasks. TrainifyJin et al. (2022) employs counterexample-guided abstraction and
refinement (CEGAR) to iteratively improve policies by addressing failure cases identified through
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counterexamples. This iterative refinement enhances policy robustness and performance. All these
works collectively advance the integration of logical specifications and formal methods into RL,
driving the development of robust and reliable policies for complex tasks. In contrast, AUTOSPEC
studies the problem of automated logical specification refinement towards improving reward functions
obtained by translation from logical RL specifications, and can be integrated into off-the-shelf
specification-guided RL algorithms to improve the performance of learnt agents.

2 PRELIMINARIES

MDPs. A Markov Decision Process (MDP) is a tuple M = (S,A, P,R, γ), where S ⊆ Rn is the
state space, A ⊆ Rm is the action space, P : S × A × S → [0, 1] is the probabilistic transition
function, R is the (possibly non-Markovian) reward function, and γ is the discount factor. Let
η : S → [0, 1] be the initial state distribution. A trajectory ζ in M is a sequence of states and actions
ζ = s0, a0, s1, a1, . . . where si ∈ S and ai ∈ A. We use Z to denote the set of all trajectories in M
and Zf to denote the set of all finite trajectories in M , which are finite prefixes of trajectories ending
in states. A (pure) policy π : Zf → A assigns an action to each finite trajectory, and a non-Markovian
reward R : Zf → R assigns a reward to a finite trajectory. The MDP M under any policy π gives rise
to a probability space over the set of all trajectories in the MDP Puterman (1994). We use Pπ and Eπ

to denote the probability measure and the expectation operator in this probability space, respectively.

Logical specifications. In this work, we are solving RL tasks defined by logical specifications. For-
mally, a logical specification (or, simply, a specification) is a boolean function ϕ : Z → {true, false}
which specifies whether a trajectory in the MDP satisfies the specification. We write ζ |= ϕ when-
ever a trajectory ζ satisfies the specification ϕ. The objective of a specification-guided RL task
is to find a policy π∗ that maximizes the probability of satisfying the given specification ϕ, i.e.
π∗ ∈ argmaxπPπ[ζ |= ϕ]. Specification-guided RL algorithms use the specification to create a dense
reward that guides the policy search, and therefore outperform algorithms that cannot leverage the
specification for learning and instead require manual reward engineering Jothimurugan et al. (2021);
Shukla et al. (2024).

SpectRL specification logic. We consider RL tasks specified in the SpectRL specification logic.
SpectRL Jothimurugan et al. (2019) is a fragment of Linear Temporal Logic (LTL) which consists of
all boolean and sequential combinations of reach-avoid tasks. Formally, a specification in SpectRL
is defined in terms of predicates and specification formulas. An atomic predicate is a function
a : S → {true, false} which defines a set of states that satisfy the atomic predicate. A predicate is
a boolean combination of atomic predicates, i.e. b := a | b1 ∧ b2 | b1 ∨ b2, where a is an atomic
predicate and b1 and b2 are predicates. Specification formulas in SpectRL are defined by the grammar

ϕ := achieve b | ϕ1 ensuring b | ϕ1;ϕ2 | ϕ1 or ϕ2 (1)

where b is a predicate and ϕ1 and ϕ2 are specification formulas. Intuitively, ”achieve b” requires the
agent to reach a state in which the predicate b is satisfied. The clause ”ϕ1 ensuring b” requires the
agent to satisfy the specification ϕ while only visiting states in which the predicate b is satisfied. The
clause ”ϕ1;ϕ2” requires the agent to first satisfy specification ϕ1 and then satisfy specification ϕ2.
The clause ”ϕ1 or ϕ2” requires satisfaction of at least one of ϕ1 or ϕ2. See Jothimurugan et al. (2019)
for the formal definition of the semantics of each clause.

Abstract graphs for SpectRL specifications. It was shown in Jothimurugan et al. (2021) that each
specification written in the SpectRL specification logic can be translated into an equivalent abstract
graph. An abstract graph is a directed acyclic graph (DAG) whose vertices represent sets of MDP
states and whose edges are annotated with sets of safe MDP states. Hence, each abstract graph edge
defines a reach-avoid specification, where the task is to reach the set of states defined by the target
vertex of the edge starting from the set of states defined by the source vertex of the edge, while
staying within the set of safe states defined by the edge.

Definition 1 (Abstract graph). An abstract graph G = (V,E, β, s, t) is a DAG, where V is a finite set
of vertices, E is a finite set of edges, β : V ∪ E → B(S) is a labeling function that maps each vertex
and each edge to a subset of the MDP states S, s ∈ V is the source vertex and t ∈ V is the target
vertex. Furthermore, we require that β(s) = support(η) is the support of the initial state distribution
η of the MDP.
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Given a trajectory ζ in the MDP and an abstract graph G = (V,E, β, s, t), we say that ζ satisfies
abstract reachability for G (written ζ |= G) if it gives rise to a path in G that traverses G from s to t
and satisfies the reach-avoid specifications of every traversed edge. It was shown in Jothimurugan
et al. (2021) that, given any SpectRL specification ϕ, one can construct an abstract graph G such that
ζ |= ϕ if and only if ζ |= G holds for each trajectory ζ in the MDP. Hence, solving an RL task for a
SpectRL specification reduces to solving an abstract reachability task in the abstract graph G.

Problem statement. Given an MDP M and a SpectRL specification ϕ, our goal is to learn a policy π
such that the probability Pπ[ζ |= ϕ] of a trajectory induced by the policy satisfying the specification
is maximized.

Specification refinement. In order to solve this problem, we will utilize a common approach in
specification-guided RL, to first translate the logical specification ϕ to a (non-sparse) reward function
and then learn a policy by using existing RL algorithms with this reward function. However, if the
probability of the specification being satisfied under the learned policy is unsatisfactory (i.e. below
some desired probability threshold p ∈ [0, 1]), we will then refine the logical specification ϕ into
a new SpectRL specification ϕr. We will then repeat the above process until the probability of the
specification being satisfied under the learned policy becomes satisfactory.
Definition 2 (Specification refinement). Given two logical specifications ϕ and ϕr, we say that
ϕr refines ϕ, if any MDP trajectory that satisfies the refined specification ϕr also satisfies the
specification ϕ. That is, if for an MDP trajectory ζ we have (ζ |= ϕr) =⇒ (ζ |= ϕ).

3 AUTOMATED REFINEMENT OF RL SPECIFICATIONS

We now present AUTOSPEC, a framework for automated refinement of logical specifications in
RL tasks. The key insight is that specification failures often stem from identifiable issues that can
be systematically addressed: overly broad target regions, insufficient safety constraints, missing
waypoints, or lack of alternative paths. When a specification-guided RL algorithm A fails to learn a
satisfactory policy for specification ϕ, AUTOSPEC identifies which components caused the failure
and applies targeted refinements to improve learnability while maintaining soundness.

AUTOSPEC operates as a wrapper around any SpectRL-compatible algorithm. It monitors the learning
process, and when a policy π fails to satisfy the specification with probability at least p ∈ [0, 1]
(a user-provided threshold), it computes a refined specification ϕr such that: (1) satisfaction of ϕr

implies satisfaction of ϕ (soundness), and (2) ϕr provides additional structure that makes it easier
to learn. This refined specification is returned to algorithm A to continue learning. Through this
iterative refinement process, AUTOSPEC enables solving RL tasks with coarse specifications that
would otherwise be unlearnable.

Overview of AUTOSPEC. Algorithm 1 shows the complete AUTOSPEC framework. The algorithm
takes as input an MDP M , a SpectRL specification ϕ, a satisfaction threshold p, and any specification-
guided RL algorithm A. It first translates ϕ into an abstract graph G and uses A to learn policies for
the graph edges. For each edge e where A learned a policy but that policy fails to achieve satisfaction
probability p, AUTOSPEC applies four refinement procedures in sequence: SeqRefine, AddRefine,
PastRefine, and OrRefine. This ordering reflects increasing levels of structural modification; from
local predicate adjustments to graph topology changes. The first refinement that successfully improves
performance above threshold p is applied, the graph is updated, and policies are relearned before
proceeding to the next edge.

AUTOSPEC iterates through all edges e = u→ u′ of the abstract graph G for which the specification-
guided RL algorithmA has learned a policy but for which the reach-avoid task satisfaction probability
is below the provided probability threshold p. For each such edge, AUTOSPEC performs four
refinement procedures that focus on different possible reasons for the edge e = u → u′ being
challenging for learning a satisfactory policy.

SeqRefine, which is invoked first, tries to locally refine the problematic edge e = u→ u′ by using
predicate refinement techniques to refine the labeling function at the target region associated to the
vertex u′ and the safety region associated to the edge e. If SeqRefine fails to improve performance
above threshold, AUTOSPEC invokes AddRefine which attempts to add a waypoint (i.e. a new abstract
graph vertex) between the vertices u and u′, making path-finding easier. If AddRefine also fails,
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Algorithm 1 AUTOSPEC

Require: MDP M , specification ϕ, threshold p ∈ [0, 1], spec-guided RL algorithm A
G← abstract graph corresponding to ϕ
Π← A(G) [set of policies for edges in G learned by algorithm A]
for e = u→ u′ an edge in G do
πe ∈ Π← policy learned for edge e (Null if A does not learn a policy for edge e)
if πe is not Null and P(πe) < p then
ζ ← sampled trajectories of the system
if LEARNPOLICY(e,SEQREFINE(e,G,ζ))> p then

G← SEQREFINE(e,G,ζ)
else if LEARNPOLICY(e,ADDREFINE(e,G,ζ))> p then

G← ADDREFINE(e,G,ζ)
else if LEARNPOLICY(e,PASTREFINE(e,G,ζ))> p then

G← PASTREFINE(e,G,ζ)
else if LEARNPOLICY(e,ORREFINE(e,G,ζ))> p then
G← ORREFINE(e,G,ζ)

end if
Π← A(G) [set of policies for updated abstract graph G]

end if
end for
Return G and Π

AUTOSPEC invokes PastRefine which tries to refine the source node u. Finally, if other refinement
procedures fail, AUTOSPEC invokes OrRefine which aims to find alternative paths to u′.

After each attempted refinement, an off-the-shelf RL algorithm (LEARNPOLICY in Algorithm 1)
is used to estimate the satisfaction probability of the refined edge. When a refinement succeeds in
achieving satisfaction probability above p, the refined abstract graph G is updated and AUTOSPEC
applies the specification-guided RL algorithm A to learn a new set of edge policies Π for the entire
graph. At the end, the final abstract graph G corresponds to the refined specification ϕr of the input
specification ϕ.

3.1 SPECIFICATION REFINEMENT SUBPROCEDURES

We now define the four specification refinement subprocedures used by AUTOSPEC in Algorithm 1.
Each procedure addresses a specific type of specification inadequacy, and they are applied in order of
increasing structural modification to the abstract graph. The detailed pseudocodes are provided in the
Appendix. Once a problematic edge e = u→ u′ is identified (an edge with satisfaction probability
below threshold p), AUTOSPEC samples trajectories ζ using the learned policy, where the number of
trajectories is an algorithm hyperparameter.

SeqRefine: Refining Predicates. The first refinement subprocedure addresses overly coarse pred-
icates in the reach and avoid conditions. For edge e = u → u′, SeqRefine refines both the target
predicate b = β(u′) and the safety predicate c = β(e) by calling two subprocedures:

ReachRefine collects all states along sampled trajectories that successfully reached the goal region b.
The refined goal region is computed as br = b ∩ ConvexHull(reached states), effectively excluding
unreachable portions of the original target region.

AvoidRefine collects states where trajectories entered unsafe regions (complement of c). The refined
safe region is computed as cr = c \ ConvexHull(last k unsafe states), where k is a hyperparameter
controlling how much of the trajectory tail to consider. This removes demonstrated unsafe areas from
the safety region.

SeqRefine returns a refined graph Gr identical to G except with updated labeling: βr(u
′) = br

and βr(e) = cr. This refinement provides more precise guidance by excluding problematic regions
discovered through exploration. AddRefine: Introducing Waypoints. The second refinement
addresses long or complex paths by decomposing them. When direct navigation from u to u′

proves difficult, AddRefine introduces an intermediate vertex u′′ by collecting midpoint states from

5
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Figure 2: (a) PastRefine adds bRi−1. This figure illustrates the process of refining the abstract graph by
identifying regions where the policy either succeeds (bRi−1 (green)) or fails (bNR

i−1 (red)) to meet the
specification, and a new path with bRi−1 (green) is added to the graph to improve policy guidance. (b)
Decomposing a disjunctive specification into an abstract graph (solid arrow) with proposed refinement
(dotted arrow).

successful trajectories that reached β(u′), defining β(u′′) = β(e) ∩ ConvexHull(midpoints), and
replacing edge e = u→ u′ with two edges: e′′ = u→ u′′ and e′ = u′′ → u′. This decomposition
breaks a challenging long-horizon task into two shorter subtasks that are easier to learn.

PastRefine: Partitioning Source Regions. The third refinement addresses heterogeneous starting
conditions where some initial states in u consistently lead to success while others lead to failure.
PastRefine separates trajectories into successful and failing sets based on whether they satisfied
edge e, then learns a hyperplane separating successful from failing initial states. It creates region br
containing successful starting states and introduces new vertex u∗ with β(u∗) = br having the same
incoming edges as u. The refinement replaces problematic edge e = u → u′ with e∗ = u∗ → u′.
As shown in Figure 2(a), this refinement identifies and isolates promising initial conditions while
preserving the original vertex u and its connections.

OrRefine: Exploiting Alternative Paths. The fourth refinement addresses blocked or infeasible
direct paths by leveraging the existing graph structure. When the path through edge e = u → u′

cannot be made satisfactory, OrRefine identifies alternative parents of u′ (vertices ui with existing
edges ui → u′), and for each viable ui, adds new edge eui = u→ ui with β(eui) = β(e). It then
tests if the alternative path u→ ui → u′ achieves the threshold. As illustrated in Figure 2(b), this
creates alternative routes to the target using only existing vertices, maintaining all original safety
constraints. OrRefine can iteratively explore ancestors of ui if the direct connection fails.

As shown in Algorithm 1, any specification-guided RL algorithm that is applicable to SpectRL
specifications and that learns policies for edges in the abstract graph can be integrated into the
AUTOSPEC framework. The specification-guided RL algorithm learns policies for edges in the
abstract graph, until it is unable to proceed beyond an edge with a sufficient satisfaction probability.
We then perform the refinements in AUTOSPEC, using Monte Carlo sampling to estimate the
satisfaction probability of each refinement until one is found to exceed the threshold. This refinement
is used to create an updated abstract graph and an updated set of edge policies are learned with respect
to this graph.

3.2 CORRECTNESS OF AUTOSPEC

The following theorem establishes correctness of AUTOSPEC, showing that the specification ϕr

computed by AUTOSPEC is indeed a refinement of the input specification ϕ. The proof, provided
in the Appendix, proceeds by proving that each of the four refinement procedures results in a
specification refinement.
Theorem 1 (Correctness of AUTOSPEC). Given an abstract graph G of a SpectRL specification ϕ
and an edge e, AUTOSPEC computes a specification ϕr and returns an abstract graph Gr and an
edge er such that ϕr refines ϕ. That is, for any MDP trajectory ζ, we have (ζ |= ϕr) =⇒ (ζ |= ϕ).

4 EXPERIMENTAL EVALUATION

We evaluate AUTOSPEC on its ability to diagnose and repair specification failures that prevent
existing algorithms from learning satisfactory policies. Our experiments address three questions: (1)
Can AUTOSPEC correctly identify which refinement type is needed for different failure modes? (2)
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Do the refinements enable learning from previously unlearnable specifications? (3) What are the
requirements and limitations of the refinement process?

4.1 EXPERIMENTAL SETUP

We integrate AUTOSPEC with two specification-guided RL algorithms: DIRL Jothimurugan et al.
(2021), which uses Dijkstra-style graph search with systematic exploration, and LSTS Shukla
et al. (2024), which uses multi-armed bandits for edge selection with epsilon-greedy exploration.
These algorithms differ fundamentally in their exploration strategies, allowing us to examine how
AUTOSPEC’s effectiveness depends on the underlying learning algorithm.

We evaluate on two domains specifically chosen to stress-test different aspects of specification
refinement:

n-Rooms: Grid-based navigation with walls and doors, providing controlled tests of specific failure
modes. State space: (x, y, θ, d) ∈ R4 (position, angle to goal, distance). Action space: (v, θ) ∈ R2

(velocity, direction). The n-rooms domain has been extensively used in specification-guided RL
research Jothimurugan et al. (2021; 2019); Zikelic et al. (2023b) as it provides clear geometric
structure while still presenting challenging long-horizon tasks. Its modular room structure naturally
creates the types of specification failures we aim to address: trap states at room boundaries, dangerous
narrow passages between rooms, and multiple alternative paths through different door configurations.

PandaGym Gallouédec et al. (2021): Robotic manipulation requiring 3D navigation around obsta-
cles. This domain tests refinement in high-dimensional continuous control where geometric intuitions
may not apply directly. Following recent work showing the challenges of specification-guided RL
in manipulation tasks Shukla et al. (2024), we use this domain to validate that our convex hull and
hyperplane-based refinements remain effective in high-dimensional spaces where human intuition
about specification failures is limited.

For learning edge policies, both algorithms use PPO Schulman et al. (2017) with stable-baselines3 Raf-
fin et al. (2021) implementation, following the standard practice in recent specification-guided RL
work Jothimurugan et al. (2021); Zikelic et al. (2023b). We use 2-layer networks (64 neurons each),
learning rate 0.0003, and standard hyperparameters.

4.2 ALGORITHM-DEPENDENT EFFECTIVENESS: DIRL VS LSTS

Figure 3: 100-rooms Environment with marked regions its DAG specification

Our experiments reveal that AUTOSPEC’s effectiveness depends critically on the base algorithm’s
exploration strategy. We demonstrate this through a 100-rooms environment (Figure 3) with the
complex specification:

ϕ = ϕstart; (ϕm1 or ϕm2);ϕm3; (ϕm4 or ϕm5);ϕgoal

This specification structure—with multiple disjunctive branches and sequential composi-
tions—represents the type of complex task decomposition that prior work Jothimurugan et al. (2019;
2021) has identified as necessary for real-world applications but challenging for existing algorithms.
The 100-rooms scale specifically tests whether refinements remain effective when the state space
is large enough that exhaustive exploration is infeasible, reflecting concerns raised in Shukla et al.
(2024) about scalability of compositional methods.
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(a) Mid-goal DIRL performance (b) Full-spec DIRL performance (c) Mid-goal LSTS performance

Figure 4: Task satisfiability curves representing performances of DIRL and LSTS for sub-
specifications and complete specification

With DiRL (Successful Refinement). As shown in Figure 4(a-b), DiRL’s systematic exploration
enables successful refinement. The algorithm explores edges in order of estimated difficulty, providing
sufficient trajectory data for each edge before moving to the next. AUTOSPEC successfully applies
ReachRefine on the ϕm1 edge to remove unreachable portions of the target region, PastRefine on
the ϕm3 edge to identify successful starting regions, and OrRefine when direct paths fail to find
alternative routes through ϕm2. The satisfaction probability improves from near 0% to approximately
60% through these refinements.

With LSTS (Refinement Failure). Figure 4(c) shows LSTS failing on the same specification. The
bandit-based exploration spreads effort across all edges simultaneously, preventing deep exploration
of any single edge. Consequently, edges to M4, M5, and Goal achieve 0% satisfaction, providing
no successful trajectories for refinement computation. AUTOSPEC correctly reports its inability to
refine without samples, demonstrating that refinement quality fundamentally depends on the base
algorithm’s exploration strategy.

4.3 EVALUATION OF INDIVIDUAL REFINEMENTS

We design targeted experiments isolating specific failure modes to validate each refinement procedure.

SeqRefine: Trap State Elimination (Figure 6). Setup: 9-rooms environment where the goal
region includes a blocked room creating a trap state. Failure mode: Agent reaches the trap portion
of the goal and cannot escape. Refinement: ReachRefine identifies that successful trajectories
only reach the accessible portion of the goal. The refined specification excludes the trap region:
br = b ∩ ConvexHull(reached states). Result: Satisfaction probability improves from 15% to 85%,
demonstrating AUTOSPEC’s ability to learn environmental constraints not captured in the original
specification.

SeqRefine: Safety Constraint Discovery (Figure 7). Setup: 9-rooms with a narrow dangerous
passage below the goal. Failure mode: Shortest path goes through narrow passage where agent
frequently fails. Refinement: AvoidRefine identifies failure states near the narrow passage. The
refined specification expands the avoid region: cr = c \ ConvexHull(last 10 failure states). Result:
Agent learns to use wider but longer safe path, improving satisfaction from 30% to 75%.

AddRefine: Waypoint Introduction (Figure 8). Setup: Long-horizon navigation across multiple
rooms. Failure mode: Direct path too complex for single policy to learn reliably. Refinement:
AddRefine identifies midpoints of successful trajectories and introduces intermediate vertex u′′.
Result: Decomposes task into two manageable subtasks, improving satisfaction from 20% to 90%.

PastRefine: Initial State Partitioning (Figure 9). Setup: Starting region includes states from which
goal is unreachable. Failure mode: Policy cannot succeed from certain initial states. Refinement:
PastRefine learns hyperplane separating successful from failing starts. Result: Focuses learning on
viable initial states, improving satisfaction from 40% to 80%.

OrRefine: Alternative Path Discovery (Figure 10). Setup: Specification with multiple possible
paths: ϕMID1;ϕGOAL or ϕMID2;ϕGOAL. Failure mode: Direct path through MID1 blocked.
Refinement: OrRefine adds edge ϕMID1 → ϕMID2, creating alternative route. Result: Enables
satisfaction through alternate path when direct path has 0% success.

8
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4.4 HIGH-DIMENSIONAL VALIDATION: PANDAGYM

Figure 5: Evaluation of AUTOSPEC on PandaGym: (a) Two perspectives of the environment, where
the red region is an intermediate goal and an invisible wall blocks direct paths. (b) Performance of
DiRL with and without AUTOSPEC: ReachRefine on first edge (left) and PastRefine on second edge
(right).

To validate beyond grid environments, we test AUTOSPEC on PandaGym’s continuous
3D manipulation task. The specification requires navigating around an invisible wall:
(reach red-region avoid wall); (reach green-region avoid wall). The invisible wall creates a chal-
lenging scenario where the agent cannot directly observe the obstacle, making specification refinement
crucial.

As shown in Figure 5, AUTOSPEC with DiRL successfully applies ReachRefine on the first edge to
identify and exclude unreachable portions of the red region behind the wall, focusing the policy on
achievable subgoals. On the second edge, PastRefine learns that only certain approach angles from
the red region lead to successful reaching of the green region, effectively partitioning the intermediate
state space based on trajectory outcomes. This demonstrates that AUTOSPEC’s geometric refinements
(convex hulls for ReachRefine, hyperplanes for PastRefine) remain effective in high-dimensional
spaces where human intuition about the specification failures would be difficult. The success in this
domain is particularly noteworthy because the refinements must capture 3D spatial relationships
without explicit knowledge of the obstacle geometry.

5 CONCLUSION

We presented AUTOSPEC, a framework for automated refinement of coarse-grained logical specifi-
cations in reinforcement learning. AUTOSPEC addresses two common specification issues—coarse
formulas and coarse labeling functions through four refinement procedures that maintain formal
soundness. Our experiments on n-rooms and PandaGym environments demonstrate that AUTOSPEC
can improve specification satisfiability when integrated with existing algorithms like DiRL and LSTS.

Our evaluation also reveals fundamental limitations: AUTOSPEC requires sufficient exploration
data from the base algorithm to compute meaningful refinements. When algorithms fail to generate
successful trajectories (as LSTS did on complex specifications), refinement becomes impossible.
Despite these limitations, AUTOSPEC represents the first systematic approach to automatically
refining logical specifications based on learning failures. Future work should address reducing
exploration requirements for refinement and extending beyond SpectRL to more expressive temporal
logics. The design of good specifications remains challenging in practice, and automated refinement
is an important step toward making specification-guided RL more practical.

9
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REPRODUCIBILITY STATEMENT.

We have made extensive efforts to ensure reproducibility of our work. The formal definitions of
SpectRL specifications, abstract graphs, and all four refinement procedures are provided in Sections 2–
3, with proofs of correctness in the Appendix (A.2). Pseudocode for the AUTOSPEC framework
and its refinement subprocedures (ReachRefine, AvoidRefine, AddRefine, PastRefine, OrRefine) is
included in the Appendix (A.1), allowing exact reimplementation. Our experimental setup, including
domains (n-Rooms and PandaGym), specifications used, RL algorithms (DIRL and LSTS), policy
learning method (PPO with stable-baselines3), and hyperparameters, are described in Section 4.
We also provide detailed evaluations of each refinement type (Figures 6–10) and high-dimensional
validation (Figure 5). An anonymized implementation and experiment scripts will be made available
as supplementary material to facilitate replication.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 REFINEMENT ALGORITHMS

Here we present pseudo-code for the individual refinement algorithms described in Section 3.1

Algorithm 2 ReachRefine

Require: b := β(u′), ζ
Sr ← {s | s ∈ b ∩ ζ} Collect all the goal region states from the trajectories
br ← b ∩ ConvexHull(Sr) Create the convex hull of the collected states
return br

Algorithm 3 AvoidRefine

Require: c := β(e), ζ
Or ← {} Initialize new avoid region with an empty set
for ζi in ζ do

if ζi[−1] ̸∈ c then
Or ← Or ∪ {sj | sj ∈ ζi

∧
(len(ζi)− j) ≤ k}

Append the last k states from every trajectory that ended up in the avoid region
end if

end for
cr ← c\ConvexHull(Or) Create a convex hull around the collected states and remove it form the
original safe region
return cr

Algorithm 4 SeqRefine: Refining Edge e = u→ u′

Require: Edge e = u→ u′, Graph G, set of trajectories ζ.
b = β(u′) States in the reach predicate
c = β(e) States in the avoid predicate
br ← ReachRefine(b, ζ)
cr ← AvoidRefine(c, ζ)
ur ← [β(ur) = br] Redefine target node with new predicate
er ← [u→ ur,with β(er) = cr] Redefine edge with new predicate
G′ ← G \ [e← er] Replace edge with refinement
return G′

Algorithm 5 AddRefine

Require: Edge e = u→ u′, Graph G, set of trajectories ζ.
Sr ← {}
for ζi in ζ do

if ζi |= e [i.e. trajectory was successful] then
Sr ← Sr ∪ ζi[len(ζi)//2] Add center of trajectory as waypoint

end if
end for
br ← ConvexHull(Sr) ∩ β(e)
u′′ ← [β(u′′) = br] Define target node for waypoint
e′′ ← [u→ u′′,with β(e′′) := β(e)]
e′ ← [u′′ → u′,with β(e′) := β(e)] Define edges with new waypoint predicate
G′ ← G \ [e← [e′′; e′]] Replace edge e with composition of new edges
return G′
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Algorithm 6 PastRefine: Refining Abstract Graph Exploration

Require: Edge e = u→ u′, Graph G, set of trajectories ζ.
S ← {} Sr ← {}
for ζi in ζ do
S ← S ∪ ζi[0] Collect start states from all trajectories
if ζi |= e then
Sr ← Sr ∪ ζi[0] Collect start states from successful trajectories

end if
end for
Identify a hyperplane H separating the Sr and S \ Sr

br ← {s ∈ S : H(s) ≥ 0}
u∗ ← [β(u∗) = br] Redefine initial node with new predicate
er ← [u∗ → u,with β(er) := β(e)] Redefine edge with new predicate
G′ ← G \ [e← er] Replace edge with refinement
return G′

Algorithm 7 OrRefine: Disjunctive Specification Refinement

Require: Edge e = u→ u′, Graph G, set of trajectories ζ.
E = {ei ∈ G | ei = ui → u′} Collect all ’parents’ of u′

for ei ∈ E do
eui ← [u→ ui,with β(er) := β(e)] Define edges from source to parents
G← G ∪ [eui] Add new edge to graph

end for
return G

A.2 PROOF OF THEOREM 1

Theorem 1 (Correctness of AUTOSPEC) Given an abstract graph G of a SpectRL specification ϕ and
an edge e, AUTOSPEC computes a specification ϕr with abstract graph Gr such that ϕr refines ϕ.
That is, for any MDP trajectory ζ, we have (ζ |= ϕr) =⇒ (ζ |= ϕ).

Proof. To prove the theorem, it suffices to show that for each of the four refinement subprocedures, if
they return an abstract graph Gr, then the corresponding specification ϕr is a refinement of the input
specification ϕ.

By the definition of abstract reachability, we have (ζ |= ϕ)⇔ (ζ |= G) and (ζ |= ϕr)⇔ (ζ |= Gr).
Hence, to prove that (ζ |= ϕr)⇒ (ζ |= ϕ) which is the definition of specification refinement as in
Definition 2, it suffices to prove that (ζ |= Gr)⇒ (ζ |= G). We prove this claim for each refinement
subprocedure.

SeqRefine. Suppose that Gr = SEQREFINE(e,G, ζ). Let e = u→ u′. By our design of SeqRefine,
the abstract graph Gr has the same vertex set, edge set and labeling function as G, with the only
difference being that βr(u

′) ⊆ β(u′) due to ReachRefine and βr(e) ⊆ β(e) due to AvoidRefine.
Hence, every trajectory ζ that satisfies all reach-avoid tasks in Gr must also satisfy those in G, giving
us (ζ |= Gr)⇒ (ζ |= G).

AddRefine. Suppose that Gr = ADDREFINE(e,G, ζ). Let e = u → u′. AddRefine introduces
a new vertex u′′ and replaces edge e with two sequentially composed edges e′′ = u → u′′ and
e′ = u′′ → u′ where βr(e

′′) = βr(e
′) = β(e). Any trajectory satisfying the refined path through

u′′ must visit the intermediate waypoint while respecting the original safety constraints, thus also
satisfying the original edge specification. Therefore, (ζ |= Gr)⇒ (ζ |= G).

PastRefine. PastRefine refines the region associated to vertex u by restricting it to βr(u) ⊆ β(u).
This refinement affects both edge e = u→ u′ and all edges incoming to u. Since the refined region
is a subset of the original, any trajectory satisfying the refined specification must originate from states
that were valid in the original specification. Hence, (ζ |= Gr)⇒ (ζ |= G).
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OrRefine. Suppose that Gr = ORREFINE(e,G, ζ). OrRefine only adds edges between existing
vertices in G. Specifically, for a problematic edge e = u→ u′, it identifies existing edges ei = ui →
u′ and adds new edges enew = u→ ui where β(enew) = β(e).

Consider a trajectory ζ that satisfies Gr via a newly added path u → ui → u′. Since: (1) Both ui

and u′ existed in the original vertex set of G, (2) The edge ui → u′ existed in the original edge set of
G, (3) The new edge u→ ui maintains the safety constraints of the original edge (β(enew) = β(e)),

the trajectory ζ reaches u′ through a combination of transitions that respect all original safety
constraints and only uses vertices from the original specification. The path through ui represents a
valid alternative route in the original specification structure. Therefore, (ζ |= Gr)⇒ (ζ |= G).

Thus, all four refinement procedures preserve specification soundness.

A.3 EXPERIMENTS

Figure 6: Evaluation of Reach Probabilities in the 9-Rooms Environment. (a) The layout of the
9-rooms environment, showing the walls, doors, and goal regions, and the estimated convex hull for
the new reach region, showing how the refinement process effectively restructs the reachable states,
leading to better satisfaction of the specification (b) A comparison of reach probabilities between
DIRL Jothimurugan et al. (2021) and the proposed AutoSpec approach. The x-axis denotes the
number of steps, and the y-axis denotes the estimated probability of success.

Figure 7: Results of Avoid refinement. (a) The layout of the 9-rooms environment, showing the
walls, doors, goal regions and avoid regions (red) and learned trajectories before (green) and after
(blue) refinement, with new estimated avoid regions (black) (b) A comparison of reach probabilities
between DiRL and the proposed Avoid Refinement.

We conducted multiple experiments to validate our approach to refining coarse-grained SpectRL
specifications for solving RL tasks. The goal of our experiments is to compare the performance of the
original DIRL Jothimurugan et al. (2021) algorithm and our integration of DIRL with AUTOSPEC,
thus showcasing the ability of AUTOSPEC to refine SpectRL specifications that are challenging for the
existing algorithms for RL from logical specifications. For learning edge policies, in both cases we
use Proximal Policy Optimization (PPO) Schulman et al. (2017), implemented using stable-baselines3
Raffin et al. (2021). We employ a 2-layer neural network, each layer containing 64 neurons. We
consider two environments.

9 Rooms. The 9 Rooms environment consists of walls blocking access to some rooms and doors
allowing access to adjacent rooms. It has a 4-D continuous state space (x, y, θ, d) ∈ R4, representing
the 2D position, angle to the goal, and distance to the goal. We consider several SpectRL specifications
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which are translated into abstract graphs. The start position is sampled from the region associated to
the source vertex, and the goal position is sampled from the region associated to the target vertex
of the abstract graph. The 2-D continuous action space determines the velocity and direction of the
agent (v, θ) ∈ R2, with the new position calculated as s′ = s+ (v cos(θ), v sin(θ)).

PandaGym. The Pandagym Gallouédec et al. (2021) reach environment has a robotic arm with an
object picked up and the task is to place the object at the correct location. A wall blocking the path to
the goal is invisible to the robot. The state space consists of the current position of the gripper arm in
3D and the goal position.

Experiment 1: Atomic predicate refinement. To illustrate how an incorrect specification is
identified and corrected using Algorithm 2, we consider a 9 Rooms environment in Figure 6. In this
environment, one room in the goal region is blocked, representing the incorrect specification. Figure
6 displays the learning curves for both the original and refined specifications, demonstrating the
performance improvements achieved through the refinement process. Algorithm 3 can be empirically
verified by creating a 9 Rooms environment as shown in Figure 7, where Figure 7 (a) shows the goal
region along with avoid region (red). To improve probability of satisfaction the agent should avoid
the narrow door below the goal and use the longer but safer route to approach the goal from the side.
We see the learned trajectories before and after refinement in Figure 7 (a), where the new avoid region
blocks the narrow door, effectively causing the agent to learn a policy that uses the wider door on the
side. This helped improve specification satisfiability.

Experiment 2: Sequential refinement. We created a specification ϕgoal to evaluate Algorithm 5.
Figure 8 show that AddRefine is extremely sample efficient, and can construct a new specification to
aid the current edge with an extremely high success probability. We also show the distribution of
states that make up the new specification ϕr

goal. To verify Algorithm 6, we designed a specification
ϕmid;ϕgoal, as depicted in Figure 9. The learning curves, also shown in Figure 9, indicate that the
proposed refinement significantly enhances the reach probability compared to the original specifica-
tion. Additionally, Figure 9 illustrates the distribution of states in the MID region from which the
GOAL region can be reached, which informs the refinement process. Figure 5 shows how sequential
refinement can be applied on higher dimensional state spaces. Different refinements produce varying
results, as shown in Figure 5.

Figure 8: Results of AddRefine in the 9-Rooms Environment. (a) The environment is annotated with
start and goal regions (b) Learning curves comparing reach probabilities for DiRL and AutoSpec.

Figure 9: Results of Sequential Specification Refinement in the 9-Rooms Environment. (a) The
environment annotated with the distribution of states in the MID region from which the GOAL region
can be reached. (b) Learning curves comparing reach probabilities for DiRL and AutoSpec.
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Figure 10: Disjunctive Specification Refinement in 9-Rooms. (a) The environment with regions
relevant to the specification ϕ := ϕMID1;ϕGOAL or ϕMID2;ϕGOAL. (b) Learning curves showing
that incorporating an additional specification ϕMID1;ϕMID2 is essential to achieve the desired
success probability.

Experiment 3: Disjunctive refinement. To validate Algorithm 7, we constructed a 9 Rooms
environment with a specification featuring two distinct paths to the goal. Figure 10 illustrates the
environment and the regions relevant to the specification ϕ := ϕMID1;ϕGOAL or ϕMID2;ϕGOAL.
The learning curves for OrRefine, shown in Figure 10, demonstrate that incorporating an additional
specification ϕMID1;ϕMID2 is essential to achieve good success probability. In contrast, Algorithm
4 and Algorithm 6 fail to perform adequately due to the subspecification having zero reach probability,
preventing effective local refinement. This validation underscores the necessity of OrRefine in
scenarios where sequential modifications alone are insufficient.

All Experiments have been performed using i7-8750H with 32GB RAM and no GPU. Trajectories
were collected after training the policy for n timesteps and 5 different seeds.

Hyperparameters for learning algorithms:

1. Learning Rate: 0.0003
2. n steps: 2048
3. Batch size: 64
4. Epochs: 10
5. γ: 0.99

A.4 LIMITATIONS

AutoSpec requires finite witnesses to specification satisfaction and hence can only work on finite
trajectories. This means that we must consider only finitary fragments of LTL, like SpectRL. While
Autospec is sound, i.e if a refinement is found satisfactory trajectories for the refinement will also
satisfy the original specification (Theorem 3.1), it is not complete, i.e. it might fail to find a candidate
refinement even if such a refinement exists, especially if the specification satisfiability is extremely
low. It is also not guaranteed that the candidate refinement is an ’optimal’ refinement, in terms of the
tightest bounds possible on the refined predicates.

A.5 SOCIETAL IMPACTS

We wish to improve the performance of Reinforcement Learning algorithms and attempt to improve
under-specified human specifications, which have an impact on various applications that aim to
deploy RL agents with multi-objective tasks. The applications extend to robotics, path-finding tasks
and any tasks that involve manual specifications which could be incorrect. This may have both
positive or negative societal impacts depending on the use case of such RL deployments, positive
impacts include applications to manufacturing, healthcare, and in-home robotic assistants; while
negative impacts would be most consequential in military or surveillance infrastructure. These issues
are shared across most work on reinforcement learning algorithms.
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