Under review as a conference paper at ICLR 2026

AUTOSPEC: AUTOMATING THE REFINEMENT OF REIN-
FORCEMENT LEARNING SPECIFICATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Logical specifications have been shown to help reinforcement learning algorithms in
achieving complex tasks. However, when a task is under-specified, agents might fail
to learn useful policies. In this work, we explore the possibility of improving coarse-
grained logical specifications via an exploration-guided strategy. We propose
AUTOSPEC, a framework that searches for a logical specification refinement whose
satisfaction implies satisfaction of the original specification, but which provides
additional guidance therefore making it easier for reinforcement learning algorithms
to learn useful policies. AUTOSPEC is applicable to reinforcement learning tasks
specified via the SpectRL specification logic. We exploit the compositional nature
of specifications written in SpectRL, and design four refinement procedures that
modify the abstract graph of the specification by either refining its existing edge
specifications or by introducing new edge specifications. We prove that all four
procedures maintain specification soundness, i.e. any trajectory satisfying the
refined specification also satisfies the original. We then show how AUTOSPEC can
be integrated with existing reinforcement learning algorithms for learning policies
from logical specifications. Our experiments demonstrate that AUTOSPEC yields
promising improvements in terms of the complexity of control tasks that can be
solved, when refined logical specifications produced by AUTOSPEC are utilized.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms have made tremendous strides in recent years [Sutton &
Barto| (2018)); |Silver et al.|(2016); Mnih et al.| (2015)); Levine et al.| (2016). However, most algorithms
assume access to a scalar reward function that must be carefully engineered to make environments
amenable to RL—a practice known as reward engineering |Ibrahim et al.| (2024). This creates
challenges in applying RL to new environments where useful reward functions are hard to construct.
Furthermore, scalar Markovian rewards cannot provide sufficient feedback for certain tasks|Abel et al.
(2021)); Bowling et al.[(2023), leading to growing interest in non-Markovian reward functions [Li et al.
(2017a)); Jothimurugan et al.| (2021); |Alur et al.| (2023)).

To make non-Markovian rewards tractable, it is standard to represent them via logical specifica-
tion formulas that capture the intended task. These approaches, known as specification-guided
reinforcement learning |Aksaray et al.[|(2016); [Li et al.| (2017b); Icarte et al.| (2018)); Jothimurugan
et al.|(2019;2021)), derive reward functions from logical specifications. However, this creates two
challenges: (i) providing specifications granular enough to guide RL algorithms, and (ii) defining
accurate labeling functions mapping environment states to specification predicates. Users often create
coarse specifications or labeling functions that, while logically correct, provide insufficient guidance
for learning.

We present AUTOSPEC, a framework for automatically refining coarse specifications without user
intervention. AUTOSPEC starts with an initial logical specification, translates it to a reward function,
and attempts to learn a policy. If the learned policy’s performance is unsatisfactory, AUTOSPEC
identifies which specification components cause learning failures and automatically refines both
the specification formula and labeling function. The refined specification’s satisfaction implies the
original’s satisfaction while providing additional structure for learning. This process repeats until a
satisfactory policy is learned.

Under review as a conference paper at ICLR 2026

- - _|_|. -

Figure 1: Example of refinement by AUTOSPEC in a 9-rooms environment. The original MID-node
region includes a trap state from which recovery is impossible. The refined specification excludes
this trap, enabling the agent to learn a policy with higher satisfaction probability.

AUTOSPEC works with SpectRL specifications; boolean and sequential combinations of reach-avoid
tasks Jothimurugan et al.|(2019). Any SpectRL specification decomposes into an abstract graph where
edges specify reach-avoid tasks [Jothimurugan et al| (2021). AUTOSPEC identifies problematic edges
and applies targeted refinements: either modifying the labeling function for regions (Figure [T)) or
restructuring the graph to add alternative paths. We prove all refinements maintain soundness, where
satisfaction of the refined specification implies satisfaction of the original. AUTOSPEC integrates
with existing SpectRL-compatible algorithms as demonstrated with DIRL [Jothimurugan et al.| (2021))

and LSTS [Shukla et al.|(2024).

Our contributions:

1. A framework for automated refinement of logical RL specifications with four refinement
procedures, all with formal soundness guarantees (Section [3).

2. Integration with existing specification-guided RL algorithms, enabling them to solve tasks
with coarse specifications (Section [3).

3. Empirical demonstration that AUTOSPEC enables learning from specifications that existing
methods cannot handle (Section).

Related work. Recent years have seen substantial progress in solving RL tasks specified via logical

specifications [Aksaray et al.| (2016); [Li et al.| (2017b)); [[carte et al.| (2018); [Camacho et al.| (2019);
Giacomo et al.|(2019); [Hasanbeig et al.| (2022} 2019); Hahn et al.| (2019); [Jothimurugan et al.| (2019}
2021));|Xu & Topcu|(2019). Many works consider different fragments of Linear Temporal Logic (LTL)
or their variants for specifying RL tasks. Tcarte et al.| (2018));[Camacho et al.| (2019) consider tasks that
can be specified using deterministic finite automata (DFA) and solve them by reward machines, which
decompose these tasks and translate them into a reward function. The reward function can then be used
to train existing RL algorithms. considers a variant of LTL called TLTL for specifying
tasks and propose a method for translating these specifications into continuous reward functions.
Hasanbeig et al| (2022; [2019); [Hahn et al.| (2019)) study the translation of tasks specified in LTL into
reward functions. |Alur et al.[(2022) examines the theoretical questions related to the translation of
logical specifications into reward functions. [Jothimurugan et al.| (2019) defines the the specification
language SpectRL, a finitary fragment of LTL and provides justification for using this language to
define specifications for RL tasks. A compositional method that decomposes SpectRL specifications
into an abstract graph and constructs a reward function for each abstract graph edge was proposed
in Jothimurugan et al| (2021). The approach by [Toro Icarte et al.| (2019) focuses on discovering
optimal reward structures through environmental exploration and reward analysis. Compositional
methods are further explored by |Neary et al.[|(2022), who propose removing unfulfillable subtasks,
and Neary et al| (2023), who introduce verification techniques to certify learned policies. [Zikelic|
(2023b) propose CLAPS, a compositional method for learning neural network policies with
formal guarantees on the satisfaction of SpectRL specifications, thus advancing the applicability to
safety-critical RL applications by utilizing prior methods for learning reach-avoid policies with formal
guaranteesLechner et al.| (2022)); [Zikelic et al.| (2023a)); [Chatterjee et al.|(2023)). Recent advancements
also include LTL2Action [Vaezipoor et al.|(2021])), which translates LTL specifications into sequences
of tasks for RL agents, facilitating the decomposition of complex temporal logic constraints into
manageable sub-tasks. TrainifyJin et al.| (2022) employs counterexample-guided abstraction and
refinement (CEGAR) to iteratively improve policies by addressing failure cases identified through

Under review as a conference paper at ICLR 2026

counterexamples. This iterative refinement enhances policy robustness and performance. All these
works collectively advance the integration of logical specifications and formal methods into RL,
driving the development of robust and reliable policies for complex tasks. In contrast, AUTOSPEC
studies the problem of automated logical specification refinement towards improving reward functions
obtained by translation from logical RL specifications, and can be integrated into off-the-shelf
specification-guided RL algorithms to improve the performance of learnt agents.

2 PRELIMINARIES

MDPs. A Markov Decision Process (MDP) is a tuple M = (S, A, P, R,~y), where S C R" is the
state space, A C R™ is the action space, P : S x A x S — [0, 1] is the probabilistic transition
function, R is the (possibly non-Markovian) reward function, and -y is the discount factor. Let
1 : S — [0, 1] be the initial state distribution. A trajectory ¢ in M is a sequence of states and actions
¢ = sg,ap,81,0a1,-.. where s; € S and a; € A. We use Z to denote the set of all trajectories in M
and Z; to denote the set of all finite trajectories in M, which are finite prefixes of trajectories ending
in states. A (pure) policy m : Z; — A assigns an action to each finite trajectory, and a non-Markovian
reward R : Z;y — R assigns a reward to a finite trajectory. The MDP M under any policy 7 gives rise
to a probability space over the set of all trajectories in the MDP |Puterman| (1994). We use P™ and E™
to denote the probability measure and the expectation operator in this probability space, respectively.

Logical specifications. In this work, we are solving RL tasks defined by logical specifications. For-
mally, a logical specification (or, simply, a specification) is a boolean function ¢ : Z — {true, false}
which specifies whether a trajectory in the MDP satisfies the specification. We write ¢ = ¢ when-
ever a trajectory (satisfies the specification ¢. The objective of a specification-guided RL task
is to find a policy 7* that maximizes the probability of satisfying the given specification ¢, i.e.
7w € argmax, P™[¢ = ¢]. Specification-guided RL algorithms use the specification to create a dense
reward that guides the policy search, and therefore outperform algorithms that cannot leverage the
specification for learning and instead require manual reward engineering |Jothimurugan et al.| (2021));
Shukla et al.| (2024)).

SpectRL specification logic. We consider RL tasks specified in the SpectRL specification logic.
SpectRL Jothimurugan et al.|(2019) is a fragment of Linear Temporal Logic (LTL) which consists of
all boolean and sequential combinations of reach-avoid tasks. Formally, a specification in SpectRL
is defined in terms of predicates and specification formulas. An atomic predicate is a function
a: S — {true, false} which defines a set of states that satisfy the atomic predicate. A predicate is
a boolean combination of atomic predicates, i.e. b := a | by A by | by V be, where a is an atomic
predicate and by and by are predicates. Specification formulas in SpectRL are defined by the grammar

¢ := achieve b | ¢; ensuring b | ¢1; P2 | ¢1 or ¢)

where b is a predicate and ¢, and ¢ are specification formulas. Intuitively, “achieve b” requires the
agent to reach a state in which the predicate b is satisfied. The clause "¢, ensuring b” requires the
agent to satisfy the specification ¢ while only visiting states in which the predicate b is satisfied. The
clause "¢1; ¢o” requires the agent to first satisfy specification ¢, and then satisfy specification ¢s.
The clause ¢4 or ¢-” requires satisfaction of at least one of ¢, or ¢-. SeelJothimurugan et al.|(2019)
for the formal definition of the semantics of each clause.

Abstract graphs for SpectRL specifications. It was shown in Jothimurugan et al.|(2021) that each
specification written in the SpectRL specification logic can be translated into an equivalent abstract
graph. An abstract graph is a directed acyclic graph (DAG) whose vertices represent sets of MDP
states and whose edges are annotated with sets of safe MDP states. Hence, each abstract graph edge
defines a reach-avoid specification, where the task is to reach the set of states defined by the target
vertex of the edge starting from the set of states defined by the source vertex of the edge, while
staying within the set of safe states defined by the edge.

Definition 1 (Abstract graph). An abstract graph G = (V, E, 3, s, t) is a DAG, where V is a finite set
of vertices, E is a finite set of edges, 5 : V U E — B(S) is a labeling function that maps each vertex
and each edge to a subset of the MDP states S, s € V is the source vertex and t € V is the target
vertex. Furthermore, we require that 5(s) = support(n) is the support of the initial state distribution
1 of the MDP.

Under review as a conference paper at ICLR 2026

Given a trajectory ¢ in the MDP and an abstract graph G = (V, E, 3, s,t), we say that (satisfies
abstract reachability for G (written ¢ = G) if it gives rise to a path in G that traverses G from s to ¢
and satisfies the reach-avoid specifications of every traversed edge. It was shown in|Jothimurugan
et al.| (2021) that, given any SpectRL specification ¢, one can construct an abstract graph G' such that
¢ = ¢ if and only if ¢ |= G holds for each trajectory ¢ in the MDP. Hence, solving an RL task for a
SpectRL specification reduces to solving an abstract reachability task in the abstract graph G.

Problem statement. Given an MDP M and a SpectRL specification ¢, our goal is to learn a policy 7
such that the probability P™[¢ |= ¢] of a trajectory induced by the policy satisfying the specification
is maximized.

Specification refinement. In order to solve this problem, we will utilize a common approach in
specification-guided RL, to first translate the logical specification ¢ to a (non-sparse) reward function
and then learn a policy by using existing RL algorithms with this reward function. However, if the
probability of the specification being satisfied under the learned policy is unsatisfactory (i.e. below
some desired probability threshold p € [0, 1]), we will then refine the logical specification ¢ into
a new SpectRL specification ¢,.. We will then repeat the above process until the probability of the
specification being satisfied under the learned policy becomes satisfactory.

Definition 2 (Specification refinement). Given two logical specifications ¢ and ¢,, we say that
¢, refines ¢, if any MDP trajectory that satisfies the refined specification ¢, also satisfies the
specification ¢. That is, if for an MDP trajectory (we have (¢ = ¢,) = (¢ E ¢).

3 AUTOMATED REFINEMENT OF RL SPECIFICATIONS

We now present AUTOSPEC, a framework for automated refinement of logical specifications in
RL tasks. The key insight is that specification failures often stem from identifiable issues that can
be systematically addressed: overly broad target regions, insufficient safety constraints, missing
waypoints, or lack of alternative paths. When a specification-guided RL algorithm .A fails to learn a
satisfactory policy for specification ¢, AUTOSPEC identifies which components caused the failure
and applies targeted refinements to improve learnability while maintaining soundness.

AUTOSPEC operates as a wrapper around any SpectRL-compatible algorithm. It monitors the learning
process, and when a policy 7 fails to satisfy the specification with probability at least p € [0, 1]
(a user-provided threshold), it computes a refined specification ¢, such that: (1) satisfaction of ¢,
implies satisfaction of ¢ (soundness), and (2) ¢, provides additional structure that makes it easier
to learn. This refined specification is returned to algorithm A to continue learning. Through this
iterative refinement process, AUTOSPEC enables solving RL tasks with coarse specifications that
would otherwise be unlearnable.

Overview of AUTOSPEC. Algorithm T|shows the complete AUTOSPEC framework. The algorithm
takes as input an MDP M, a SpectRL specification ¢, a satisfaction threshold p, and any specification-
guided RL algorithm .A. It first translates ¢ into an abstract graph G and uses .A to learn policies for
the graph edges. For each edge e where A learned a policy but that policy fails to achieve satisfaction
probability p, AUTOSPEC applies four refinement procedures in sequence: SeqRefine, AddRefine,
PastRefine, and OrRefine. This ordering reflects increasing levels of structural modification; from
local predicate adjustments to graph topology changes. The first refinement that successfully improves
performance above threshold p is applied, the graph is updated, and policies are relearned before
proceeding to the next edge.

AUTOSPEC iterates through all edges e = u — u’ of the abstract graph G for which the specification-
guided RL algorithm .4 has learned a policy but for which the reach-avoid task satisfaction probability
is below the provided probability threshold p. For each such edge, AUTOSPEC performs four
refinement procedures that focus on different possible reasons for the edge e = v — u’ being
challenging for learning a satisfactory policy.

SeqRefine, which is invoked first, tries to locally refine the problematic edge ¢ = v — u’ by using
predicate refinement techniques to refine the labeling function at the target region associated to the
vertex v’ and the safety region associated to the edge e. If SeqRefine fails to improve performance
above threshold, AUTOSPEC invokes AddRefine which attempts to add a waypoint (i.e. a new abstract
graph vertex) between the vertices u and u’, making path-finding easier. If AddRefine also fails,

Under review as a conference paper at ICLR 2026

Algorithm 1 AUTOSPEC

Require: MDP M, specification ¢, threshold p € [0, 1], spec-guided RL algorithm A
G < abstract graph corresponding to ¢
IT < A(G) [set of policies for edges in G learned by algorithm A]
for e = v — v/ an edge in G do
e € II < policy learned for edge e (Null if A does not learn a policy for edge ¢e)
if 7, is not Null and P(7.) < p then
¢ < sampled trajectories of the system
if LEARNPOLICY(e,SEQREFINE(e,(3,())> p then
G + SEQREFINE(e,G,()
else if LEARNPOLICY(e,ADDREFINE(e,G,())> p then
G < ADDREFINE(e,G,()
else if LEARNPOLICY(e,PASTREFINE(e,¢,())> p then
G + PASTREFINE(e,G,()
else if LEARNPOLICY(e,ORREFINE(e,(G,())> p then
G + ORREFINE(e,G,()
end if
IT + A(G) [set of policies for updated abstract graph G]
end if
end for
Return G and I1

AUTOSPEC invokes PastRefine which tries to refine the source node u. Finally, if other refinement
procedures fail, AUTOSPEC invokes OrRefine which aims to find alternative paths to u'.

After each attempted refinement, an off-the-shelf RL algorithm (LEARNPOLICY in Algorithm [T))
is used to estimate the satisfaction probability of the refined edge. When a refinement succeeds in
achieving satisfaction probability above p, the refined abstract graph G is updated and AUTOSPEC
applies the specification-guided RL algorithm A to learn a new set of edge policies II for the entire
graph. At the end, the final abstract graph G corresponds to the refined specification ¢,. of the input
specification ¢.

3.1 SPECIFICATION REFINEMENT SUBPROCEDURES

We now define the four specification refinement subprocedures used by AUTOSPEC in Algorithm T}
Each procedure addresses a specific type of specification inadequacy, and they are applied in order of
increasing structural modification to the abstract graph. The detailed pseudocodes are provided in the
Appendix. Once a problematic edge e = u — v’ is identified (an edge with satisfaction probability
below threshold p), AUTOSPEC samples trajectories ¢ using the learned policy, where the number of
trajectories is an algorithm hyperparameter.

SeqRefine: Refining Predicates. The first refinement subprocedure addresses overly coarse pred-
icates in the reach and avoid conditions. For edge e = u — u/, SeqRefine refines both the target
predicate b = 5(u’) and the safety predicate ¢ = ((e) by calling two subprocedures:

ReachRefine collects all states along sampled trajectories that successfully reached the goal region b.
The refined goal region is computed as b, = b N ConvexHull(reached states), effectively excluding
unreachable portions of the original target region.

AvoidRefine collects states where trajectories entered unsafe regions (complement of c). The refined
safe region is computed as ¢, = ¢\ ConvexHull(last k unsafe states), where k is a hyperparameter
controlling how much of the trajectory tail to consider. This removes demonstrated unsafe areas from
the safety region.

SeqRefine returns a refined graph G, identical to G except with updated labeling: 3, (u') = b,
and (3, (e) = ¢,. This refinement provides more precise guidance by excluding problematic regions
discovered through exploration. AddRefine: Introducing Waypoints. The second refinement

addresses long or complex paths by decomposing them. When direct navigation from u to v’
proves difficult, AddRefine introduces an intermediate vertex v’ by collecting midpoint states from

Under review as a conference paper at ICLR 2026

N 7N 7N
S e
N4 ,\‘i/ ! ¢,/"
S /
7 /
S N/
N A~ b) A b)/
() x—) 2T\
A PN /

~ X
\D/ { e)
N N

Figure 2: (a) PastRefine adds bfi 1- This figure illustrates the process of refining the abstract graph by
identifying regions where the policy either succeeds (b ; (green)) or fails (b % (red)) to meet the
specification, and a new path with b2 | (green) is added to the graph to improve policy guidance. (b)
Decomposing a disjunctive specification into an abstract graph (solid arrow) with proposed refinement
(dotted arrow).

successful trajectories that reached 3(u'), defining S(u”) = S(e) N ConvexHull(midpoints), and
replacing edge e = v — u’ with two edges: ¢’/ = u — v” and ¢’ = v” — v'. This decomposition
breaks a challenging long-horizon task into two shorter subtasks that are easier to learn.

PastRefine: Partitioning Source Regions. The third refinement addresses heterogeneous starting
conditions where some initial states in u consistently lead to success while others lead to failure.
PastRefine separates trajectories into successful and failing sets based on whether they satisfied
edge e, then learns a hyperplane separating successful from failing initial states. It creates region b,
containing successful starting states and introduces new vertex u* with 3(u*) = b, having the same
incoming edges as u. The refinement replaces problematic edge e = v — v’ with e* = u* — /.
As shown in Figure[2{(a), this refinement identifies and isolates promising initial conditions while
preserving the original vertex u and its connections.

OrRefine: Exploiting Alternative Paths. The fourth refinement addresses blocked or infeasible
direct paths by leveraging the existing graph structure. When the path through edge ¢ = v — ’
cannot be made satisfactory, OrRefine identifies alternative parents of u’ (vertices u; with existing
edges u; — u’), and for each viable u;, adds new edge e,,; = u — u; with 8(e,;) = B(e). It then
tests if the alternative path u — u; — u’ achieves the threshold. As illustrated in Figure b), this
creates alternative routes to the target using only existing vertices, maintaining all original safety
constraints. OrRefine can iteratively explore ancestors of u; if the direct connection fails.

As shown in Algorithm 1} any specification-guided RL algorithm that is applicable to SpectRL
specifications and that learns policies for edges in the abstract graph can be integrated into the
AUTOSPEC framework. The specification-guided RL algorithm learns policies for edges in the
abstract graph, until it is unable to proceed beyond an edge with a sufficient satisfaction probability.
We then perform the refinements in AUTOSPEC, using Monte Carlo sampling to estimate the
satisfaction probability of each refinement until one is found to exceed the threshold. This refinement
is used to create an updated abstract graph and an updated set of edge policies are learned with respect
to this graph.

3.2 CORRECTNESS OF AUTOSPEC

The following theorem establishes correctness of AUTOSPEC, showing that the specification ¢,
computed by AUTOSPEC is indeed a refinement of the input specification ¢. The proof, provided
in the Appendix, proceeds by proving that each of the four refinement procedures results in a
specification refinement.

Theorem 1 (Correctness of AUTOSPEC). Given an abstract graph G of a SpectRL specification ¢
and an edge e, AUTOSPEC computes a specification ¢, and returns an abstract graph G, and an
edge e, such that ¢, refines ¢. That is, for any MDP trajectory ¢, we have (¢ E ¢.) = (¢ | ¢).

4 EXPERIMENTAL EVALUATION

We evaluate AUTOSPEC on its ability to diagnose and repair specification failures that prevent
existing algorithms from learning satisfactory policies. Our experiments address three questions: (1)
Can AUTOSPEC correctly identify which refinement type is needed for different failure modes? (2)

Under review as a conference paper at ICLR 2026

Do the refinements enable learning from previously unlearnable specifications? (3) What are the
requirements and limitations of the refinement process?

4.1 EXPERIMENTAL SETUP

We integrate AUTOSPEC with two specification-guided RL algorithms: DIRL Jothimurugan et al.
(2021)), which uses Dijkstra-style graph search with systematic exploration, and LSTS [Shukla
et al.| (2024), which uses multi-armed bandits for edge selection with epsilon-greedy exploration.
These algorithms differ fundamentally in their exploration strategies, allowing us to examine how
AUTOSPEC’s effectiveness depends on the underlying learning algorithm.

We evaluate on two domains specifically chosen to stress-test different aspects of specification
refinement:

n-Rooms: Grid-based navigation with walls and doors, providing controlled tests of specific failure
modes. State space: (r,y,0,d) € R* (position, angle to goal, distance). Action space: (v,) € R?
(velocity, direction). The n-rooms domain has been extensively used in specification-guided RL
research Jothimurugan et al.| (2021} [2019); Zikelic et al.| (2023b)) as it provides clear geometric
structure while still presenting challenging long-horizon tasks. Its modular room structure naturally
creates the types of specification failures we aim to address: trap states at room boundaries, dangerous
narrow passages between rooms, and multiple alternative paths through different door configurations.

PandaGym Gallouédec et al.|(2021): Robotic manipulation requiring 3D navigation around obsta-
cles. This domain tests refinement in high-dimensional continuous control where geometric intuitions
may not apply directly. Following recent work showing the challenges of specification-guided RL
in manipulation tasks Shukla et al.| (2024), we use this domain to validate that our convex hull and
hyperplane-based refinements remain effective in high-dimensional spaces where human intuition
about specification failures is limited.

For learning edge policies, both algorithms use PPO|Schulman et al.[(2017) with stable-baselines3 Raf+
fin et al. (2021) implementation, following the standard practice in recent specification-guided RL
work [Jothimurugan et al.[(2021); [Zikelic et al.| (2023b). We use 2-layer networks (64 neurons each),
learning rate 0.0003, and standard hyperparameters.

4.2 ALGORITHM-DEPENDENT EFFECTIVENESS: DIRL vSs LSTS

M6 |
SN R R IV vl | I IS Start ‘,,a M3 : GOAL

A M4

M8
I oM ’{MS

‘Start

Figure 3: 100-rooms Environment with marked regions its DAG specification

Our experiments reveal that AUTOSPEC’s effectiveness depends critically on the base algorithm’s
exploration strategy. We demonstrate this through a 100-rooms environment (Figure [3)) with the
complex specification:

¢ = Ostarts (¢m1 or ¢m2); Dm3; (¢m4 or ¢m5); ¢goal

This specification structure—with multiple disjunctive branches and sequential composi-
tions—represents the type of complex task decomposition that prior work |Jothimurugan et al.| (2019
2021) has identified as necessary for real-world applications but challenging for existing algorithms.
The 100-rooms scale specifically tests whether refinements remain effective when the state space
is large enough that exhaustive exploration is infeasible, reflecting concerns raised in|Shukla et al.
(2024) about scalability of compositional methods.

Under review as a conference paper at ICLR 2026

(a) Mid-goal DIRL performance (b) Full-spec DIRL performance (c) Mid-goal LSTS performance

Figure 4: Task satisfiability curves representing performances of DIRL and LSTS for sub-
specifications and complete specification

With DiRL (Successful Refinement). As shown in Figure d[a-b), DiRL’s systematic exploration
enables successful refinement. The algorithm explores edges in order of estimated difficulty, providing
sufficient trajectory data for each edge before moving to the next. AUTOSPEC successfully applies
ReachRefine on the ¢,,; edge to remove unreachable portions of the target region, PastRefine on
the ¢,,3 edge to identify successful starting regions, and OrRefine when direct paths fail to find
alternative routes through ¢,,2. The satisfaction probability improves from near 0% to approximately
60% through these refinements.

With LSTS (Refinement Failure). Figure fc) shows LSTS failing on the same specification. The
bandit-based exploration spreads effort across all edges simultaneously, preventing deep exploration
of any single edge. Consequently, edges to M4, M5, and Goal achieve 0% satisfaction, providing
no successful trajectories for refinement computation. AUTOSPEC correctly reports its inability to
refine without samples, demonstrating that refinement quality fundamentally depends on the base
algorithm’s exploration strategy.

4.3 EVALUATION OF INDIVIDUAL REFINEMENTS

We design targeted experiments isolating specific failure modes to validate each refinement procedure.

SeqRefine: Trap State Elimination (Figure [6). Setup: 9-rooms environment where the goal
region includes a blocked room creating a trap state. Failure mode: Agent reaches the trap portion
of the goal and cannot escape. Refinement: ReachRefine identifies that successful trajectories
only reach the accessible portion of the goal. The refined specification excludes the trap region:
b, = b N ConvexHull(reached states). Result: Satisfaction probability improves from 15% to 85%,
demonstrating AUTOSPEC’s ability to learn environmental constraints not captured in the original
specification.

SeqRefine: Safety Constraint Discovery (Figure[7). Setup: 9-rooms with a narrow dangerous
passage below the goal. Failure mode: Shortest path goes through narrow passage where agent
frequently fails. Refinement: AvoidRefine identifies failure states near the narrow passage. The
refined specification expands the avoid region: ¢, = ¢ \ ConvexHull(last 10 failure states). Result:
Agent learns to use wider but longer safe path, improving satisfaction from 30% to 75%.

AddRefine: Waypoint Introduction (Figure[§). Setup: Long-horizon navigation across multiple
rooms. Failure mode: Direct path too complex for single policy to learn reliably. Refinement:
AddRefine identifies midpoints of successful trajectories and introduces intermediate vertex u”.
Result: Decomposes task into two manageable subtasks, improving satisfaction from 20% to 90%.

PastRefine: Initial State Partitioning (Figure[9). Setup: Starting region includes states from which
goal is unreachable. Failure mode: Policy cannot succeed from certain initial states. Refinement:
PastRefine learns hyperplane separating successful from failing starts. Result: Focuses learning on
viable initial states, improving satisfaction from 40% to 80%.

OrRefine: Alternative Path Discovery (Figure[10). Setup: Specification with multiple possible
paths: éprrp1; dcoAL Of dyrrp2; dcoar- Failure mode: Direct path through MIDI1 blocked.
Refinement: OrRefine adds edge ¢nrrp1 — @darrp2, creating alternative route. Result: Enables
satisfaction through alternate path when direct path has 0% success.

Under review as a conference paper at ICLR 2026

4.4 HIGH-DIMENSIONAL VALIDATION: PANDAGYM

120000 130000 140000 150000 160000 170000 180000 190000 200000

"a

DAL
Refinement

l

|

s
3

120000 130000 140000 150000 160000 170000 180000 190000 200000

Figure 5: Evaluation of AUTOSPEC on PandaGym: (a) Two perspectives of the environment, where
the red region is an intermediate goal and an invisible wall blocks direct paths. (b) Performance of
DiRL with and without AUTOSPEC: ReachRefine on first edge (left) and PastRefine on second edge
(right).

To validate beyond grid environments, we test AUTOSPEC on PandaGym’s continuous
3D manipulation task. The specification requires navigating around an invisible wall:
(reach red-region avoid wall); (reach green-region avoid wall). The invisible wall creates a chal-
lenging scenario where the agent cannot directly observe the obstacle, making specification refinement
crucial.

As shown in Figure[5] AUTOSPEC with DiRL successfully applies ReachRefine on the first edge to
identify and exclude unreachable portions of the red region behind the wall, focusing the policy on
achievable subgoals. On the second edge, PastRefine learns that only certain approach angles from
the red region lead to successful reaching of the green region, effectively partitioning the intermediate
state space based on trajectory outcomes. This demonstrates that AUTOSPEC’s geometric refinements
(convex hulls for ReachRefine, hyperplanes for PastRefine) remain effective in high-dimensional
spaces where human intuition about the specification failures would be difficult. The success in this
domain is particularly noteworthy because the refinements must capture 3D spatial relationships
without explicit knowledge of the obstacle geometry.

5 CONCLUSION

We presented AUTOSPEC, a framework for automated refinement of coarse-grained logical specifi-
cations in reinforcement learning. AUTOSPEC addresses two common specification issues—coarse
formulas and coarse labeling functions through four refinement procedures that maintain formal
soundness. Our experiments on n-rooms and PandaGym environments demonstrate that AUTOSPEC
can improve specification satisfiability when integrated with existing algorithms like DiRL and LSTS.

Our evaluation also reveals fundamental limitations: AUTOSPEC requires sufficient exploration
data from the base algorithm to compute meaningful refinements. When algorithms fail to generate
successful trajectories (as LSTS did on complex specifications), refinement becomes impossible.
Despite these limitations, AUTOSPEC represents the first systematic approach to automatically
refining logical specifications based on learning failures. Future work should address reducing
exploration requirements for refinement and extending beyond SpectRL to more expressive temporal
logics. The design of good specifications remains challenging in practice, and automated refinement
is an important step toward making specification-guided RL more practical.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT.

We have made extensive efforts to ensure reproducibility of our work. The formal definitions of
SpectRL specifications, abstract graphs, and all four refinement procedures are provided in Sections 2—
3, with proofs of correctness in the Appendix (A.2). Pseudocode for the AUTOSPEC framework
and its refinement subprocedures (ReachRefine, AvoidRefine, AddRefine, PastRefine, OrRefine) is
included in the Appendix (A.1), allowing exact reimplementation. Our experimental setup, including
domains (n-Rooms and PandaGym), specifications used, RL algorithms (DIRL and LSTS), policy
learning method (PPO with stable-baselines3), and hyperparameters, are described in Section 4.
We also provide detailed evaluations of each refinement type (Figures 6—10) and high-dimensional
validation (Figure 5). An anonymized implementation and experiment scripts will be made available
as supplementary material to facilitate replication.

REFERENCES

David Abel, Will Dabney, Anna Harutyunyan, Mark K. Ho, Michael L. Littman, Doina Precup,
and Satinder Singh. On the expressivity of Markov reward. In Advances in Neural Information
Processing Systems, 2021.

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta. Q-learning for robust
satisfaction of signal temporal logic specifications. In 55th IEEE Conference on Decision and
Control, CDC 2016, Las Vegas, NV, USA, December 12-14, 2016, pp. 6565-6570. IEEE, 2016. doi:
10.1109/CDC.2016.7799279. URL |https://doi.org/10.1109/CDC.2016.7799279.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for trans-
forming specifications in reinforcement learning. pp. 604-624, 2022.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. Specification-guided
reinforcement learning. 2023.

Michael Bowling, John D. Martin, David Abel, and Will Dabney. Settling the reward hypothesis. In
Proceedings of the International Conference on Machine Learning, 2023.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A.
Mcllraith. LTL and beyond: Formal languages for reward function specification in reinforcement
learning. In Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IICAI 2019, Macao, China, August 10-16, 2019, pp. 6065-6073. ijcai.org,
2019. doi: 10.24963/1JCAI1.2019/840. URL https://doi.org/10.24963/1i9cai.2019/
840.

Krishnendu Chatterjee, Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. A learner-
verifier framework for neural network controllers and certificates of stochastic systems. In Sriram
Sankaranarayanan and Natasha Sharygina (eds.), Tools and Algorithms for the Construction and
Analysis of Systems - 29th International Conference, TACAS 2023, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Paris, France, April 22-
27, 2023, Proceedings, Part I, volume 13993 of Lecture Notes in Computer Science, pp. 3-25.
Springer, 2023. doi: 10.1007/978-3-031-30823-9_1. URL https://doi.org/10.1007/
978-3-031-30823-9_1!|

Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen. panda-gym: Open-
Source Goal-Conditioned Environments for Robotic Learning. 4th Robot Learning Workshop:
Self-Supervised and Lifelong Learning at NeurIPS, 2021.

Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. Foundations for restraining
bolts: Reinforcement learning with Itlf/1dIf restraining specifications. In J. Benton, Nir Lipovetzky,
Eva Onaindia, David E. Smith, and Siddharth Srivastava (eds.), Proceedings of the Twenty-Ninth
International Conference on Automated Planning and Scheduling, ICAPS 2019, Berkeley, CA,
USA, July 11-15, 2019, pp. 128-136. AAAI Press, 2019. URL https://ojs.aaai.org/
index.php/ICAPS/article/view/35409.

10

https://doi.org/10.1109/CDC.2016.7799279
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.1007/978-3-031-30823-9_1
https://doi.org/10.1007/978-3-031-30823-9_1
https://ojs.aaai.org/index.php/ICAPS/article/view/3549
https://ojs.aaai.org/index.php/ICAPS/article/view/3549

Under review as a conference paper at ICLR 2026

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular objectives in model-free reinforcement learning. In Tomds Vojnar
and Lijun Zhang (eds.), Tools and Algorithms for the Construction and Analysis of Systems
- 25th International Conference, TACAS 2019, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11,
2019, Proceedings, Part I, volume 11427 of Lecture Notes in Computer Science, pp. 395-412.
Springer, 2019. doi: 10.1007/978-3-030-17462-0_27. URL https://doi.org/10.1007/
978-3-030-17462-0_27.

Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroening, George J.
Pappas, and Insup Lee. Reinforcement learning for temporal logic control synthesis with proba-
bilistic satisfaction guarantees. In 58th IEEE Conference on Decision and Control, CDC 2019,
Nice, France, December 11-13, 2019, pp. 5338-5343. IEEE, 2019. doi: 10.1109/CDC40024.2019.
9028919. URL https://doi.org/10.1109/CDC40024.2019.90289109.

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. LCRL: certified policy
synthesis via logically-constrained reinforcement learning. In Erika Abraham and Marco Paolieri
(eds.), Quantitative Evaluation of Systems - 19th International Conference, QEST 2022, Warsaw,
Poland, September 12-16, 2022, Proceedings, volume 13479 of Lecture Notes in Computer
Science, pp. 217-231. Springer, 2022. doi: 10.1007/978-3-031-16336-4_11. URL |https:
//doi.org/10.1007/978-3-031-16336-4_11|

Sinan Ibrahim, Mostafa Mostafa, Ali Jnadi, Hadi Salloum, and Pavel Osinenko. Comprehensive
overview of reward engineering and shaping in advancing reinforcement learning applications,
2024. URLhttps://arxiv.org/abs/2408.10215.

Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. Mcllraith. Using
reward machines for high-level task specification and decomposition in reinforcement learning.
In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 2112-2121. PMLR, 2018. URL
http://proceedings.mlr.press/v80/icartel8a.htmll

Peng Jin, Jiaxu Tian, Dapeng Zhi, Xuejun Wen, and Min Zhang. Trainify: A cegar-driven training
and verification framework for safe deep reinforcement learning. In Sharon Shoham and Yakir Vizel
(eds.), Computer Aided Verification, pp. 193-218, Cham, 2022. Springer International Publishing.
ISBN 978-3-031-13185-1.

Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable specification language for
reinforcement learning tasks. Advances in Neural Information Processing Systems, 32, 2019.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional rein-
forcement learning from logical specifications. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=ion6Lo5tKtJ.

Mathias Lechner, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A. Henzinger. Stability
verification in stochastic control systems via neural network supermartingales. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innova-
tive Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1,
2022, pp. 7326-7336. AAAI Press, 2022. doi: 10.1609/AAAIL.V3617.20695. URL https:
//doi.org/10.1609/aaai.v3617.20695.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. J. Mach. Learn. Res., 17:39:1-39:40, 2016. URL |http://jmlr.org/
papers/v17/15-522.htmll

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards. In

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3834-3839.
IEEE, 2017a.

11

https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1007/978-3-030-17462-0_27
https://doi.org/10.1109/CDC40024.2019.9028919
https://doi.org/10.1007/978-3-031-16336-4_11
https://doi.org/10.1007/978-3-031-16336-4_11
https://arxiv.org/abs/2408.10215
http://proceedings.mlr.press/v80/icarte18a.html
https://openreview.net/forum?id=ion6Lo5tKtJ
https://doi.org/10.1609/aaai.v36i7.20695
https://doi.org/10.1609/aaai.v36i7.20695
http://jmlr.org/papers/v17/15-522.html
http://jmlr.org/papers/v17/15-522.html

Under review as a conference paper at ICLR 2026

Xiao Li, Cristian Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards. In
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver,
BC, Canada, September 24-28, 2017, pp. 3834-3839. IEEE, 2017b. doi: 10.1109/IROS.2017.
8206234. URL https://doi.org/10.1109/IR0S.2017.8206234.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nat., 518(7540):529-533, 2015. doi: 10.1038/NATURE14236. URL
https://doi.org/10.1038/natureld236.

Cyrus Neary, Christos Verginis, Murat Cubuktepe, and Ufuk Topcu. Verifiable and compositional
reinforcement learning systems. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 32, pp. 615-623, 2022.

Cyrus Neary, Aryaman Singh Samyal, Christos Verginis, Murat Cubuktepe, and Ufuk Topcu. Ver-
ifiable reinforcement learning systems via compositionality. arXiv preprint arXiv:2309.06420,
2023.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. ISBN 978-0-47161977-2. doi: 10.1002/
9780470316887. URL https://doi.org/10.1002/9780470316887.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL |http://jmlr.org/papers/v22/
20-1364.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Yash Shukla, Tanushree Burman, Abhishek Kulkarni, Robert Wright, Alvaro Velasquez, and Jivko
Sinapov. Logical specifications-guided dynamic task sampling for reinforcement learning agents.
In 34th International Conference on Automated Planning and Scheduling, 2024. URL https:
//openreview.net/forum?id=okLobjgf jx.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, loannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nat., 529(7587):484-489, 2016. doi:
10.1038/NATURE16961. URL https://doi.org/10.1038/naturel6961l

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Rodrigo Toro Icarte, Ethan Waldie, Toryn Klassen, Rick Valenzano, Margarita Castro, and
Sheila Mcllraith. Learning reward machines for partially observable reinforcement learn-
ing. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/
2019/file/532435c44bec236b471a47a88d63513d-Paper.pdf.

Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action:
Generalizing Itl instructions for multi-task rl. In International Conference on Machine Learning,
pp. 10497-10508. PMLR, 2021.

Zhe Xu and Ufuk Topcu. Transfer of temporal logic formulas in reinforcement learning. In
Sarit Kraus (ed.), Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 4010-4018. ijcai.org, 2019. doi:
10.24963/1JCAI.2019/557. URL https://doi.org/10.24963/i9cai.2019/557.

12

https://doi.org/10.1109/IROS.2017.8206234
https://doi.org/10.1038/nature14236
https://doi.org/10.1002/9780470316887
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=okLobjqfjx
https://openreview.net/forum?id=okLobjqfjx
https://doi.org/10.1038/nature16961
https://proceedings.neurips.cc/paper_files/paper/2019/file/532435c44bec236b471a47a88d63513d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/532435c44bec236b471a47a88d63513d-Paper.pdf
https://doi.org/10.24963/ijcai.2019/557

Under review as a conference paper at ICLR 2026

Dorde Zikelic, Mathias Lechner, Thomas A. Henzinger, and Krishnendu Chatterjee. Learning control
policies for stochastic systems with reach-avoid guarantees. In Brian Williams, Yiling Chen, and
Jennifer Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023,
Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, pp. 11926-11935. AAAI Press, 2023a. doi: 10.1609/AAAIL.V37110.26407.
URL https://doi.org/10.1609/aaai.v37110.26407.

Dorde Zikelic, Mathias Lechner, Abhinav Verma, Krishnendu Chatterjee, and Thomas A. Hen-
zinger. Compositional policy learning in stochastic control systems with formal guarantees. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023,2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
95827e011b9e899f189%a01fe2fdef3l6-Abstract-Conference.html.

13

https://doi.org/10.1609/aaai.v37i10.26407
http://papers.nips.cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95827e011b9e899f189a01fe2f4ef316-Abstract-Conference.html

Under review as a conference paper at ICLR 2026

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 REFINEMENT ALGORITHMS

Here we present pseudo-code for the individual refinement algorithms described in Section[3.1]

Algorithm 2 ReachRefine

Require: b := S(u'), ¢
Sy« {s|se€bn(} Collect all the goal region states from the trajectories
b, <— b N ConvexHull(S,) Create the convex hull of the collected states
return b,

Algorithm 3 AvoidRefine

Require: ¢ := (3(e),C
O, + {} Initialize new avoid region with an empty set
for ¢; in (do
if (;[—1] & ¢ then
Or + O, U{s;j | s; € ¢; Nlen(;) — j) < k}
Append the last k states from every trajectory that ended up in the avoid region
end if
end for
¢r < c\ConvexHull(O,.) Create a convex hull around the collected states and remove it form the
original safe region
return c,

Algorithm 4 SeqRefine: Refining Edge e = u — o/

Require: Edge e = u — v/, Graph G, set of trajectories .
b = B(u') States in the reach predicate
¢ = B(e) States in the avoid predicate
b, < ReachRefine(b, ()
¢ < AvoidRefine(c, ¢)
ur + [B(ur) = b,] Redefine target node with new predicate
ey < [u — u,., with 8(e,) = ¢,| Redefine edge with new predicate
G’ + G\ [e + e;] Replace edge with refinement

return G’

Algorithm 5 AddRefine

Require: Edge e = u — u’, Graph G, set of trajectories (.
Sy {}

for (; in (do
if ¢; = e [i.e. trajectory was successful] then
Sy Sy U[len((;)/ /2] Add center of trajectory as waypoint
end if
end for
by <+ ConvexHull(S,) N 3(e)
u” + [B(u") = b, Define target node for waypoint
e+ [u— u”, with B(e") := B(e)]
e« [u'" — ', with B(e') := B(e)] Define edges with new waypoint predicate
G’ < G\ [e < [€¢;€']] Replace edge e with composition of new edges
return G’

14

Under review as a conference paper at ICLR 2026

Algorithm 6 PastRefine: Refining Abstract Graph Exploration

Require: Edge e = u — u/, Graph G, set of trajectories (.
S« {} S+ {}
for ; in ¢ do
S < S U 0] Collect start states from all trajectories
if (; = e then
Sy = S; U (;[0] Collect start states from successful trajectories
end if
end for
Identify a hyperplane H separating the S, and S\ S,
b+ {s€S:H(s) >0}
u* + [B(u*) = b,] Redefine initial node with new predicate
er + [u* — u,with B(e,) := [(e)] Redefine edge with new predicate
G’ + G\ [e < e,] Replace edge with refinement
return G’

Algorithm 7 OrRefine: Disjunctive Specification Refinement

Require: Edge e = u — u/, Graph G, set of trajectories (.
E ={e; € G| e; =u; — u'} Collect all "parents’ of v/
fore; € E do
eui < [u — u;, with B(e,) := B(e)] Define edges from source to parents
G + G U [ey;] Add new edge to graph
end for
return G

A.2 PROOF OF THEOREM 1

Theorem 1 (Correctness of AUTOSPEC) Given an abstract graph G of a SpectRL specification ¢ and
an edge e, AUTOSPEC computes a specification ¢, with abstract graph G, such that ¢, refines ¢.
That is, for any MDP trajectory ¢, we have (¢ = ¢,) = (¢ E ¢).

Proof. To prove the theorem, it suffices to show that for each of the four refinement subprocedures, if
they return an abstract graph G-, then the corresponding specification ¢, is a refinement of the input
specification ¢.

By the definition of abstract reachability, we have (¢ = ¢) < ((= G) and (¢ |E ¢,) < (¢ E G,).
Hence, to prove that (¢ = ¢,) = (¢ = ¢) which is the definition of specification refinement as in
Definition 2] it suffices to prove that (¢ = G,) = (¢ |= G). We prove this claim for each refinement
subprocedure.

SeqRefine. Suppose that G, = SEQREFINE(e, G, (). Let e = v — u’. By our design of SeqRefine,
the abstract graph G, has the same vertex set, edge set and labeling function as (G, with the only
difference being that 5, (u') C B(u') due to ReachRefine and j,.(¢) C S(e) due to AvoidRefine.
Hence, every trajectory ¢ that satisfies all reach-avoid tasks in GG,- must also satisfy those in G, giving

us (¢ = G) = (C | G).

AddRefine. Suppose that G, = ADDREFINE(e, G, (). Let e = u — u’. AddRefine introduces
a new vertex u” and replaces edge e with two sequentially composed edges ¢” = u — " and
e/ =u" — u where B,.(¢”) = 5,(¢') = B(e). Any trajectory satisfying the refined path through
u”/ must visit the intermediate waypoint while respecting the original safety constraints, thus also
satisfying the original edge specification. Therefore, (¢ = G,) = ((= G).

PastRefine. PastRefine refines the region associated to vertex u by restricting it to 8, (u) C 8(u).
This refinement affects both edge e = u — v and all edges incoming to u. Since the refined region
is a subset of the original, any trajectory satisfying the refined specification must originate from states
that were valid in the original specification. Hence, (¢ = G,) = (¢ E G).

15

Under review as a conference paper at ICLR 2026

OrRefine. Suppose that G;, = ORREFINE(e, G,). OrRefine only adds edges between existing
vertices in G. Specifically, for a problematic edge e = u — v/, it identifies existing edges e; = u; —
u’ and adds new edges €ye, = u — u; Where B(enew) = B(e).

Consider a trajectory (that satisfies G,. via a newly added path u — u; — ’. Since: (1) Both u;
and v’ existed in the original vertex set of G, (2) The edge u; — u’ existed in the original edge set of
G, (3) The new edge u — u; maintains the safety constraints of the original edge (5(enew) = 5(€)),

the trajectory ¢ reaches u’ through a combination of transitions that respect all original safety
constraints and only uses vertices from the original specification. The path through u; represents a
valid alternative route in the original specification structure. Therefore, (¢ |= G,) = (¢ |= G).

Thus, all four refinement procedures preserve specification soundness. O

A.3 EXPERIMENTS

D ' : [
e —m e | 0a] i
00
100000 200000 300000 400000 500000

Figure 6: Evaluation of Reach Probabilities in the 9-Rooms Environment. (a) The layout of the
9-rooms environment, showing the walls, doors, and goal regions, and the estimated convex hull for
the new reach region, showing how the refinement process effectively restructs the reachable states,
leading to better satisfaction of the specification (b) A comparison of reach probabilities between
DIRL Jothimurugan et al.| (2021)) and the proposed AutoSpec approach. The x-axis denotes the
number of steps, and the y-axis denotes the estimated probability of success.

Figure 7: Results of Avoid refinement. (a) The layout of the 9-rooms environment, showing the
walls, doors, goal regions and avoid regions (red) and learned trajectories before (green) and after
(blue) refinement, with new estimated avoid regions (black) (b) A comparison of reach probabilities
between DiRL and the proposed Avoid Refinement.

We conducted multiple experiments to validate our approach to refining coarse-grained SpectRL
specifications for solving RL tasks. The goal of our experiments is to compare the performance of the
original DIRL Jothimurugan et al|(2021) algorithm and our integration of DIRL with AUTOSPEC,
thus showcasing the ability of AUTOSPEC to refine SpectRL specifications that are challenging for the
existing algorithms for RL from logical specifications. For learning edge policies, in both cases we
use Proximal Policy Optimization (PPO)|Schulman et al.|(2017)), implemented using stable-baselines3
Raffin et al.[(2021). We employ a 2-layer neural network, each layer containing 64 neurons. We
consider two environments.

9 Rooms. The 9 Rooms environment consists of walls blocking access to some rooms and doors
allowing access to adjacent rooms. It has a 4-D continuous state space (,y, 0, d) € R*, representing
the 2D position, angle to the goal, and distance to the goal. We consider several SpectRL specifications

16

Under review as a conference paper at ICLR 2026

which are translated into abstract graphs. The start position is sampled from the region associated to
the source vertex, and the goal position is sampled from the region associated to the target vertex
of the abstract graph. The 2-D continuous action space determines the velocity and direction of the
agent (v,) € R2, with the new position calculated as s’ = s + (v cos(#), vsin()).

PandaGym. The Pandagym Gallouédec et al. (2021)) reach environment has a robotic arm with an
object picked up and the task is to place the object at the correct location. A wall blocking the path to
the goal is invisible to the robot. The state space consists of the current position of the gripper arm in
3D and the goal position.

Experiment 1: Atomic predicate refinement. To illustrate how an incorrect specification is
identified and corrected using Algorithm 2} we consider a 9 Rooms environment in Figure [} In this
environment, one room in the goal region is blocked, representing the incorrect specification. Figure
[6] displays the learning curves for both the original and refined specifications, demonstrating the
performance improvements achieved through the refinement process. Algorithm [3|can be empirically
verified by creating a 9 Rooms environment as shown in Figure[7, where Figure@ (a) shows the goal
region along with avoid region (red). To improve probability of satisfaction the agent should avoid
the narrow door below the goal and use the longer but safer route to approach the goal from the side.
We see the learned trajectories before and after refinement in Figure[7](a), where the new avoid region
blocks the narrow door, effectively causing the agent to learn a policy that uses the wider door on the
side. This helped improve specification satisfiability.

Experiment 2: Sequential refinement. We created a specification ¢4, to evaluate Algorithm@
Figure 8] show that AddRefine is extremely sample efficient, and can construct a new specification to
aid the current edge with an extremely high success probability. We also show the distribution of
states that make up the new specification ¢y ;. To verify Algorithm@, we designed a specification
Dmid; Pgoal> as depicted in Figure E} The learning curves, also shown in Figure EI, indicate that the
proposed refinement significantly enhances the reach probability compared to the original specifica-
tion. Additionally, Figure Q]illustrates the distribution of states in the MID region from which the
GOAL region can be reached, which informs the refinement process. Figure[5]shows how sequential
refinement can be applied on higher dimensional state spaces. Different refinements produce varying
results, as shown in Figure El

s
»>
r
-
g
.
.

02
¢
60000 80000 100000 120000 140000

Figure 8: Results of AddRefine in the 9-Rooms Environment. (a) The environment is annotated with
start and goal regions (b) Learning curves comparing reach probabilities for DiRL and AutoSpec.

08
07
o1
I I 80000 85000 0000 95000 100000 105000 110000 115000 120000

Figure 9: Results of Sequential Specification Refinement in the 9-Rooms Environment. (a) The
environment annotated with the distribution of states in the MID region from which the GOAL region
can be reached. (b) Learning curves comparing reach probabilities for DiRL and AutoSpec.

17

Under review as a conference paper at ICLR 2026

. MID2 ol ¥
Figure 10: Disjunctive Specification Refinement in 9-Rooms. (a) The environment with regions
relevant to the specification ¢ := ¢prrp1; PGoAL OF dprrp2; dcoar- (b) Learning curves showing

that incorporating an additional specification ¢a;rp1; ¢arrp2 i essential to achieve the desired
success probability.

Experiment 3: Disjunctive refinement. To validate Algorithm [7/] we constructed a 9 Rooms
environment with a specification featuring two distinct paths to the goal. Figure[I0]illustrates the
environment and the regions relevant to the specification ¢ := ¢pr1p1; PGoAL O Orr1D2; PGOAL-
The learning curves for OrRefine, shown in Figure[T0] demonstrate that incorporating an additional
specification ¢ns7p1; @ arrp2 18 essential to achieve good success probability. In contrast, Algorithm
A and Algorithm|6]fail to perform adequately due to the subspecification having zero reach probability,
preventing effective local refinement. This validation underscores the necessity of OrRefine in
scenarios where sequential modifications alone are insufficient.

All Experiments have been performed using i7-8750H with 32GB RAM and no GPU. Trajectories
were collected after training the policy for n timesteps and 5 different seeds.

Hyperparameters for learning algorithms:

1. Learning Rate: 0.0003
2. n steps: 2048
3. Batch size: 64
4. Epochs: 10
5. v:0.99

A.4 LIMITATIONS

AutoSpec requires finite witnesses to specification satisfaction and hence can only work on finite
trajectories. This means that we must consider only finitary fragments of LTL, like SpectRL. While
Autospec is sound, i.e if a refinement is found satisfactory trajectories for the refinement will also
satisfy the original specification (Theorem 3.1), it is not complete, i.e. it might fail to find a candidate
refinement even if such a refinement exists, especially if the specification satisfiability is extremely
low. It is also not guaranteed that the candidate refinement is an ’optimal’ refinement, in terms of the
tightest bounds possible on the refined predicates.

A.5 SOCIETAL IMPACTS

We wish to improve the performance of Reinforcement Learning algorithms and attempt to improve
under-specified human specifications, which have an impact on various applications that aim to
deploy RL agents with multi-objective tasks. The applications extend to robotics, path-finding tasks
and any tasks that involve manual specifications which could be incorrect. This may have both
positive or negative societal impacts depending on the use case of such RL deployments, positive
impacts include applications to manufacturing, healthcare, and in-home robotic assistants; while
negative impacts would be most consequential in military or surveillance infrastructure. These issues
are shared across most work on reinforcement learning algorithms.

18

	Introduction
	Preliminaries
	Automated Refinement of RL Specifications
	Specification Refinement Subprocedures
	Correctness of AutoSpec

	Experimental Evaluation
	Experimental Setup
	Algorithm-Dependent Effectiveness: DiRL vs LSTS
	Evaluation of Individual Refinements
	High-Dimensional Validation: PandaGym

	Conclusion
	Appendix / supplemental material
	Refinement Algorithms
	Proof of Theorem 1
	Experiments
	Limitations
	Societal Impacts

