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Abstract

Large-scale vision-language models (VLMs), trained on extensive datasets of image-text
pairs, exhibit strong multimodal understanding capabilities by implicitly learning associa-
tions between textual descriptions and image regions. This emergent ability enables zero-
shot object detection and segmentation, using techniques that rely on text-image attention
maps, without necessarily training on abundant labeled segmentation datasets. However,
performance of such methods depends heavily on prompt engineering and manually selected
layers or head choices for the attention layers. In this work, we propose a training-free
entropy-based measure, InfoScore, to identify the best image-text attention layers for seg-
mentation, providing a more flexible and scalable solution for training-free open-vocabulary
segmentation, reducing the additional burden of hyperparamter search. We empirically
show that our training-free selection strategy is superior to naive selection strategies. Ad-
ditionally, we demonstrate that instead of solely relying on text prompts, fine-tuning the
image-text attention layer with a single visual example of each class significantly improves
segmentation without the need of additional parameters or decoders. Moreover, we show
that our methods and findings are general and can be applied across various vision-language
models (VLMs). Our code will be released upon acceptance.

1 Introduction

In recent years, deep learning research has increasingly focused on foundation models (Bommasani et al.,
2021; Li et al., 2024), which are trained on broad datasets to support generalization across a wide variety
of downstream tasks, primarily through self-supervised learning (He et al., 2022; Oquab et al., 2024; Caron
et al., 2021) or vision-language modeling (Radford et al., 2021; Xu et al., 2023; Li et al., 2022b; 2023a; Alayrac
et al., 2022). Vision-language pre-training, in particular, has seen significant advancements with models like
CLIP (Radford et al., 2021) and BLIP (Li et al., 2022b), which leverage image-text contrastive learning or
image-text matching. Another family of vision-language models, such as Flamingo (Alayrac et al., 2022)
and LLaVA (Liu et al., 2024b), builds upon the capabilities of large language models (LLMs) to support
vision-text reasoning tasks, such as visual question answering (VQA) and image captioning. These models
are commonly referred to as multi-modal LLMs (MLLMs). Additionally, task-specific foundation models like
Segment Anything (SAM) (Kirillov et al., 2023; Ravi et al., 2024) and LLaVA descendants (Chen et al., 2023;
Zhang et al., 2024b) focus on pixel-level or region-level understanding, but they typically require complex
decoders and extensive datasets with pixel-level annotations to train.

A growing body of research focuses on training-free methods for pixel-level tasks, particularly image seg-
mentation. These approaches leverage vision-language models to enable segmentation in an open-vocabulary
setting (Wang et al., 2024a; Hajimiri et al., 2025; Luo et al., 2024; Zhou et al., 2022; Cha et al., 2023; Barsel-
lotti et al., 2024; Wysoczańska et al., 2024b; Lan et al., 2024; Li et al., 2023b; Karazija et al., 2024). However,
most existing methods rely on a single type of VLM—often CLIP-based models (Radford et al., 2021)—that
form segmentations using similarity between CLIP visual patch features and text features (Wysoczańska
et al., 2024b; Wang et al., 2024a; Hajimiri et al., 2025; Zhou et al., 2022; Cha et al., 2023; Lan et al., 2024).
Others rely on text-conditioned diffusion models (Barsellotti et al., 2024; Li et al., 2023b; Karazija et al.,
2024), typically extracting text-image cross-attention maps from diffusion backbones (Rombach et al., 2022).
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Figure 1: Overview of Proposed Approach. (Left) Overview: Given a vision–language model, class-
specific text prompts, and a query image, we rank layers using the proposed InfoScore measure, select the
top-K attention layers, and aggregate their text-to-image attention maps to generate the final prediction.
Optionally, the top-K layers can be fine-tuned with a single support image, enabling both training-free
zero-shot and 1-shot settings. (Right) Effectiveness of InfoScore: selecting only the top-2 layers yields
significantly superior segmentation compared to random or all-layer aggregation in training-free setting. A
single support image further boosts the performance. In this 1-shot setting, InfoScore-based layer selection
also outperforms random or all-layer aggregation, although the performance gap is reduced.

PNP-OVSS (Luo et al., 2024) extends this idea to VLMs trained with image–text matching (ITM) losses
by extracting cross-attention maps, but it does not apply to modern LLM-based VLMs (e.g., LLaVA (Liu
et al., 2024b)) that lack ITM heads. Moreover, its layer selection relies on a CLIP-based reward computed
using image-level ground-truth class names, while inference additionally requires an external multimodal
LLM (e.g., GPT-4o) to identify the set of classes present in each image. Overall, such approaches remain
closely tied to specific architectures and external supervision, limiting their generality.

Hence, we propose a model-agnostic framework for open-vocabulary segmentation using vision-language mod-
els that operates in both training-free and one-shot fine-tuning modes, as illustrated in Figure 1. Our method
is designed to generalize across diverse VLM families, including both cross-attention-based architectures and
modern LLM-based vision-language models. We introduce three core components:

1. An entropy-based, training-free measure, InfoScore, which ranks and selects the most relevant
text-to-image attention layers in an unsupervised manner.

2. A false-positive filtering mechanism that re-weights attention maps using image-text scores derived
from the model’s own language modeling or image-text matching logits—without relying on external
models or annotations.

3. A one-shot tuning strategy that selectively fine-tunes the attention layers identified by InfoScore,
without introducing additional decoders or requiring large-scale dense annotations.

In the training-free mode, given class-specific text prompts and a query image, we aggregate the text-to-
image attention maps from the top-K layers identified by InfoScore to make final predictions (Figure 1, left).
This layer selection yields more effective segmentation than other alternatives (Figure 1, right).

In the one-shot mode, we fine-tune the InfoScore-selected layers together with the corresponding word
embeddings using a single support image per class. This helps disambiguate text prompts and better align
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visual concepts with language. As shown in Figure 1, fine-tuning with even a single visual example yields
substantial gains—improving mIoU by nearly 10 points on PASCAL VOC (Everingham et al., 2010).

We evaluate our approach across four benchmark datasets and demonstrate its extensibility across both
cross-attention-based vision-language models(e.g., ALBEF (Li et al., 2021), BLIP (Li et al., 2022b)) and
modern LLM-based vision-language models (e.g., LLaVA 1.5 (Liu et al., 2024a)). Our training-free method
outperforms prior works, and we further show consistent improvements with one-shot fine-tuning.

Contributions. In summary, our contributions include:

• A model-agnostic framework for open-vocabulary segmentation that generalizes across both cross-
attention-based and LLM-based vision-language models.

• InfoScore, an entropy-based measure for training-free, unsupervised selection of informative atten-
tion layers.

• A false-positive filtering mechanism that leverages the model’s own image-text scores without re-
quiring external models.

• A one-shot tuning strategy that selectively fine-tunes InfoScore-identified attention layers without
introducing additional decoders or requiring large-scale annotations.

• State-of-the-art performance on three out of four benchmark datasets in the training-free setting,
and significant additional gains from one-shot fine-tuning, surpassing all existing approaches.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation (Arbeláez et al., 2012; 2014; Carreira & Sminchisescu, 2011; Uijlings et al., 2013;
Chen et al., 2014; 2017a;b; Long et al., 2015; Cheng et al., 2021; 2022; Hossain et al., 2024) has evolved from
early methods based on graph cuts over seeded regions (Boykov & Funka-Lea, 2006; Boykov & Kolmogorov,
2004; Shi & Malik, 2000) and proposal-based mask classification (Arbeláez et al., 2012; 2014; Carreira &
Sminchisescu, 2011; Uijlings et al., 2013; Carreira et al., 2012; Dai et al., 2015), to deep learning approaches
that frame segmentation as a per-pixel classification task (Chen et al., 2014; 2017a;b; Long et al., 2015).

More recently, models like MaskFormer (Cheng et al., 2021) and Mask2Former (Cheng et al., 2022) have
reintroduced the idea of mask classification—predicting a set of binary masks, each paired with a class
label—establishing a new paradigm. This formulation underlies many modern methods that incorporate
textual and visual prompts. OneFormer (Jain et al., 2023), for example, uses text-conditioned prompts to
unify semantic, instance, and panoptic segmentation. SAM (Kirillov et al., 2023), SAM2 (Ravi et al., 2024),
and SEEM (Zou et al., 2023) similarly adopt a prompt-driven mask prediction framework, enabling flexible
interaction via text, clicks, or bounding boxes.

2.2 Open Vocabulary Segmentation

Zero-shot semantic segmentation has been extensively studied to segment unseen, novel classes using text
descriptions (Bucher et al., 2019; Zhou et al., 2023). However, these methods do not allow overlap between
base and novel classes. Open-vocabulary segmentation addresses this by allowing such overlap and leveraging
large-scale vision-language pre-training (Li et al., 2022a; Wu et al., 2024). Training with language data allows
the models to handle large, extensible vocabularies, unlike traditional zero-shot settings with predefined base
categories. Recent advances in vision-language pre-training (Radford et al., 2021; Li et al., 2022b) have
further advanced open-vocabulary image segmentation.
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2.3 Vision-language Pretraining

Vision-language models (VLMs) can broadly be categorized into two types: (i) models that use cross-
attention between image and text modalities for multi-modal reasoning, such as BLIP (Li et al., 2022b) and
ALBEF (Li et al., 2021); and (ii) models that integrate Large Language Models (LLMs) by projecting image
embeddings into the language space, where they are treated as pseudo-text tokens and processed through
self-attention alone (Liu et al., 2024b;a).

BLIP (Li et al., 2022b) jointly trains image and text encoders using a contrastive image-text loss to align
the modalities. These aligned representations are then passed to a multi-modal encoder trained with an
image-text matching (ITM) loss, further reinforcing cross-modal alignment. ALBEF (Li et al., 2021) adopts
a similar two-stage strategy: a contrastive pretraining phase followed by multi-modal fusion using both ITM
and masked language modeling (MLM) objectives. In both cases, text-to-image interactions are explicitly
handled via cross-attention layers in the transformer architecture.

More recent multi-modal LLMs such as LLaVA (Liu et al., 2024b;a) take a different approach. These models
project image embeddings into the language embedding space, where they are concatenated with textual
input and processed entirely through causal self-attention. This design eliminates explicit cross-attention
layers; instead, the self-attention mechanism implicitly models cross-modal interactions. These models are
typically pre-trained and then instruction-tuned using only the next-token prediction objective, similar to
large language models.

2.4 Prompting VLMs for Training-Free Segmentation

Unlike segmentation-specific models such as SAM (Kirillov et al., 2023) or SEEM (Zou et al., 2024), vision-
language models (VLMs) are not explicitly trained for segmentation. Nevertheless, prior work prior work
has shown that they can be prompted to produce segmentation maps without additional training (Wang
et al., 2024a; Hajimiri et al., 2025; Luo et al., 2024; Zhou et al., 2022; Cha et al., 2023; Barsellotti et al.,
2024; Wysoczańska et al., 2024b; Lan et al., 2024; Li et al., 2023b; Karazija et al., 2024). Most of these
approaches, however, are limited to a single type or family of VLMs, such as CLIP (Wysoczańska et al.,
2024b; Wang et al., 2024a; Hajimiri et al., 2025; Zhou et al., 2022; Cha et al., 2023; Lan et al., 2024) or
models with explicit image-text cross-attention layers, including diffusion-based models (Luo et al., 2024;
Barsellotti et al., 2024; Li et al., 2023b; Karazija et al., 2024; Rombach et al., 2022). In CLIP-based methods,
segmentation is typically derived from the similarity between visual features and text prompts. In contrast,
cross-attention-based methods use image-text attention maps as proxies for segmentation. However, (Luo
et al., 2024) observed that cross-attention maps tend to over-segment objects and generate numerous false
positives, and therefore used GPT-4o to filter out categories not present in the image. In contrast, we observe
that we can refine the heatmaps using an image-text scoring that comes with these VLMs, without the need
for any additional models beyond the VLM itself.

Another key insight from approaches that utilize image-text cross-attention maps, or Grad-CAM, for tasks
such as segmentation (Luo et al., 2024), visual grounding (He et al., 2024; Li et al., 2021), or visual question
answering (Tiong et al., 2022; Li et al., 2021) is that the quality of text-to-image grounding is highly
sensitive to the choice of cross-attention layer or head from which attention maps are extracted. Typically,
these methods assess layer-wise, task-specific performance on validation sets with ground-truth annotations
to select the layer that maximizes performance (Tiong et al., 2022; Li et al., 2021; He et al., 2024), or they
use ground-truth class information from validation images (Luo et al., 2024). Both approaches, however,
rely on some form of ground truth, which limits their practicality in a truly training-free, open-vocabulary
setting where annotations are unavailable, making it challenging to determine which layer’s cross-attention
map would yield strong segmentation performance. To address this limitation, we propose an entropy-based
measure called InfoScore, designed to identify the most suitable layer combinations in a vision-language
model (VLM), without annotations.

Furthermore, these methods do not incorporate few-shot or one-shot demonstrations, making them vulnerable
to training distributions and vocabularies of the underlying VLMs. In contrast, our approach extends open-
vocabulary segmentation by incorporating such demonstrations to guide VLMs in producing segmentation
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maps. Crucially, our method is applicable to a broad range of VLMs, including recent multimodal large
language models (MLLMs) like LLaVA (Liu et al., 2024b).

2.5 Few-shot Segmentation

Few-shot segmentation has been extensively studied in prior works, focusing primarily on traditional ap-
proaches that do not leverage recent advances in vision-language models (Wang et al., 2019; Siam et al.,
2019; Shaban et al., 2017; Min et al., 2021). These approaches typically address 1-way or N-way segmentation
of novel classes against a background but do not evaluate performance on the base classes seen during pre-
training. Recent studies have proposed a generalized few-shot segmentation setting that enables evaluation
on both base and novel classes (Tian et al., 2022; Hajimiri et al., 2023; Hossain et al., 2024; Liu et al., 2023).
A recent approach (Hossain et al., 2024) uses a multiscale visual prompting technique to improve segmen-
tation. However, none of generalized approaches utilize advanced vision foundational models, particularly
VLMs.

A recent work (Xiao et al., 2024) has explored few-shot adaptation of segment anything (SAM) model (Kir-
illov et al., 2023). However, SAM is already trained with dense mask annotations over millions of data points.
In contrast, we utilize VLMs that were only trained with image-text pairs, and not trained for segmenta-
tion. Another approach (Zhu et al., 2024a) explored few-shot segmentation with LLMs and an additional
mask decoder by instruction-tuning the LLM on pixel-level annotations to generate 16-point polygons, and
training the mask decoder on a large dataset of pixel-level annotations for base categories.

Our approach instead directly mines segmentation maps from VLM text-to-image attention maps, without
requiring any external models (e.g., ChatGPT), additional decoders or parameters, and can be applied
broadly across different VLMs – themselves trained without any pixel-level annotations.

3 Method

Our proposed approach leverages text-to-image attention maps from vision-language models (VLMs). We
focus on VLMs that are pre-trained on large-scale image-text pairs without any segmentation supervision,
except for the optional use of a single visual exemplar per class (i.e., the one-shot setting). Figure 2 provides
an overview of our method, which operates in two modes: a training-free mode and a one-shot fine-tuning
mode. In the training-free setting, we convert the provided class names into natural language prompts and
pass them as inputs alongside a query image. We then extract attention maps from the top-K text-to-image
attention layers—ranked by our proposed InfoScore measure and re-weight them using image-text similarity
scores (see Sections 3.1 and 3.2, respectively). In the one-shot setting, we utilize one labeled visual exemplar
per category, including its segmentation mask, to learn an ensemble of attention maps from multiple layers
and/or prompts (see Section 3.4).

3.1 Training-free Prediction

As shown in Figure 2, during inference we are given a query image I and a class vocabulary V = {c1, . . . , cC}.
Each class name c ∈ V is converted into a natural language prompt of the form [Image of c]. The full set
of prompts is input to the vision–language model (VLM) together with the image I, which is tokenized into
a grid of P × P visual patches.

We consider a cross-attention layer l of the multimodal encoder. Let T be the number of text tokens per
prompt. For each class prompt c ∈ V, the cross-attention operation produces attention maps over the image
patches, one per attention head. Since each cross-attention layer contains multiple heads, we compute the
element-wise maximum attention score across all heads for each prompt yielding a prompt-specific attention
map:

A(l)
c ∈ RT ×P ×P .

Because a single word in the prompt may be decomposed into multiple sub-word tokens by the tokenizer, we
further aggregate across the token dimension to obtain a single spatial attention map per class. Specifically,
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Figure 2: Model Overview. Our segmentation framework leverages VLMs trained on image-text pairs,
supporting training-free inference and one-shot fine-tuning. For training-free inference, given class names
and a query image, we extract text-to-image attention maps from top-K layers (e.g., Layer 2 and Layer L),
selected via InfoScore (see Sec. 3.2). These maps are re-weighted with class VLM scores to filter irrelevant
categories (see Sec. 3.1) and used for prediction. In one-shot fine-tuning, we adjust text embeddings and
top-K attention layer parameters (see Sec. 3.4) to further improve the performance.

we compute the mean over the T prompt tokens:

Ã(l)
c = 1

T

T∑
t=1
A(l)

c (t)

We adopt this aggregation strategy to remain parameter-free and model-agnostic. Among simple parameter-
free choices, mean and max pooling are the most common. We choose mean aggregation as it provides a
stable estimate across all prompt tokens and avoids over-emphasizing individual tokens, which can occur
with max pooling. Stacking these maps over all classes yields a layer-specific attention tensor:

Ã(l) ∈ RC×P ×P .

Normalizing across the C classes using a softmax operation produces a per-patch class probability estimate
M(l) ∈ RC×P ×P .

In cases where we use related words to enhance the class description, similar to previous works (Hajimiri
et al., 2025; Wang et al., 2024a), e.g., man and woman added as related words to the class person, we pass them
as separate prompts. To compute the heatmap for the corresponding class, we simply take the maximum
across the heatmaps of all the related prompts. We call this the multi-prompt per class setting. The
details of the prompts are provided in Appendix A.5. In the single-prompt per class setting, we do not
use any related words for a particular class and instead use only the class name as is.
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Once per-class attention maps are obtained, we select the top-K cross-attention layers according to the
InfoScore ranking described in Section 3.2. Let LK ⊂ L denote the selected layers. Attention maps extracted
from transformer-based VLMs are often noisy due to attention sinks, particularly in models that leverage
large language models (LLMs) such as LLaVA-1.5 (Liu et al., 2024a), as observed in prior work (Kang et al.,
2025; Darcet et al., 2024; Sun et al., 2024). This issue, together with aggregation across multiple prompts, can
lead to spurious activations for classes that are not present in the image, leading to false positive predictions.

To mitigate this effect, we introduce a class VLM score S(c | I), which estimates the likelihood of class
c being present in image I. For VLMs trained with an image–text matching (ITM) objective, we observed
that given a prompt [Image of c], image–text matching (ITM) scores from ITM head gives an estimate of
whether a class is present in the image or not. Hence, S(c | I) is obtained directly from the ITM scores. For
models without an ITM head (e.g., LLaVA-1.5), we instead prompt the model with [Is there class c in
the image? Answer in Yes or No.] and estimate S(c | I) using the probability assigned to the token Yes.

For each selected layer l ∈ LK , the class-specific attention maps are weighted by the corresponding class
VLM scores,

M(l)
c = S(c | I) · Ã(l), (1)

upsampled to the image resolution, and averaged across layers to form an ensemble attention map for each
class

Uc = 1
K

∑
l∈LK

Mc
(l). (2)

Normalizing across classes at each pixel yields per-pixel class probabilities

Pc(x, y) = Uc(x, y)∑
c′∈V Uc′(x, y) , (3)

where x, y denotes a pixel location.

While these probabilities can be used directly for segmentation, this approach often underperforms near
object boundaries (Luo et al., 2024). Instead, we use them as unary potentials for a Conditional Random
Field (CRF) (Lafferty et al., 2001), defined as Uc(x) = − log pc(x). In the Fully Connected CRF (Full-
CRF) (Krähenbühl & Koltun, 2011), the conditional distribution is given by

P (y | I) ∝ exp
(
− E(y | I)

)
, (4)

with energy

E(y | I) =
∑

x

Uyx
(x)︸ ︷︷ ︸

unary term

+
∑
x ̸=x′

[
wsks(x, x′) + wbkb

(
(x, Ix), (x′, Ix′)

)]
1[yx ̸= yx′ ]︸ ︷︷ ︸

pairwise term

. (5)

Here, ks is a spatial Gaussian kernel and kb a bilateral (position+color) Gaussian kernel computed from the
input image I, with ws and wb being learnable weights. Since exact inference of the per-pixel probabilities
P (yx = c | I) scales quadratically with the number of pixels, it is computationally intractable. FullCRFs
approximate these probabilities using mean-field inference with permutohedral lattice filtering, while Con-
vCRFs (Teichmann & Cipolla, 2018) achieve the same via convolutional Gaussian filtering, enabling efficient
GPU-parallel inference. Let qc(x) denote this approximation of P (yx = c | I). The final segmentation is
computed by:

ŷ(x) = arg max
c

qc(x). (6)

We outline the procedure of training-free inference for a single image in Algorithm 2.
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Algorithm 1 Computation of InfoScore
Input: Unlabeled image set D with |D| = N ; class vocabulary V with |V| = C; list of candidate layers L.
Output: Ranking of layers R in descending order.

1: Initialize for each layer l ∈ L:
Sl

H ← 0 ▷ Sum of image entropies
Sl

p ← 0 ∈ RC ▷ Sum of image-level class distribution P l
I(Ŷc)

µl ← 0 ∈ RC ▷ Running mean image-level class distribution
M l

2 ← 0 ∈ RC ▷ Running 2nd moment for variance of image-level class distribution
2: for each image I ∈ D do
3: Query the VLM with (I,V).
4: for each layer l ∈ L do
5: Extract image-text attention maps Al

I from layer l.
6: Scale Al

I with class-VLM scores SI.
7: Normalize across classes at each pixel to obtain per-pixel class probabilities P l

Ix,y
(Ŷc) ∈ RC×H×W .

8: Spatially average P l
Ix,y

(Ŷc) to get image-level class distribution P l
I(Ŷc) ∈ RC .

9: Compute image-level entropy H l(I) = H(P l
I(Ŷc)).

10: Sl
H ← Sl

H + H l(I)

11:

Sl
p ← Sl

p + P l
I(Ŷc)

δ ← P l
I(Ŷc)− µl

µl ← µl + δ/N

δ′ ← P l
I(Ŷc)− µl

M l
2 ←M l

2 + δ ⊙ δ′

 ▷ Welford update for running mean and variance

12: end for
13: end for
14: for each layer l ∈ L do
15: H l

Image = Sl
H/N ▷ mean image-level entropy

16: P l
D(Ŷc) = Sl

p/N ▷ Dataset-level marginal distribution
17: H l

Dataset = H(P l
D(Ŷc))

18: Rl = H l
Dataset/H l

Image ▷ EntropyRatio
19: σl =

√
M l

2/(N − 1) ▷ σl ∈ R|V|

20: CoVl =
∑

c∈V
σl

c

µl
c

21: Sl = Rl · CoVl ▷ InfoScore
22: end for
23: Rank layers l ∈ L in descending order of Sl.
24: return Ranked list of layers.

3.2 Ranking Layers Using InfoScore

As noted in previous works (Luo et al., 2024; He et al., 2024; Tiong et al., 2022), and as observed in
Figure 5, segmentation performance can vary significantly depending on the layer from which the attention
map is extracted. In practice, when performing training-free segmentation in-the-wild, ground-truth dense
annotations or information about object presence in the images is unavailable. To address this, we propose
an entropy-based measure, InfoScore, which can automatically identify the optimal layer(s) for training-free
segmentation without requiring ground-truth annotations.

Given a set of unlabeled images, D, and a vocabulary of class names, the proposed InfoScore measure
evaluates the predictive uncertainty of text-to-image attention maps from each layer individually. It is
designed with the intuition—motivated by the Inception Score (Salimans et al., 2016)—that layers suitable
for segmentation should make confident predictions within each image while maintaining diversity across the
dataset.
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Algorithm 2 Segmentation From Attention with InfoScore-Guided Layer Selection
Input: Unlabeled image set Drank for layer scoring; class vocabulary V; candidate layer set L; test image I;

number of selected layers K; CRF module CRF (e.g., Gaussian CRF).
Output: Predicted segmentation masks for images in Dseg.

1: Step 1: Select informative layers via InfoScore
2: R ← InfoScore(Drank, C,L) ▷ Alg. 1
3: LK ← TopK(R, K) ▷ e.g., K = 2, layers [0, 3]
4: Step 2: Segmentation for a single image I
5: Query the VLM with (I, C) to obtain class–VLM scores S and image–text attention.
6: Initialize ensemble attention map:

U ← 0 ∈ RC×H×W

7: for each layer l ∈ LK do
8: Extract cross-attention maps A(l) for tokens in C.
9: Reduce over text tokens to obtain attention map per-class (by taking mean)

Ã(l) ∈ RC×P ×P .
10: Rescale per-class attention maps by class–VLM scores S:

M(l) = S ⊙ Ã(l) ∈ RC×P ×P

11: Upsample to image resolution:
M̂(l) ← Upsample(M(l), H, W ).

12: Accumulate into ensemble:
U ← U + M̂(l)

13: end for
14: Average over selected layers:

U ← U/K
15: Normalize across classes at each pixel to obtain a class probability map Pc (see Equation 3):

16: Apply CRF refinement using the input image:
Pcrf ← CRF(P, I)

17: Obtain final segmentation by per-pixel argmax:
y(h, w) = arg maxc Pcrf(c, h, w)

18: return y

Design desiderata. To guide the design of InfoScore in the absence of ground-truth annotations, we define
the following desiderata for a layer-selection measure:

1. Confidence: Predictions should be confident within each image, favoring sharply peaked class
distributions.

2. Diversity: Across the dataset, predicted classes should be diverse and not collapse to a single
outcome.

3. Image sensitivity: Predictions should vary meaningfully across images, reflecting image-specific
content rather than global statistics.

These desiderata directly motivate the three components of InfoScore described next.

The three components of InfoScore are as follows:

• Mean Image-Level Entropy: The average per-image entropy of the label marginal distribution
summed over pixels. It captures how confident the model is within each image.

• Dataset-Level Entropy: The entropy of the class-wise marginal distribution across the entire
dataset. It captures the diversity of class predictions across all images.

9
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• Coefficient of Variation (CoV): The ratio of the standard deviation to the mean of the predicted
class probabilities across the dataset. It quantifies how much the class probabilities vary across
different images.

Given the per-pixel probability predictions for an image I, we compute the image-level classwise marginal
distribution using layer l cross-attention maps, P l

I(Ŷc) as,

P l
I(Ŷc) = 1

hw

h∑
x=1

w∑
y=1

P l
Ix,y

(Ŷc), (7)

where h, w are the height and width of the predicted heatmap (correspondent to h = P and w = P in
Section 3.1), P l

Ix,y
(Ŷc) is the probability that the pixel (x, y) belongs to class c which is computed based on

the cross-attention maps from layer l. Then we compute the image-level entropy Hl(I) as,

Hl(I) = −
∑
c∈V

P l
I(Ŷc) log P l

I(Ŷc), (8)

where V is the vocabulary of the classes to segment. To compute the mean image-level entropy, we take the
average over the set of unlabeled images in dataset D,

Hl
image(D) = 1

|D|
∑
I∈D
Hl(I). (9)

In order to compute the dataset-level entropy over the dataset D, we first calculate the classwise marginal
distribution over the entire dataset, P l

D(Ŷc), as,

P l
D(Ŷc) = 1

|D|
∑
I∈D

P l
I(Ŷc) (10)

The dataset-level entropy Hdataset is then given by:

Hl
dataset(D) = −

∑
c∈V

P l
D(Ŷc) log P l

D(Ŷc) (11)

We define the ratio of dataset-level entropy to image-level entropy as the Entropy Ratio:

EntropyRatio(l) = H
l
dataset(D)
Hl

image(D)
(12)

The EntropyRatio can be viewed as an assessment of the classification ability of each text-to-image attention
layer. At the image level, desirable layers should make confident predictions, resulting in sharply peaked class
distributions for only a few classes within each image and hence low mean image-level entropy. However,
minimizing image-level entropy alone can yield trivial solutions, such as always predicting the same class
across all images (e.g., a background-biased classifier). At the dataset level, by contrast, we want predictions
to cover a diverse set of classes. Under the assumption of independent and identically distributed (i.i.d.)
images where all classes are equally likely, high dataset-level entropy indicates that the layer produces a
balanced distribution over classes across the dataset, i.e., it is not biased toward a single outcome regardless
of input. In essence, a high EntropyRatio identifies layers that balance confident, low-entropy predictions
within each image against diverse, high-entropy predictions across the dataset.

Nevertheless, dataset-level entropy, on its own, does not capture how predictions vary between images. Since
it aggregates marginal class probabilities across the dataset, it can be high even if the same set of classes

10
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is predicted for every image—producing a globally balanced distribution without meaningful image-specific
variation.

To address this limitation, we incorporate the Coefficient of Variation (CoV) as a multiplicative factor to the
EntropyRatio. The CoV measures the relative fluctuation of class probabilities across images, normalized by
their mean, thereby favoring layers that produce distinct predictions for different inputs. Therefore, max-
imizing CoV promotes image-sensitive and diverse predictions, complementing the global balance captured
by dataset-level entropy. Figure 3 illustrates this with a toy example of five images and six classifiers, ranging
from trivial (Classifier 1: always class 1; Classifier 2: uniform) to ideal (Classifier 6: GT-like). As shown,
EntropyRatio alone ranks Classifier 4 above Classifier 5. Although Classifier 4 is confident and predicts
two of the three classes, it completely misses class 3. This ranking ignores the meaningful image-to-image
variation captured by Classifier 5. InfoScore corrects this by incorporating CoV, correctly ranking Classifier
5 above Classifier 4, emphasizing its image sensitivity. Moreover, while EntropyRatio ranks Classifier 2
(uniform/random prediction) above Classifier 1 (biased to class 1), despite both being non-informative and
equally poor, InfoScore assigns them a value of zero, indicating their equally bad performance.

The Coefficient of Variation (CoV) for layer l is computed as:

CoV(l) =
∑
c∈V

σl
c

µl
c

(13)

where σl
c and µl

c denote the standard deviation and mean, respectively, of the image-level class-wise marginal
distribution P l

I(Ŷc) aggregated across the dataset, for each class c at layer l.

Finally, the InfoScore for a layer l is defined as:

InfoScore(l) = EntropyRatio(l)× CoV(l) (14)

By maximizing the proposed InfoScore measure, we prioritize layers that balance image-level confidence,
dataset-level diversity, and image-specific variability—leading to a more reliable layer selection for training-
free segmentation. The procedure for computing InfoScore and ranking layers is detailed in Algorithm 1.

Finally, we note a key assumption underlying InfoScore: object classes are assumed to occupy roughly
similar spatial extents within images. In scenarios with consistent size disparities across classes, InfoScore
may erroneously favor layers that overlook smaller objects, resulting in suboptimal rankings.

3.3 Convergence of InfoScore with Respect to Number of Samples

We do not need to evaluate InfoScore on the full test/validation set. In practice, it is sufficient to use a small
number of random samples that include images from diverse classes. In Figure 4, we show how the InfoScore
converges with respect to the number of random samples. We use the normalized Discounted Cumulative
Gain metric (nDCG) (Järvelin & Kekäläinen, 2002) to quantify the ranking quality. The metric nDCG@k
measures the quality of the predicted ranking up to the top-k positions, where a score of 1.0 indicates a
perfect match with the ground-truth ordering. The nDCG is formally defined as:

DCG@k =
k∑

i=1

reli
log2(i + 1) (15)

where reli denotes the relevance of the item at position i. The normalized version is given by:

nDCG@k = DCG@k
IDCG@k (16)

where IDCG@k is the maximum possible DCG achievable with the ideal (ground-truth) ranking.

We compute InfoScore and rank the layers using n randomly selected samples from the PASCAL-21 (Ev-
eringham et al., 2010) validation set. For each selection of n random samples, we repeat the experiment

11
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Classifier 6

Images

Classifier 1

Classifier 2

Classifier 5

Classifier 4

Classifier 3

Classifier Description EntropyRatio InfoScore 
Value Rank Value Rank

Classifier 1 Dead classifier I – Fully biased towards class 1. 0.883 6th 0.000 5th (tie)
Classifier 2 Dead classifier II – Fully uniform prediction across classes. 1.000 5th 0.000 5th (tie)
Classifier 3 Bad Classifier I – Highly biased towards class 1 with minor variation in prediction. 1.006 4th 0.294 4th

Classifier 4 Bad Classifier II – Sensitive to input but never predicts class 3. 1.374 2nd 1.600 3rd

Classifier 5 Good Classifier – Image sensitive and moderately accurate classifier.  1.203 3rd 2.299 2nd

Classifier 6 Ideal Classifier – GT Like prediction. 2.546 1st 7.851 1st

Figure 3: Toy demo of EntropyRatio vs. InfoScore.We illustrate how InfoScore differs from Entropy-
Ratio using synthetic examples. Shown are five images and six classifiers exhibiting different behaviors, from
trivial (Classifier 1: always class 1; Classifier 2: uniform) to ideal (Classifier 6: GT-like). EntropyRatio
mistakenly ranks Classifier 4 above Classifier 5, despite Classifier 4 never predicting class 3. In contrast,
InfoScore—by combining EntropyRatio with the Coefficient of Variation (CoV)—highlights image-sensitive
and ideal classifiers. Moreover, while EntropyRatio prefers Classifier 2 over Classifier 1 despite both being
non-informative, InfoScore assigns both a value of 0, correctly identifying them as non-informative. Overall,
InfoScore balances confidence, diversity, and variability for reliable layer ranking.

five times to account for randomness and report the standard deviation. As observed, as few as 50 random
samples are sufficient for convergence in the top-3 layer ranking (nDCG@3), and approximately 100 samples
suffice for top-6 ranking.

3.4 One-shot fine-tuning

So far, we have discussed training-free inference using standard VLMs. However, we argue that class names
alone are not sufficient to properly ground or segment the corresponding objects. They can be ambiguous
or confusing without the appropriate context. For example, the COCO-Obj dataset includes a class name
tie, which can be ambiguous unless additional context is provided to indicate it refers to a piece of clothing.
Therefore, we hypothesize that fine-tuning certain parameters of a VLM pretrained on an image-text retrieval
task, using one visual example with dense annotations, can improve the overall segmentation quality.

12
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Figure 4: Convergence of InfoScore. The InfoScore measure converges for the top-3 ranked layers with
as few as 50 random samples and for the top-6 layers with approximately 100 samples. The shaded region
indicates uncertainty across repeated trials. The metric nDCG@k (normalized discounted cumulative gain)
measures the quality of the ranking for the top-k layers, where a perfect ranking compared to the ground-
truth ordering yields a score of 1.0.

In few-shot segmentation literature, whether performing 1-way or k-way classification, classes are typically
divided into non-overlapping splits of base and novel categories. Models are first trained on base categories
with a large number of annotated examples to learn how to perform segmentation, and are then subsequently
adapted to novel classes in a few-shot setting.. In contrast, our approach does not involve base classes, as
the models we use were never explicitly trained for segmentation, meaning all classes are novel. To ensure
fairness, only one novel category is present in each selected image. However, in practice, certain novel classes
may co-occur. If a one-shot example image for one class contains other classes, we assign them to either the
background (if the dataset includes a background category) or to an ignored class. For each example, we
optimize the word embeddings and the parameters of the top-K ranked attention layers using a per-pixel
cross-entropy loss. It is to be noted that we do not introduce any additional parameters or decoders for
fine-tuning, merely forcing the attention-maps to be close to the support image ground truth.

Also, optimizing only subset of parameters leads to more data-efficient training and limits overfitting, which
is necessary given that we are only leveraging a single (or very few) labeled examples for training.

4 Experimental Results

4.1 Experimental Setup

Datasets. We evaluate our method on four commonly used segmentation datasets: PASCAL-21 (Evering-
ham et al., 2010), COCO-Obj (Lin et al., 2014), COCO-Stuffs-171 (Caesar et al., 2018) and ADE-20K (Zhou
et al., 2017). PASCAL-21 and COCO-Obj include a background category, while COCO-Stuffs-171 and
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Figure 5: Illustration of the InfoScore measure on BLIP. The mIoU Rank reflects the descending order
of mIoU values (in red) derived from cross-attention maps for each standalone layer (labeled LayerN , top)
on the PASCAL VOC 2012 validation set (1449 images), compared to the predicted InfoS Rank (bottom)
based on our InfoScore measure (in blue) requiring no annotations. Most InfoScore rankings align with mIoU
Rankings, with minor displacements of ±2 positions highlighted in bold, except for four layers. Empirically,
the top-1 and top-2 layers are correctly identified and consistently deliver better performance across four
datasets and three VLMs. Results shown here are in single-prompt per class setting.

ADE-20K do not, but are the most challenging due to the inclusion of stuff classes. Following previous
works (Wang et al., 2024a; Hajimiri et al., 2025), the background class is represented as a list of possible
background categories. Details about the class names used for single and multi-prompt setting are provided
in the supplementary. For one-shot evaluation, we conduct five separate runs and average their mIoU.

Implementation Details. Implementation details regarding the model weights used for BLIP (Li et al.,
2022b), LLaVA (Liu et al., 2024a) and ALBEF (Li et al., 2021) are provided in the supplementary. We
report results on images resized to a maximum side length of 512 for BLIP and ALBEF and 448 for LLaVA.
By default, we use top-2 layers for all datasets and models except for ADE-20K where top-1 performs
slightly better. For ConvCRF, we use a kernel size of 15 × 15 and perform 20 iterations per image. We
follow (Teichmann & Cipolla, 2018) for other hyper-parameters of ConvCRF.

For one-shot supervision we use a batch size of two. We fine-tune all models (BLIP, ALBEF, LLaVA) on a
single A40 GPU with 48GB memory. We use a learning rate of 2×10−4 for PASCAL-21 and COCO-Obj, and
5× 10−5 for COCO-171 and ADE-20K. We train COCO-Obj for two epochs, COCO-171 and ADE-20K for
three epochs and PASCAL-21 for five epochs. Further details are provided in supplementary materials.

4.2 Quantitative Results

4.2.1 Comparison to the State of the Art

We compare against the state-of-the-art methods in open vocabulary segmentation. We mainly compare
against training-free methods (Luo et al., 2024; Wang et al., 2024a; Hajimiri et al., 2025) and the ones
that further fine-tune pre-trained VLMs on large-scale image-text pairs or pseudo annotations through weak
supervision (Xu et al., 2022; Cha et al., 2023). The choice for open vocabulary segmentation setup is
motivated for the sake of fair comparison, since previous training-free methods had access to aligned vision-
language data similar to our approach in its training-free mode. In Table 1, it is shown that our training-free
open-vocabulary method outperforms the state-of-the-art ProxyCLIP (Lan et al., 2024) on three challenging
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Method VLM PASCAL-21 COCO-Obj COCO-171 ADE-20K

Weakly Supervised Training

GroupVIT (Xu et al., 2022) CLIP 52.3 27.5 15.3 10.4
ReCo (Cha et al., 2023) CLIP 51.2 30.4 19.6 11.2
GroundEverything (Bousselham et al., 2024) MetaCLIP 46.8 - - 17.1
SAM-CLIP (Wang et al., 2024b) CLIP 60.6 31.5 - 17.1
Clip-DINOiser (Wysoczańska et al., 2024a) CLIP 62.1 34.8 24.6 20.0

Training Free

PNP-OVSS (Luo et al., 2024) BLIP 51.3 36.2 17.9 14.2
SCLIP (Wang et al., 2024a) CLIP 61.7 33.2 23.9 17.8
ProxyCLIP (Lan et al., 2024) CLIP+DINO 61.3 37.5 26.5 20.2
NACLIP (Hajimiri et al., 2025) CLIP 64.1 36.2 25.7 19.1
Ours BLIP 60.2 42.8 28.1 22.8

One-shot Supervision (Average Across 5 runs)

Ours BLIP 70.1 ± 0.89 45.3 ± 1.32 29.3 ± 0.05 24.5± 0.13

Table 1: Comparison of our approach with state-of-the-art methods for weakly-supervised, training-
free, and one-shot supervised open-vocabulary semantic segmentation (OVSS). The results reported on this
table are using BLIP top-2 layers (selected by InfoScore) in multi-prompt per class setting. Best
results for training-free setting and the 1-shot results are in bold.

Method Base Training S0 S1 S2 S3 Average
Few-shot segmentation approaches strictly separating base and novel classes
LLaFS (CVPR 2024) (Zhu et al., 2024a) ✓ 74.2 78.8 72.3 68.5 73.5
HMNet (NeurIPS 2024) (Xu et al., 2024) ✓ 72.2 75.4 70.0 63.9 70.4
AMFormer (NeurIPS 2023) (Wang et al., 2023) ✓ 71.3 76.7 70.7 63.9 70.7
HDMNet (CVPR 2023) (Peng et al., 2023) ✓ 71.0 75.4 68.9 62.0 69.3
ACBC (CVPR 2024) (Zhu et al., 2024b) ✓ 73.0 76.0 69.7 69.2 72.0
OCNet (ICCV 2025) (Wen et al., 2025) ✓ 73.5 75.9 71.1 64.9 71.4
Ours × 70.4 73.7 75.4 72.2 72.9
Ours w/ base training ✓ 74.4 77.7 75.2 73.5 75.2
Categories in training cover categories in testing
GraphFSS∗ (NeurIPS 2024) (Zhang et al., 2024a) ✓ – – – – 72.1
Matcher∗ (ICLR 2024) (Liu et al., 2024c) ✓ – – – – 68.1

Table 2: Comparison with SOTA 1-shot segmentation approaches on Pascal-5i. Most existing
few-shot segmentation methods follow the standard protocol that enforces strict base–novel class separation
and requires extensive base-class pretraining before few-shot adaptation. Our default setting performs no
base-class training, yet remains competitive with prior work, achieving the second-best average performance
after (Zhu et al., 2024a). When base-class pretraining is introduced for our method, it yields consistent
improvements across all splits and achieves state-of-the-art average performance. ∗ denotes methods that do
not strictly enforce base–novel class separation.

benchmark datasets COCO-Obj, COCO-171 and ADE-20K by 5.3%, 1.6% and 2.6%, respectively, while
achieving competitive performance on PASCAL-21. Additionally, when provided with a single visual example
and only a few iterations of fine-tuning on a small number of parameters, the segmentation perfromance
significantly improves across all four datasets, with an improvement of 9.9%, 2.5%, 1.2% and 1.7% for
PASCAL-21, COCO-Obj, Coco-171 and ADE-20K respectively. This emphasizes the importance of visual
aids—even a single visual example can reduce ambiguities that may arise from text prompts alone. Examples
include the stuff classes in COCO-171 that are inherently ambiguous (e.g., solid or structural). The
results in this table are reported using BLIP top-2 layers in multi-prompt setting. Single vs. Multi-prompt
performance and extensibility on other VLMs is discussed next.

15



Under review as submission to TMLR

Layer Selection PASCAL-21 COCO-Obj COCO-171
Training Free
All layers (12 layers) 42.8 35.9 25.1
Random (1 layer) 21.5 15.6 11.0
Naive (First 2 layers) 48.2 37.2 25.5
Naive (Last 2 layers) 19.6 10.0 6.8
InfoScore (Top-1) 55.6 39.0 25.9
InfoScore (Top-2) 58.0 42.6 28.3
InfoScore (Top-3) 51.3 38.0 27.4
InfoScore (Top-6) 49.2 37.0 25.2
One-shot Supervision
InfoScore (Top-1) 66.8 44.3 26.6
InfoScore (Top-2) 67.5 45.4 28.9

Table 3: Analysis of InfoScore-based layer selection in BLIP. Using an ensemble of attention maps
from the top-1, top-2, or top-3 layers ranked by the InfoScore measure outperforms ensembling all layers,
random selection, or naive selection. Results are reported under the single-prompt per class setting;
best results are shown in bold.

4.2.2 Comparison to 1-shot Segmentation Approaches

As mentioned in section 3.4, in the conventional few-shot segmentation protocol, semantic classes are parti-
tioned into disjoint base and novel sets across multiple dataset splits. Models are first trained on base classes
using abundant segmentation annotations and are subsequently adapted to novel classes using only a single
annotated support example per class. Our method on the other hand does not involve any pre-training on
base classes with abundant data.

In Table 2 we compare our approach against a range of recent state-of-the-art few-shot segmentation methods
that strictly follow the few-shot segmentation protocol mentioned above. As observed, our method achieves
competitive performance even without any base-class segmentation training, placing it in a substantially
more challenging and annotation-efficient setting.

For completeness, we also report results when our model is trained under the standard few-shot protocol,
including base-class training with segmentation annotations. Under this fair setting (strictly following few-
shot segmentation protocol), our approach achieves state-of-the-art performance, outperforming several prior
methods.

We further distinguish methods that do not enforce strict base–novel separation and allow novel-class expo-
sure during base training, and report their results separately for clarity. Overall, these results demonstrate
that our comparisons are fair and comprehensive, and that the proposed approach remains effective across
both training-free and standard few-shot settings.

4.2.3 Layer-wise mIoU and Layer Ranking using InfoScore

Figure 5 presents the training-free segmentation performance of BLIP (in the single-prompt per class set-
ting) on the Pascal-21 validation set when each layer is independently used for segmentation, i.e., layer-wise
mIoU (in red). As shown, segmentation performance varies substantially across layers; the best-performing
layer achieving an mIoU of 55.6% and the lowest-performing layer achieving an mIoU of only 6.3%.

We also report the InfoScore (in blue) for each of the 12 layers of BLIP along with their corresponding
rankings. As observed, the proposed InfoScore effectively identifies the top-performing layers on Pascal-21.
In most cases, the InfoScore ranking closely aligns with the mIoU ranking, with only minor deviations.
This demonstrates the importance of selecting or extracting attention maps from layers that exhibit strong
grounding between text and image, which in turn leads to improved segmentation performance.
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Method PASCAL-21 COCO-Obj COCO-171
Training-Free One-Shot Training-Free One-Shot Training-Free One-Shot

Single 58.0 67.5 42.6 45.4 28.3 28.9
Multiple 60.2 70.1 42.8 45.3 28.1 29.3

Table 4: Ablation of single vs. multiple prompts with related words. Multiple prompts consistently
improve segmentation accuracy on PASCAL-21 and COCO-171, while their effect on COCO-Obj is less
pronounced. Best results are in bold.

Method Layers PASCAL-21 COCO-Obj
Training-Free One-Shot Training-Free One-Shot

Cross-Attention Based VLMs
BLIP Top-1 55.6 66.8 39.0 44.3
BLIP Top-2 58.0 67.5 42.6 45.4
ALBEF Top-1 37.9 65.1 28.7 37.7
ALBEF Top-2 43.2 65.5 31.7 38.7
LLM-Based VLMs
LLaVA-1.5-7B Top-1 50.1 63.7 31.3 41.0
LLaVA-1.5-7B Top-2 51.6 64.2 32.3 42.2

Table 5: Segmentation performance across different vision-language models (VLMs). Fine-tuning
with a single example significantly improves performance for BLIP (Li et al., 2022b), ALBEF (Li et al., 2021),
and LLaVA-1.5-7B (Liu et al., 2024a). Results shown are for the single-prompt per class setting. Best
results are bolded.

In Table 3, we further demonstrate the benefits and effectiveness of our layer selection strategy using InfoScore
compared to naive or random selection strategies on BLIP. The results show that using an ensemble of the top
attention maps, ranked by the proposed InfoScore, significantly outperforms simple aggregation strategies
such as averaging attention maps from all layers, as well as naive and random baselines across all three
datasets: Pascal-21, COCO-Obj, and COCO-171.

Additionally, the results show that using the top-2 layers consistently outperforms using only the top-1 layer.
Performance tends to saturate at the top-3 layers and declines when more layers are added (e.g., top-6).
As noted before, our ranking also surpasses other naive strategies, including selecting the first or last two
layers, aggregating attention maps across all layers, or randomly selecting a layer. For the Random baseline,
we evaluate every layer once (12 runs), compute the mIoU for each layer individually, and report the average
(expectation) across all runs, mimicking unbiased uniform sampling.

4.3 Single versus Multi-prompt setting

In Table 4 we compare the performance difference between using a single prompt corresponding to each
class name against the use of multiple prompts of related words to that specific class name. It shows that
multiple prompts either provide better or on-par performance to the single prompt across both training free
and one-shot supervision modes.

4.3.1 Extensibility Across VLMs

Table 5 demonstrates the extensibility and practicality of our approach, which relies on our proposed In-
foScore for layer selection, across diverse vision-language models (VLMs), including recent LLM-based ar-
chitectures such as LLaVA-1.5. Across all three VLMs, incorporating a single visual example consistently
leads to substantial performance gains without introducing additional parameters or classifiers. Among the
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Layer Selection BLIP (12 layers) ALBEF (6 layers) LLaVA-1.5-7B (32 layers)

All layers 42.8 34.3 49.7
Random (1 layer) 21.5 20.6 39.3
Naive (First 2 layers) 48.2 38.4 26.3
Naive (Last 2 layers) 19.6 11.0 34.4
InfoScore (Top-1) 55.6 37.9 50.1
InfoScore (Top-2) 58.0 43.2 51.6
InfoScore (Top-3) 51.3 39.6 49.8
InfoScore (Top-6) 49.2 34.3 49.5

Table 6: Extensibility and effectiveness of InfoScore-based layer selection in the training-free set-
ting on PASCAL-21. Across three distinct architectures—BLIP, ALBEF, and LLaVA-1.5-7B—InfoScore
consistently identifies the most informative layers. In all cases, selecting the Top-2 layers ranked by In-
foScore achieves the best mIoU, outperforming random selection, naive heuristics, and averaging all layers.
Results shown are in single-prompt per class setting.

evaluated models, BLIP achieves the best overall performance on both the PASCAL-21 and COCO-Obj
benchmarks, outperforming ALBEF and LLaVA-1.5 in both the training-free and one-shot supervision set-
tings. Additionally, using the Top-2 layers selected by the InfoScore measure yields better performance than
using only the Top-1 layer in the training-free scenario across all VLMs, although this advantage diminishes
after fine-tuning.

4.3.2 Effectiveness of InfoScore-based layer selection across VLMs

To demonstrate that our InfoScore-based layer selection strategy generalizes across VLMs beyond BLIP,
Table 6 reports results on ALBEF and LLaVA-1.5-7B in addition to BLIP. Across all three VLMs, the
Top-2 layers selected by InfoScore consistently achieve the highest mIoU, outperforming random
selection, naive heuristics, and averaging attention maps over all layers.

Since LLaVA-1.5-7B has 32 layers, a full sweep would be computationally expensive. Instead, we perform 5
independent runs: in each run, we uniformly sample one layer, compute its mIoU, and report the average
across the 5 runs. The sampled layers in our experiments were Layer 7, Layer 0, Layer 16, Layer 14
and Layer 27. For ALBEF, we follow the same approach as BLIP (see Sec. 4.2.3).

4.3.3 Extensibility Beyond One-Shot

We further examine the scalability of our method beyond the one-shot setting. Figure 6 compares the 3-
shot and 5-shot performance against the 1-shot baseline in both single-prompt and multi-prompt settings
on the PASCAL-21 and COCO-Obj datasets. All results are averaged over five runs to ensure stability.
As expected, increasing the number of shots leads to consistent improvements of approximately 1–2% on
both datasets. Notably, the performance gap between single-prompt and multi-prompt settings narrows as
the number of shots increases, suggesting that our method does not strongly depend on prompt engineering
when a few visual demonstrations are provided beyond the one-shot scenario.

4.3.4 One-shot Tuning with Partial Vocabulary

Table 7 illustrates the impact of one-shot fine-tuning on a small subset of the vocabulary and how this
adaptation transfers to unseen categories. Specifically, we fine-tune the model using a single visual example
for only 25% of the total classes, leaving the remaining 75% entirely unseen during fine-tuning. The classes
are divided into four non-overlapping splits; for each split, we fine-tune on one-shot examples from 25% of
the classes and evaluate performance on the remaining 75%.

The results show that even with such minimal supervision—just one example per class for a quarter of the
vocabulary—the fine-tuned model significantly outperforms the zero-shot baseline on the unseen categories.
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Figure 6: Performance analysis with increased number of shots for single and multi-prompt
setting. Our model scales as the number of shots increases from 1 to 5 on both COCO-Obj and PASCAL-
21 datasets. Dashed lines denote the single-prompt per class setting, and solid lines denote the
multi-prompt per class setting. The benefit of using multiple prompts diminishes with more shots.

Unseen mIoU
Percent of Seen Classes S1 S2 S3 S4 Ave
0% (zero-shot) 63.6 57.2 59.9 59.5 60.1
25% (one-shot) 64.8 60.0 59.0 62.8 61.7

Table 7: Comparing fine-tuning with 1-shot learning on 25% of the classes (75% unseen) against
zero-shot performance on the unseen classes in PASCAL-21. The seen and unseen classes are
divided into four non-overlapping splits. Fine-tuning with just one visual example per class for 25% of the
classes improves performance on the 75% unseen categories. Results shown are in multi-prompt per class
setting.

This demonstrates the model’s ability to generalize from a small, partially labeled subset to a much larger
set of unseen classes, likely benefiting from the shared semantic structure among categories.

Overall, this finding underscores the practicality of leveraging limited labeled data to boost performance in
settings where many classes remain unlabeled, offering a scalable solution for resource-constrained scenarios.

4.4 Ablation Study

4.4.1 Impact of Image-Text Scoring

Table 8 analyzes the impact of re-weighting the image-text attention maps using the class VLM scores already
computed by the VLMs. Incorporating this re-weighting in our design leads to significant improvements in
segmentation performance for both training-free and one-shot settings. While the benefit of using class
VLM scores is slightly reduced in the one-shot setting, it remains crucial for achieving strong training-free
performance in both cross-attention-based VLMs like BLIP and LLM-based VLMs like LLaVA.
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Method Class VLM Score PASCAL-21 COCO-Obj
Training-Free One-Shot Training-Free One-Shot

BLIP × 25.1 62.4 26.0 38.7
BLIP ✓ 58.0 67.5 42.6 45.4
LLaVA-1.5-7B × 36.8 55.0 20.1 34.4
LLaVA-1.5-7B ✓ 51.6 63.7 32.3 42.1

Table 8: Ablation on the Importance of Image-Text Scoring. Re-weighting the image-text attention
maps using the class VLM scores significantly enhances performance in the training-free scenario and provides
additional gains in the one-shot setting. The benefit of this scoring is more pronounced without fine-tuning,
though it still contributes to improved results with one-shot supervision. Results are reported for the single-
prompt per class setting. Best performances are bolded.

Ranker PASCAL-21 ADE-20K
nDCG@2 mIoU@2 nDCG@2 mIoU@2

Image Entropy 0.43 9.2 0.57 8.9
Dataset Entropy 0.67 19.1 0.57 8.9
EntropyRatio 1.00 58.1 0.93 16.8
InfoScore 1.00 58.1 0.98 22.8

Table 9: Ablation of InfoScore Components for Layer Ranking of the BLIP Model on PASCAL-
21 and ADE-20K. We report nDCG@2 and mIoU@2 for each ranker on both datasets, which respectively
indicate the ranking quality and the training-free segmentation performance (mIoU) of the top-2 layers.
Results are shown for single-prompt per class setting.

4.4.2 Ablation with Individual Components of InfoScore

In Table 9, we compare the layer rankings of the BLIP model obtained using individual components of
the InfoScore measure on the PASCAL-21 and ADE-20K datasets. As shown, relying solely on either
Image Entropy or Dataset Entropy leads to suboptimal layer selection and consequently poor segmentation
performance.

Using only Image Entropy favors layers biased toward a few dominant classes, while Dataset Entropy favors
layers predicting many classes per image but with low confidence. Both lead to poor segmentation. Entropy-
Ratio (Sec. 3.2) balances these effects by promoting layers with confident per-image predictions and global
class diversity, yielding strong results on PASCAL-21. However, it overlooks image-to-image variation and
can mis-rank layers when global balance masks low variability, as seen on ADE-20K.

InfoScore resolves this by multiplying EntropyRatio with the Coefficient of Variation (CoV), explicitly mod-
eling prediction variability across images. As Table 9 shows, this consistently produces the best rankings
and significantly improves training-free segmentation, especially on ADE-20K.

4.5 Parameter Selection for One-Shot Fine-Tuning

Table 10 demonstrates the effectiveness of our selective fine-tuning strategy, where we fine-tune only the word
embeddings and the top-2 image-text cross-attention layers in BLIP. We compare six fine-tuning variants:
(i) fine-tuning only the top-2 cross-attention layers selected by InfoScore, (ii) fine-tuning only the word
embeddings, (iii) fine-tuning both the word embeddings and two randomly picked cross attention layers
(over 5 runs), (iv) fine-tuning both the word embeddings and the top-2 cross-attention layers, (v) fine-tuning
all the cross-attention layers alongwith word embeddings, and (v) fine-tuning all VLM paramters. The results
show that fine-tuning both the word embeddings and the top-2 cross-attention layers selected by InfoScore
consistently yields the best performance. Notably, increasing the number of tunable parameters beyond this
point leads to reduced performance, highlighting the effectiveness of our selective fine-tuning.
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Figure 7: Qualitative Results on PASCAL-21: Shown are results from zero-shot training-free w/o
image-text scoring (3rd column), zero-shot model w/ image-text scoring (4th column), and one-shot fine-
tuning (5th column). The final row shows an example where the zero-shot prediction outperformed the
fine-tuned one-shot model. For all variants, we ensemble the top-2 layers from BLIP ranked by InfoScore.
All the variants use multi-prompt per class setting.

Overall, BLIP consists of approximately 446.13 million parameters. In our selective fine-tuning strategy, we
tune only the top-2 cross-attention layers and the word embeddings corresponding to the prompts. Although
BLIP’s vocabulary size is 30,524 words, in practice, we fine-tune only the embeddings of the words that appear
in the prompts—typically up to around 250 word embeddings. This results in fine-tuning approximately 5.7
million parameters out of 446.13 million, which is just 1.28% of the total parameters. Importantly, we do not
introduce any additional parameters in either the training-free or few-shot fine-tuning settings. Our method
leverages the existing VLM architecture to generate segmentation maps efficiently, without increasing model
size, demonstrating both scalability and parameter efficiency.

4.6 Qualitative Results

Figure 7 presents the qualitative results of our approach across different settings, illustrating the impact of
image-text scoring and one-shot fine-tuning. As shown, the model without image-text scoring consistently
under-segments across all images, labeling most of the pixels as background. Applying image-text scoring for
filtering notably improves performance across all images, as it helps the model better focus on relevant areas.
However, there is a tendency to over-segment certain categories, as seen in the first couple of rows. One-
shot fine-tuning further enhances segmentation accuracy, consistently producing more precise segmentations.
However, the last row highlights a failure case for the one-shot fine-tuning, where potential bias from the
single example of the class couch led to mis-classification.

21



Under review as submission to TMLR

Fine-Tuned Parameters PASCAL-21 COCO-Obj

Top-2 Cross-Attention Layers Only 65.0 44.4

Word Embeddings Only 63.2 43.4
— + Random-2 Cross-Attention Layers 66.1 42.4
— + Top-2 Cross-Attention Layers 67.5 45.4
— + All Cross-Attention Layers 64.1 40.6
— + All VLM Parameters 60.9 41.9

Table 10: Fine-tuning Strategies. The top section shows the standalone impact of fine-tuning the top-2
cross-attention layers. The bottom section presents the progressive addition of parameters starting from
fine-tuning word embeddings. Fine-tuning both the word embeddings and the top-2 layers yields the best
performance, while further increasing the number of tunable parameters leads to reduced performance.
Results are reported in the single-prompt per class setting. Best results are bolded.

We provide additional qualitative results on the COCO-Obj and ADE-20K datasets in Figures 10 and
11, respectively, with further discussion in Section A.4 of the Appendix.

5 Limitations

Our method is applicable to a wide range of modern vision–language models that expose explicit multimodal
interactions between image and text tokens. Its effectiveness depends on the quality of the resulting mul-
timodal attention maps. In particular, successful segmentation requires attention maps that exhibit strong
text–image grounding and sufficient spatial resolution. Architectures that aggressively merge or downsample
visual tokens may produce attention maps that are too coarse for fine-grained pixel-level segmentation.

In addition, our framework is not applicable to CLIP-like encoder-only vision–language models that compute
image and text representations independently and do not expose multimodal attention during inference. Such
models fall outside the scope of this work.

6 Conclusion

Our work extends state-of-the-art approaches that perform segmentation by using vision foundation models
by eliminating the need for abundant segmentation labels. We leverage the strength of a single visual
example to better disambiguate categories beyond their textual names. This, combined with our proposed
InfoScore measure, reduces reliance on intensive prompt engineering or tuning of the layers/heads selected
for segmentation in VLMs. Our approach can operate in both training-free and one-shot fine-tuning settings,
with the latter achieving significant gains on four benchmarks and demonstrating compatibility across three
different VLMs.
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A Appendix

A.1 Further Implementation Details

For BLIP (Li et al., 2022b) and LLaVA (Liu et al., 2024a), we rely on the HuggingFace1 library. For
ALBEF (Li et al., 2021), we use LAVIS2.

BLIP. For BLIP we use pretrained model weights of Salesforce/blip-itm-large-coco. It uses ViT-L/16
backbone pre-trained on ImageNet as vision encoder and BERT (Devlin et al., 2019) as image-grounded text
encoder. The cross-attention layers of BERT take image embeddings as key, value. There are 12 such cross-
attention layers and the number of heads is 12. The BLIP model is trained for image-text understanding using
a combination of Image-Text Matching (ITM) and Image-Text Contrastive (ITC) Loss on 129M image-text
pairs The ITM head of BLIP model is used for class-scoring.

ALBEF. For ALBEF we use albef-retrieval-coco checkpoint as pre-trained model weights. It uses
ViT-B/16 pretrained on ImageNet. Similar to BLIP they are also trained with ITM and ITC Loss but on
a much smaller number of image-text pairs of 14.1M. It has six multi-modal layers where there is explicit
cross-attention between image and text.

LLaVA. For LLaVA we use llava-1.5-7b-hf as pre-trained model weights. It uses CLIP VIT-L/14 as a
vision encoder which is pre-trained with 400M image-text pairs. The image embeddings are first passed into
a projection layer which are then passed to a large language model relying on Vicuna-7B.

One-shot fine tuning details. For COCO-Obj, PASCAL-21 and ADE-20K we use training images cropped
to maximum width of 512, while for COCO-171 we use a resolution of 256 for training but 512 during inference
time. In order to fine-tune LLaVA efficiently, we employ Low-Rank Adapters (LoRA) (Hu et al., 2022) with
4-bit quantization (Dettmers et al., 2023), and selectively fine-tune the LoRA adapters only in the layers
identified by InfoScore, along with the word embeddings.

PostProc Inference Time PASCAL-21 COCO-Obj

ConvCRF (Teichmann & Cipolla, 2018) 0.4s 60.2 42.8
PAMR (Araslanov & Roth, 2020) 3.6s 59.6 42.2

Table 11: Ablation with two different post-processing methods in the training-free setting. Con-
vCRF (Teichmann & Cipolla, 2018) marginally outperforms PAMR (Araslanov & Roth, 2020) while being
significantly faster at inference. Even with PAMR post-processing, our training-free setting outperforms
state-of-the-art training-free approaches like NACLIP (Hajimiri et al., 2025) on COCO-Obj by nearly 6%.
Results are in multi-prompt per class setting. Best results are in bold.

A.2 InfoScore Additional Analysis

Layerwise analysis of mIoU and InfoScore on ALBEF. Following the analysis conducted for BLIP
(see section 4.2.3, we perform a layerwise study on ALBEF by independently evaluating each layer for

1https://huggingface.co/docs/transformers/en/model_doc/blip
2https://github.com/salesforce/LAVIS
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Figure 8: Illustration of the InfoScore measure on ALBEF. The mIoU Rank reflects the descending
order of mIoU values (in red) derived from cross-attention maps for each standalone layer (labeled LayerN ,
top) on the PASCAL VOC 2012 validation set (1449 images), compared to the predicted InfoS Rank (bottom)
based on our InfoScore measure (in blue) requiring no annotations. InfoScore rankings align with mIoU
Rankings except for the worst two layers with rankings interchanged between 5th and 6th. Results shown
here are in single-prompt per class setting.
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Figure 9: Performance analysis of pairing layers with the top-1 layer. We compare the mIoU
achieved by pairing the top-1 layer (Layer 3) with each remaining layer using BLIP, evaluated on Pascal-21.

training-free segmentation on the Pascal-21 validation set under the single-prompt per class setting. As
illustrated in Figure 8, segmentation accuracy exhibits noticeable variation across layers.

We further compute the corresponding InfoScore measure for each layer and compare the induced ranking
against the oracle mIoU-based ranking. We observe that InfoScore correctly identifies the top-4 layers,
with only a minor swap in the ordering of the last two layers. This close alignment with oracle rankings
demonstrates that InfoScore reliably captures layer informativeness and grounding quality, consistent with
our observations on BLIP.

Performance of top-1 paired with others on BLIP. We ablate a challenging setting where we use the
top-1 layer of BLIP identified with our InfoScore measure paired with all the other layers in BLIP evaluated
on PASCAL-21 dataset. Figure 9 shows that pairing the top-1 layer (Layer3) with the second best layer
(Layer0), outperforms all the other pairs. Thus, it confirms the benefits from our proposed approach even
in the challenging setting.
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Figure 10: Qualitative Results on COCO-Obj: Shown are results from zero-shot model w/o image-
text scoring for filtering (3rd column), zero-shot model w/ image-text scoring (4th column), and one-shot
fine-tuning (5th column). The final row shows an example where the zero-shot prediction outperformed the
fine-tuned one-shot model. For all variants, we ensemble the top-2 layers ranked by InfoScore. All variants
use multi-prompt per class setting.
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Figure 11: Qualitative Results on ADE-20K: Shown are results from zero-shot model w/o image-text
scoring for filtering (3rd column), zero-shot model w/ image-text scoring (4th column), and one-shot fine-
tuning (5th column). The final row shows an example where the zero-shot prediction outperformed the
fine-tuned one-shot model. For all variants, we ensemble the top-2 layers ranked by InfoScore. All variants
use multi-prompt per class setting.

A.3 Choice of Post-processing Algorithm

In this section, we compare post-processing with ConvCRF (Teichmann & Cipolla, 2018) and
PAMR (Araslanov & Roth, 2020), used by recent methods (Wang et al., 2024a; Hajimiri et al., 2025). Ta-
ble 11 shows that our approach is robust to the choice of post-processing, with ConvCRF providing a slight
improvement and being nine times faster than PAMR. In the zero-shot setting on COCO-Obj, our method
outperforms the second-best approach, NACLIP (Hajimiri et al., 2025), by 6%, regardless of post-processing.
These results confirm that our approach consistently outperforms state-of-the-art methods, independent of
the post-processing strategy.
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A.4 Additional Qualitative Results

A.4.1 Qualitative Results on COCO-Obj

We show additional qualitative results on COCO-Obj dataset in Fig. 10. It shows eight successful scenarios,
where the variant without class VLM Score based re-weighting either under-segments or mis-classifies the
objects in the scene. On the other hand, the one-shot variant with only a single visual example shows
considerable improvement in segmenting the objects in the scene and overcomes the aforementioned issues.
Looking specifically at the second and seventh rows we see that the one-shot variant resolved the confusion
on whether to segment the clothes as part of class Person or not. Since by definition of the word itself
it might exclude the clothes as another class, but with the class definition of COCO-Obj these are to be
considered part of Person class.

A.4.2 Qualitative Results on ADE-20K

We present qualitative results on ADE-20K in Fig. 11, comparing zero-shot inference without class VLM
score–based re-weighting, zero-shot inference with class VLM score–based re-weighting, and one-shot fine-
tuning. As observed in general, the zero-shot variant without class VLM score often suffers from fragmented
regions, under-segmentation, or incorrect semantic assignments. Incorporating class VLM scores consistently
improves region coherence and semantic alignment, reducing spurious predictions across diverse scenes. The
one-shot variant further refines object boundaries and resolves remaining ambiguities, producing segmenta-
tions that more closely align with the ground truth.

For example, in the first row, the zero-shot variant without class conditioning produces fragmented and
noisy regions, while class-aware scoring substantially improves semantic coherence; the one-shot model fur-
ther sharpens object boundaries. In the third row, class-aware scoring helps suppress spurious background
predictions around the foreground structure, which are further refined after one-shot adaptation.

Finally, the last row highlights a case where zero-shot inference with class-aware scoring outperforms one-
shot fine-tuning, indicating that strong class-conditioned priors can already yield competitive segmentations
without adaptation.

A.5 List of Prompts

In this section, we provide the detailed prompts used in the multiple-prompt setting. Our prompt format
is [Image of {class}.], where {class} represents the class name in the single-prompt setting. For the
single-prompt-per-category setting, we made minor modifications to the names of certain categories. For
example, in COCO-Obj, we corrected the misspelling of hair drier to hair dryer. In COCO-171, we
removed ambiguous suffixes (e.g., -other, -stuff) and renamed classes like floor-wood to wooden floor. In
the multiple-prompt variant, we additionally used synonyms, hyponyms, and/or plurals of the class names.

Table 13 shows the prompts used for PASCAL-21 in the multiple-prompt setting, while Table 12 presents the
prompts used for COCO-Obj (80 classes) and COCO-171 (171 classes). The table includes both the ’things’
classes, which are common in both datasets, and the ’stuff’ classes, which are exclusive to COCO-171.

Note that the list of classes for the background is adopted from the implementations of SCLIP (Wang et al.,
2024a)3 and NACLIP (Hajimiri et al., 2025)4, and is used consistently for both the single and multi-prompt
settings. For background class aggregation, in cross-attention-based models like BLIP and ALBEF, we sum
the predictions of all background classes, whereas for LLM-based models like LLaVA, we simply take the
maximum prediction among the background classes.

3https://github.com/wangf3014/SCLIP/blob/main/configs/cls_coco_object.txt
4https://github.com/sinahmr/NACLIP/blob/main/configs/cls_coco_object.txt
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Table 12: List of prompts for Single and Multi-Prompt
Per Class Settings for COCO-Obj (Things Classes) and
COCO-171 (Things + Stuff). The symbol ∗ for ’background’
indicates that additional prompts are used to represent the back-
ground classes for the single prompt setting, following (Wang et al.,
2024a; Hajimiri et al., 2025). The list of classes for the background
is borrowed from the implementation of SCLIP (Wang et al., 2024a)
and NACLIP (Hajimiri et al., 2025). Our prompt takes the form
[Image of {class}.], where the {class} is given below. It is to
be noted that COCO-171 does not have any background class and
the background prompts are used for COCO-Obj only.

Class Id and Prompt Additional Prompts (Multi-prompt)

Background 0: background∗

sky, wall, tree, wood, grass,
road, sea, river, mountain,
sands, desk, building, cloud,
lamp, door, window, wardrobe,
ceiling, shelf, curtain, stair,
floor, hill, rail, fence

T
hi

ng
s

C
la

ss
es

1: person people, man, woman, child,
children, boy, girl

2: bicycle bicycles, bike
3: car cars.
4: motorcycle motorcycles, motorbike
5: airplane airplanes, aeroplane, aircraft
6: bus buses, coach
7: train -
8: truck trucks, lorry
9: boat ship, boats, yacht, sailboat,

speedboat
10: traffic light -
11: fire hydrant -
12: stop sign -
13: parking meter -
14: bench benches
15: bird birds
16: cat cats, kitten
17: dog dogs, puppy
18: horse horses
19: sheep -
20: cow cows, cattle
21: elephant elephants
22: bear bears
23: zebra zebras
24: giraffe giraffes
25: backpack backpacks
26: umbrella parasol, umbrellas
27: handbag -
28: tie necktie
29: suitcase -
30: frisbee -
31: skis ski
32: snowboard snowboards
33: sports ball ball, sports balls

33



Under review as submission to TMLR

Class Id and Prompt Additional Prompts (Multi-prompt)

T
hi

ng
s

C
la

ss
es

34: kite kites
35: baseball bat -
36: baseball glove -
37: skateboard skateboards
38: surfboard surfboards
39: tennis racket racket, tennis rackets, racquet
40: bottle bottles
41: wine glass -
42: cup cups
43: fork forks
44: knife knives
45: spoon -
46: bowl dish
47: banana bananas
48: apple apples
49: sandwich sandwiches
50: orange oranges
51: broccoli -
52: carrot carrots
53: hotdog hotdogs, sausage
54: pizza -
55: donut donuts
56: cake cakes
57: chair chairs
58: couch sofa
59: potted plant indoor plant
60: bed -
61: dining table -
62: toilet -
63: tv television, tvs, television

screen
64: laptop -
65: mouse computer mouse
66: remote remote control, remotes
67: keyboard -
68: cell phone cell phones, mobile phone
69: microwave -
70: oven -
71: toaster -
72: sink -
73: refrigerator fridge
74: book books
75: clock -
76: vase -
77: scissors -
78: teddy bear teddy
79: hair dryer blow dryer
80: toothbrush -

St
uff

s
C

la
ss

es

81: banner -
82: blanket -
83: branch branches, tree branch
84: bridge -
85: building buildings
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Class Id and Prompt Additional Prompts (Multi-prompt)

St
uff

s
C

la
ss

es

86: bush bushes
87: cabinet storage, wall cabinet
88: cage -
89: cardboard -
90: carpet -
91: ceiling -
92: tile ceiling -
93: cloth -
94: clothes -
95: clouds -
96: counter -
97: cupboard -
98: curtain -
99: desk -
100: dirt -
101: door -
102: fence -
103: marble floor -
104: floor -
105: stone floor -
106: tiled floor -
107: wooden floor -
108: flower -
109: fog -
110: food -
111: fruit -
112: furniture -
113: grass -
114: gravel -
115: ground -
116: hill -
117: house -
118: leaves -
119: light -
120: mat door mat
121: metal metal surface, metallic object
122: mirror -
123: moss spores, mosses
124: mountain -
125: mud -
126: napkin -
127: net -
128: paper -
129: pavement sidewalk, footpath
130: pillow -
131: plant plants
132: plastic -
133: platform -
134: playing field playground
135: railing -
136: railroad -
137: river -
138: road -

35



Under review as submission to TMLR

Class Id and Prompt Additional Prompts (Multi-prompt)

St
uff

s
C

la
ss

es

139: rock -
140: roof -
141: rug -
142: salad -
143: sand -
144: sea -
145: shelf -
146: sky -
147: skyscaper -
148: snow -
149: solid material -
150: stairs -
151: stone -
152: straw -
153: structure -
154: table -
155: tent -
156: textile -
157: towel -
158: tree -
159: vegetable -
160: brick wall -
161: concrete wall -
162: wall -
163: wall panel -
164: stone wall -
165: tiled wall -
166: wooden wall -
167: water -
168: drops of water -
169: window blind -
170: window -
171: wood timber
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Class Id and Prompt Additional Prompts
0: background∗ sky, wall, tree, wood, grass, road, sea, river,

mountain, sands, desk, building, cloud, lamp, door,
window, wardrobe, ceiling, shelf, curtain, stair,
floor, hill, rail, fence

1: airplane aeroplane, jet, airplanes, plane, aeroplanes, jets,
planes

2: bicycle bicycles, bike, bikes
3: bird birds
4: boat boats, yacht, ship, ships, speedboat, speedboats,

yachts
5: bottle bottles
6: bus buses, coach, coaches
7: car cars
8: cat cats
9: chair chairs, dining chair
10: cow cows, cattle
11: dining table dining tables
12: dog dogs
13: horse horses
14: motorcycle motorcycles, motorbike, motorbikes
15: person people, man, woman, men, women, boys, girls, child,

children, boy, person in shirt, person in jeans,
person in dress, person in sweater, person in skirt,
person in jacket

16: potted plant
potted plants, indoor
plants, house plants

17: sheep -
18: couch sofa, couches
19: train trains, railcar, railcars
20: tv television, television set, television monitor, tv

monitor, monitor, television screen, TVs

Table 13: List of prompts for Single and Multi-Prompt Per Class Settings for PASCAL-21. The
symbol ∗ for ’background’ indicates that additional prompts are used to represent the background classes
for the single-prompt setting, following (Wang et al., 2024a; Hajimiri et al., 2025). The list of background
classes is borrowed from the implementations of SCLIP (Wang et al., 2024a) and NACLIP (Hajimiri et al.,
2025). Our prompt format is [Image of {class}.], where {class} is as listed above.
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